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Size-discovery mechanisms allow large quantities of an asset to be exchanged at a price
that does not respond to price pressure. Primary examples include “workup” in Treasury
markets, “matching sessions” in corporate bond and CDS markets, and block-trading
“dark pools” in equity markets. By freezing the execution price and giving up on market-
clearing, size-discovery mechanisms overcome concerns by large investors over their price
impacts. Price-discovery mechanisms clear the market, but cause investors to internalize
their price impacts, inducing costly delays in the reduction of position imbalances. We show
how augmenting a price-discovery mechanism with a size-discovery mechanism improves
allocative efficiency. (JEL G14, D47, D82)
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This paper characterizes equilibrium behavior in size-discovery mechanisms,
by which large transactions can be quickly arranged at fixed prices. We show
that size discovery can significantly improve allocative efficiency in markets
with imperfect competition and private information over latent supply or
demand imbalances.

The issue of market liquidity has received intense attention in the last
few years. The Securities and Exchange Commission (2010) and the U.S.
Department of the Treasury (2016) raise important questions and concerns
about the liquidity and design of markets for U.S. equities and Treasuries. The
“Flash Crash” on May 6, 2010, in U.S. equity and futures markets and the
“Flash Rally” on October 15, 2014, in U.S. Treasury markets were wake-up
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calls that even deep liquid markets may experience extreme price movements
without obvious fundamental news (Joint CFTC-SEC Advisory Committee
2011; Joint Staff Report 2015). There are widespread concerns that dealers
are less willing or likely to absorb large trade flows onto their balance sheets
(Adrian et al. 2015).

An important aspect of market liquidity is the ability to quickly buy or sell
large quantities of an asset with a small price impact. By definition, price
impact is primarily a concern of large strategic investors—such as mutual funds,
pension funds, and insurance companies—and not of small or “price-taking”
investors. Price impact is a particular concern of major financial intermediaries
such as broker-dealers, who often absorb substantial inventory positions in
primary issuance markets or from their client investors, and then seek to
offload these positions in interdealer markets. Duffie (2010) surveys widespread
evidence of substantial price impact around large purchases and sales, even in
settings with relatively symmetric and transparent information.

To mitigate price impact, investors often split large orders into many smaller
pieces and execute them slowly over time. Order splitting is done by computer
algorithms in electronic markets and manually in voice markets. As we explain
shortly, such piecemeal execution is inefficient from an allocative perspective,
given the associated costly delay in reducing undesired positions. Investors
could alternatively pass a large position to a dealer at a price concession, but
this strategy has become more costly in recent years, as bank-affiliated dealers
are subject to tighter capital and liquidity regulation.

We show that size discovery is an effective way to mitigate the allocative
inefficiency caused by strategic avoidance of price impact. Size discovery
is therefore a valuable source of block liquidity that can complement order-
splitting execution strategies and market-making services by major dealers.
Examples of size-discovery mechanisms used in practice include:

• Workup, a trading protocol by which buyers and sellers successively
increase, or “work up,” the quantities of an asset that are exchanged at
a fixed price. Each participant in a workup has the option to drop out at
any time. In the market for U.S. Treasuries, Fleming and Nguyen (2015)
find that workup accounts for 43% to 56% of total trading volume on the
largest U.S. Treasuries trade platform, BrokerTec, on a typical day.

• “Matching sessions,” a variant of workup found in markets for corporate
bonds and credit default swaps (CDS). For the most actively traded
CDS indices, CDX.IG and CDX.HY, Collin-Dufresne, Junge, and Trolle
(2016) find that matching sessions and workups account for over 70%
of trading volume on GFI, a swap execution facility.

• Block-crossing “dark pools,” such as Liquidnet and POSIT, which are
predominantly used in equity markets. In a typical “midpoint” dark pool,
buyers and sellers match orders at the midpoint of the best bid price and
best offer price shown on transparent exchanges. Dark pools account for
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about 15% of trading volume in the U.S. equity markets (Zhu, 2014).
Certain dark pools offer limited price discovery. Others do not use price
discovery at all.

Despite some institutional differences discussed in Section 1, these various
forms of size discovery share the key feature of crossing orders at fixed prices,
thus without price impact.Although aware of the trade price, market participants
conducting size discovery are uncertain of how much of the asset they will
be able to trade at that price, which is not sensitive to their demands. One
side of the market is eventually rationed, being willing to trade more at the
given price. Thus, a size-discovery mechanism cannot clear the market, and is
therefore inefficient on its own. Size discovery stands in sharp contrast to “price
discovery” trading mechanisms, which find the market-clearing price that
matches supply and demand. Nevertheless, precisely by giving up on market-
clearing, a size-discovery mechanism reduces investors’ strategic incentives
to dampen their immediate demands. We show, as a consequence, that a
market design combining size discovery and price discovery offers substantial
efficiency improvement over a market that relies only on price discovery.

Our modeling approach and the intuition for our results can be roughly
summarized as follows. An asset pays a liquidating dividend at a random
future time. Before this time, double auctions for the asset are held among
n strategic traders at evenly spaced time intervals of some length �. Thus, the
auctions are held at times 0,�, 2�, and so on. Before the first of these auctions,
the inventory of the asset held by each trader has an undesired component,
positive or negative, that is not observable to other traders. Each trader suffers
a continuing cost that is increasing in his undesired inventory imbalance. In each
of the successive double auctions, traders submit demand schedules. The market
operator aggregates these demand schedules and calculates the market-clearing
price, at which total demand and supply are matched.

If traders were competitive “price-takers,” each would express her true
demand or supply at any given price.Adouble auction in this case would achieve
the efficient allocation (the First Welfare Theorem). But because traders are
strategic and there is a finite number of them, each trader “shades” her demand
schedule in order to mitigate her own impact on the market-clearing price.
For example, each trader who wishes to sell submits a supply schedule that
expresses, at each price, only a fraction of her actual trading interest in order to
reduce her own downward pressure on the market-clearing price. The unique
efficient allocation is that giving each trader the same magnitude of undesired
inventory. At each successive double auction, however, traders’ inventories
adjust only gradually toward the efficient allocation. As a result, traders with
large unwanted positions, whether short or long, may bear significant costs,
relative to the efficient allocation. These excess costs are not reduced by
holding more frequent auctions. As shown by Vayanos (1999) and Du and
Zhu (2016), even if trading becomes infinitely frequent, convergence to the
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Figure 1
Inventory paths with and without a workup
The thin-line plots are the equilibrium inventory paths of a buyer and a seller in sequential-double-auction
market. Plotted in bold are the equilibrium inventory paths of the same buyer and seller in a market with a
workup followed by the same sequential-double-auction market. This example is plotted for the continuous-time
limit of the double-auction market.

efficient allocation is not instantaneous. As the time between trading rounds
becomes smaller, strategic incentives to avoid price impact actually become
stronger.

In summary, because of strategic bidding behavior and imperfect compe-
tition, the sequential-double-auction market is slow in reducing allocative
inefficiencies. This point is well recognized in prior work, including the static
models of Vives (2011), Rostek and Weretka (2012), and Ausubel et al. (2014),
as well as the dynamic models of Vayanos (1999), Rostek and Weretka (2015),
and Du and Zhu (2016).

Figure 1 illustrates the time paths of expected inventories of a buyer and a
seller for a parametric case of our sequential-double-auction market that we
present later in the paper. The two thin-line plotted curves in Figure 1 illustrate
the convergence over time of the expected inventories to those of the efficient
allocation.

Now, consider an alternative market design in which traders have the
opportunity to conduct a size-discovery session, say a workup, before the first
double auction. For simplicity of exposition, we first solve the equilibrium
for the special case of bilateral workups. Any active bilateral workup session
involves a trader with a negative inventory imbalance, the “buyer,” and a trader
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with a positive inventory imbalance, the “seller.” Any trader who does not enter
a workup participates only in the subsequent double auctions.

The fixed workup price is set at some given level. (We show that our results
are robust to the choice of workup price.) As mentioned, the quantity to be
exchanged by the workup’s buyer and seller is raised continually until one of
the two traders drops out. That dropout quantity of the asset is then transferred
from the seller to the buyer at the fixed workup price. Because the workup price
is fixed, neither the buyer nor the seller is concerned about price impact. They
are therefore able to exchange a potentially large block of the asset immediately,
leading to a significant reduction in the total cost of maintaining undesired
inventory over time.

Specifically, facing the opportunity to trade an additional unit, each workup
participant chooses between (i) trading that unit immediately in the workup
and (ii) exiting the workup immediately and reserving the additional unit for
later execution in the double auctions. The optimal choice depends on two
considerations. On one hand, each trader wishes to minimize the unwanted
inventory that is carried into the sequential-double-auction market. These
leftover inventories take time to optimally liquidate, involve price-impact costs,
and in the meantime are accompanied by holding costs. On the other hand, each
trader in a workup faces a “winner’s curse” regarding the subsequent double-
auction price. For example, if the buyer’s offer to trade an additional unit is
accepted by the seller, the buyer will have learned that the seller has more
to sell than had been expected. The buyer would in that case have missed
the chance to buy that unit in subsequent double auctions at a price whose
conditional expectation is lowered by the seller’s agreement to continue the
workup. That is, the buyer’s additional unit is more likely to be accepted by
the seller precisely if the double-auction price is more likely to be lower. This
winner’s curse implies that, at some point in the workup (if the seller has
not already dropped out), the buyer should withhold the next additional unit
from the workup and reserve it for execution in the double-auction market at a
more favorable conditional expected price. In equilibrium, these two effects—
inventory costs and winner’s curse—determine a unique inventory threshold
for dropping out of workup, which we calculate explicitly.

The two thick lines in Figure 1 illustrate the effect of augmenting the market
design with an initial workup, which causes an instant reduction in inventory
imbalances. In a simple parametric setting examined later in the paper, we show
that buyers and sellers participating in bilateral workup eliminate between
27.6% and 62.7% of the inefficiency costs they bear from the effect of
imperfect competition and the avoidance of price impact. Variation in the cost
savings within this range is determined primarily by the number of active
price-discovery market participants.

Comparative statics reveal that bilateral workups are more likely to occur and
generate higher trading volumes if the double auctions are run more frequently,
if the arrival of payoff-relevant information is less imminent, or if there are
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fewer traders in the market. Under any of these conditions, traders are more
sensitive to price impact because they will liquidate their inventories more
gradually, implying higher inventory holding costs. These conditions therefore
increase the welfare improvement allowed by workup.

The economic mechanism and intuition of bilateral workups also apply to
a multilateral workup, in which arbitrarily many buyers and sellers form two
queues and trade at the same fixed price, consecutively. The multilateral workup
session begins (if at all) with a workup between the first buyer and seller in
their respective queues. Eventually, either the currently active buyer or seller
drops out. If, for example, the seller is the first to drop out, it is then revealed
whether there is at least one more trader remaining in the seller’s queue, and
if so whether that seller wishes to continue selling the asset at the same price.
Based on this information, the buyer may continue the workup or may choose
to drop out and be replaced by another buyer, if there is one, and so on. This
process continues until there are no more buyers or no more sellers, whichever
happens first. The equilibrium is solved in terms of the dropout threshold for the
remaining inventory of an active workup participant, which is updated as each
successive counterparty drops out and is replaced with a new counterparty. For
example, when a new seller arrives and begins to actively increase the workup
quantity, the current buyer’s conditional expectation of the total market-wide
supply of the asset jumps up, and this causes the buyer’s dropout threshold to
jump up at the same time by an amount that we compute and that depends on the
history of prior workup observations. That is, with the arrival of a new active
replacement seller, the buyer infers that the conditional expected double-auction
price has become more favorable and holds back more inventory from the
workup, reserving a greater fraction of its trading interest for the double-auction
market.

For tractability reasons, our work does not address the endogenous timing
of size-discovery trading. Indeed, we are able to solve for equilibria with
only an initializing round of size discovery. In practice, size discovery
occurs with intermittent timing, presumably whenever position imbalances are
sufficiently large on both sides of the market. Our equilibrium solution methods,
however, rely on parametric assumptions for size-discovery prices and for
the probability distribution of inventory levels entering into size discovery.
Replacing these parametric initial conditions with endogenously determined
size-discovery conditions is intractable in our framework, and we know of no
tractable approaches for a useful equilibrium analysis of intermediate-timed
size discovery.

This research is positive rather than normative. Size discovery has existed
in Treasury and equity markets for decades. More recently, trade platform
operators have introduced size-discovery mechanisms for corporate bonds,
CDS, and interest rate swaps. Motivated by their wide use in practice, we solve
the equilibrium behaviors in size discovery and find that adding size discovery
to conventional price-discovery markets leads to large welfare improvements.
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Traders who execute a positive quantity in size discovery can expect to
substantially benefit. Traders who participate only in the price-discovery market
are not harmed by the use by others of size-discovery mechanisms. Size-
discovery mechanisms do not, however, achieve first-best allocations. For
example, traders drop out of workups prematurely from a social welfare
viewpoint, based on their equilibrium inference of expected future pricing
advantages that are merely transfers.

In particular, we do not rule out the possibility of other mechanism designs
that would strictly improve over size-discovery schemes such as workup, in
terms of efficiency gain. Our focus on size discovery is especially motivated
by its widespread use in practice.

An alternative research goal would be a normative design of the optimal
dynamic mechanism for asset allocation, subject to incentive compatibility and
budget balancing. If the inventory allocation problem were static, a first-best
allocation could, under conditions, be achieved by the “AGV” mechanism1 of
Arrow (1979) and d’Aspremont and Gérard-Varet (1979). In a dynamic market
with imperfect competition and the stochastic arrival of new inventory shocks,
static mechanisms such as AGV are no longer optimal. Solving for an optimal
dynamic mechanism is difficult, and well beyond the scope of this paper.2

As far as we are aware, our paper is the first to explicitly model how a
size-discovery mechanism reduces allocative inefficiency caused by strategic
demand reduction in price-discovery markets. We are also the first to solve for
equilibrium behavior in multilateral workups and matching-session markets.

The only prior theoretical treatment of workup, to our knowledge, is by
Pancs (2014), which focuses on the entirely different issue of “front-running.”
In Pancs’ workup model, the seller has private information about the size of
his desired trade (“block”), whereas the buyer is either a “front-runner” or a
dealer. If the seller cannot sell his entire position in the workup, he liquidates
the remaining positions by relying on an exogenously given outside demand
curve. At any point during the workup, the front-runner may decide to front-
run the seller in the same outside demand curve. A dealer does not front-run
by assumption. Under parametric conditions, Pancs (2014) characterizes an
equilibrium in which each step of the workup transacts the smallest possible
incremental quantity. This equilibrium minimizes the front-runner’s payoff
since it reveals as little information about the seller’s block as possible. The
key idea of our paper—that by freezing the price, workup mitigates strategic
avoidance of price impact in price-discovery markets—is not considered by
Pancs (2014).

1 In a side communication, Romans Pancs has shown us the explicit AGV mechanism for a simple variant of our
model, based on iid original inventory positions and the assumption of no subsequent re-trade opportunities. In
the Bayes-Nash equilibrium induced by this direct mechanism, each agent truthfully reports his original excess
inventory as his type. Agents are assigned balanced-budget payments, based on their reported types.

2 In a conversation, Bruno Biais suggested the mechanism design problem of re-allocating inventory at a given
point in time, taking as given the subsequent double-auction market.
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Block-trading dark pools used in equity markets are also size-discovery
mechanisms. The small and parallel literature on dark pools focuses instead
on the effect of dark trading on price discovery and liquidity. Relevant papers
include Hendershott and Mendelson (2000), Degryse, Van Achter, and Wuyts
(2009), Zhu (2014), and Buti, Rindi, and Werner (2016), among others. In these
models, each investor’s trading interest is one unit, two units, or an infinitesimal
amount. By characterizing allocative efficiency in the presence of arbitrarily
large trading interests, our model goes substantially beyond existing research
on the role of dark pools.

Empirical analyses of workup include those of Boni and Leach (2002,
2004), Dungey, Henry, and McKenzie (2013), Fleming and Nguyen (2015),
and Huang, Cai, and Wang (2002). Empirical studies of dark pools include
Buti, Rindi, and Werner (2011), Ready (2014), and Menkveld, Yueshen, and
Zhu (2016), among many others.

1. Size Discovery in Practice

In current market practice, size discovery shows up most prominently in three
forms of trade mechanisms: workups, matching sessions, and block-crossing
dark pools. This section summarizes the institutional settings of these respective
mechanisms.

Workup was introduced in the last decades of the 20th century by interdealer
voice brokers3 for U.S. Treasury securities, and is now heavily used on
platforms for the electronic trading of Treasuries. The most active of these
platforms are BrokerTec and eSpeed. On BrokerTec, for example, workup is
fully integrated with central limit order book trading. Once a trade is executed
on the limit order book at some price p, a workup session is opened for
potential additional trading at the same price. The original buyer and seller
and other platform participants may submit additional buy and sell orders that
are executed by time priority at this workup price. Trade on the central limit
order book is meanwhile suspended. The workup session ends if either (i) the
workup session has been idle for some specified amount of time, which has
been successively reduced in recent years and is now three seconds, or (ii) a
new aggressive limit order arrives that cannot be matched immediately at the
workup price p but can be matched immediately against a standing limit order
deeper in the book. In (ii), the new order establishes a new price, at which point
a new workup process may begin. In (i), order submission on the limit order
book resumes and continues until another limit-order-book trade is executed,
kicking off another potential workup trade. This process repeats. A key feature
is the integration of workup with the limit order book; when one of these two
protocols is in process, the other is interrupted. For more details on BrokerTec’s

3 One of us was told that workup was invented at Cantor Fitzgerald, but we have not verified this.
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workup protocol, see Fleming and Nguyen (2015), Fleming, Schaumburg, and
Yang (2015), and Schaumburg and Yang (2016). Liu, Wang, and Wu (2016)
provide additional evidence on workups in the GovPX data set, which focuses
on off-the-run Treasury securities.

Matching sessions use a trade protocol that is a close variant of workup,
and appear most prominently on electronic platforms for trading corporate
bonds4 and credit default swaps. The markets for corporate bond and CDS
are distinguished by much lower trade frequency than those for Treasuries and
equities. Matching sessions, correspondingly, are less frequent and of longer
duration. For example, matching sessions on Electronfie, a corporate bond trade
platform, have a duration of ten minutes.

A distinctive feature of matching sessions is that the fixed price is typically
chosen by the platform operator. Given the incentives of the platform operator
to maximize total trading fees, the fixed price seems likely to be designed to
maximize expected trading volume. GFI, for example, chooses a matching-
session price that is based, according to SIFMA (2016), on “GFI’s own data
(input from the internal feeds), TRACE data, and input from traders.” On
the CDS index trade platform operated by GFI, the matching price “shall be
determined by the Company [GFI] in its discretion, but shall be between the
best bid and best offer for such Swap that resides on the Order Book.” Collin-
Dufresne, Junge, and Trolle (2016) find that matching sessions and workups
account for 71.3% of trade volume for the most popular CDS index product,
known as CDX.NA.IG.5YR, a composite of five-year CDS referencing 125
investment-grade firms, and 73.5% of trade volume for the corresponding
high-yield index product.

Trade platforms for interest-rate swaps also commonly incorporate workup
or matching-session mechanisms, as described by BGC (2015), GFI (2015),
Tradeweb (2014), and Tradition (2015). The importance of workup for
the interest-rate swap market is discussed by Wholesale Markets Brokers’
Association (2012) and Giancarlo (2015).

Block-trading dark pools operate in equity markets in parallel to stock
exchanges, which are also referred to by market participants as “lit” venues. The
dominant trade mechanism of stock exchanges is a central limit order book. Lit
venues provide the latest bid-ask prices continuously. Dark pools match orders
at a price between the most currently obtained bid and ask. Block-trading dark
pools such as Liquidnet or POSIT typically use the midpoint of the prevailing
bid-ask prices. Most dark pools operate continuously, in that buy and sell orders
can be submitted anytime, and matching happens by time priority when both
sides are available. When dark pools are executing orders, exchange trading
continues. In current U.S. equity markets, only a few dark pools have execution

4 According to SIFMA (2016), matching sessions are provided on the following corporate bond platforms:
Codestreet Dealer Pool (pending release), Electronifie, GFI, Latium (operated by GFI Group), ICAP ISAM
(pending release), ITG Posit FI, Liquidity Finance, and Tru Mid.
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sizes that are substantially larger than those on exchanges. Most dark pools have
execution sizes similar to exchanges. For more details on dark-pool trading
protocols, see Zhu (2014) and Ready (2014).

2. Dynamic Trading in Double Auctions

This section models dynamic trading in a flexible-price market consisting of a
sequence of double auctions.Allocative inefficiency in dynamic double auction
markets has already been shown by Vayanos (1999), Rostek and Weretka
(2015), and Du and Zhu (2016).5 This section merely reproduces the key thrust
of their contributions in a simpler model. (We use a simple variant of the model
of Du and Zhu [2016].) We claim no significant contribution here relative to
these three cited papers. Our objective in this section is instead to set up a price-
discovery market with imperfect competition as a benchmark. The rest of the
paper then analyzes the effect of adding a size-discovery mechanism. Once
we have solved for equilibrium in this price-discovery market, the associated
indirect utilities for pre-auction inventory imbalances serve as the terminal
utility functions for the prior size-discovery stage, which is modeled in the
next section.

We fix a probability space and the time domain [0,∞). Time 0 may be
interpreted as the beginning of a trading day. The market is populated by n≥3
risk-neutral traders trading a divisible asset. The economy ends at at a random
time T that is exponentially distributed with parameter r (thus mean 1/r). At
time T , the asset pays a random per-unit amount π with mean v. Before time
T , no information relevant to π is revealed to any trader.

The n traders’ respective asset inventories at time 0, before any trading, are
given by a vector z0 = (z10,z20,...,zn0) of random variables that have nonzero
finite variances. While the individual traders’ inventories may be correlated
with each other, there is independence among the asset payoff π , the revelation
time T , and the vector z0 of inventories.

At each non-negative integer trading period k∈{0,1,2,...}, a double auction
is used to reallocate the asset. The trading periods are separated by some clock
time�>0, so that the kth auction is held at time k�. As the first double auction
begins, the information available to trader i includes the initial inventory zi0,
but does not include6 the total inventory Z0 =

∑
i zi0. This allows that some

traders may be better informed about Z0 than others and may have information
about Z0 going beyond their own respective inventories.

Right before auction k+1, trader i receives an incremental inventory shock
wi,k+1. The random variables {wik} are iid with full support on R, mean zero, and

5 Equilibrium models of static demand-schedule-submission games under imperfect competition include those of
Wilson (1979), Klemperer and Meyer (1989), Kyle (1989), Vives (2011), and Rostek and Weretka (2012).

6 Fixing the underlying probability space (Ω,F ,P ), trader i is endowed with information given by a sub-σ -algebra
Fi0 of F . The inventory zi0 is measurable with respect to Fi0, whereas the total inventory Z has a nonzero
variance conditional given Fi0.
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variance σ 2
w�. Besides realism, these incremental inventory shocks eliminate

multiple equilibria in double auctions after time 0.
At the kth auction, trader i submits a continuous and strictly decreasing

demand schedule. The information available to trader i at period k consists7

of the trader’s initial information, the sequence p0,...,pk−1 of prices observed
in prior auctions, and the trader’s current and lagged inventories, zi0,...,zik .
Suppressing from our notation the dependence of the agent’s demand on the
trader’s information, the demand schedule of trader i in the kth auction is of the
form xik(·) :R→R, which is an agreement to buy xik(pk) units of the asset at
the unique market-clearing price pk . Whenever it exists, this market-clearing
price pk is defined by ∑

i

xik(pk)=0. (1)

The inventory of trader i thus satisfies the dynamic equation

zi,k+1 =zik+xik(pk)+wi,k+1. (2)

The total inventory in the market right before auction k is Zk =
∑

i zik . The
periodic inventory shocks make it impossible to perfectly infer the current
total inventory from past prices. Hence, the double-auction game always has
incomplete information.

This double-auction mechanism is typical of those used at the open and
close of the day on equity exchanges.8 The double-auction model captures
the basic implications of a flexible-price market in which traders are rational
and internalize the equilibrium price impacts of their own trades. In practice,
participants in a multi-unit auction submit a package of limit orders rather
than a demand function. An arbitrary continuous demand function can be well
approximated with a large number of limit orders at closely spaced limit prices.

When choosing a demand schedule in period k, each trader maximizes his
conditional mean of the sum of two contributions to his final net payoff. The first
contribution is trading profit, which is the final payoff of the position held when
π is revealed at time T , net of the total purchase cost of the asset in the prior
double auctions. The second contribution is a holding cost for inventory. The
cost per unit of time of holding q units of inventory is γ q2, for a coefficient γ >0
that reflects the costs to the trader of holding risky inventory.9 For simplicity,

7 That is, the σ -algebra with respect to which the demand schedule of trader i in the kth auction must be
measurable is the join of the initial σ -algebra Fi0 and the σ -algebra generated by {p0,...,pk−1}, {zi1,...,zik},
and {wi1,...,wik}.

8 See, for example, http://www.nasdaqtrader.com/content/ProductsServices/Trading/Crosses/fact_sheet.pdf.

9 Even though they do not have direct aversion to risk, broker-dealers and asset-management firms have extra
costs for holding inventory in illiquid risky assets. These costs may be related to regulatory capital requirements,
collateral requirements, financing costs, agency costs related to the lack of transparency of the position to
higher-level firm managers or clients regarding true asset quality, as well as the expected cost of being forced to
raise liquidity by quickly disposing of remaining inventory into an illiquid market. Our quadratic holding-cost
assumption is common in models of divisible auctions, including those of Vives (2011), Rostek and Weretka
(2012), and Du and Zhu (2016).
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we normalize the discount rate to zero. This is a reasonable approximation for
trader inventory management in practice, at least if market interest rates are not
extremely high, because traders lay off excess inventories over relatively short
time periods, typically measured in hours or days.

In summary, for given demand schedules xi1(·),xi2(·),..., the ultimate net
payoff to be achieved by trader i, beginning at period k, is

Uik =πzi,K(T ) −
K(T )∑
j=k

pjxij (pj )−
∫ T

k�

γ z2
i,K(t)dt, (3)

where K(t)=max{k :k�≤ t} denotes the number of the last trading period
before time t . For given demand schedules, the continuation utility of trader
i at the kth auction, provided it is held before the time T at which the asset
payoff is realized, is thus

Vik =E

(
Uik

∣∣∣∣Fik

)
, (4)

where Fik represents the information of trader i just before the kth auction.
Therefore, the continuation utility of trader i satisfies the recursion

Vik =−xikpk−γ η(xik+zik)
2 +(1−e−r�)(xik+zik)v+e−r�E(Vi,k+1 |Fik), (5)

where we have used the shorthand xik for xik(pk), and where η is the expected
duration of time from a given auction (conditional on the event that the auction
is before T ) until the earlier of the next auction time and the payoff time T :

η=
∫ �

0
rt e−rt dt +e−r��=

1−e−r�
r

. (6)

The four terms on the right-hand side of Equation (5) represent, respectively,
the payment made in the kth double auction, the expected inventory cost to be
incurred in the subsequent period (or until the asset payoff is realized), the
expectation of any asset payment to be made in the next period multiplied by
the probability that T is before the next auction, and the conditional expected
continuation utility in period k+1 multiplied by the probability that T is after
the next auction.

In each period k, trader i selects a demand schedule xik(·) that maximizes the
right-hand side of Equation (5), subject to the dynamic equation (2), taking as
given the other traders’demand functions from period k onward. The following
proposition summarizes the resulting stationary linear equilibrium.

Proposition 1. In the game associated with the sequence of double auctions,
there exists a stationary and subgame perfect equilibrium, in which the demand
schedule of trader i in the kth auction is given by

xik(p)=a�

(
v−p− 2γ

r
zik

)
, (7)
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where

a�=
r

2γ

2(n−2)

(n−1)+ 2e−r�
1−e−r� +

√
(n−1)2 + 4e−r�

(1−e−r�)2

. (8)

The equilibrium price in auction k is

pk =v− 2γ

nr
Zk. (9)

The bidding strategies of this equilibrium are ex post optimal with respect to
all realizations of inventory histories. That is, trader j would not strictly benefit
by deviating from the equilibrium strategy even if he were able to observe the
history of other traders’ inventories, {zim : i �=j,m≤k}.

The ex post optimality property of the equilibrium arises from the fact that
each trader’s marginal indirect value for additional units of the asset depends
only on his own current inventory, and not on the inventories of other traders.
This property will be useful in solving the workup equilibrium.

The slope a� of the equilibrium supply schedule is increasing in �. That is,
trading is more aggressive if double auctions are conducted at a lower frequency.
We also have

lim
�→∞a�=

r(n−2)

2γ (n−1)
<
r

2γ
. (10)

Moreover, as � goes to 0, a� converges to 0.
The market-clearing price pk reveals the total inventory Zk at the moment

of the kth auction. Because the total inventory process {Z0,Z1,Z2,...} is a
martingale, the price process {pk} is also a martingale.

Although traders have symmetric information about the asset fundamental,
uncertainty about the total inventoryZk generates uncertainty about the market-
clearing price. As we will see in the next section, uncertainty over the initial
inventory Z0 is an important determinant of the optimal strategy in the workup
stage of the model.

By symmetry and the linearly decreasing nature of marginal values, the
efficient allocation immediately assigns each trader the average inventoryZk/n.
The double-auction market, however, merely moves the allocation toward this
equal distribution of the asset. Specifically, by substitution, we have

xik =a�

(
v−pk− 2γ

r
zik

)
=−a� 2γ

r

(
zik−Zk

n

)
, (11)

zi,k+1 =zik+xik+wi,k+1 =zik−a� 2γ

r

(
zik−Zk

n

)
+wi,k+1. (12)

At auction k, the equilibrium trade xik eliminates only a fraction ϕ=a�2γ /r
of the “excess inventory” zik−Zik/n of trader i. This partial and inefficient
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liquidation of unwanted inventory is caused by imperfect competition. From
Equation (10), we have ϕ≤ (n−2)/(n−1), and this bound is achieved in the
limit as�→∞. As�→0, we have a�→0, and the fractional reduction ϕ of
the mis-allocation of inventory converges to zero.

Since our ultimate objective is to characterize the workup strategy at time 0,
we spell out the continuation value of each trader, evaluated at time 0, in the
following proposition.

Proposition 2. Let Vi,0+ =E(Ui0 |zi0,p0) denote the initial utility of trader i,
evaluated at time 0 after conditioning on the initial market-clearing price p0,
which reveals the initial total inventory Z≡Z0. We have:

Vi,0+ =

[
v
Z

n
− γ

r

(
Z

n

)2
]

+

(
v−2

γ

r

Z

n

)(
zi0 −Z

n

)

− γ

r

1−2a�
γ

r

n−1

(
zi0 −Z

n

)2

+	, (13)

where 	<0 is a constant whose expression is provided in Appendix A.2.

The first term of Equation (13) is the total utility of trader i in the event that
trader i already holds the initial efficient allocation Z/n. The second term of
Equation (13) is the amount that could be hypothetically received by trader i
for immediately selling the entire excess inventory, zi0 −Z/n, at the market-
clearing price, v−2γZ/(rn). But this immediate beneficial reallocation of the
asset does not actually occur because traders strategically shade their bids to
reduce the price impact of their orders. This price-impact-induced drag on
each trader’s expected ultimate net payoff, or “utility,” is captured by the third
term of Equation (13), which is the utility loss caused by the fact that the
demand schedule of trader i in each auction is decreasing in a�. The constant
	 captures the additional allocative inefficiency caused by periodic inventory
shocks. (If σ 2

w =0, then 	=0.) The loss of welfare associated with the initial
inventory allocation is proportional to

∑
i(zi0 −Z0/n)2, a natural welfare metric

formalized in Appendix C.
Moreover, because a� is increasing in�, each trader’s utility loss gets larger

as � gets smaller. The basic intuition is as follows. Although a smaller �
gives traders more opportunities to trade, they are also strictly less aggressive
in each trading round. A smaller � makes allocations less efficient in early
rounds but more efficient in late rounds. Traders value early-round efficiency
more because of the effective “time discounting” e−r�. The net effect is that
allocative efficiency is worse if � is smaller. See Du and Zhu (2016) for a
detailed discussion.

Appendix B provides the continuous-time limit of the discrete-time double
auction model, and shows that this limit matches the equilibrium of the
continuous-time version of the double-auction model.
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3. Introducing Workup for Size Discovery

We saw in the previous section that successive rounds of double auctions
move the inventories of the traders toward a common level. This reduction
in inventory dispersion is only gradual, however, because at each round, each
trader internalizes the price impact caused by his own quantity demands, and
thus “shades” his demand schedule so as to trade off inventory holding costs
against price impact.

We now examine the effect of introducing at time 0 a size-discovery
mechanism, taken for concreteness to be a workup session, that gives traders
the opportunity to reduce the magnitudes of their excess inventories without
concern over price impact. It would be natural in practice to run a workup
session whenever traders’ inventories have been significantly disrupted. In
the U.S. Treasury market, for example, primary dealers’ positions can be
suddenly pushed out of balance by unexpectedly large or small awards in
a Treasury auction. Individual dealers’ inventories could also be disrupted
by large surges of demand or supply from their buy-side clients. We show
that workup immediately reallocates a potentially large amount of inventory
imbalances, which improves allocative efficiency relative to the double-auction
market without a workup.

3.1 A model of bilateral workup
As in the previous section, the inventories of the n traders at time 0, before
any trading, are given by {zi0}. For expositional simplicity, we first consider
a setting in which each of an arbitrary number of bilateral workup sessions
is conducted between an exogenously matched pair of traders, one with
negative inventory, “the buyer,” and one with positive inventory, “the seller.”
Any trader not participating in one of the bilateral workup sessions is active
only in the subsequent double-auction market. Information held by a pair of
workup participants regarding participation in other workup sessions plays no
role in our model. That is, the equilibrium for the bilateral workup sessions
and the subsequent double auctions is unaffected by information held by the
participants in a given workup regarding how many other workup sessions are
held and which traders are participating in them. For simplicity, we do not model
the endogenous matching of workup partners. In Section 4, we generalize the
model to cover a more realistic multilateral workup session.

Without loss of generality, in a given bilateral workup session, the seller is
Trader 1, with initial inventorySs =z10>0, and the buyer is Trader 2, with initial
inventory Sb =z20<0. These two absolute inventory magnitudes, Ss and |Sb|,
are assumed to be iid exponential variables with parameter μ, or mean 1/μ. In
order to characterize equilibrium in a bilateral workup, it is enough to assume
that the sum of the initial inventories z30,...,zn0 of the other n−2 traders has
mean zero and is independent of Ss and Sb. However, for a convenient welfare
analysis, we also assume that these initializing inventories have magnitudes

1109



The Review of Financial Studies / v 30 n 4 2017

with the same exponential distribution. Specifically, z30,...,zn0 are iid with
the density function f (·) given by

f (z)=
1

2
μe−μ|z|, z∈ (−∞,∞). (14)

The workup price p̄ is set without the use of information about traders’
privately observed inventories, and therefore at some deterministic level p̄.
We will provide an interval of choices for p̄ that is necessary and sufficient
for interior equilibrium workup dropout policies. We will also show that the
allocative efficiency improvement of workup is invariant to changes in the
workup price p̄ within this interval. A natural choice for p̄ is the unconditional
expectation of the asset payoff v, which can be interpreted as the expectation
of the clearing price in the subsequent double-auction market, or as the price
achieved in a previous round of auction-based trade, before new inventory
shocks instigate a desire by traders to lay off their new unwanted inventories.

After each of a given pair of participants in a workup privately observes his
own inventory, the workup proceeds in steps as follows:

1. The workup operator announces the workup price p̄.

2. The workup operator provides a continual display, observable to buyer
and seller, of the quantity Q(t) of the asset that has been exchanged
in the workup by time t on the workup “clock.” The units of time on
the workup clock are arbitrary, and the function Q(·) is any strictly
increasing continuous function satisfying Q(0)=0 and limt→∞Q(t)=
∞. For example, we can take Q(t)= t. The workup clock can run
arbitrarily quickly, so workup can take essentially no time to complete.
This mechanism is essentially the “button mechanism” described in
Pancs (2014).

3. At any finite time Tb on the workup clock, or equivalently at any quantity
Qb =Q(Tb), the buyer can drop out of the workup. Likewise, the seller
can drop out at any time Ts or quantity Qs =Q(Ts). The workup stops at
time T ∗ =min(Ts,Tb), at which the quantity Q∗ =Q(T ∗)=min(Qb,Qs)
is transferred from seller to buyer at the workup price p̄, that is, for the
total amount p̄Q∗.

After the bilateral workups terminate, all traders enter the sequence of double
auctions described in Section 2.

As mentioned in the introduction, the workup procedure modeled here is
similar to the matching mechanism used by certain dark pools, such as Liquidnet
and POSIT, that specialize in executing large equity orders from institutional
investors. In a dark-pool transaction with one buyer and one seller, each side
privately submits a desired trade size to the dark pool, understanding that the
dark pool would execute a trade for the minimum of the buyer’s and seller’s
desired quantities. In a bilateral setting, workup and dark-pool matching are
thus equivalent.
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3.2 Characterizing the workup equilibrium
This section characterizes the equilibrium behavior of the two traders in a given
bilateral workup session.

Any trader’s strategy in the subsequent double-auction market, solved in
Proposition 1, depends only on that trader’s inventory level. Thus any public
reporting, to all n traders, of the workup transaction volume plays no role in
the subsequent double-auction analysis. Moreover, the potential learning of a
trader during the workup of information about the other trader’s inventory does
not affect either trader’s subsequent strategies in the double auctions.

We conjecture the following equilibrium workup strategies. The buyer
allows the workup transaction size to increase until the time Tb at which his
residual inventory size |Sb+Q(Tb)| is equal to some threshold Mb∈R+. The
seller likewise chooses a dropout time Ts at which his residual inventory size
Ss−Q(Ts) reaches someMs ∈R+. One trader’s dropout is of course preempted
by the other’s.A threshold equilibrium is a pair (Mb,Ms)∈R

2
+ with the property

that Mb maximizes the conditional expected payoff of the buyer given the
seller’s threshold Ms and conditional on the buyer’s inventory Sb, and vice
versa. We emphasize that, givenMs , the buyer is not restricted to a deterministic
threshold, and vice versa. The dropout thresholds (Mb,Ms) are illustrated
below.

The equilibrium is stated in the following proposition.

Proposition 3. We define

C =
1−2a�γ/r

n−1
, (15)

M =
n−1

n+n2C/(1−C)

1

μ
. (16)

Suppose that the workup price p̄ satisfies

|p̄−v|≤ 2γM[C+(1−C)(3n−2)/n2]

r
. (17)

The workup session has a unique equilibrium in deterministic dropout-
inventory strategies. The buyer’s and seller’s dropout levels, Mb and Ms , for
residual inventory are given by

Mb =
n−1

n+n2C/(1−C)

1

μ
+δ=M+δ, (18)

Ms =
n−1

n+n2C/(1−C)

1

μ
−δ=M−δ, (19)
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where M is the dropout quantity for the unbiased price p̄=v, and where

δ=
r

2γ

p̄−v
C+(1−C)(3n−2)/n2

. (20)

That is, in equilibrium, the buyer and seller allow the workup quantity to
increase until the magnitude of their residual inventories reach Mb or Ms ,
respectively, or until the other trader has dropped out, whichever comes first.

Proposition 3 shows that as long as the workup price is not too biased,
the two workup participants do not generally attempt to liquidate all of their
inventories during the workup (in thatMb>0 andMs>0). Their optimal target
inventories are determined by two countervailing incentives. On one hand,
because of the slow convergence of a trader’s inventory to efficient levels
during the subsequent double-auction market, each trader has an incentive to
execute large block trades in the workup. On the other hand, a trader faces
winner’s curse regarding the total inventory Z and the double-auction prices.
For example, if the buyer’s expectation of the future auction price is lower than
the workup price p̄, the buyer would be better off buying some of the asset in the
subsequent auction market, despite the associated price impact. This incentive
encourages inefficient “self-rationing” in the workup. A symmetric argument
holds for the seller. Depending on a trader’s conditional expectation of the total
market excess inventoryZ, which changes as the workup progresses, the trader
sets an endogenous dropout inventory threshold such that the two incentives
are optimally balanced. In setting his optimal target inventory, a trader does
not attempt to strategically manipulate the other trader’s inference of the total
inventory Z, because optimal auction strategies do not depend on conditional
beliefs about Z.

It is intuitive that a biased workup price causes asymmetric dropout behavior.
If p̄>v, the buyer views the workup price to be less favorable than the expected
double-auction price, but the seller views the workup price to be more favorable.
Thus, the buyer is more cautious than the seller in the workup, in that the buyer’s
dropout level is higher than the seller’s. The opposite is true if p̄<v.

Figure 2 illustrates the impact of the workup on the undesired inventory
levels of the two traders. In this simple example, there are n=5 traders and
one bilateral workup session. The workup price is p̄=v. The two workup
participants have mean inventory size 1/μ=1. We calculate the equilibrium
outcome of the workup when the outcome of the workup buyer’s preworkup
inventory Sb is −2, the outcome of the workup seller’s preworkup inventory Ss

is 1.5, and the outcomes of all of the other traders’ initial inventories are zero.
The outcome for the efficient allocation of all traders is Z/n=−0.1. We focus
on the continuous-time sequential-double-auction market. The equilibrium
workup dropout threshold is in this caseM =0.3. Because we have the outcome
that |Sb|> |Ss |, the seller exits the workup first, after executing the quantity
1.5−0.3=1.2. The seller’s inventory after the workup is 0.3, whereas the
buyer’s inventory after the workup is −(2−1.2)=−0.8.
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Figure 2
Immediate inventory imbalance reduction by workup
Parameters: n=5, μ=1, r =0.1, γ =0.05, �=0, Sb =−1.5, Ss =2. The outcomes of the inventories of traders not
entering workup are zero.

Workup enables a quick and significant reduction in inventory imbalances.
No trader suffers a loss in expected net benefit, relative to a market without
workup, whether or not the trader participates in workup, as can be checked from
Equation (13). Thus, adding workup is a Pareto improvement, and is a strictly
positive ex ante utility benefit to any trader with access to workup. Of course,
adding any voluntary exchange mechanism in advance of the sequential double
auction market is at least a weak Pareto improvement. Comparisons among
alternative mechanisms can be based on whether traders strictly benefit, and
by how much. In the next subsection, we show that workup provides a gain in
efficiency that can be quite substantial.

By comparison, suppose we replace the workup step in our model with a
special initializing double auction, whose equilibrium bidding strategies are
not restricted to be of the same form as those in subsequent double auctions.10

We show in Appendix D that this initial double auction generates no trade
at all (under symmetric linear strategies). Intuitively, in equilibrium, traders
are unwilling to incur any price-impact costs in the initializing double auction
because there is no subsequent period of time over which inventory costs can be
reduced by trade before the regular opening of the stationary sequential double
auction market. A price-discovery mechanism, such as this initializing double

10 We thank Pete Kyle for suggesting this experiment, in order to provide a comparison with workup.
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auction, always has price impact—the market-clearing price must be adjusted
to match demand and supply. In contrast, augmenting with a size-discovery
mechanism like workup avoids price impact, and so can generate a substantial
volume of beneficial trade, because the price is fixed. Thus, while adding any
voluntary exchange mechanism held before the sequential double auction offers
at least a weak improvement in allocative efficiency, obtaining a non-trivial
improvement requires at least some care with the design of the mechanism. Size-
discovery mechanisms have some appeal over price-discovery mechanisms, in
this context. We do not, however, rule out the existence of yet other mechanism
designs that would strictly improve over workup in terms of efficiency gain.
Our focus on size discovery is especially motivated by its widespread use in
practice.

3.3 Equilibrium outcomes of the workup equilibrium
Now we discuss the outcomes of the bilateral workup equilibrium, including
the probability of active workup participation, the expected trading volume,
and welfare improvement between the buyer and the seller. Not only do these
equilibrium outcomes help to quantify the potential efficiency improvement
brought by size discovery; they also lead to empirically testable predictions.

Between a randomly selected buyer and a randomly selected seller, the
probability of triggering an active bilateral workup between them is

P ≡P (Ss >Ms,|Sb|>Mb)=e−μ(M+δ)e−μ(M−δ) =e−2μM, (21)

which is decreasing inM and does not depend on p̄, within the range of interior
solutions.

Moreover, by substituting Equation (16), we calculate that

P =exp

(
− 2(n−1)

n+n2C/(1−C)

)
. (22)

That is, the probability of having an active workup between a given buyer-
seller pair does not depend on the average inventory sizes in the market. This
probability P of active workup depends instead on the competitiveness of the
double-auction market (which is captured by the number n of traders), the mean
arrival rate r of price-relevant information, and the auction-market frequency
(1/�). We will discuss these comparative statics in detail shortly.

Within the range of workup prices at which dropout thresholds are interior,
the expected workup trade volume is given by11

Q≡E
[(

min
(|Sb|−Mb,S

s−Ms

))+
]

=
e−2μM

2μ
=

1

2μ
e

−2(n−1)
n+n2C/(1−C) , (23)

which is decreasing in M and is invariant to δ in the interval [0,M].

11 The expected workup volume is expressed as∫ ∞
x=M+δ

∫ ∞
y=M−δ

μe−μxμe−μymin(x−(M+δ),y−(M−δ))dxdy.
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Appendix C shows that for δ∈ [0,M] and assuming zero inventory shocks
after time 0, the total welfare improvement achieved by workup between the
buyer and the seller is

2e−2Mμ(1+Mμ)

μ2
, (24)

which is also decreasing in M and invariant to the workup price p̄.
Further, based on calculations shown in Appendix C, the fraction of the

total inefficiency costs of the buyer and the seller that is eliminated by their
participation in the bilateral workup is

R=
n

2(n−1)
e−2Mμ(1+Mμ). (25)

(Here again, R is derived assuming zero inventory shocks after time 0.)
Because e−2Mμ(1+Mμ) is decreasing in M , which in turn is increasing
in n, this proportional cost reduction R decreases with the number n
of market participants. That is, in terms of its relative effectiveness in
eliminating inventory-cost inefficiencies caused by imperfect competition in
price-discovery markets, workup is more valuable for markets with fewer
participants.

For the continuous-time version of the double-auction market (or in the limit
as � goes to zero), we have simply

R=
3n−2

4(n−1)
e−(n−2)/n. (26)

For n=3, this cost-reduction ratio is R=0.627. As n gets large, R→0.75e−1 =
0.276. So, buyers and sellers participating in bilateral workup eliminate
between 27.6% and 62.7% of the inefficiency costs caused by imperfect
competition and avoidance of price impact. Figure 3 shows how R declines
with the number n of market participants.

3.4 Comparative statics and empirical implications
We have just shown that the probability of triggering an active workup and
the expected workup trading volume are decreasing in the workup inventory
dropout threshold M . Now, we discuss how this threshold M varies with
changes in the primitive parameters �, r , and n. These comparative statics
reveal how the attractiveness of the size-discovery workup mechanism varies
with market conditions.

By the change of variables u=x−M−δ and w=y−M+δ, the integral is re-expressed as∫ ∞
u=0

∫ ∞
w=0

μe−μ(u+M+δ)μe−μ(w+M−δ) min(u,w)dudw= e−2μM
∫ ∞
u=0

∫ ∞
w=0

μe−μuμe−μwmin(u,w)dudw.

The expected workup volume is thus obtained by direct calculation.
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Figure 3
The proportional welfare improvement of traders participating in workup
The plot shows the fraction R of the total inefficiency cost of the buyer and the seller that is eliminated by their
participation in bilateral workup.

First, we can show that the inventory threshold M is strictly increasing12

in �. That is, the smaller is � (the more frequent the double auctions),
the smaller is M , and the more active is workup. Intuitively, reducing �
discourages aggressive auction trading because of the increased frequency
of trading opportunities, leading to a slower rate of convergence to efficient
inventory levels. This welfare cost of frequent trading is also discussed by
Vayanos (1999) and Du and Zhu (2016).

As the double auctions become more frequent, that is, as� goes to zero, we
know that a�→0 and thusC→1/(n−1). In this case,M converges downward
to the continual-auction limit

n−2

2n

1

μ
, (27)

12 To this end, let

ζ (�)≡1−2a�
γ

r
=

√
(n−1)2(1−e−r�)2 +4e−r�−(n−1)(1−e−r�)

2e−r� .

By Proposition 1, ζ (�) is the fraction of excess inventory that remains after each successive double auction. The
smaller is ζ (�), the more aggressive are traders’ submitted demand schedules. The constant γ that scales the
quadratic inventory cost does not in itself affect ζ (�) orM . This is perhaps surprising, but follows from the fact
that the aggressiveness of demand schedules fully offsets the effect of γ , causing a�γ to be invariant to γ . By
calculation,

ζ ′(�)=
rer�(n−1)

2

⎛
⎜⎜⎜⎜⎝

√
(n−1)2(er�−1)2 +4er�−4

(
1− 1

(n−1)2

)
√

(n−1)2(er�−1)2 +4er�
−1

⎞
⎟⎟⎟⎟⎠<0.

Thus, because M is strictly decreasing in C =ζ (�)/(n−1), M is strictly increasing in �.

1116



Size Discovery

and the probability of triggering a workup becomes maximal, at e−(n−2)/n.
At this continuous-time limit, which is the same as the behavior of the
corresponding continuous-auction model shown inAppendix B, the probability
of triggering a workup decreases in n. Intuitively, the double auction market
becomes more efficient as the number n of participants grows, getting closer
and closer to price-taking competitive behavior. Hence, as n grows, there is less
allocative benefit from size discovery. In fact, we can show that M increases
with n regardless of the model parameters. (For details, see Appendix A.4.)

For example, in a market with n=20 traders, if workup is followed
by a continuous-time auction market, the probability of active workup is
e−18/20 ≈0.41. With only n=5 traders, this active-workup probability increases
to e−3/5 ≈0.55.

We also have

d

dr

(
1−2a�

γ

r

)
<0. (28)

That is, the lower is the mean arrival rate of the final asset payoff, the smaller
is M , and the more likely it is that an active workup is triggered. Intuitively,
the more delayed is the final determination of asset payoffs, the less aggressive
are traders in their double-auction demand schedules, which in turn increases
the attractiveness of using workup to quickly reduce inventory imbalances.

These comparative statics are summarized as follows.

Proposition 4. All else equal, for a given buyer-seller pair, the probability of
having a positive-volume workup and the expected workup volume are higher
(that is, M is lower) if:

1. The frequency of subsequent double auctions is higher (� is smaller).

2. The number n of traders is lower.

3. The mean arrival rate of asset payoff news r is lower.

The results of Proposition 4 can be formulated as empirical predictions. For
that purpose, one would want reasonable proxies for �, n, and r . A proxy for
� is the mean inter-trade time. A speed “upgrade” corresponds to a smaller
�. The number n of traders could be estimated by the number of active (or
sufficiently active) participants on a particular electronic trading platform.
Alternatively, n could be proxied by the concentration of trading activity among
the top participants (higher concentration corresponds to smaller n). Thus, bond
markets and OTC derivatives markets, which remain largely dealer-centric
today, have a smaller effective n than equity markets and exchange-traded
derivatives markets. Finally, the mean rate r of payoff arrival information may
be proxied by the arrival rate of important news, even scheduled news such as
a scheduled press release of the Federal Open Market Committee (FOMC), a
macroeconomic data release, or an earnings announcement.
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To the best of our knowledge, these predictions are new to the literature. The
only other theory paper on workup we are aware of, Pancs (2014), emphasizes
the benefit of workup in reducing information leakage and front-running, but
does not make predictions linking workup activity and market conditions.

The comparative statics of workup volume in Proposition 4 are based on a
bilateral workup between a randomly selected buyer and a randomly selected
seller, but we can also consider the implications for the total expected volume
of all bilateral workups. For a fixed number n of traders, the expected number
of buyer-seller pairs arising from random matching is

K(n)≡
n∑
j=0

min(j,n−j )

(
n

j

)
2−n. (29)

Thus, Parts 1 and 3 of Proposition 4 predict that, all else equal (in particular,
fixing n), the expected volume in all bilateral workups, K(n)e−2μM/2μ,
is decreasing in � and r . However, the comparative statics of total workup
volume with respect to n could be ambiguous because K(n) is generally
increasing in n.

Our theory may also be useful in interpreting the evidence of Fleming
and Nguyen (2015), who analyze workup trading on BrokerTec, the largest
electronic trading venue for U.S. Treasury securities, from 2006 to 2011.
An obvious caveat here is that our model does not capture some important
institutional aspects of the BrokerTec platform. For instance, the sequential
double auction setting of our model is not the same as a limit order book in
practice. Moreover, our model has a single workup, whereas workups happen
frequently on BrokerTec. Given these caveats, in order to stay as closely to the
theory as possible, we focus on the evidence presented by Fleming and Nguyen
that is related to workup probability and volume. Specifically, Fleming and
Nguyen (2015) find that workups are more frequent and involve a larger total
dollar volume if: (i) preworkup inside depth on the limit order book is higher,
(ii) preworkup trading reveals hidden depth (iceberg orders), or (iii) preworkup
price volatility is higher.13

Information regarding the depth14 of the preworkup order book may be
relevant in two ways, and these two channels turn out to generate opposite
empirical predictions. On one hand, to the extent that the behavior of a practical
limit order book is captured by double-auction theory, a deeper limit order book

13 Fleming and Nguyen (2015) also find that workups are more frequent and generate a larger total dollar volume if
workup likelihood or volume is higher in the previous 5 minutes and when trade is during U.S. trading hours. The
relationship between workup probability and volume, on one side, and preworkup order book spread or volume,
on the other side, varies with the maturity of the underlying treasuries. For more details, see their Table 9.

14 Although our model does not correspond directly to a limit order book, depth can nonetheless be approximated
by na�, where n is the number of traders and a� is the slope of each trader’s demand schedule in the symmetric
strategy. That is, if the price moves up (down) by one unit, the total quantity of sell (buy) orders submitted by
the n traders increases by na�. Thus, a larger na� means a “deeper” order book.
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is associated in our model with higher levels of n, �, or r . The number n of
active market participants and the market trading frequency 1/� are unlikely
to change significantly during a given trading day. However, the intensity r
of news arrival is likely to be associated in practice with an urgency to trade,
which could easily change during a trading day. Thus, other things equal, a
deeper order book may be associated with a higher mean rate r of news arrival,
and thus, through our model, with less active workup.

On the other hand, greater preworkup order book depth is likely to
reveal a greater latent trading interest among market participants. preworkup
information is not captured in our theory because our model commences with
a workup. Nevertheless, the effect of revealing trade interest in advance of the
workup could be approximated in our model by holding the unconditional mean
absolute sizes of inventories of individual traders constant while lowering the
unconditional variance of Z. Specifically, rather than exponential with mean
1/μ, suppose that the preworkup absolute inventory size of trader i is of the
form α+Si , where α is a positive constant and Si is exponential with mean
1/ν =1/μ−α, so that the unconditional mean is invariant to α. We can thus
interpret a largerα as a setting with more information concerning the preworkup
order book and latent trading interest. Suppose, too, that the workup price is
unbiased, in that p̄=v. In this extended model, the buyer and the seller in the
bilateral workup would effectively begin their workup by executing α for sure.
As for the remaining undesired inventory quantities S1 and S2, the dropout
thresholds are of the same form shown in Equations (18) and (19), but with
1/μ replaced with 1/ν and δ replaced with zero. The expected bilateral workup
volume is thereby raised from the level Q given by Equation (23) for the
base-case model to15

α+
1

2ν
exp

(
− 2(n−1)

n+n2C/(1−C)

)
>Q. (30)

In effect, revealing information about trade interest in the preworkup order book
reduces the effect of the winner’s curse during the workup, and thus increases
workup volume.

In summary, on the basis of our model, a deeper preworkup order book may
represent either a higher urgency to trade that is predictive of lower workup
activity, or alternatively, could be predictive of higher subsequent workup
activity due to a reduction in winner’s curse related to a reduction in inventory
uncertainty. While both channels may be at play, the data sample examined by
Fleming and Nguyen (2015) is more consistent with the latter effect.

The positive relationship between workup probability (or volume) and
preworkup volatility may be interpreted similarly. Volatility may represent
illiquidity, or price discovery, or both. To the extent that greater volatility

15 The inequality applies because α=1/μ−1/ν and exp

(
− 2(n−1)
n+n2C/(1−C)

)
<1.
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is related to less liquidity, which may be represented in our model with a
smaller mean rate r of arrival of payoff information, the impact indicated by
the model is a higher workup probability and volume. If greater volatility is
instead representative of a higher amount of price discovery, which in our model
corresponds to information about total inventory, then the argument given above
suggests that a higher preworkup volatility reduces the winner’s curse during
workup and thus increases workup probability and volume. In other words,
the two channels associated with a higher volatility—lower liquidity and more
information about latent trading interest—are associated through our model
with the same predicted impact on workup activity, and agree in this regard
with the evidence in the data.

4. Multilateral Workups

In Section 3 we solved the equilibrium for bilateral workup sessions, and
showed that workup provides size-discovery welfare benefits. This section
extends our results to dynamic multilateral workups, which are more commonly
used in practice, for example, on electronic trading platforms. The intuition
for the allocative efficiency benefits of size discovery is similar to that for the
simpler case of bilateral workup. Moreover, additional insights are gained from
the equilibrium dynamic dropout policies in multilateral workups.

We take the numbers Nb of buyers and Ns of sellers to be initially
unobservable, independent, and having the same geometric distribution.
Specifically, for any non-negative integer k,

P (Nb =k)=P (Ns =k)=f (k)≡qk(1−q), (31)

for some q∈ (0,1). We have E(Nb)=E(Ns)=q/(1−q). The interpretation is
that after each buyer exits the workup, there is a new buyer with probability
q, and likewise for sellers. (The multilateral workup model is difficult to solve
with a deterministic number of traders.16)

Although it is natural that the number of institutional investors and financial
intermediaries seeking to trade large positions is unobservable and stochastic,
as we have assumed here, we are forced for reasons of tractability to assume that
once trading in the double-auction market begins, the total number of market
participants is revealed to all. (Otherwise, the analysis of the double auction
market would be overly complicated.)

preworkup inventories are positive for sellers and negative for buyers. For
both buyers and sellers, the absolute magnitudes of preworkup inventory sizes
are iid exponentially distributed, with parameter μ, thus with mean 1/μ.
The numbers of buyers and sellers and the preworkup inventory sizes are

16 The bilateral workup model can be solved if the number of buyers and the number of sellers are geometrically
distributed. The explicit calculations are more involved but available upon request.
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independent. Before participating in workup, each trader observes only his
own inventory.

It follows from the independence assumptions and the memoryless property
of the geometric distribution that, conditioning on all information available to
a trader during his turn at workup, the conditional distribution of the numbers
of buyers and sellers that have not yet entered workup retain their original
independent geometric distributions.

As in Section 3, the workup session takes place before the start of the double-
auction market. The workup begins by pairing the first buyer and first seller.
During the workup, the exit from workup of the ith buyer causes the (i+1)st
buyer to begin workup, provided Nb>i. The (i+1)-st buyer can then choose
whether to begin actively buying or to immediately drop out without trading.
Similarly, when seller j exits, he is replaced with another seller if Ns >j . The
exit of a trader, whether a buyer or a seller, and the replacement of the trader are
observable to everyone when they occur. (The identities of the exiting traders
are irrelevant, and not reported, beyond whether they are buyers or sellers.) The
quantities executed by each departing trader are also observable. In particular,
the event that a trader drops out of workup without executing any quantity is
also observable. The workup ends when buyer number Nb exits or when seller
number Ns exits, whichever is first.

Throughout this section, we assume for simplicity that the workup price p̄
is set at the expectation of the subsequent auction price p0, which is v.

At any given point during the workup, the state vector on which the
equilibrium strategies depend is of the form (m,X,y), where:

m is the total number of buyers and sellers that have already entered
workup, including the current buyer and seller.

X is the total conditional expected inventory held by previously exited
participants, given all currently available information. Given our
information structure, this conditional expectation is common to all
workup participants.

y is the quantity that the current workup pair has already executed. We
emphasize that y =0 corresponds to a state in which the current workup
pair have yet to execute any trade, allowing for the positive-probability
event that at least one of them may drop out of workup without executing
any quantity.

We let Mb(m,X)>0 and Ms(m,X)>0 be the conjectured dropout
thresholds of the current buyer and seller, respectively, in a workup state
(m,X,y) that is active, meaning y>0. That is, when the workup state is active,
the current buyer drops out once the absolute magnitude of his remaining
inventory has been reduced to Mb(m,X). We conjecture and later verify an
equilibrium in which these thresholds depend only on (m,X), and not on a
trader’s current inventory or on other aspects of the observable history of the
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game. We call any equilibrium of this form an “equilibrium in Markovian
threshold dropout strategies.”

The distinction between an active workup pair (y>0) and a matched but
currently inactive pair (y =0) is important to the equilibrium policies. Suppose,
for example, that we are in an active state for the first buyer and first seller.
That is, the first buyer and the first seller have executed a positive quantity y in
the workup, and nothing else has yet happened. As we will show later, because
X=0, the buyer and the seller use a common dropout threshold, say M0. If, for
example, the buyer exits, then every workup participant infers that the buyer’s
residual inventory level is −M0. By contrast, at an inactive state, if the buyer
immediately exits, then everyone else learns that the buyer’s inventory size
is at most M0, and in particular is distributed with a truncated exponential
distribution, with the conditional expectation ν(M0), where, for any positive
number y,

ν(y)≡
∫ y
x=0xμe

−μx dx
1−e−μy <y. (32)

Thus, whether a trader exits without trading a strictly positive amount affects
the inference of all traders.

The dropout thresholds in the multilateral workup depend on the same
tradeoff as in bilateral workups. On the one hand, a trader with a sufficiently
large inventory size wishes to liquidate some inventory in the workup.
On the other hand, the trader tries to avoid liquidating “too much” in the
workup because the conditional expectation of subsequent double-auction
prices may move in his favor. In the bilateral workup, this tradeoff leads to
dropout inventory thresholds that are constants. In multilateral workup, the
dropout thresholds depend on the state (m,X), as summarized in the following
proposition.

Proposition 5. Suppose that p̄=v. A necessary condition for a Markov
equilibrium is that the inventory dropout thresholds of the buyer and the seller
in the current active workup are, respectively:

Mb(m,X)=M∗(m)+L(m)X (33)

Ms(m,X)=M∗(m)−L(m)X, (34)

where, letting g(k)= (k+1)qk(1−q)2 and n=m+k,

M∗(m)=
1

μ

∑∞
k=0g(k)(1−C(n)) n−1

n2∑∞
k=0g(k)

(
C(n)+ 1−C(n)

n

) (35)

and

L(m)=

∑∞
k=0g(k) 1−C(n)

n∑∞
k=0g(k)

(
C(n)+ (1−C(n))(3n−2)

n2

) . (36)
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The symmetric and opposite roles ofX for the buyer and the seller thresholds
are intuitive. In a multilateral workup, the role of the conditional expected total
inventory X of those traders who have already exited workup is similar to
the role of the workup price “bias” p̄−v in the bilateral workup equilibrium
described by Proposition 3. For example, as X increases, the conditional
expected market-clearing price of the subsequent double auctions falls. This
encourages the current buyer to reserve more of her planned amount of buying
for the subsequent double-auction market (a larger Mb(m,X)), and encourages
the seller to reserve less inventory for sale in the double-auction market
(a smaller Ms(m,X)). The opposite is true for a decrease in X.

In order for the above conjectured strategies to be consistent, we need to prove
that the thresholds of incumbents are weakly increasing with each dropout, and
that the thresholds are always non-negative. That is, we need to show that

Mb(m+1,X′)≥Mb(m,X), (37)

Ms(m+1,X′)≥Ms(m,X), (38)

Mb(m,X)≥0, (39)

Ms(m,X)≥0, (40)

for any possible successive outcomes X and X′ of the conditional expected
inventory of departed workup participants (before and after a dropout).

The monotonicity of the thresholds, (37) and (38), means that after the exit of
a trader, his counterparty’s dropout threshold (weakly) increases. For example,
if the current seller j exits before the current buyer i, then X goes up, and the
new threshold M∗(m)+L(m)X of buyer i goes up. Likewise, after each exit
of a buyer, X goes down, and the dropout threshold of the seller who remains
in the workup increases. Thus, after the exit of a counterparty, the incumbent
either drops out immediately because of his increased threshold, or he stays
in despite his new higher threshold. Conditional on the latter event, for other
traders, the incumbent’s remaining inventory in excess of his new, increased
threshold is again an exponentially distributed variable with mean 1/μ. The
non-negativity of the thresholds, (39) and (40), implies that no trader wishes
to “overshoot” across the zero inventory boundary. These properties ensure
stationarity and are in fact needed for tractability of this general approach to
solving for equilibria.

If any one of the conditions (37) to (40) fails, a trader’s optimal dropout
threshold may depend on his current inventory or the past threshold of his
counterparty, perhaps among other variables. These complications would
render the problem intractable.

As it turns out, the monotonicity and positivity properties of (37) to (40)
are satisfied if e−r�>1/2, which is the relatively unrestrictive condition that,
at the time any double auction, the probability that the asset will not pay off
before the subsequent auction is at least 1/2. For example, taking a day as
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the unit of time, if payoff-relevant information arrives once per day (r =1)
and the double auctions are held at least twice per day (�≤0.5), we would
have e−r�≥e−0.5 ≈0.61>0.5, and conditions (37) to (40) are satisfied.17 This
condition is also sufficient for the Markov workup equilibrium.

Proposition 6. The coefficientsM∗(m) andM∗(m)/L(m) are always weakly
increasing in m for m≥2. If e−r�>1/2, then L(m) is also weakly increasing
in m for m≥2. Thus, if e−r�>1/2, the monotonicity and non-negativity
conditions of (37) to (40) are satisfied, and the strategies given in Proposition 5
constitute the unique Markov workup equilibrium.18

The property thatM∗(m) and L(m) are increasing inm is intuitive. As more
traders drop out (that is, as m increases), the expected total number of traders
in the subsequent double-auction market goes up, by the memoryless property
of the geometric distribution. Since the double-auction market becomes more
competitive as more traders participate, and the associated inefficiency related
to price impact thus becomes smaller, there is less advantage to using workup,
so M∗(m) goes up.

In addition, traders who have already exited the workup will enter the double-
auction market with their residual inventories, causing a predictable shift in
the double-auction price relative to the workup price. For example, if the
conditional expected inventory X of past workup participants is positive, then
the double-auction price is expected to be lower than v, a favorable condition for
the workup buyer.Again, because a larger numberm of past and current workup
participants makes the double-auction market more competitive in expectation,
those who have already exited the workup will be more aggressive in liquidating
their residual inventories, thus front-loading their sales in the relatively early
rounds. The workup buyer, therefore, expects to purchase the asset in the
double-auction market sooner and at more favorable prices. Consequently, the
buyer will set an even higher dropout threshold. By a symmetric argument,
conditional on X>0, a higher m means that the seller sets an even lower

17 We have also checked that if � is large enough, then L(m) is not monotone increasing in m. Although the non-
monotonicity of L(m) for large � blocks our particular proof method when � is sufficiently large, it does not
necessarily rule out other approaches to demonstrating equilibria in threshold strategies for large �.

18 Because of the continuum of agent types and actions, we cannot formally apply the standard notion of perfect
Bayesian equilibrium for dynamic games with incomplete information, because that would call for conditioning
on events that have zero probability, such as a counterparty dropping out of workup after executing a trade of a
specific size. In our setting, actions are commonly observable and there is no issue concerning off-equilibrium-
path conjectures, so almost any natural extension of simple perfect Bayesian equilibrium to our continuum
action and type spaces leads to our equilibrium. For example, we could apply the notion of the open sequential
equilibrium of Myerson and Reny (2015). For our purposes, “equilibrium” applies in the sense that every
agent optimizes when appying Bayes’ Rule based on a regular version of the conditional distribution of Z
given the observed variables, in order to compute its optimal threshold strategy, given the threshold strategies
of other agents. As stated, there is a unique such equilibrium in threshold strategies because (i) given the other
traders’ threshold strategies, a given trader’s threshold strategy is uniquely determined by its first-order necessary
condition for optimality (which is sufficient because of concavity), and (ii) there is a unique solution for the pair
of first-order conditions for the equations for the threshold strategies Mb and Ms .
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threshold. That is, a higher m means a higher L(m), the sensitivity of the
thresholds Mb and Ms to X.

Appendix E provides a summary statement of the existence of the equilibrium
as well as a simple algorithm for updating the state (m,X,y) as the workup
progresses.

5. Concluding Remarks

This paper demonstrates the equilibrium behavior and welfare benefit of size
discovery and adds to a general understanding of how market designs have
responded in practice to frictions associated with imperfect competition.

Price-discovery markets are efficient in an idealized price-taking competitive
market, for example, one in which traders are infinitesimally small, as in
Aumann (1964). The First Welfare Theorem ofArrow (1951), by which market-
clearing allocations are efficient, is based on the price-taking assumption. In
many functioning markets, however, price taking is a poor approximation of
trading behavior because of traders’ awareness of their own price impact, and
efficiency is lost. For instance, in interdealer financial markets, there are often
heavy concentrations of inventory imbalances among a relatively small set
of market participants. These are large dealers, hedge funds, and other asset
managers that are extremely conscious of their potential to harm themselves by
price impact. In the case of U.S. Treasury markets, for instance, government
auctions often leave a small number of primary dealers with significant position
imbalances. Some dealers are awarded substantially more bonds in the auction
than needed to meet their customer commitments and desired market-making
inventories. Some receive significantly less than desired. Fleming and Nguyen
(2015) explain how dealers exploit workups to lay off their imbalances.

We have shown that, under imperfect competition, adding a size-discovery
mechanism such as workup significantly improves allocative efficiency over
a stand-alone price-discovery mechanism, such as sequential double auctions.
Precisely because a workup freezes the transaction price, it avoids the efficiency
losses caused by the strategic avoidance of price impact in price-discovery
mechanisms. Workup participants are therefore willing to trade large blocks of
an asset almost instantly, leading to a quick reduction of inventory imbalances
and improvement in allocative efficiency.

We have also shown that the optimal workup strategies in equilibrium trade
off the benefit of quickly eliminating large undesired positions against the
winner’s curse associated with subsequent double-auction prices. As a result,
only traders with large inventory imbalances actively participate in workups,
whose participants set an endogenous threshold for the level of remaining
inventory at which they drop out.

We emphasize that the welfare benefit of size discovery is higher if it is used
in combination with a price-discovery mechanism. In fact, if size discovery
were the only available trading mechanism, it would be even less efficient than
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a price-discovery-only market. Appendix F shows that, in terms of ex ante
expected social surplus, the three possible market structures can be ranked as
follows:

workup + double auctions � double auctions only � workup only, (41)

where “�” means “more efficient than,” in the sense of total social surplus.
It would be natural to extend our model so as to incorporate more general

workup timing and an endogenous workup price. In our current model, a
single multilateral workup (or multiple bilateral workups) is added before the
opening of the sequential-double-auction market. A natural interpretation is
that the workup occurs at the beginning of each trading day, say at the closing
price of the previous day. We have shown that this form of “low-frequency”
size discovery improves welfare. A useful extension would allow “higher-
frequency size discovery,” for example, a multilateral workup before each
double auction, at the previous double-auction price. (The first workup could be
done at the closing price of the previous day.) An extension of this sort is likely
to be extremely complex to analyze. For instance, this timing introduces an
incentive for each large trader to “manipulate” double-auction prices in order
to profit from subsequent workups. Indeed, the same challenge may apply to
any extension in which the workup price is endogenously “discovered” by
strategic traders. Another technical difficulty of having workup after double
auctions is that the continuation value before the workup is no longer linear-
quadratic, since the workup volume is the minimum of two random variables.
In sum, although it would be interesting and useful to characterize equilibrium
behavior with frequent interim size discovery, we have not yet found a tractable
way to do so.

Appendix A. Proofs

This Appendix contains proofs of results stated in the main text.

A.1 Proof of Proposition 1
As in the text, we simplify the notation by writing “xik” in place of “xik(pk;zik),” and conjecture
an equilibrium strategy of the form

xik =av−bpk +dzik. (A.1)

Under this conjecture, and because the inventory shocks have mean zero, the equilibrium price pk
is a martingale because the total inventory Zk is a martingale.

Trader i in round k effectively selects the optimal execution price pk . Adapting the method of
Du and Zhu (2016), we write the first-order optimality condition of trader i as

(n−1)b

[(
1−e−r�)

⎛
⎝v− 2γ

r
(xik +zik)+

∞∑
j=1

e−rj�(1+d)j (v− 2γ

r
Ek(zi,k+j +xi,k+j ))

⎞
⎠

−pk−
∞∑
j=1

e−rj�(1+d)j−1dE(pk+j )

]
−xik =0, (A.2)

where Ek(·) denotes conditional expectation given zik and pk .
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By the evolution equation for the inventory {zik}, we have, for all j≥1,

zi,k+j +xi,k+j =(1+d)j (zik +xik)+
j−1∑
l=1

(av−bpk+l +wi,k+l+1)(1+d)j−l (A.3)

+(av−bpk+j )+wi,k+1(1+d)j . (A.4)

Since all shocks have mean zero and the prices are martingales, we have

Ek(zi,k+j +xi,k+j )= (1+d)j (zik +xik)+(av−bpk)
(

(1+d)j

d
− 1

d

)
. (A.5)

The above equation is linear in xik , v, pk , and zik . Matching the coefficients with those of the
conjectured strategy xik =av−bpk +dzik and solving the three equations, we have

b=a, (A.6)

d =− 2γ

r
a, (A.7)

a=a�≡ r

2γ

(
1+

(n−1)(1−e−r�)−√
(n−1)2(1−e−r�)2 +4e−r�
2e−r�

)
. (A.8)

A.2 Proof of Proposition 2
Our proof strategy consists of two steps. First, we calculate Vi,0+ under the assumption that σw =0
(that is, no periodic inventory shocks after time 0). This gives the first three terms in the expression
of Vi,0+. Then, we calculate the last term 	, the contribution of periodic inventory shocks to the
indirect utility.
Step 1: No periodic inventory shocks. With wik =0 for all i and k≥1, and given the equilibrium
price p∗, we can write the law of motion of the inventory of trader i as

zi,k+1 =zik +a�

(
v−p∗ − 2γ

r
zik

)

=zik−a� 2γ

r

(
zik− Z

n

)
, (A.9)

which implies that

zi,k+1 − Z

n
=

(
1−a� 2γ

r

)(
zik− Z

n

)
. (A.10)

We let

Vi,0+ =
∞∑
k=0

e−r�kE
[
−xikp∗ +(1−e−r�)

(
v(xik +zik)− γ

r
(xik +zik)

2
) ∣∣∣∣ zi0,Z

]
. (A.11)

The inventories evolve according to

zi,k+1 − Z

n
=

(
1−a� 2γ

r

)(
zik− Z

n

)
=

(
1−a� 2γ

r

)k+1(
zi0 − Z

n

)
. (A.12)

It follows that, in equilibrium,

xik =a�
2γ

r

(
Z

n
−zik

)
=a�

2γ

r

(
1−a� 2γ

r

)k(
Z

n
−zi0

)
. (A.13)
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The price-related term in Equation (A.11) is

∞∑
k=0

e−r�kp∗xik =
∞∑
k=0

e−r�k
(
v− 2γ

nr
Z

)
a�

2γ

r

(
1−a� 2γ

r

)k(
Z

n
−zi0

)

=

(
v− 2γ

nr
Z

)(
Z

n
−zi0

)
a�

2γ
r

1−e−r�(1−a� 2γ
r

)
. (A.14)

In Equation (A.11), the term that involves v is

v

∞∑
k=0

(
1−e−r�)e−r�k

[
Z

n
+

(
1−a� 2γ

r

)k+1(
zi0 − Z

n

)]

=v
Z

n
+

(1−a� 2γ
r

)
(
1−e−r�)

1−e−r�(1−a� 2γ
r

)
v

(
zi0 − Z

n

)
. (A.15)

In Equation (A.11), the term that involves γ is

− γ

r

∞∑
k=0

(
1−e−r�)e−r�k

[
Z

n
+

(
1−a� 2γ

r

)k+1(
zi0 − Z

n

)]2

= − γ

r

(
Z

n

)2

− (1−a� 2γ
r

)
(
1−e−r�)

1−e−r�(1−a� 2γ
r

)

2γZ

nr

(
zi0 − Z

n

)
− γ

r

1−a� 2γ
r

n−1

(
zi0 − Z

n

)2

.

(A.16)

Adding up the three terms, we get the first, second, and third term in the expression for Vi,0+.

Step 2: Add the effect of periodic inventory shocks. We now calculate the terms in the indirect
utility caused by the extra terms {wik}, where k≥1.

For any integer t≥0, we let st be the coefficient of wil in the expression of zi,l+t and let ut be
the coefficient of wjl in the expression of zi,l+t , where j �= i. Clearly, s0 =1 and u0 =0.

For simplicity of expressions, write c� =a�
2γ
r

.
We can write Equation (12) more explicitly as

zi,k+1 =(1−c�)zik +c�
zik +

∑
j �=i zjk
n

+wi,k+1. (A.17)

Thus, we get recursive equations of {ut } and {st }:

ut+1 =(1−c�)ut +c�

(
n−1

n
ut +

1

n
st

)
=
(

1− c�

n

)
ut +

c�

n
st , (A.18)

and

st+1 =(1−c�)st +c�

(
n−1

n
ut +

1

n
st

)
=

(
1− (n−1)c�

n

)
st +

(n−1)c�
n

ut . (A.19)

These recursive equations have the solution (using s0 =1 and u0 =0):

st =
1+(n−1)(1−c�)t

n
, ut =

1−(1−c�)t

n
. (A.20)

Fixing i: Let’s first calculate the difference caused by the w terms in the expression of
E [−xikpk |zi0,Z]. From Equation (A.20) and the recursive equations for ut and st , we see that
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the coefficient of wil (l≤k) in the expression of xik is

−c�
(
sk−l− sk−l +(n−1)uk−l

n

)
=c�

n−1

n
(uk−l−sk−l), (A.21)

and the coefficient of wjl (l≤k) in the expression of xik is

−c�
(
uk−l− sk−l +(n−1)uk−l

n

)
=c�

1

n
(sk−l−uk−l). (A.22)

Similarly, the coefficient of wil and wjl (l≤k, j �= i) in the expression of pk is

− 2γ

r

sk−l +(n−1)uk−l
n

. (A.23)

Since each w term has the (conditional and unconditional) mean of zero, all expectation terms
linear in wil or wjl are zero. Moreover, because the inventory shocks are independent of each
other, all quadratic terms—except those of the formw2

ml , wherem∈{1,2,...,n} and l≤k—are also
zero. These imply that the contribution of the periodic inventory shocks to E [−xikpk |zi0,Z] is:

k∑
l=1

−
(
c�
n−1

n
(uk−l−sk−l)

)(
− 2γ

r

sk−l +(n−1)uk−l
n

)
E
[
w2
il |zi0,Z

]

+
k∑
l=1

∑
j �=i

−
(
c�

1

n
(sk−l−uk−l)

)(
− 2γ

r

sk−l +(n−1)uk−l
n

)
E
[
w2
j l |zi0,Z

]

=σ 2
w�

(
− 2γ

r

sk−l +(n−1)uk−l
n

) k∑
l=1

[
−c� n−1

n
(uk−l−sk−l)−(n−1)·c� 1

n
(sk−l−uk−l)

]

=0. (A.24)

Obviously, the w terms make no difference to the term E [(xik +zik) |zi0,Z] because the
inventory shocks have mean zero.

Now let’s turn to the difference caused by thew terms in the expression ofE
[
(xik +zik)2 |zi0,Z

]
.

From Equation (A.21), the coefficient of wil (l≤k) in the expression of xik +zik is

c�
n−1

n
(uk−l−sk−l)+sk−l ,

and from Equation (A.22), the coefficient of wjl (l≤k) in the expression of xik +zik is

c�
1

n
(sk−l−uk−l)+uk−l .

Again, because the w terms have mean zero and are mutually independent, the difference caused
by the w terms in the expression of E

[
(xik +zik)2 |zi0,Z

]
is:

k∑
l=1

[
c�
n−1

n
(uk−l−sk−l)+sk−l

]2

E
[
w2
il |zi0,Z

]

+
k∑
l=1

∑
j �=i

[
c�

1

n
(sk−l−uk−l)+uk−l

]2

E
[
w2
j l |zi0,Z

]

=σ 2
w�

(
k−1∑
t=0

[
c�
n−1

n
(ut−st )+st

]2

+(n−1)
k−1∑
t=0

[
c�

1

n
(st−ut )+ut

]2
)
.
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Thus, the difference caused by the w terms in the expression of Vi,0+ is

	≡−σ 2
w�

γ

r
(1−e−r�) (A.25)

·
∞∑
k=1

e−r�k
(
k−1∑
t=0

[
c�
n−1

n
(ut−st )+st

]2

+(n−1)
k−1∑
t=0

[
c�

1

n
(st−ut )+ut

]2
)
,

which is a constant that does not depend on {zi0} or Z.

A.3 Proof of Proposition 3
We first characterize the buyer’s dropout strategy. For any y>0, let Fy be the event that the buyer’s
candidate requested quantity y>0 is filled. That is,

Fy =
{
0≤−(Sb+y)−Mb,0≤Ss−y−Ms

}
. (A.26)

The remaining inventory of the buyer, −(Sb+y), is weakly larger than the dropout quantity Mb ,
for otherwise the buyer would have already dropped out. Similarly, the remaining inventory of the
seller, Ss−y, is weakly larger than his dropout quantity Ms , for otherwise the seller would have
already dropped out.

With the conjectured equilibrium dropout strategies, the memoryless property of the exponential
distribution implies that, for the buyer, the seller’s inventory in excess of the dropout quantity, which
is W ≡Ss−y−Ms , is Fy -conditionally exponential with the same parameter μ. Thus, recalling
that Z is the aggregate inventory of the traders, we have

E(Z |Fy,Sb)=Sb+y+Ms +
1

μ
, (A.27)

using the fact that the expected total inventory of all traders not participating in this workup is zero.
By a similar calculation,

E(Z2 |Fy,Sb)=E

⎡
⎣(Sb+y+Ms +W )2 +

(
n∑
i=3

zi0

)2
⎤
⎦

=(Sb+y+Ms )
2 +E(W 2)+2(Sb+y+Ms )E(W )+θ

=(Sb+y+Ms )
2 +

2

μ2
+2(Sb+y+Ms )

1

μ
+θ, (A.28)

where

θ =E

⎡
⎣(

n∑
i=3

zi0

)2
⎤
⎦.

On the other hand, given the initial inventory Sb and the candidate quantity y≥0 to be acquired
in the workup, the buyer’s conditional expected ultimate value, given {Z,Sb}, is

Ub =−p̄y+V(Sb+y), (A.29)

where, based on Proposition 2,

V(z)=v
Z

n
− γ

r

(
Z

n

)2

+

(
v−2

γ

r

Z

n

)(
z− Z

n

)
− γ

r

1−2a�γ/r

n−1

(
z− Z

n

)2

. (A.30)
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Organizing the terms, we get

E(Ub |Fy,Sb)=−p̄y+v(Sb+y)− γ

r
C(Sb+y)2 +2

γ

r
(C−1)(Sb+y)

E(Z |Fy,Sb)

n

− γ

r
(C−1)

E(Z2 |Fy,Sb)

n2
, (A.31)

where

C =
1−2a�γ/r

n−1
. (A.32)

Substituting the expressions that we have shown above forE(Z |Fy,Sb) andE(Z2 |Fy,Sb) into
this expression for E(Ub |Fy ), we get

g(y)≡ dE(Ub |Fy,Sb)

dy
=v−p̄−2

γ

r
C(Sb+y)+2

γ

r
(C−1)

1

n

(
2(Sb+y)+Ms +

1

μ

)

− γ

r
(C−1)

1

n2

(
2(Sb+y+Ms )+

2

μ

)
. (A.33)

The derivative g(y) is everywhere strictly decreasing in y. Following the conjectured
equilibrium, an optimal dropout quantity Mb for the buyer’s residual inventory, if the optimum is
interior (which we assume for now and then validate), is obtained at a level of y for which this
derivative g(y) is equal to zero, and by taking Sb+y =−Mb . That is,

0=v−p̄−2
γ

r
C(−Mb)+2

γ

r
(C−1)

1

n

(
2(−Mb)+Ms +

1

μ

)

− γ

r
(C−1)

1

n2

(
2(−Mb+Ms )+

2

μ

)
. (A.34)

By completely analogous reasoning, the first-order condition for the seller’s optimal dropout
threshold Ms is given by

0= p̄−v+2
γ

r
CMs +2

γ

r
(C−1)

1

n

(
−2Ms +Mb+

1

μ

)

− γ

r
(C−1)

1

n2

(
−2(Ms−Mb)+

2

μ

)
. (A.35)

The unique solution to the two first-order necessary and sufficient conditions (A.34) and (A.35)
is given by Equations (18) and (19). As long as the workup price p̄ satisfies Equation (17), we
have Mb≥0 and Ms ≥0. This completes the proof.

A.4 Proof of Proposition 4
The comparative statics of M with respect to r and � are provided in the text. The only item left
is to show that M increases in n.

Define

A≡ 2e−r�

1−e−r� , (A.36)

B≡ 4e−r�

(1−e−r�)2
, (A.37)

αn =(n−1)+A+
√

(n−1)2 +B. (A.38)
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Then, we can write

C(n)=
1

n−1

(
1− 2(n−2)

αn

)
. (A.39)

To show that M increases in n, it is equivalent to show that

n
(

1+ nC(n)
1−C(n)

)
n−1

>
(n+1)

(
1+ (n+1)C(n+1)

1−C(n+1)

)
n

, (A.40)

which, after simplification, is equivalent to

(n+1)2

n−1

1

1+ 2
αn+1

− n2

n−2

1

1+ 2
αn

<1. (A.41)

Note that αn is increasing n, fixing other parameters. So,

αn+1 −αn =1+
√
n2 +B−

√
(n−1)2 +B<1+

(2n−1)

2
√

(n−1)2 +B
<

4n−3

2(n−1)
. (A.42)

Using the above inequality, we can show that

1

1+ 2
αn+1

− 1

1+ 2
αn

<
1

(αn+2)2

4n−3

n−1
. (A.43)

Applying the above inequality, we can show that the left-hand side of Equation (A.41) satisfies:

(n+1)2

n−1

1

1+ 2
αn+1

− n2

n−2

1

1+ 2
αn

<
n2 −3n−2

(n−1)(n−2)

αn

αn+2
+

(n+1)2(4n−3)

(n−1)2

1

(αn+2)2
≡ψ(αn). (A.44)

We have

ψ ′(αn)=
2

(αn+2)2

[
n2 −3n−2

(n−1)(n−2)
− 1

αn+2

(n+1)2(4n−3)

(n−1)2

]
︸ ︷︷ ︸

λ(�)

. (A.45)

We now fix n and r , and consider changes in αn through the changes in �>0. For any fixed n
and r , αn and λ(�) decrease in �. In particular, as �→0, we have αn→∞, and λ(0)>0. But as
�→∞, we have αn↓2(n−1), and λ(�) converges to

n2 −3n−2

(n−1)(n−2)
− 1

2n

(n+1)2(4n−3)

(n−1)2
<0. (A.46)

Therefore, as a function of αn and in the domain [2(n−1),∞), ψ(αn) first decreases in αn and
then increases in αn. To show that ψ(αn)<1, it suffices to verify that limαn→∞ψ(αn)<1 and
ψ(2(n−1))<1. As αn→∞, the second term of ψ(αn) vanishes and the first term converges to
n2−3n−2

(n−1)(n−2) <1. At αn =2(n−1),

ψ(2(n−1))=
n2 −3n−2

(n−1)(n−2)

n−1

n
+

(n+1)2(4n−3)

(n−1)2

1

4n2

=1+
1

n

(
(n+1)2(4n−3)

4n(n−1)2
− n+2

n−2

)

<1+
1

n

(
(n+1)2

(n−1)2
− n+2

n−2

)
=1+

1

n

(
4n

(n−1)2
− 4

n−2

)
<1.

This completes the proof.
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A.5 Proof of Proposition 5
We first consider the problem of the current active buyer, whose initial inventory is Sb , on the event
that the buyer has to this point executed some quantity y>0 and the active seller has not yet exited.
Let nb and ns denote the number of buyers and the number of sellers yet to enter the workup,
respectively, excluding the current pair. We will calculate the first-order optimality conditions by
artificially including the residual queue sizes nb and ns in the buyer’s conditioning information, and
then later averaging with respect to the conditional distribution of (nb,ns ). By the same logic used
in Section 3, the buyer has conditional mean and variance19 of aggregate market-wide inventory
given by

E(Z |Sb,m,X,y,nb,ns )=Sb+y+Ms (m,X)+
1

μ
+X+(ns−nb)

1

μ
, (A.47)

E(Z2 |Sb,m,X,y,nb,ns )= (Sb+y+Ms (m,X))2 +2(Sb+y+Ms (m,X))
1

μ

+�b(nb,ns ), (A.48)

where �b(nb,ns ) is a quantity that does not depend on y. Relative to the calculation (A.27) for
the case of bilateral workup, the conditional meanE(Z |m,X,y,nb,ns ) includes the extra termsX
and (ns−nb)/μ. The exact level of the second moment E(Z2 |m,X,y,nb,ns ) does not affect the
equilibrium threshold, because it plays no role in the first-order optimality condition for the choice
of y at which the buyer drops out.

Omitting the arguments of Ms and Mb , we have

dE(Ub |Sb,m,X,y,nb,ns )
dy

=v−p̄−2
γ

r
C(n)(Sb+y)

+2
γ

r
(C(n)−1)

1

n

(
2(Sb+y)+Ms +

1

μ
+X+(ns−nb)

1

μ

)

− γ

r
(C(n)−1)

1

n2

(
2(Sb+y+Ms )+

2

μ

)
, (A.49)

where n=m+nb+ns and where

C(n)=
1−2a�γ/r

n−1
. (A.50)

By the law of iterated expectations, we can average with respect to the product distribution of
(nb,ns ), to obtain

dE(Ub |Sb,m,X,y)

dy
=v−p̄−

∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
C(n)(Sb+y)

+
∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
(C(n)−1)

1

n

(
2(Sb+y)+Ms +

1

μ
+X+(�−k)

1

μ

)

−
∞∑
k=0

∞∑
�=0

f (k)f (�)
γ

r
(C(n)−1)

1

n2

(
2(Sb+y+Ms )+

2

μ

)
, (A.51)

where n=m+k+�.

19 The event of executing y units has probability zero, but the stated conditional moments make sense when applying
a regular version of the conditional distribution of Z given the executed quantity and given X.
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The first-order condition for optimal y should hold with equality if Sb+y =−Mb , that is,

0=
dE(Ub |Sb,m,X,y)

dy

∣∣∣
Sb+y=−Mb

=v−p̄−
∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
C(n)(−Mb)

+
∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
(C(n)−1)

1

n

(
2(−Mb)+Ms +

1

μ
+X+(�−k)

1

μ

)

−
∞∑
k=0

∞∑
�=0

f (k)f (�)
γ

r
(C(n)−1)

1

n2

(
2(−Mb+Ms )+

2

μ

)
, (A.52)

where n=m+k+�.
By a completely analogous calculation, the seller, whose initial inventory is Ss , stays in workup

until the buyer has exited or the workup quantity has reached a level y satisfying the seller’s first-
order condition, whichever comes first. This occurs when the seller’s remaining inventory reaches
the threshold Ss−y =Ms . Thus, the first-order condition for y takes the form

0=
dE(Us |Ss,m,X,y)

dy

∣∣∣
Ss−y=Ms

(A.53)

=p̄−v+
∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
C(n)Ms

+
∞∑
k=0

∞∑
�=0

f (k)f (�)2
γ

r
(C(n)−1)

1

n

(
−2Ms +Mb+

1

μ
−X−(�−k)

1

μ

)

−
∞∑
k=0

∞∑
�=0

f (k)f (�)
γ

r
(C(n)−1)

1

n2

(
−2(Ms−Mb)+

2

μ

)
,

where n=m+k+�. As the sum of two iid geometric random variables, nb+ns has the negative
binomial conditional distribution20 with mass function

g(k)= (k+1)qk(1−q)2. (A.54)

Substituting in p̄=v, the pair of linear first-order necessary and sufficient conditions for
optimality, Equations (A.52) and (A.53), lead to the unique solutions Mb(m,X) and Ms (m,X)
given in Proposition 5.

A.6 Proof of Proposition 6
A.6.1 Monotonicity ofM∗(m), L(m), andM∗(m)/L(m). We first prove the following lemma.

Lemma 1. If for positive real numbers {λi,αi ,βi : i≥0}, we have λi
λi+1

<
λi+1
λi+2

and αi
βi
<
αi+1
βi+1

,

then for any positive integer k, ∑k
i=0λiαi∑k
i=0λiβi

<

∑k
i=0λiαi+1∑k
i=0λiβi+1

.

20 This can be shown from the fact g(·) is the convolution f ∗f .
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Proof of Lemma 1. Because αi
βi
<
αi+1
βi+1

for i≥0, it is easy to see that

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

=

∑k−1
i=0 λiβi+1

αi+1
βi+1∑k−1

i=0 λiβi+1
≤

∑k−1
i=0 λiβi+1

αk
βk∑k−1

i=0 λiβi+1
=
αk

βk
,

which implies
αk+1

βk+1
>
αk

βk
≥

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

. (A.55)

From Equation (A.55) we have∑k
i=0λiαi+1∑k
i=0λiβi+1

=

∑k−1
i=0 λiαi+1 +λkβk+1

αk+1
βk+1∑k−1

i=0 λiβi+1 +λkβk+1

≥
∑k−1
i=0 λiαi+1 +λkβk+1

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1∑k−1

i=0 λiβi+1 +λkβk+1

=

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

. (A.56)

Similarly, we can prove that ∑k
i=0λiαi∑k
i=0λiβi

≤
∑k
i=1λiαi∑k
i=1λiβi

. (A.57)

Equations (A.56) and (A.57) imply that in order to prove Lemma 1 we only need to show that∑k
i=1λiαi∑k
i=1λiβi

<

∑k−1
i=0 λiαi+1∑k−1
i=0 λiβi+1

,

which is equivalent to ∑k
i=1λiαi∑k
i=1λiβi

<

∑k
i=1λi−1αi∑k
i=1λi−1βi

. (A.58)

Notice that∑k
i=1λi−1αi∑k
i=1λi−1βi

−
∑k
i=1λiαi∑k
i=1λiβi

=

(∑k
i=1λi−1αi

)(∑k
i=1λiβi

)
−
(∑k

i=1λiαi

)(∑k
i=1λi−1βi

)
(∑k

i=1λi−1βi

)(∑k
i=1λiβi

) .

(A.59)
So it suffices to prove the numerator of Equation (A.59) is positive. By expansion we have(

k∑
i=1

λi−1αi

)(
k∑
i=1

λiβi

)
−
(

k∑
i=1

λiαi

)(
k∑
i=1

λi−1βi

)

=
∑

1≤s<t≤k
(λs−1αsλtβt +λt−1αtλsβs )+

k∑
i=1

λi−1αiλiβi

−
∑

1≤s<t≤k
(λsαsλt−1βt +λtαtλs−1βs )−

k∑
i=1

λi−1βiλiαi

=
∑

1≤s<t≤k
(λs−1αsλtβt +λt−1αtλsβs−λsαsλt−1βt−λtαtλs−1βs ). (A.60)
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Because, for all s<t ,

λs−1αsλtβt +λt−1αtλsβs−λsαsλt−1βt−λtαtλs−1βs

=λsλtβsβt

(
λs−1

λs

αs

βs
+
λt−1

λt

αt

βt
− λt−1

λt

αs

βs
− λs−1

λs

αt

βt

)

=λsλtβsβt

(
λs−1

λs
− λt−1

λt

)(
αs

βs
− αt

βt

)

>0, (A.61)

the right-hand side of Equation (A.60) is positive, and the proof of the Lemma is complete.
Letting k→∞ in Lemma 1, we get∑∞

i=0λiαi∑∞
i=0λiβi

≤
∑∞
i=0λiαi+1∑∞
i=0λiβi+1

. (A.62)

Letting λi =g(i)= (i+1)qi (1−q)2, we have

λi

λi+1
=

(i+1)

(i+2)q
<

(i+2)

(i+3)q
=
λi+1

λi+2
. (A.63)

Monotonicity of M∗(m). Given Lemma 1, to show that M∗(m)≤M∗(m+1), it suffices to show
that

(1−C(n)) n−1
n2

C(n)+ 1−C(n)
n

(A.64)

is increasing in n for n≥2.
In the continuous-time double-auction market of Appendix B, we have �=0 and C(n)=1/

(n−1), so the ratio (A.64) simplifies to
n−2

2n
,

which is increasing in n.
For �>0, we denote

D(n)=2− 2(n−2)

(n−1)+ 2e−r�
1−e−r� +

√
(n−1)2 + 4e−r�

(1−e−r�)2

. (A.65)

It is easy to see that D(n) is decreasing in n. Using C(n)= (1−2a�γ/r)/(n−1), we have

(1−C(n)) n−1
n2

C(n)+ 1−C(n)
n

=
1−D(n)/n

D(n)
=

1

D(n)
− 1

n
. (A.66)

Since D(n) is decreasing in n, the right-hand side of the above expression is increasing in n, and
the proof for the monotonicity of M∗(m) is complete.

Monotonicity of L(m) if e−r�>1/2. Given Lemma 1, to show that L(m)≤L(m+1), it suffices to
show that

1−C(n)
n

C(n)+ (1−C(n))(3n−2)
n2

(A.67)

is increasing in n for n≥2.
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In the continuous-time double-auction market, with�=0 and C(n)=1/(n−1), the ratio (A.67)
simplifies to

(n−2)n

4(n−1)2
,

which is indeed increasing in n.
For �>0, we define

t =
2e−r�

1−e−r� , (A.68)

and

R(n)=

√
(n−1)2 +

4e−r�
(1−e−r�)2

−(n−1). (A.69)

Now we can write

C(n)=
1

n−1

(
1− 2(n−2)

n−1+ t +n−1+R(n)

)
. (A.70)

We claim that

0≤R(n)≤ t, and R(n) decreases in n. (A.71)

It is obvious that R(n) is non-negative and decreases in n. To see that R(n)≤ t , we can directly
calculate

4e−r�
(1−e−r�)2√

(n−1)2 + 4e−r�
(1−e−r�)2

+n−1

≤
4e−r�

(1−e−r�)2√
1+ 4e−r�

(1−e−r�)2
+1

= t.

Using Equations (A.68) and (A.69), we can write

(1−C(n))
(n)(

C(n)+ (1−C(n))(3n−2)
(n)2

) =
(n−2)n(2n+ t +R(n))

2(n−1)(3n2 +2n(t−2)−2t +2(n−1)R(n))
. (A.72)

We denote the numerator and denominator of the right-hand side of Equation (A.72) by Y1(n) and
Y0(n), respectively. To show monotonicity, it is enough to prove that

Y1(n+1)Y0(n)−Y1(n)Y0(n+1)>0.

After expansion, we get

Y1(n+1)Y0(n)−Y1(n)Y0(n+1)

=2(R(n)−R(n+1))n5 +2(t−2+R(n+1))n4

+(24−4t−6R(n)+2R(n+1))n3 +2(6+13t +6R(n)+7R(n+1))n2

+8(−2+ t2 +(t−1)R(n+1)+R(n)(t +1+R(n+1)))n

−4(t +R(n))(t +2+R(n+1)). (A.73)
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Using Equation (A.71), lower bounds on the coefficients of each term in the polynomial on the
right-hand side are as follows:

n5 : 2(R(n)−R(n+1))≥0. (A.74)

n4 : 2(t−2+R(n+1))≥2(t−2). (A.75)

n3 : 24−4t−6R(n)+2R(n+1)≥24−10t. (A.76)

n2 : 2(6+13t +6R(n)+7R(n+1))≥2(6+13t). (A.77)

n : 8(−2+ t2 +(t−1)R(n+1)+R(n)(t +1+R(n+1)))≥8(t2 −2). (A.78)

Constant : −4(t +R(n))(t +2+R(n+1))≥−8t(2t +2). (A.79)

With the above inequalities, we get

Y1(n+1)Y0(n)−Y1(n)Y0(n+1) (A.80)

≥2(t−2)n4 +(24−10t)n3 +2(6+13t)n2 +8(t2 −2)n−8t(2t +2)

=2(t−2)n2(n2 −5n+6.5)+4n3 +(38+13t)n2 +8(t2 −2)n−8t(2t +2)

=2(t−2)n2
(

(n−2.5)2 +0.25
)

+4n3 +38n2 −16n+ t2(8n−16)+ t(13n2 −16).

Under the condition e−r�> 1
2 , we have t >2. It is easy to see the right-hand side of Equation (A.80)

is positive for n≥2.

Monotonicity of M∗(m)/L(m). We can write

M∗(m)

L(m)
=

1

μ

∑∞
k=0g(k)(1−C(n)) n−1

n2∑∞
k=0g(k) 1−C(n)

n

·
∑∞
k=0

(
C(n)+ (1−C(n))(3n−2)

n2

)
∑∞
k=0g(k)

(
C(n)+ 1−C(n)

n

) . (A.81)

Given Lemma 1, to show that M∗(m)/L(m) increases in m, it suffices to show that

(1−C(n)) n−1
n2

1−C(n)
n

and
C(n)+ (1−C(n))(3n−2)

n2

C(n)+ 1−C(n)
n

are both increasing in n.
Monotonicity in n of the first expression is obvious, for

(1−C(n)) n−1
n2

1−C(n)
n

=1− 1

n
.

The second expression can be expressed as

C(n)+ (1−C(n))(3n−2)
n2

C(n)+ 1−C(n)
n

=1+2
(1−C(n)) n−1

n2

C(n)+ 1−C(n)
n

. (A.82)

The last term in the above expression is increasing in n, as shown in the proof of monotonicity of
M∗(m).

1138



Size Discovery

A.6.2 Proof of Equations (37) to (40). Suppose that e−r�>1/2. We have shown that in this case
M∗(m), L(m), and M∗(m)/L(m) are all increasing in m for m≥2. We now prove Equations (37)
to (40) by induction. We let Xi,j denote the X element of the state vector (m,X,y) that applies for
buyer i and seller j .
At i =j =1 and X1,1 =0. Clearly, both thresholds are equal toM∗(2) and are positive at this initial
state. Moreover, if the buyer exits, then X2,1<0, and

Ms (3,X2,1)=M∗(3)−L(3)X2,1>M
∗(2)=Ms (2,X1,1). (A.83)

If the seller exits, then X1,2>0, and

Mb(3,X1,2)=M∗(3)+L(3)X1,2>M
∗(2)=Mb(2,X1,1). (A.84)

At generic (i,j ) andXi,j . By symmetry, it suffices to prove these inequalities for the exit of seller
j . By the conjectured update rule,

Xi,j+1 −Xi,j =

{
M∗(i+j )−L(i+j )Xi,j , if seller j traded positive quantity

ν(M∗(i+j )−L(i+j )Xi,j ), if seller j traded zero quantity
,

where the last line follows from the induction step

Ms (i+j,Xi,j )=M∗(i+j )−L(i+j )Xi,j ≥0.

In this case, we want to show that

M∗(i+j +1)+L(i+j +1)Xi,j+1 ≥M∗(i+j )+L(i+j )Xi,j , (A.85)

M∗(i+j +1)−L(i+j +1)Xi,j+1 ≥0. (A.86)

If established, the first inequality, (A.85), would imply that the incumbent buyer’s new threshold
remains positive if the old threshold is positive. Since it is the seller who exited, the inequality for
the “incumbent seller” is irrelevant.

To show Equation (A.85), we calculate

M∗(i+j +1)+L(i+j +1)Xi,j+1 −M∗(i+j )−L(i+j )Xi,j

≥M∗(i+j +1)−M∗(i+j )+(L(i+j +1)−L(i+j ))Xi,j

≥M∗(i+j )
L(i+j +1)

L(i+j )
−M∗(i+j )+(L(i+j +1)−L(i+j ))Xi,j

=
L(i+j +1)−L(i+j )

L(i+j )
(M∗(i+j )+L(i+j )Xi,j )≥0, (A.87)

where the last inequality follows from the induction step that Mb(i+j,Xi,j )≥0 and the
monotonicity of L(m), and the penultimate inequality follows from the monotonicity of
M∗(m)/L(m).

To show Equation (A.86), we calculate

M∗(i+j +1)−L(i+j +1)Xi,j+1

≥M∗(i+j +1)−L(i+j +1)
(
Xi,j +M∗(i+j )−L(i+j )Xi,j

)
≥M∗(i+j )

L(i+j +1)

L(i+j )
−L(i+j +1)M∗(i+j )−L(i+j +1)(1−L(i+j ))Xi,j

=
L(i+j +1)(1−L(i+j ))

L(i+j )

(
M∗(i+j )−L(i+j )Xi,j

)≥0, (A.88)
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where the last inequality follows from the induction step that Ms (i+j,Xi,j )≥0 and the fact21

that L(·)<1/2, and the penultimate inequality follows from the monotonicity of M∗(m)/L(m).

Appendix B. Continuous-Time Double-Auction Market

This appendix states the continuous-time limit of the discrete-time double auction market, and
independently solves for the equilibrium in the corresponding continuous-time double auction
market. We thereby show that these two settings have identical equilibrium behavior. Since the
periodic inventory shocks after time 0 merely add a constant to a trader’s indirect utility at time 0
(see Proposition 2), these shocks do not affect the equilibrium strategies in the workup or double
auctions. Consequently, in the calculations below we will avoid introducing inventory shocks after
time zero.

B.1 Continuous-time limit of the discrete-time double auction market
Corollary 1. Suppose that the inventory shocks are zero after time 0. As�→0, the equilibrium
of Proposition 1 converges to the following continuous-time limit.

1. The limit demand schedule22 of trader i at time t is

x∞
it (p;z∞it )=a∞

(
v−p− 2γ

r
z∞it

)
, (A.89)

where

a∞ =
(n−2)r2

4γ
(A.90)

and where the limiting inventory position of trader i at time t is

z∞it =
Zt

n
+e−(n−2)rt/2

(
zi0 − Z

n

)
. (A.91)

The equilibrium price at time t is

p∗ =v− 2γ

nr
Z. (A.92)

2. The limiting expected net payoff of trader i at time 0, conditional on zi0 and the initial
auction price p∗, is

V∞
i,0+ =v

Z

n
− γ

r

(
Z

n

)2

+

(
v− 2γ

r

Z

n

)(
zi0 − Z

n

)
− γ

r(n−1)

(
zi0 − Z

n

)2

. (A.93)

21 The ratio of a pair of terms in the numerator and denominator in the expression of L(m) is

1
n

C(n)
1−C(n) + 3n−2

n2

<

1
n

3n−2
n2

=

(
3− 2

n

)−1
≤ 1

2

for any n≥2. Thus, L(m)<1/2.

22 In a continuous-time setting, a demand schedule at time t can be expressed by a demand “rate function” Dt (·),
which means that if the time path of prices is given by some functionφ : [0,∞)→R, then the associated cumulative
total quantity purchased by time t is

∫ t
0Ds (φ(s))ds, whenever the integral is well defined. In our case, the discrete-

period demand schedule xik (·;zik ) has the indicated limit demand schedule, as a demand rate function, because
zi,K(t) →z∞

it
and because, for any fixed price p and fixed inventory level z,

lim
�↓0

a�

�

(
v−p− 2γ

r
z

)
=a∞

(
v−p− 2γ

r
z

)
.
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Proof of Corollary 1. The only nontrivial part of the proof is the limit of the convergence rate.
Because 1−a�2γ /r is the convergence factor per auction period, the associated convergence
factor per unit of time is (

1−a� 2γ

r

)1/�

.

Here, we ignore the effect of partial integer periods per unit of time, which is irrelevant in the limit
as � goes to zero. Finally, we have the limiting convergence rate

lim
�→0

log(1−a� 2γ
r

)

�
=− lim

�→0

a�
2γ
r

�
=− (n−2)r

2
. (A.94)

B.2 Continuous-time double auction market
We fix a probability space and the time domain [0,∞). The setup for the joint distribution of the
exponential payoff time T , the payoffπ of the asset, and the initial inventories z0 = (z10,z20,...,zn0)
of the n≥3 of traders is precisely the same as that for the discrete-time auction model of Section 2.
The initial information structure is also as in Section 2. In our application of this model in Section 4,
the number n of traders is an outcome of the random workup population sizeNb+Ns . The outcome
ofNb+Ns is publicly known when workup is complete. So, it is enough to solve the continuous-time
auction model for any fixed trader population size n.

In our new continuous-time setting, a demand schedule at time t can be expressed by a demand
“rate function” D :R×R→R, representing the rate of demand Dt (p) of asset per unit of time at
time t and at price p. This means that if the time path of prices is given in some state of the world by
some function φ : [0,∞)→R, then by time t the cumulative quantity purchased is

∫ t
0Ds (φ(s))ds

and the total price paid is
∫ t

0 φ(s)Ds (φ(s))ds, whenever these integrals are well defined.
We will consider an equilibrium in which demand Dit (p) of trader i at time t and price p is

continuous in both t and p and strictly decreasing in p, and such that the market clearing price
φ(t) at time t , when well defined, is the solution in p of the market-clearing equation:∑

i

Dit (p)=0. (A.95)

This market clearing price, when well defined, is denoted �(
∑
i Dit ).

An equilibrium is a collection (D1,...,Dn) of demand functions such that, for each time t the
market-clearing price �(

∑
i Dit ) is well defined and such that, for agent i, the demand function

Di solves the problem, taking D−i =
∑
j �=i Dj as given,

sup
D

E

[
zDi (T )π−

∫ T

0

[
γ zDi (t)2 +Dt

[
�
(
Dt +D−i,t

)]
�(Dt +D−it )

]
dt

]
, (A.96)

where γ >0 is a holding-cost parameter and

zDi (t)=zi0 +
∫ t

0
Ds

[
�
(
Ds +D−i,s

)]
ds

is the inventory of agent i at time t .
We will look for an equilibrium in which the initial price p(0) instantly reveals the total market

supply Z and in which the demand function of trader i depends only his current inventory zit .
We will conjecture and verify the equilibrium given by

Dit (p)=a

(
v−p− 2γ

r
zit

)
, (A.97)

where

a=
(n−2)r2

4γ
. (A.98)
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The unique associated market-clearing price at any time t is

p∗ =v− 2γ

nr
Z. (A.99)

From this, the inventory position of trader i at time t can be calculated as

zit =
Z

n
+e−(n−2)rt/2

(
zi0 − Z

n

)
. (A.100)

Given this conjectured equilibrium, for any agent i, the sum D−i,t of the demand functions of
the other agents at time t is

D−i,t (p)=D−i (p;zit ,Z)≡
∑
j �=i
a

(
v−p− 2γ

r
zjt

)
=(n−1)a(v−p)− 2aγ

r
(Z−zit ).

Based on this calculation, the continuation utility V (z) for the inventory level of any trader at any
time t <T who has the inventory level z satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0=sup
D

[−D(�(D+D−i (·;z,Z))�(D+D−i (·;z,Z))+V ′(z)D(�(D+D−i (·;z,Z))
]

−γ z2 +r(vz−V (z)). (A.101)

The first term on the right-hand side of Equation (A.101) is the rate of cost of acquiring
inventory in auctions, that is, the quantity rate D(�(D+D−i (·;z,Z)) multiplied by the price
�(D+D−i (·;z,Z)). The second term is the marginal value V ′(z) of inventory multiplied by the
rateD(�(D+D−i (·;z,Z)) of inventory accumulation. The sum of these first two terms is optimized
by choosing some demand function D. The next term accounts for the rate of inventory holding
cost, γ z2. The final term is the product of the mean rate r of arrival of the time of the asset
payoff and the expected change vz−V (z) in the trader’s indirect utility if that payoff were to occur
immediately.

Because Z is constant and observable after time 0, the HJB equation does not pin down a
unique optimizing demand function D(·). Instead, the HJB equation makes the demand problem
for agent i equivalent to picking the quantity x the agent wishes to buy, and then submitting any
demand functionD(·) with the property thatD(p)=x, wherep solves x+D−i (p;z,Z)=0. In order
to avoid degenerate behavior of this type, we require that the submitted demand function Di (·)
must depend only on the inventory zit trader i and of course the price p. That is, we require that
Dit (p)=ft (p,zit ) for some function ft :R×R→R. Nevertheless, in equilibrium, the resulting
demand will turn out to be optimal even if the class of demand functions is expanded to allow
dependence on Z.

We will conjecture and verify that, in equilibrium,

V (z)=v
Z

n
− γ

r

(
Z

n

)2

+

(
v−2

γ

r

Z

n

)(
z− Z

n

)
− γ

r

1

n−1

(
z− Z

n

)2

. (A.102)

We use the fact that V is quadratic and concave, thus bounded above.

Proposition 7. Suppose, for a given trader i, that the demand functionDj for any trader j �= i is
given by Equation (A.97). The function V given by Equation (A.102) satisfies the HJB equation
(A.101). Given this choice for V , the optimization problem posed within the HJB equation is
satisfied by the demand functionDit of Equation (A.97). The optimal demand problem (A.96) for
agent i is also solved by Equation (A.97).

We have shown this result by a direct calculation that is available on the authors’ web sites.
Here, in order to save space, the calculation is omitted.

With this verification of the HJB equation as a characterization of each agent’s optimal strategy
given the same conjectured strategy for other agents, we can now summarize with the main
equilibrium result for the continuous-time model.
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Proposition 8. An equilibrium of the continuous-time double-auction market is as follows.

1. The demand function Dit of trader i at time t is given by:

Dit =
(n−2)r2

4γ

(
v−p− 2γ

r
zit

)
, (A.103)

where the equilibrium inventory of trader i at time t is

zit =
Z

n
+e−(n−2)rt/2

(
zi0 − Z

n

)
. (A.104)

The equilibrium price at time t is constant at

p∗ =v− 2γ

nr
Z. (A.105)

2. The indirect utility V (z) of any agent i for inventory z at any time t >0 that is before the
asset payoff time T is given by

V (z)=v
Z

n
− γ

r

(
Z

n

)2

+

(
v− 2γ

r

Z

n

)(
z− Z

n

)
− γ

r(n−1)

(
z− Z

n

)2

. (A.106)

Appendix C. Welfare and Squared Asset Dispersion

A reallocation of the inventory vector (z10,...,zin) is an allocation z′ =(z′1,...,z′n) with the same
total Z. A reallocation z′ is a Pareto improvement if, when replacing zi0 with z′i , the equilibrium
utilityE(Vi,0+) before entering the sequential-double-auction market is weakly increased for every
i and strictly increased for some i. We have the following corollary of Proposition 2.

Corollary 2. The total expected ex ante utility W (z0)=
∑n
i=1E(Vi,0+) is one-to-one and strictly

monotone decreasing (in fact linear) in the sum of mean squared excess asset positions,

D(z0)=E

(
n∑
i=1

(
zi0 − Z

n

)2
)
.

Thus, if a reallocation z′ =(z′1,...,z′n) is a Pareto improvement, then D(z′)<D(z0).

This result follows from the fact thatW (z0) is a constant plus the product ofD(z0) and a negative
constant.

Because traders’ preferences are linear with respect to total net pecuniary benefits, W (·) is a
reasonable social welfare function. This follows from the fact that for any allocations z′ and z with
W (z′)>W (z), the allocation z′ is Pareto preferred to z after allowing for transfer payments.

The magnitude of welfare improvement offered by the bilateral workup, conditional on the
double auctions, can be calculated explicitly. We focus on the welfare of the buyer and the seller
in the bilateral workup under consideration, and assume zero inventory shocks after time 0. Start
from any preworkup inventory levels −x<0 for the buyer and y>0 for the seller, where x and
y are exponentially distributed with mean 1/μ. The workup volume is V ≡max(0,min(x−(M+
δ),y−(M−δ))), and the post-workup inventories are −x+V and y−V . By Corollary 2, the ex
ante welfare improvement induced by a single bilateral workup is proportional to (with multiplier
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(γ /r)C, by Equation (13)) the reduction in total mean-squared inventory dispersion for the buyer-
seller workup pair, which is

E
[
(−x−Z/n)2 +(y−Z/n)2 −(−x+V −Z/n)2 −(y−V −Z/n)2

]
=E

[
−2V 2 +2(x+y)V

]

=
∫ ∞

x=M+δ

∫ ∞

y=M−δ
μe−μxμe−μy (−2V 2 +2(x+y)V )dxdy. (A.107)

A change of variables, taking u=x−M−δ andw=y−M+δ, allows one to re-express the integral
as ∫ ∞

u=0

∫ ∞

w=0
μ2e−2μMe−μ(u+w)

[
−2min(u,w)2 +2(u+w+2M)min(u,w)

]
dudw. (A.108)

Further simplification reduces this integral to

2e−2Mμ(1+Mμ)

μ2
, (A.109)

which is decreasing in M and invariant to δ in the interval [0,M].
On the other hand, without the workup, the expected welfare cost of the buyer and the seller

that arises from strategic avoidance of price impact is proportional to (also with multiplier (γ /r)C,
by Equation (13))

E[(−x−Z/n)2 +(y−Z/n)2]

=E

⎡
⎣(

−n−1

n
x− 1

n
y− 1

n

n∑
i=3

zi0

)2

+

(
1

n
x+

n−1

n
y− 1

n

n∑
i=3

zi0

)2
⎤
⎦

=
n−1

n

4

μ2
, (A.110)

where we use the facts that E[x2]=E[y2]=E[z2
i0]=2/μ2 and that (x,y,{zi0}) are mutually

independent.
Therefore, the fraction of welfare cost between the buyer and the seller that is eliminated by the

bilateral workup is

R=
n

2(n−1)
e−2Mμ(1+Mμ). (A.111)

Appendix D. Adding a Special Opening Double Auction

In order to concretely illustrate the difference between adding a size-discovery mechanism at
time zero and adding a price-discovery mechanism at time zero, in this Appendix we replace our
initializing workup step with a single double auction. As with workup, this “opening auction” is
held immediately before the start of the sequential double auction market, at “time 0−.” We allow
bidding strategies to vary from the stationary demand functions used in equilibrium in subsequent
rounds of double auction.

In this initializing double auction, there always exists a no-trade equilibrium in which traders
demand zero quantity at all prices. In the analysis below, we will look for an equilibrium in
symmetric linear strategies that generates nonzero trade.
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In the initializing double auction at time 0−, we conjecture that traders submit a demand function
xi (·) of the form

xi (p)=b(v−p)−dzi0, (A.112)

for a strictly positive coefficient b and a nonzero coefficient d to be determined.23 The expected
utility in the extended game is

E [−pxi (p)+V(xi (p)+zi0,Z)], (A.113)

where p is the market-clearing price and V(·) is the indirect utility for positions entering the
subsequent sequential double auction markets, given by Proposition 2.

We now solve the problem faced by trader i, taking as fixed the linear demand strategies of the
other traders. Market clearing implies that

xi (p)+(n−1)b(v−p)−dZ−i0 =0, (A.114)

where Z−i0 =Z−zi0 is the total inventory of traders other than trader i. Thus, from the market-
clearing price p, trader i can infer Z−i0. At each outcome of the market-clearing price, trader i
therefore effectively observes Z, so faces the equivalent problem, taking Z as given and taking
into account the impact of xi on the price p=P (xi ),

max
xi

−P (xi )xi +V(xi +zi0,Z). (A.115)

Because the aggregate demand schedule of the other traders is∑
j �=i
xj (p)= (n−1)b(v−p)−dZ−i0,

an increase of xi by one unit pushes up the equilibrium price P (xi ) by 1
(n−1)b . So dP (xi )/dxi =

1
(n−1)b . The first-order optimality condition of trader i is thus

0=−P (xi )−xi 1

(n−1)b
+v−2

γ

r

Z

n
− γ

r
2C

(
xi +zi0 − Z

n

)
, (A.116)

where

C =
1−2a�

γ
r

n−1
. (A.117)

Since Z is inferred from p, we need to express Z in terms of p. Market-clearing gives

Z−i0 =
xi +(n−1)b(v−p)

d
. (A.118)

Substituting this into the first-order condition, we get

0=v−p−xi
(

1

(n−1)b
+2
γ

r
C

)
−2

γ

r
Czi0 −2

γ

r
(1−C)

1

n

(
xi +(n−1)b(v−p)

d
+zi0

)
,

=(v−p)

(
1−2

γ

r
(1−C)

(n−1)b

nd

)
−xi

(
1

(n−1)b
+2
γ

r
C+2

γ

r
(1−C)

1

nd

)

−zi0
(

2
γ

r
C+2

γ

r
(1−C)

1

n

)
. (A.119)

23 If b>0 and d =0, then the conjectured strategies would generate a price equal to v and hence zero trading volume.
If b=0 and d �=0, then with probability 1, the market would not clear. If b<0, then the second-order condition
would be violated. If b=d =0, then no trade would happen by assumption.
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The above equation must be consistent with the conjecture xi (p)=b(v−p)−dzi0, so we have

b=
1−2 γ

r
(1−C) (n−1)b

nd

1
(n−1)b +2 γ

r
C+2 γ

r
(1−C) 1

nd

, (A.120)

d =
2 γ
r
C+2 γ

r
(1−C) 1

n

1
(n−1)b +2 γ

r
C+2 γ

r
(1−C) 1

nd

. (A.121)

Solving these two equations, we have

b=
r

2γ

n−2
n−1 −(1−C)

C
, d =

n−2
n−1 −(1−C)

C
. (A.122)

ButC≤1/(n−1), so 1−C≥ n−2
n−1 , which implies that b≤0 and d≤0, contradicting the supposition

that b is strictly positive. Thus, there does not exist a symmetric linear equilibrium with positive
trading intensity, and the added double auction at time 0− has zero trading volume. The trivial
equilibrium, with zero trading volume, remains an equilibrium. That is, the only equilibrium with
linear symmetric strategies is the one in which traders submit demand schedules set to zero.

The initializing double auction generates no trade because there is no calendar time delay
between the initializing double auction at time 0− and the first of the sequential double auctions
starting at time 0. Thus, between these two double auctions, the delay cost to any trader is zero.
Because waiting incurs no delay cost, whereas trading in the initializing double auction necessarily
incurs a positive price-impact cost (due to market-clearing), all traders endogenously choose to
avoid submitting orders in the initializing double auction, and instead begin to trade only once
their delay costs begin to bite.

Appendix E. Markovian Multilateral Workup Equilibrium

The following proposition provides a complete description of Markovian multilateral workup
equilibrium. The equilibrium workup strategy of each player depends on that player’s privately
observed preworkup asset inventory and on the publicly observable Markov process24 (m,X,y).

Proposition 9. Suppose that e−r�>1/2. The multilateral dynamic workup game associated
with workup price p̄=v has a unique equilibrium in Markovian threshold dropout strategies. This
equilibrium is characterized by the following recursive determination of the workup state and of
traders’ equilibrium dropout strategies. Here, zbi and zsj denote the preworkup inventories of the
ith buyer and the j th seller, respectively. The initial workup state is (m,X,y)= (2,0,0).

1. At any inactive workup state (m,X,0):

(a) If |zbi |≤Mb(m,X) and zsj >Ms (m,X), where Mb(m,X) and Ms (m,X) are
given by Equations (33) and (34), respectively, then the buyer, and only the
buyer, exits immediately (that is, without trading any quantity). Unless Nb = i,
the workup state then evolves to (m+1,X−ν(Mb(m,X)),0).

(b) If |zbi |>Mb(m,X) and zsj ≤Ms (m,X), then the seller, and only the seller,
exits immediately. Unless Ns =j , the workup state evolves to (m+1,X+
ν(Ms (m,X)),0).

24 Specifically, (m,X,y)= (mt ,Xt ,yt )(t≥0) is a continuous-time Markov process with state space N×R×R, where
N is the space of natural numbers. To be precise, one can add an artificial independent exponential “wait time”
after each transition to an inactive state. This ensures that the state cannot jump twice at the same time on the
workup clock when making a transition from an inactive state to an inactive state after an immediate dropout.
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(c) If |zbi |≤Mb(m,X) and zsj ≤Ms (m,X), then both sides exit immediately, without
trading any quantity. Unless Nb = i or Ns =j , the workup state evolves to (m+
2,X−ν(Mb(m,X))+ν(Ms (m,X)),0).

(d) If |zbi |>Mb(m,X) and zsj >Ms (m,X), then the current buyer i and seller j
enter an active workup. That is, the workup state evolves to (m,X,0).

(e) If, at any of the transitions above, Nb = i or Ns =j , then the workup ends.

2. At any active workup state (m,X,y), the current buyer i and seller j remain in the workup
as their traded quantity rises until the earlier of the two following events (a) and (b):

(a) The remaining inventory of the buyer (which is negative) rises to the threshold
−Mb(m,X)=−(M∗(m)+L(m)X). At this point, the buyer exits. Unless Nb = i,
the workup state evolves to (m+1,X−(M∗(m)+L(m)X),0).

(b) The remaining inventory of the seller falls to the threshold Ms (m,X)=M∗(m)−
L(m)X. At this point, the seller exits. Unless Ns =j , the state evolves to (m+1,
X+M∗(m)−L(m)X,0).

(c) On the zero-probability event that (a) and (b) occur simultaneously, the state
evolves to (m+2,X−2L(m)X,0) unless Nb = i or Ns =j .

(d) If, at either or both of (a) or (b), we have Nb = i or Ns =j , then the workup ends.

Appendix F. Comparing Various Market Structures

In the main body of the paper we have shown that adding a single workup before the sequential
double auction market improves allocative efficiency. In this Appendix, we solve an alternative
market structure with only a size-discovery mechanism—bilateral workups—at time 0. This size-
discovery-only market presents an interesting trade-off: the lack of future trading opportunities
rules out after-workup inventory rebalancing, but it also encourages traders to execute a greater
trade quantity during workup. For simplicity, we focus on the case with an unbiased workup price,
that is, p̄=v. We also restrict attention to the case without subsequent inventory shocks. These
shocks do not change traders’ strategies, as shown in Section 2.

No trading at all. It is easy to see that without any trading, the welfare of trader i is given by an
expression similar to Equation (13), except that 	=0 and the penultimate term is

−γ
r

(
zi0 − Z

n

)2

, (A.123)

rather than

−γ
r

1−2a�γ/r

n−1

(
zi0 − Z

n

)2

. (A.124)

This is our benchmark level of total ex ante expected social surplus.

Only workup. If there is only a single workup and no double auctions, there would be no price
discovery. This means that the total inventoryZ is never disclosed. In this case, a trader’s expected
utility after the workup, from holding inventory z, is

V(z)=vz− γ

r
z2. (A.125)

In a bilateral workup, the buyer’s utility is simply

Ub =−p̄y+V(Sb+y)=vSb− γ

r
(Sb+y)2, (A.126)
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where we have used p̄=v. Note that the total inventory Z is irrelevant here because the buyer has
no further opportunities to trade. Taking the first-order condition with respect to y and equating it
to zero at Sb+y =−Mb , we get

Mb =0. (A.127)

By a symmetric calculation, the seller’s dropout threshold is

Ms =0. (A.128)

Zero dropout thresholds imply that the self-rationing workup behavior we saw in Section 3 does
not apply because there are no further trading opportunities. Thus, in this alternative structure,
everyone who receives any inventory shock wishes to participate in bilateral workups.

Next, we calculate the welfare improvement of having a single workup, relative to the no-trade
benchmark. Because the buyer’s absolute inventory size is Sb >0 and the seller’s inventory size is
Ss >0, the workup volume is V =min(Sb,Ss ). The improvement in allocative efficiency (relative
to the no-trading benchmark) for this pair is

E[(Sb)2 +(Ss )2 −(−Sb+V )2 −(Ss−V )2]. (A.129)

Inspecting Equation (A.107) of Appendix C, we see that the above expectation can be simplified by
taking the special case ofZ=0 andM =δ=0 in Equation (A.107), so that the expectation simplifies
to 2/μ2. Since the coefficient in front of the squared inventory is γ /r , the improvement in allocative
efficiency for each buyer-seller pair is

γ

r

2

μ2
. (A.130)

Since there are n traders, we have at most �n/2� buyer-seller pairs. Thus, if bilateral workups
are the only opportunities to trade, the expected efficiency improvement, relative to the no-trade
benchmark, is at most

γ

r

2

μ2

⌊n
2

⌋
. (A.131)

Only double auctions. If we only add the double auctions (and no workup), the efficiency
improvement (relative to the no-trading benchmark) is

γ

r

(
1− 1−2a�γ/r

n−1

)
E

[∑
i

(
zi0 − Z

n

)2
]

=
γ

r

(
1− 1−2a�γ/r

n−1

)
(n−1)

2

μ2
, (A.132)

using the fact that 2/μ2 is the variance of zi0. Since a�≥0, the efficiency improvement achieved
by the double auction market, on its own, has a lower bound of

γ

r

2

μ2
(n−2). (A.133)

Comparison among market structures. Clearly, for all n≥3, we have n−2≥� n2 �. Thus, a
market structure with only double auctions weakly dominates the market structure with only a
single workup. This inequality is actually strict because in expectation, n traders generate fewer
than �n/2� bilateral workup pairs. Thus, we have the following ranking of market designs, with
respect to total expected social surplus:

workup + double auctions �double auctions only � workup only � no trade. (A.134)
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