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1 Proof of the Continuous-Time Version of Sequential

Double Auctions

In this appendix we prove Proposition 7 in Appendix B of Duffie and Zhu (2016), the continuous-
time version of the sequential double auction model.
Recall that the HJB equation of trader 7 is

0 =sup[=D(®(D +Di( 52, 2)B(D + Di( 32, 2)) + V/(2) DD + Di( -3 2, 7))

— 22+ r(vz — V(2)), (1)

where the continuation value function is
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With (2), the HIB equation, applied to trader i at time ¢, is equivalent to solving, for each

outcome of Z, the optimal demand

sup [—a D=} (—x; 2, Z) + V' (210)x] (3)

T

where D~ (q; zit, Z) is the inverse total demand of the other agents at any quantity ¢, meaning

that price p for which

¢= (- Da@w—p) ~ (7~ 2)
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Solving,
_ 1
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Thus, the demand problem of agent 7 is
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The first-order necessary condition for optimality of z* is
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The unique solution x* of this first-order condition also satisfies the second-order sufficiency
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The associated market clearing price is

condition, and is given by
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We now verify that the postulated demand function D;; for agent ¢ achieves the above

demand z*, regardless of the outcome of Z. We have
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which is indeed equal to the optimal demand x*.
In order to prove that the proposed indirect utility function V satisfies the HJB equation,
we substitute our expressions for V(z), p*, and Dy(p*) into the right-hand-side of the HJB

equation (1). To confirm that (1) is satisfied, we must show that for all real z and Z,

0—_ 2" (5 _ z) <v _ 215> +V(2) 2 (5 - z> Frws— V() =72t (6)
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To see that (6) holds, note that




and that
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The right-hand side of (6) is thus computed as

_2oy (5 _ z) (v - 215) V()2 (5 - z) r(vz = V(2)) — 722

rn r

Z\? A Z Z\?
—l—’y(—) + 29— (z——>+ il (z——) — 22
n n n n—1 n

Substituting a = (n — 2)r?/4~, we have
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So, V satisfies the HJB equation because
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Thus, using the fact that the demand function D; solves the maximization problem of

the HJB equation, and using the fact that V' solves the HJB equation, an application of Ito’s
formula to the process J defined by J(t) = V(z) for t < T, and by J(t) = wzyp for t > T
implies that

V(zio) = F {ziT(T)ﬂ — /OT ['yzft + Dy [® (Dyp + D_3 )] ® (Dyy + D_y)] dt| .

For any other demand function D for agent ¢, the HJB equation and Ito’s formula implies



that implies that
T
V(zio) > FE |:ZiD(T)7T — / [sz-D(t)2 + Dy [® (D + D_;4)] (D + D—it)} dt| .
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Thus D; is indeed optimal for trader ¢ given D_;, and V' (2) is indeed the indirect utility of
any agent with inventory z. This proves Proposition 7 of Duffie and Zhu (2016).
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