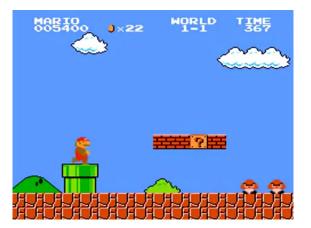
Harnessing Structures for Value-Based Planning and Reinforcement Learning

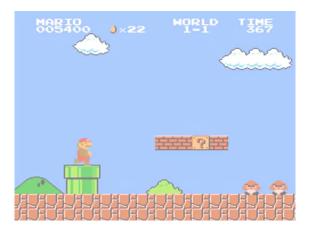
Yuzhe Yang

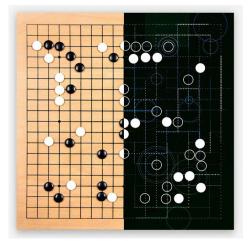
Guo Zhang, Zhi Xu, Dina Katabi

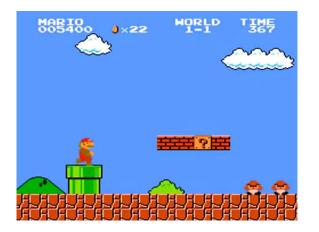
New <u>Planning</u> and <u>Deep RL</u> Framework

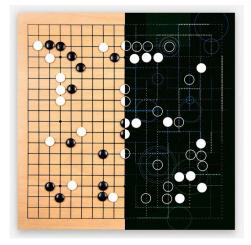
that exploits the "global structure" in tasks







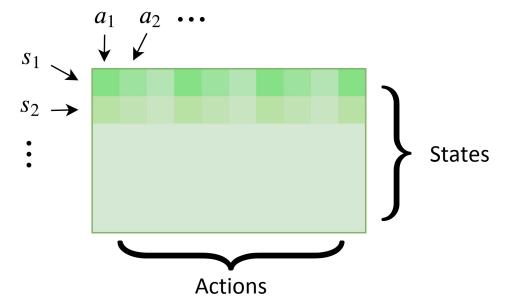




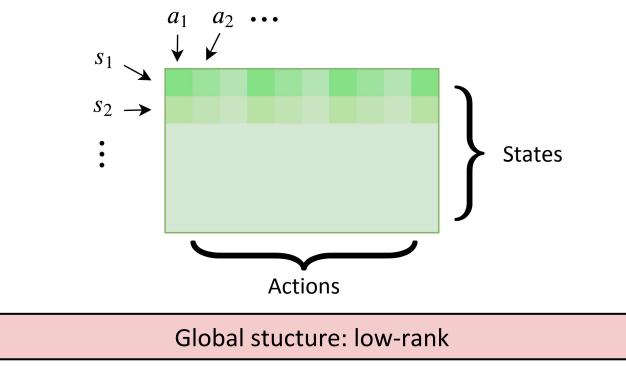
Can structure help?

• Focus on *Q-value*

• Focus on *Q-value*



• Focus on *Q-value*

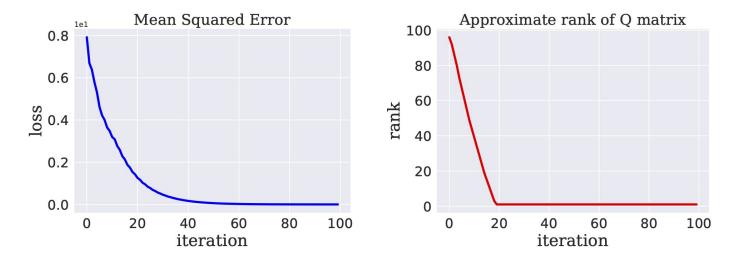


• Randomly sampled deterministic MDP and Q-value iteration

• Randomly sampled deterministic MDP and Q-value iteration

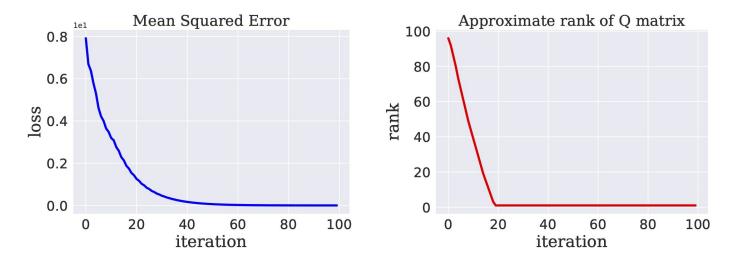
$$Q^{(t+1)}(s,a) = \sum_{s' \in \mathcal{S}} P(s'|s,a) \left[r(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^{(t)}(s',a') \right], \quad \forall \ (s,a) \in \mathcal{S} \times \mathcal{A},$$

• Randomly sampled deterministic MDP and Q-value iteration



Approx. rank: first k SVs capture > 99% variance, i.e., $\sum_{i=1}^{k} \sigma_i^2 / \sum_j \sigma_j^2 \ge 0.99$

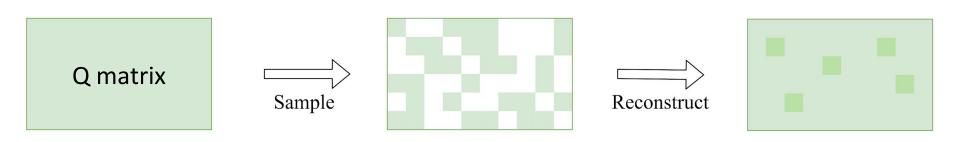
• Randomly sampled deterministic MDP and Q-value iteration

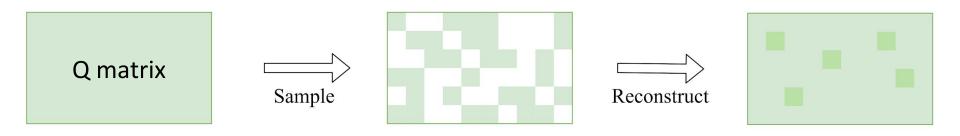


Exploit the structure during the learning process? Enforce/regularize such a structure throughout the iterations?

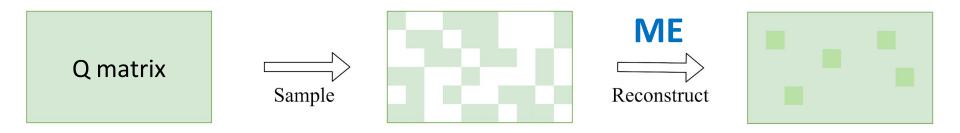
How Do We Exploit the Structure?

Q matrix



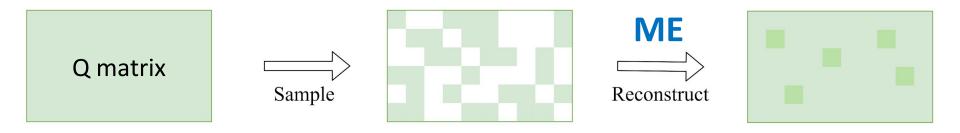


Low-rank Matrix Estimation (ME)



Low-rank Matrix Estimation (ME)

$$\min_{\hat{M}\in\mathbb{R}^{n\times m}}\frac{1}{2}\sum_{(i,j)\in\Omega}\left(\hat{M}_{ij}-X_{ij}\right)^2+\lambda||\hat{M}||_*$$



Low-rank Matrix Estimation (ME)

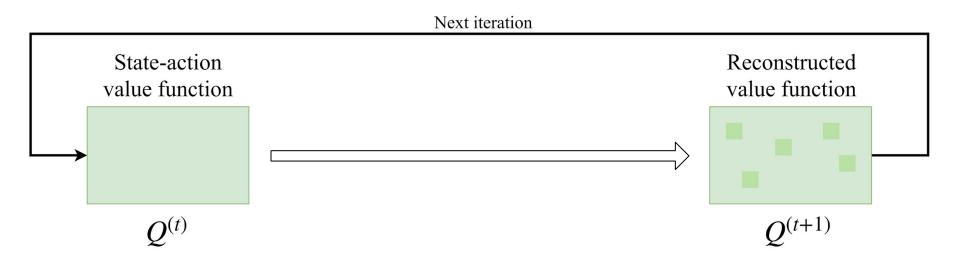
$$\min_{\hat{M}\in\mathbb{R}^{n\times m}}\frac{1}{2}\sum_{(i,j)\in\Omega}\left(\hat{M}_{ij}-X_{ij}\right)^2+\lambda||\hat{M}||_*$$

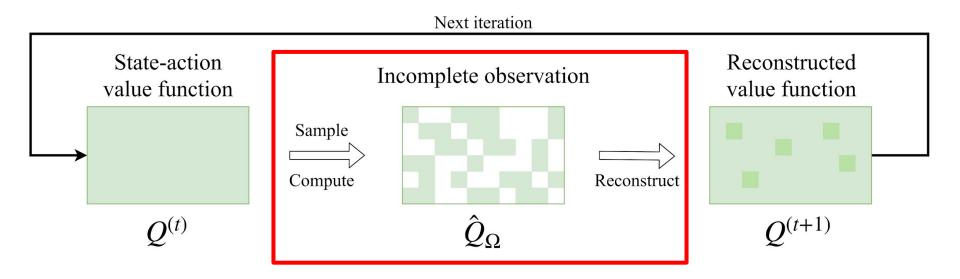
ME as a principled reconstruction oracle to exploit the low-rank structure

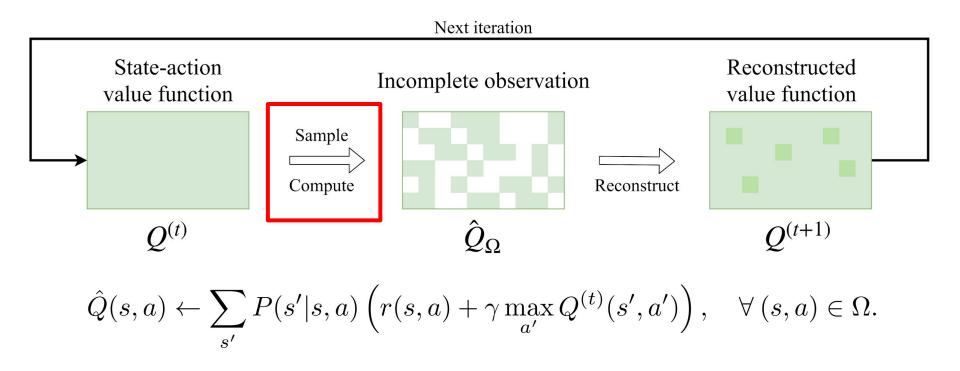
Structured Value-based Planning (SVP)
Structured Value-based Deep RL (SV-RL)

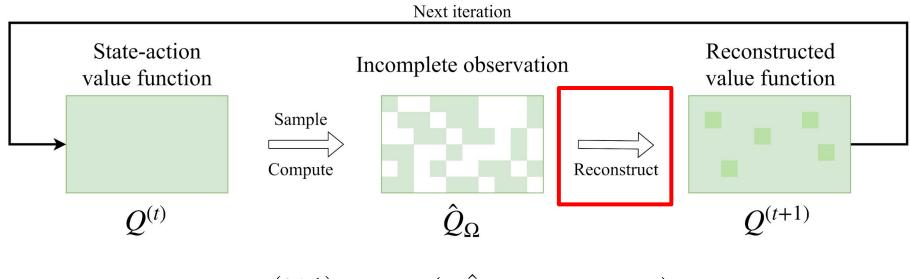
1. Structured Value-based Planning (SVP)

2. Structured Value-based Deep RL (SV-RL)



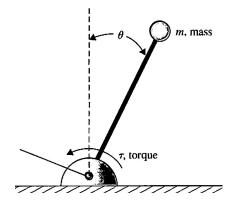




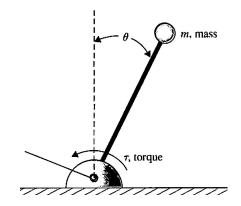


$$Q^{(t+1)} = \mathsf{ME}\big(\{\hat{Q}(s,a)\}_{(s,a)\in\Omega}\big)$$

• Discretization: Q matrix = 2500 * 1000

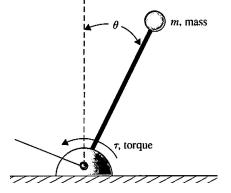


- Discretization: Q matrix = 2500 * 1000
- Verify low-rank structure:



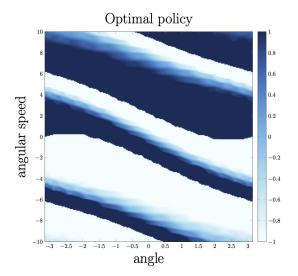
- Discretization: Q matrix = 2500 * 1000
- Verify low-rank structure:

Approximate rank of $Q^* = 7$

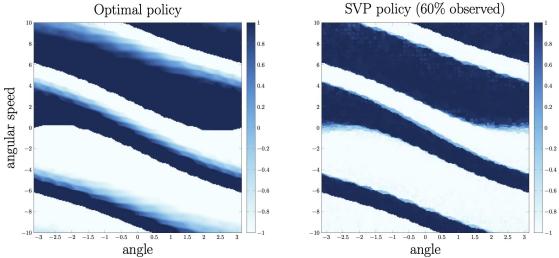


Desired low-rank property for SVP

• Policy visualization:

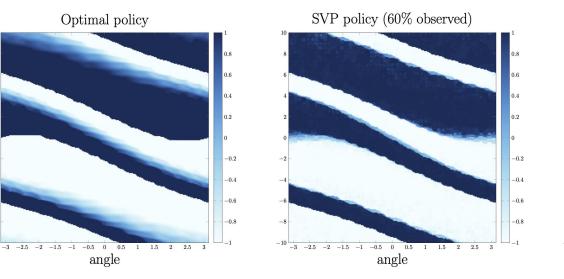


Policy visualization:

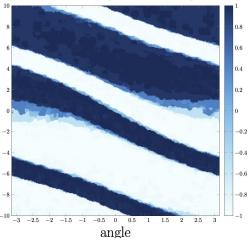


• Policy visualization:

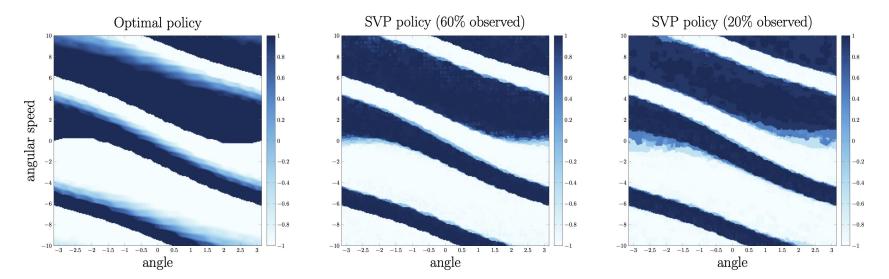
angular speed



SVP policy (20% observed)



• Policy visualization:



Success of SVP: a small amount of observations is sufficient!

1. Structured Value-based Planning (SVP)

2. Structured Value-based Deep RL (SV-RL)

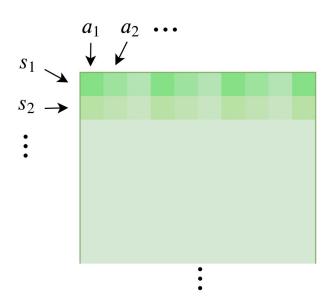
Extend to Deep RL?

• Intuition and development of SVP

Extend to Deep RL?

- Intuition and development of SVP
- Naive extension? Issues?

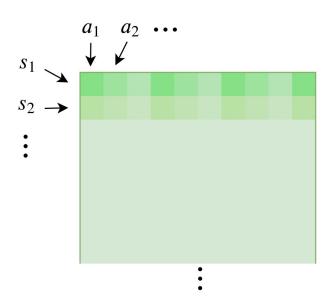
With images as states...



Idea: Batch of States as Proxy

- Intuition and development of SVP
- Naive extension? Issues?

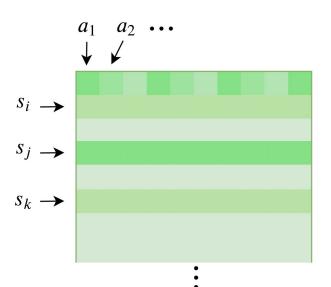
With images as states...



Idea: Batch of States as Proxy

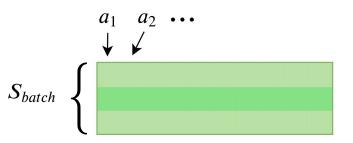
- Intuition and development of SVP
- Naive extension? Issues?

With images as states...



Idea: Batch of States as Proxy

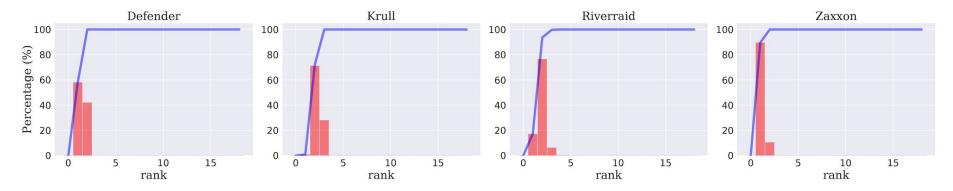
- Intuition and development of SVP
- Naive extension? Issues?



Natural to understand the rank of batches of states for the learned Q value

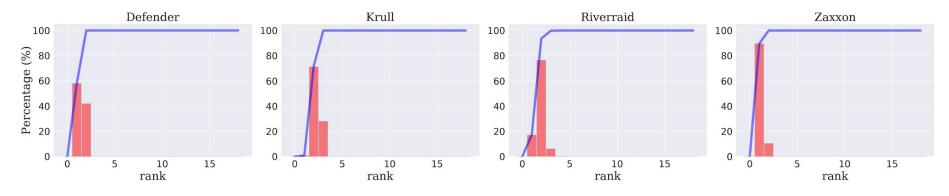
Evidence of low-rank structures

• Batch size = 32; Sample 10,000 sub-matrices from DQN



Evidence of low-rank structures

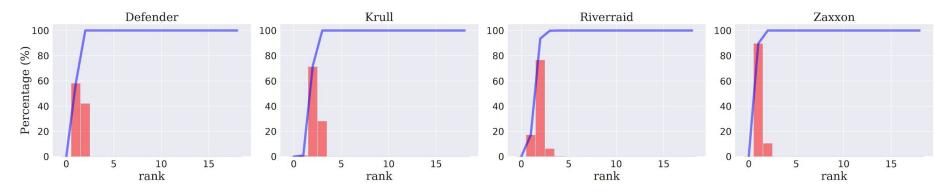
• Batch size = 32; Sample 10,000 sub-matrices from DQN



Structure widely exists: Majority of games (> 40)!

Evidence of low-rank structures

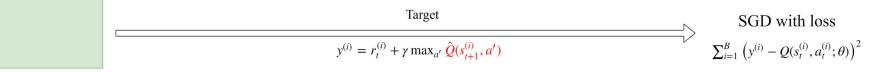
• Batch size = 32; Sample 10,000 sub-matrices from DQN



Structure widely exists: Majority of games (> 40)!

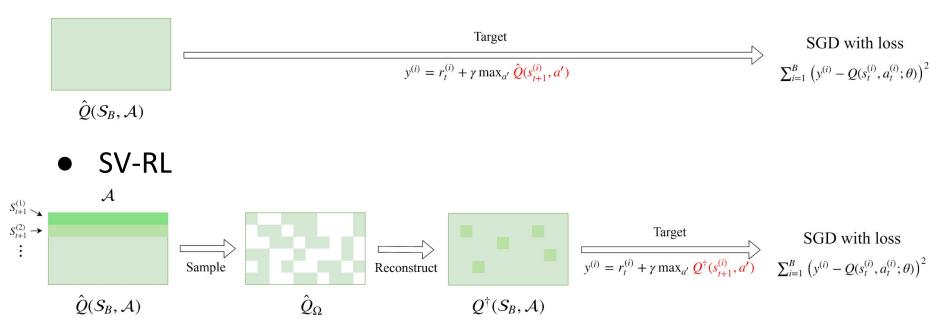
Harness the structure within the batch of states during the learning process

• Original value-based RL

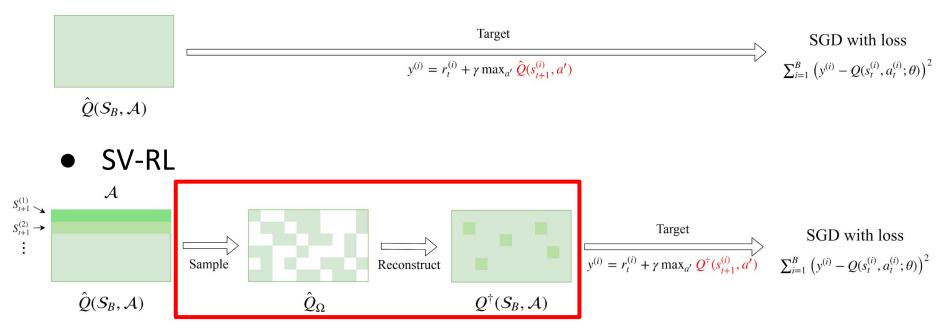


 $\hat{Q}(\mathcal{S}_B,\mathcal{A})$

• Original value-based RL



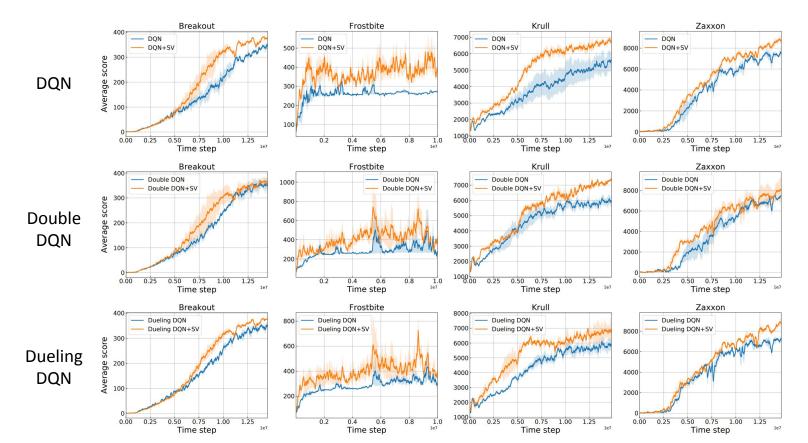
• Original value-based RL



Empirical Evaluation: Atari

• Apply SV-RL on three representative value-base deep RL

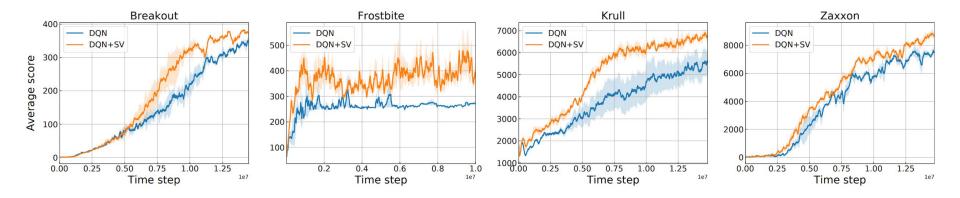
Consistent Benefits for "Structured" Games



Empirical Evaluation: Atari

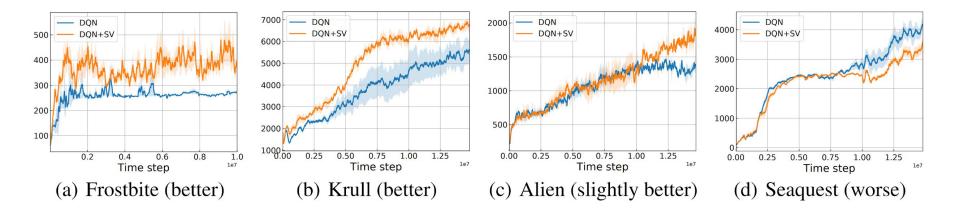
- Apply SV-RL on three representative value-base deep RL
- Consistent benefits for "structured" games:
 - 1. games that possess low-rank structure benefit from SV-RL
 - 2. consistent improvements across different RL techniques
 - 3. more games see paper

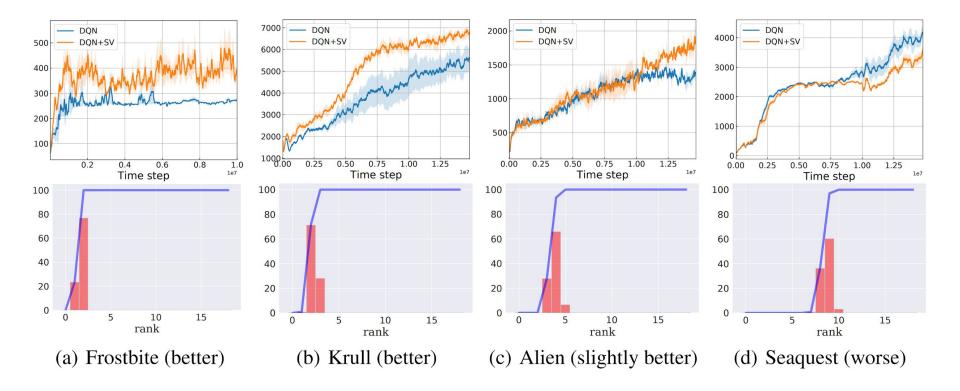
Empirical Evaluation: Atari

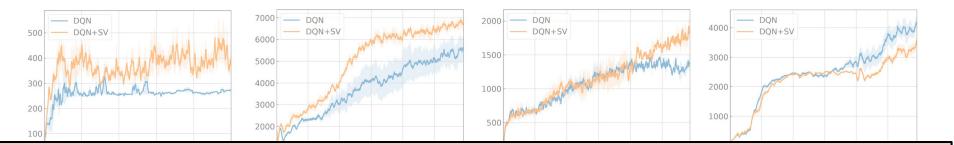


• Further observations? Performance gains vary.

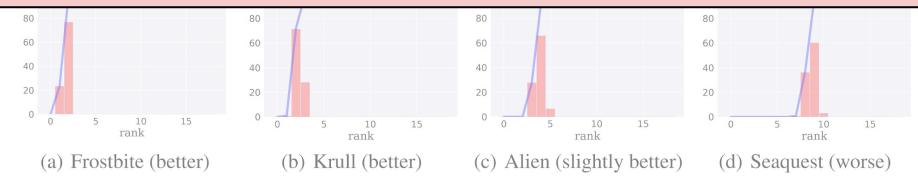
	Frostbite	Krull	Alien	Seaquest
SV-RL	Better	Better	Slightly Better	Worse







Consistent results on rank vs. improvement across games & RL methods



	Frostbite	Krull	Alien	Seaquest
SV-RL	Better	Better	Slightly Better	Worse
Rank	~2	~2	~5	~10

• Consistent interpretations:

	Frostbite	Krull	Alien	Seaquest
SV-RL	Better	Better	Slightly Better	Worse
Rank	~2	~2	~5	~10

• Consistent interpretations:

If the learned Q function contains low-rank structure

SV-RL is able to exploit the structure!

Summary of Contributions

• Propose a generic framework that exploits the low-rank structures, for planning and deep reinforcement learning

Summary of Contributions

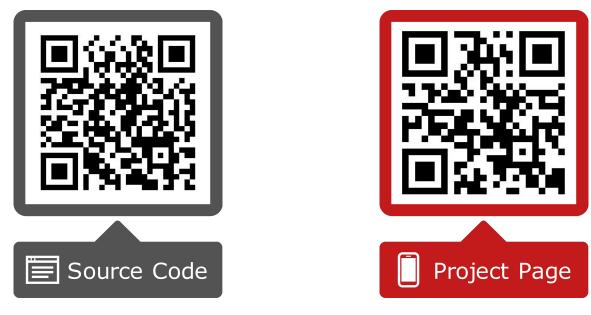
- Propose a generic framework that exploits the low-rank structures, for planning and deep reinforcement learning
- Demonstrate the effectiveness of our approach on classical stochastic control tasks

Summary of Contributions

- Propose a generic framework that exploits the low-rank structures, for planning and deep reinforcement learning
- Demonstrate the effectiveness of our approach on classical stochastic control tasks
- Extend our scheme to deep RL, which is naturally applicable for value-based techniques, and obtain consistent improvements across a variety of methods

Poster Sessions (New York time):

Apr. 28th: 12 AM - 2 AM Apr. 29th: 12 PM - 2 PM



https://github.com/YyzHarry/SV-RL

http://svrl.csail.mit.edu