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New Planning and Deep RL Framework 

that exploits the “global structure” in tasks
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Can structure help?
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Global stucture: low-rank
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● Randomly sampled deterministic MDP and Q-value iteration

Approx. rank: first k SVs capture > 99% variance, i.e.,



Warm-up: Toy Example

Exploit the structure during the learning process?
Enforce/regularize such a structure throughout the iterations?

● Randomly sampled deterministic MDP and Q-value iteration



How Do We Exploit the Structure?
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Adversarial ExamplesIdea: Compute few and reconstruct the rest 

Low-rank Matrix Estimation (ME)

ME as a principled reconstruction oracle to exploit the low-rank structure 

ME
Q matrix
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● Discretization: Q matrix = 2500 * 1000
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Desired low-rank property for SVP 

Approximate rank of Q* = 7
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Stochastic Control: Inverted Pendulum
● Policy visualization:
        
       

Success of SVP: a small amount of observations is sufficient! 



1. Structured Value-based Planning (SVP)

2. Structured Value-based Deep RL (SV-RL)
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Evidence of low-rank structures

● Intuition and development of SVP
● Naive extension? Issues? 

 

Natural to understand the rank of batches of states for the learned Q value 

Idea: Batch of States as Proxy
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Evidence of low-rank structures

● Batch size = 32; Sample 10,000 sub-matrices from DQN

 

Harness the structure within the batch of states 
during the learning process

Structure widely exists: Majority of games (> 40)!
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SV-RL: Structured Value-based Deep RL



Empirical Evaluation: Atari

● Apply SV-RL on three representative value-base deep RL
 



Consistent Benefits for “Structured” Games 

DQN

Double
DQN

Dueling
DQN



Empirical Evaluation: Atari

● Apply SV-RL on three representative value-base deep RL

● Consistent benefits for “structured” games:
       1.  games that possess low-rank structure benefit from SV-RL
       2.  consistent improvements across different RL techniques
       3.  more games - see paper



Empirical Evaluation: Atari 

● Further observations? Performance gains vary.
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SV-RL Better Better Slightly Better Worse
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Diagnose & Interpret Performance

Consistent results on rank vs. improvement across games & RL methods  
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● Consistent interpretations:

      

Frostbite Krull Alien Seaquest

SV-RL Better Better Slightly Better Worse

Rank ~2 ~2 ~5 ~10

SV-RL is able to exploit the structure!

If the learned Q function contains low-rank structure 
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Summary of Contributions

● Propose a generic framework that exploits the low-rank 
structures, for planning and deep reinforcement learning

● Demonstrate the effectiveness of our approach on classical 
stochastic control tasks

● Extend our scheme to deep RL, which is naturally applicable 
for value-based techniques, and obtain consistent 
improvements across a variety of methods



https://github.com/YyzHarry/SV-RL http://svrl.csail.mit.edu

Apr. 28th: 12 AM - 2 AM
Apr. 29th: 12 PM - 2 PM

Poster Sessions (New York time):

https://github.com/YyzHarry/SV-RL
http://svrl.csail.mit.edu/

