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Equivalent accuracy at a fraction of the cost:

Overcoming temporal dispersion

Yunyue Elita Li', Mandy Wong?, and Robert Clapp®

ABSTRACT

Numerical dispersion in finite-difference (FD) modeling
produces coherent artifacts, severely constraining the reso-
lution of advanced imaging and inversion techniques. Con-
ventionally, numerical dispersion is reduced by increasing
the order of accuracy of the FD operators, and we resign
ourselves to paying the high computational cost that is in-
curred. Assuming no spatial dispersion, we have found that
FD time dispersion is independent of the medium velocity
and the spatial grid for propagation, and only depends on the
time-stepping scheme and the propagation time. Based on
this observation, we have devised postpropagation filters
to collapse the time-dispersion effect of FD modeling.
Our dispersion correction filters are designed by comparing
the input waveform with dispersive waveforms obtained by
1D forward modeling. These filters are then applied on
multidimensional shot records to eliminate the time
dispersion by two schemes: (1) stationary filtering plus in-
terpolation and (2) nonstationary filtering. We have found
with 1D and 2D examples that the time dispersion is effec-
tively removed by our postpropagation filtering at a negli-
gible cost compared with a higher order modeling scheme.

INTRODUCTION

Finite-difference (FD) modeling for wave propagation has been
widely used for advanced inversion techniques, such as waveform
impedance inversion (e.g., Kelly et al., 2010; Plessix and Li, 2013)
and full-waveform inversion (e.g., Tarantola, 1987; Virieux and Op-
erto, 2009). In these methods, wavefields modeled by FD are com-
pared with the recorded data. The differences between the modeled

and recorded data at large offsets and at late arrival times provide
low-wavenumber information of the subsurface, which is crucial to
the success of these nonlinear optimization problems. To obtain ac-
curate waveforms, fine FD grids, high-order FD approximations,
and small time steps are used to suppress the numerical dispersion.
However, these remedies significantly increase the computational
cost and memory usage.

Methods to suppress numerical dispersion using lower order FD
have been widely studied. Most studies focus on the spatial
dispersion, while keeping the time step sufficiently small to mitigate
the temporal dispersion. Kosloft and Baysal (1982) use the spatial
Fourier transform to eliminate all errors from FD approximation
with respect to the spatial derivatives. Fei and Larner (1995) pro-
pose to use the flux-corrected transport (FCT) algorithm to reduce
the numerical dispersion in FD wavefield continuation. However,
the diffusion and antidiffusion processes required by FCT have
to be applied at each time step, which increases the computational
cost by 80%. Other authors (Holberg, 1987; Fornberg, 1998; Etgen,
2007) have set up optimization objectives to generate different sets
of FD coefficients that minimize the misfit between the numerical
phase velocity and the theoretical phase velocity for a practical
range of frequencies and velocities. Nonetheless, with computa-
tional cost controlled by the number of FD coefficients that are op-
timized, achieving accuracy and efficiency simultaneously is still
quite challenging. Moreover, all these methods require a small
enough time-stepping size to limit the numerical time dispersion.
The accuracy of these methods decreases as the time-stepping size
increases.

Recently, Stork (2013) points out that temporal dispersion is in-
dependent with velocity and can be removed after propagation. Dai
et al. (2014) provide an analytical solution to the temporal
dispersion and designed filters accordingly to remove the dispersion
artifacts. Due to the nonstationarity, both studies implement time-
varying filtering by interpolating multiple filtered traces for each
time sample. In this paper, we design these time-variant filters using
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1D modeling results at discrete propagation times. We test two dif-
ferent filtering schemes: (1) stationary filtering plus interpolation
(SFPI) (similar to Stork [2013] and Dai et al. [2014]) and (2) non-
stationary filtering (NSF). The results show that both postpropaga-
tion filtering schemes can eliminate the temporal dispersion on shot
records with very low-additional cost. We recommend the NSF
scheme for large scale applications due to its higher accuracy
and lower memory requirements.

THEORY

Assuming constant density and a source-free medium, the acous-
tic wave equation may be written as

2 2
c2<a +§+i>P=a—P, 6))

x> 07? or?

where P is the pressure field and c(x,y) is the velocity.

In FD modeling, both sides of equation 1 are approximated by
numerical discretization: the left side in space and the right side in
time. Using notation similar to Kosloff and Baysal (1982), the FD
equation we are solving is

1
VI (i, j 1) = 5 [P, 1) = 2P" (i, . F)
+Pri D), @)

where P"(i,j,[) represents the value of the pressure field at
time 7= nAr and at spatial locations x = xy+ (i —1)Ax,
y=yo+ (j—1)Ay, and z =z5 + (I — 1)Az. Symbol V? repre-
sents the Laplacian operator in space, Af, Ax, Ay, and Az are
the sampling in time and space, respectively. The term
¢®V2P"(i,j,1) represents the numerical approximation of the
left side.

Equation 2 represents an explicit, second order in time, leap-frog
scheme that is widely used in FD modeling implementations. The
left and the right sides of equation 2 contain approximation errors
with respect to equation 1. We call the error on the left side spatial
dispersion and the error on the right side temporal dispersion.
Throughout this paper, we focus on reducing the temporal
dispersion by fully eliminating the spatial dispersion using a Fourier

b)
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space implementation for the space derivatives (Kosloff and
Baysal, 1982).

Assuming a constant medium, we transform equation 2 to the
wavenumber-time domain

A 1 .- A A
_C2k2Pn _ F[Pn-H _ 2Pn _|_Pn—1], (3)

where P are the wavefields in the wavenumber domain and
=i+ k; + k2. We substitute the wavefields with their analyti-
cal solutions

ﬁn+1 — i)ne—iwAt 4)
and obtain the following dispersion relation:

2 iwAt _ ,—iwAt 2(1 — At
o 2o e 2l-coswAn)
Atk Atk

Comparing the dispersion relation 5 with the definition of phase
velocity

="z (6)

we obtain the phase error function of a second-order FD scheme as
follows:

¢ = (cp— )kt = (1 - \/m) wt.  (7)

wAt

The temporal dispersion increases with stepping size, frequency,
and propagation time. Figure la shows the waveform modeled in
1D with a second-order time-stepping scheme. The step size in time
is 2 ms. Severe time dispersions can be observed as the propagation
time increases. The solid lines in Figure 2 plot the phase error by a
second-order FD scheme. The progressive positive error at higher
frequency agrees with the leading high-frequency dispersion pro-
duced by the numerical simulations in Figure 1a.

Conventionally, temporal dispersion can be reduced by increas-
ing the order of the FD for a fixed step size in time. The phase error
function for a fourth-order FD approximation (leap-frog scheme)

can be shown as follows:

P = (cp—c)kt

1 \/%—% cos(wAr) 4+ cos(2wAt)
wAt

wt.

®)

Figure 1b shows the waveform modeled with a
fourth-order time-stepping scheme using the
same time increment as in Figure 1a. Severe tem-
poral dispersion artifacts have been almost fully
removed. In our straightforward implementation,
these results are achieved at twice the computa-

Figure 1. Waveform from 1D modeling using the Fourier method with (a) second-order
time stepping and (b) fourth-order stepping. In both cases, we use the same parameters
for propagation: At =2 ms, Ax = 10 m, and v = 2000 m/s. Severe time dispersions
are diminished at twice the computation cost and twice the memory.

tion cost, although the cost of the fourth-order
FD method can be partially offset by a larger time
step size than the second-order FD (Dablain,
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1986; De Basabe and Sen, 2010). We keep the temporal step size At
constant to facilitate the comparisons.

The phase error curves for a fourth-order FD scheme (the dotted-
dashed line in Figure 2) confirm that the dispersion error is dramati-
cally reduced by an order of magnitude at all frequencies. Despite
the slight phase error at high frequencies from a fourth-order FD
scheme, the amplitude at these frequencies is so small that the
dispersion artifacts are not visible.

Equation 7 suggests that the phase error depends on frequency,
propagation time, and the time-stepping size. It is independent of
the medium velocity and the spatial grid for propagation when
velocity is constant and the spatial discretization is accurate (Stork,

di(t,x) =d(t,x) x f(z, 1;), (10)

by a trace-by-trace operation to obtain multiple copies of the data
record. On each filtered record d;(z, x), only the waveforms around
t = t; are correctly filtered. The other parts of the record are either
over or under compensated. We then interpolate among the filtered
records to obtain the dispersion-free record a(t, Xx)

d(t.x) = hd(t.x). (11)

2013; Dai et al., 2014). Therefore, it is feasible to
design filters that correct for the phase error after
propagation. We use the fourth-order FD model-
ing results, which are almost dispersion free, as
the benchmark for the filtering results.

Instead of estimating the filters based on the
analytical phase error function 7, as suggested
by Dai et al. (2014), we estimate the filters nu-
merically from 1D modeling. We compare the
waveform s;(#) at propagation time #; with the
source waveform s¢(¢) in the Fourier space:

Si(w)

F(w,t;) :W7

®)

where S;(w) and Sy(w) are the Fourier represen-
tation of s;(z) and sy(¢), respectively. A small
number ¢ = 1077 is added to stabilize the divi-
sion. Filter F(w,t;) or its time representation
f(z.t;) = F1F(w, ;) can be applied in Fourier
or time domain to correct for the temporal
dispersion. Note that the filter coefficients
f(z,1;) at different filter lags 7 are determined
by the propagation time z;.

Figure 3 shows the filters obtained numeri-
cally from equation 9 at discrete propagation
times. The 10 filters are estimated every second
by comparing the modeled waveforms in Fig-
ure la with the initial waveform. The increasing
negative phase shift (time delay) is needed to
compensate for the increasing positive phase er-
ror as the propagation time increases. Figure 2
compares the phase error estimated from equa-
tion 9 with the analytical phase error function
from equation 7. The numerical estimation of
the phase error agrees very well with the analyti-
cal solution.

To apply these sparse filters on densely
sampled (in time) data record, we can choose
from the following two schemes: SFPI or NSF.
Both methods are applied trace-by-trace. There-
fore, it can be applied very efficiently in parallel
on 2D or 3D data.

SFPI

Given a modeled record d(r,x), we can first
convolve each of the filters to the whole record

0.1+ ,

0.08f-

0.06-

Time error (s)

0.04f
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Figure 2. Solid lines plot the frequency dependent phase error by a second-order FD
modeling scheme. Dotted dash lines plot the error by a fourth-order FD modeling
scheme. The asterisks denote the estimated phase error from the numerical filters.
The red, blue, and green color denotes the phase error at = 2, 5, and 8 s, respectively.
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Figure 3. The 10 filters estimated every second by comparing the waveforms modeled
by second-order time-stepping scheme in Figure 1a with the initial waveform. The in-
creasing negative phase shift (time delay) is needed to compensate for the increasing
positive phase error as the propagation time increases.
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where N is the total number of filters and A(i) are the linear inter-
polation weights for the filtered records

—1; e )
h(l):{F’ lftl<t<tl+1‘

12
, otherwise (2)

NSF

In the NSF scheme, we choose a moving window W;, which has
the same length as the filter, to select the data patch to convolve with
the filter defined at the center of the moving window. We overlap
the moving windows to ensure smooth transitions across the data
patch. Mathematically, the filtering process can be formulated as
follows:

a)

0.0s /\

b)

Li et al.

N

Atx) = =S (Wd(e,2) + f(z12),
N

1

13)

where W, is the ith window of length / selecting the data trace

(1 e <12
Wilr) = {0, otherwise )

In the numerical examples, we use [ = 1 s, N = 8. Therefore, the
filters are needed at every 0.125 s.

According to equation 7, the dispersion varies linearly with
propagation time. Hence, we build the filters at any propagation
time by interpolating the estimated filters as follows:

(14)

N

[y = h(i)f(z.1). (15)
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Figure 4. The 1D modeling and filtering results with 6 m spacing and 1000 m/s velocity. Waveforms are shown after being propagated for 0,
0.5, 2, 6, and 11 s. (a) Second-order time-stepping results. Dispersion gets greater with propagation time. (b) Fourth-order time-stepping
results. Dispersion is almost fully eliminated at twice the cost of second-order time stepping. (c) Second-order time-stepping results after
dispersion correction by SFPI. Results show residual dispersion effects due to the limited number of filters used for processing. (d) Sec-

ond-order time-stepping results after dispersion correction by NSF.
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More advanced NSF schemes (Margrave, 1997; Fomel, 2009)
can be adapted in practice; however, in the examples we present
here, this simple patching method yields satisfactory results.

NUMERICAL EXAMPLES

We test the proposed postpropagation filtering schemes on 1D
and 2D examples. All spatial derivatives in the numerical modeling
are performed in the Fourier space to eliminate the spatial
dispersion.

Table 1: Runtime for different numerical methods.

Second Fourth
Method order order

Second order Second order
and SFPI and NSF

Runtime (s) 61.99 115.82(80.32) 62.36 62.47

2000 4000 6000 8000 10000 12000

x (m)
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2000 6000
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8000 10000

b) 4

t (s)

d)1

12000

Figure 4a and 4b shows the second- and fourth-order model-
ing results with Ar =2 ms, Ax =6 m/s, and v = 1000 m/s.
Dispersion is greatly reduced by the fourth-order modeling scheme
at twice the computational cost and memory usage. We use the filters
in Figure 3a to process the second-order modeling results. Notice that
the spatial grid and propagation velocity are different when estimat-
ing the filters. Figure 4c and 4d shows that the numerical dispersion
has been removed after filtering and the dispersion correction filters
are effective as long as the time step Az remains the same.

Figure 5 shows the modeling and filtering results on a modified
2D Marmousi model with a 500 m water column. Magnified views
to large offsets and late arrival times are shown in Figure 6. We use
25 m spacing for both spatial directions, and 2 ms time stepping,
which is 88% of the Courant-Fridrichs-Lewy (CFL) condition
(Courant et al., 1928). Execution time with 2 ms time step for each
method is reported in Table 1. For the fourth-order method, we also
record the runtime with 3 ms time step between the brackets. Our
straightforward implementation shows that the postpropagation fil-
tering adds negligible cost to the original second-order time-step-
ping scheme.

2000 4000 6000 8000 10000 12000

x (m)

t (s)

10000

6000
x (m)

2000 4000 8000 12000

Figure 5. A shot record by 2D modeling. (a) Shot record with second-order FD propagation. (b) Shot record with fourth-order FD propagation.
Dispersion artifacts are almost fully eliminated at twice the cost of a second-order scheme. (c) Shot record (a) after dispersion correction by
SFPI. (d) Shot record (a) after dispersion correction by NSF. The dispersion effects are corrected by postpropagation filtering.
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The red arrows in Figures 5a and 6a point to parallel events lead-
ing the main events that are clearly temporal dispersion artifacts.
The proposed postpropagation filtering schemes remove these arti-
facts and produce close approximations to the fourth-order model-
ing results.

Figure 7 shows the late waveforms at a single receiver
x = 10,000 m modeled using different schemes. The waveform
modeled by standard second-order FD propagation is severely dis-
persed that waveform-based inversion scheme would lead to erro-
neous results (Figure 7a). Postpropagation filtering restores the
phase of the waveform at negligible additional cost. Comparisons
with fourth-order modeling between SFPI (Figure 7b) and NSF
(Figure 7c) schemes indicate that amplitude and phase filtered
by NSF better approximate the fourth-order modeling results.

DISCUSSION

We presented two filtering schemes: SFPI and NSF in this paper.
Both methods only involve 1D filtering in time, the computational
cost of which does not depend on the size of the computational grid.
The length of the filter has to permit dispersion corrections that at

a)

6000 7000 8000

x (m)

9000

6000

7000 8000

x (m)

9000

10000

10000

d)

Figure 6. Magnified view of Figure 5 at a late time and large offsets.

Li et al.

the maximum propagation time, which can be empirically deter-
mined by the 1D waveforms when building the filters. The NSF
scheme is 30% more expensive than the SFPI scheme; however,
both schemes on a single shot record cost less than 0.5% of the
computational time for wave simulation. Moreover because the fil-
tering process is independent for each trace, both schemes can be
implemented in parallel, which would further reduce the computa-
tional cost to virtually negligible.

Although the filtering results of both schemes are similar, the
SFPI scheme results in more residual dispersion compared with
the NSF scheme, given the same number of filters. The NSF
scheme, with the extra interpolation between the filters, has effec-
tively estimated the filters every 1/8 s, resulting in more accurate
filtering results in phase and amplitude. Furthermore, the SFPI
scheme interpolates among multiple copies of the data record,
which may require large input-output (I0) and memory usage.
Therefore, considering the accuracy and memory requirements, we
recommend the NSF scheme over the SFPI scheme.

Our method can be readily applied to accurately model the syn-
thetic seismograms with low cost, which is crucial when matching
the synthetic data with the long offset, broadband field recordings.

6000 7000 8000

x (m)

6000

7000 8000

x (m)

9000 10000
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Although the filtering schemes become less accurate with imperfect
spatial FD approximation, they can be incorporated with high order,
optimized, or low rank spatial FD schemes (e.g., Etgen, 2007; Fo-
mel et al., 2013; Dai et al., 2014) to further decrease the computa-
tional cost and increase the time-stepping size.

The proposed methods also suggest a preprocessing step for re-
verse time migration (RTM) to overcome the numerical dispersion
caused by the low-order FD in time. Zhang et al. (2013) and Dai
et al. (2014) provide numerical examples to demonstrate this idea.
Here, we illustrate the effectiveness of this method analytically.
Prior to RTM, we filter the data d(w) = e~ (space coordinates
are ignored for simplicity) using the inverse of the filters
F . 1g) = €™ @) The filtered data are

dy() = emiv0eit™ @), (16)

In RTM, the receiver wavefield is modeled by propagating the
recorded data backward in time:

R(w) _ df(a))€i{"l’€_i¢2“d(a)’t’), A7)

where ¢, is the propagation time between the receiver location and
the imaging point, and ¢~"(**") denotes the numerical dispersion
during propagation. Similarly, the source wavefield is

S(w) = w(w)e i@t g™ (@) (18)

with ¢, the propagation time between the source location and the
imaging point. The image is obtained based on the crosscorrelation
imaging condition (Claerbout, 2008):
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Figure 7. Single-trace comparison at receiver x = 10,000 m by 2D
modeling. (a) Comparison between the second-order (red) and the
fourth-order (blue) modeling results. Second-order model result
shows leading dispersion artifacts. (b) Comparison between the
SFPI filtered result (red) and the fourth-order modeling (blue) re-
sult. (¢) Comparison between the NSF filtered result (red) and the
fourth-order modeling (blue) result. Postpropagation filtering re-
moves the numerical dispersion at negligible additional cost.

I=> S(w)R(w)

= S w(@)emiolirt )i = )= w) (1)

The stationary phase contribution at the imaging point ensures
that 7y = #, + t,, which along with the linear relation between
propagation time and the phase error (equation 7), leads to cancel-
lation of the numerical dispersion at the imaging point:

P (w, 1) = ¢ (. 1,) + p™ (@, 1). (20)

Therefore, applying the inverse of the filters on recording data
prior to RTM is effectively delaying the phase of the recording data,
such that the numerical dispersion caused by source and receiver
propagation cancels at the imaging point.

CONCLUSION

‘We have developed two postpropagation filtering schemes to re-
move the temporal dispersion caused by the inaccuracy of the sec-
ond-order FD approximation to the time derivatives when solving
the wave equation. Numerical tests on 1D and 2D modeling exam-
ples show that both filtering schemes sufficiently remove the
dispersion artifacts at negligible additional cost. As a result, both
filtering schemes permit low-order FD in time to achieve high
numerical accuracy.
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