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ABSTRACT

We have developed a hyperbolic penalty function for
image estimation. The center of a hyperbola is parabolic like
that of an l2 norm fitting. Its asymptotes are similar to l1
norm fitting. A transition threshold must be chosen for
regression equations of data fitting and another threshold
for model regularization. We combined two methods: New-
ton’s and a variant of conjugate gradient method to solve this
problem in a manner we call the hyperbolic conjugate direc-
tion (HYCD) method. We tested examples of (1) velocity
transform with strong noise (2) migration of aliased data,
and (3) blocky interval velocity estimation. For the linear
experiments we performed in this study, nonlinearity is
introduced by the hyperbolic objective function, but the con-
vexity of the sum of the hyperbolas assures the convergence
of gradient methods. Because of the sufficiently reliable
performance obtained on the three mainstream geophysical
applications, we expect the HYCD solver method to become
our default method.

INTRODUCTION

In the world of geophysics, conjugate gradient methods are
widely used for their simplicity, reliability, and fast convergence.
Traditionally, we use l2 norm to measure the data fitting and
modeling regularization.
When least-squares (l2) data-fitting is changed to least absolute

values (l1) data-fitting, infinite outliers may be tolerated. This is
called “robustness” (Huber, 1964; Claerbout and Muir, 1973;
Darche, 1989; Nichols, 1994; Guitton, 2005; Candés et al., 2006).
At the same time, model regularization using l1 norm leads to sparse
models. (Valenciano et al., 2004; Donoho, 2006b).
Despite numerous l1 optimization algorithms and their applica-

tions in the community of compressive sensing and computer

science (Schmidt et al., 2007; Candés et al., 2006; Donoho,
2006a), we realize that for most of the geophysical applications,
pure l1-norm objective function is not desirable because tiny resid-
uals always have as large an effect as giant ones. Instead, we seek
merely to preserve the desirable l1 characteristics to solutions of
large problems such as image estimation. This led us to consider
the hyperbolic penalty function that is l2-like for small residuals
and l1-like for large ones. This penalty function has also been called
the “hybrid norm” (Bube and Langan, 1997).
Previously, we solved problems requiring robustness and sparse-

ness by the method of iteratively reweighted least squares (IRLS)
(Gersztenkom et al., 1986; Guitton and Verschuur, 2004; Daube-
chies et al., 2010), a method that is cumbersome because parameters
related to numerical analysis are required, although we have little
theoretical guidance how to choose them, with each application
requiring experimentation to learn. Another widely used standard
optimization package for large-scale optimization problem, limited
memory variation of the Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm (Liu and Nocedal, 1989) has recently included
the Orthant-Wise limited-memory quasi-Newton (QWL-QN)
method (Andrew and Gao, 2007) to meet the needs for l1-type reg-
ularization in the model space. However, L-BFGS requires a differ-
entiable function to measure the data fitting, which makes l1 data
fitting objective not welcomed by this family of methods.
Our experience shows that we need two different hyperbolic

penalty functions, one for the data fitting objective function, the
other for the model styling objective function. In this paper, we
use the terminology — model styling — instead of model regular-
ization to honor the subjectivity when choosing the regularizor.
Each objective function requires a threshold of residual, let us call
it Rd for the data fitting, and Rm for the model styling. Instead of
being the result of numerical analysis, the meaning of the thresholds
Rd and Rm is quite physical. Here are two examples: For a shot
gather with about 30% of the area saturated with ground roll, choose
Rd around the 70th percentile of the fitting residual. Sometimes,
geologists prefer earth to be blocky with different lithologies.
Therefore, we seek earth models that are as blocky as the geological
requirements. In other words, we seek earth models whose
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derivatives are spiky. For blocks about 20 mesh points long the
spikes should average about 20 points apart. Thus about 95% of the
residuals should be in the l2 area with only about 5% in the l1 area,
allowing 5% of the spikes to be of unlimited size. This is an Rm at
about the 95th percentile of model styling residual. The subjectively
best Rd and Rm can be found within a limited interval around these
physical interpretations. These examples also enable us to conclude
that in a wide variety of practical examples fitting goals for data and
model need not go far from the usual l2 norm, but they do need to
incorporate some residual values out in the l1 zone, possibly very
far out in it.
In our paper, we propose a new numerical method inspired by

two old ones, Newton’s and a variant of conjugate gradients (known
as conjugate directions). Because the objective function is in gen-
eral defined by two different hyperbolas, we name our method hy-
perbolic conjugate direction (HYCD) method. HYCD keeps the
simplicity in methodology of the conjugate gradients methods,
and only adds a little bit of cost to each conjugate direction iteration.
The convexity of the hyperbolas assures the convergence. Experi-
ments on three different applications: (1) velocity transform with
strong noise, (2) migrating-aliased data, and (3) blocky interval ve-
locity estimation demonstrate the utility and robustness of our
HYCD solver.

THEORY

Two aspects of the new proposed HYCD method should be em-
phasized here: First, the hyperbolic penalty function defined by a
threshold of the residual is the key to the l1 characteristics; second,
our combined HYCD method shares the outstanding convergence
properties of the Newton and the conjugate gradient methods.

Hyperbolic penalty function

A circle t2 ¼ z2 þ x2 seen in ðt; xÞ space is a hyperbola with a
parameter z. This suggests the penalty function H2

i ¼ R2 þ r2i
where ri is the ith residual, R is the universal constant threshold
parameter, and HðrÞ ¼ P

iHi is the penalty. Customarily, there
is no penalty when the residual vanishes, so to accommodate that
custom (making no fundamental change) we subtract the constant R
from H. Thus, the hybrid penalty function promoted here is the
origin-shifted hyperbola HiðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2i

p
− R. The hyperbolic

penalty function and its first two derivatives are

Hi ¼ R

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2i ∕R2

q
− 1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r2i

q
− R; (1)

H 0
i ¼

ri∕Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2i ∕R2

p ðsoftclipÞ; (2)

H 0 0
i ¼ 1

Rð1þ r2i ∕R2Þ3∕2 > 0: (3)

Various scalings are possible. Here, we chose H to have the same
physical units as R. With this scaling, the l1 and l2 limits are

HiðrÞ ¼
� jrij − R; if R ≪ jrj
r2i ∕ð2RÞ; if R ≫ jrj: (4)

a)

b)

Figure 1. Reflection data d before (a) and after (b)
soft clip H 0ðdÞ. Clipping large amplitudes enables
small ones to be seen.

V2 Li et al.

D
ow

nl
oa

de
d 

10
/1

4/
13

 to
 1

71
.6

4.
17

3.
24

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



The second derivative H 0 0
i ðrÞ is always positive, which assures us a

unique minimum.
We often call the first derivative H 0ðrÞ the “softclip” function.

Equation 2 at small jr∕Rj behaves as scaled l2, namely, H 0ðrÞ ¼
r∕R. At large jr∕Rj, it behaves as l1, namely,H 0ðrÞ ¼ sgnðrÞ. Over
its whole range, H 0ðrÞ behaves as a clip function, although with a
softer transition around jr∕Rj ¼ 1. As a demonstration of the soft
clip function, a family of seismic reflection signals d shown in
Figure 1 is passed through H 0ðdÞ. The intended satisfactory result
is that large portions of signal are clipped (turned into “soft” rec-
tangle functions), allowing a gain increase bringing smaller, more
sinusoidal signals up into view (and up to where data fitting codes
will notice them).

Conjugate directions with hyperbolic penalty function

The numerical method we use here is a synthesis of two old ones,
Newton’s and a variant of conjugate gradients, what we call
conjugate directions (CD). It says at each iteration to descend in
the plane of the gradient and the previous step. This variant is
equivalent to conjugate gradients on the normal equation (Hestenes
and Stiefel, 1952; M. Saunders, personal communication, 2011).
Therefore, it would solve a linear regression exactly in N iterations.
When the hyperbolic penalty function is merged into the conju-

gate directions, we deal with the nonparabolicity by the Newton’s
method. Within each CD iteration, we make a quadratic Taylor
approximation to the hyperbolic penalty function, and move to the
predicted minimum. We iterate this Taylor approximation and small
minimization process until converge. See Appendix A for details
about the quadratic approximation and Appendix B for details about
the plane search.
When might we get in trouble? Recall each residual has its own

Taylor series. Even a residual far out in the l1 area may move a
significant distance. It is a bad fit if the residual jumps from one
polarity to another. But even then, individuals far out in the l1 area
do not individually put a large force on the solution. If there are not
too many such residuals, we may expect reasonable behavior, and
this is what we have experienced. None of the three mainstream
examples considered after the theory section required us to work
near that limit. Each example had some residuals far out in the l1
limit, but none had very many in the l1 limit. Even if we have to
work near the l1 limit, we can always degrade back to the steepest
decent update scheme which guarantees to decrease the cost func-
tion although not most efficiently. Should we find ourselves in trou-
ble with our method, it would most certainly be at early iterations.
This alerts us to giving attention to the initial solution guess — an
issue safely be ignored in linear problems, but not for us.

VELOCITY ANALYSIS WITH STRONG NOISE

Velocity analysis is one the most critical and problemetic proce-
dures in seismic exploration industry. In data with noise bursts,
velocity analysis is prone to error and even unrealistic results.
Therefore, to handle this problem robustly, we formulate velocity
analysis as an inversion problem as follows:

min
m

HdðFm − dÞ; (5)

where F is the modeling operator, whose adjoint operator is the
slowness scan operator; m is the slowness field, d is the data we

collect after one shot, and Hd denotes a hyperbolic penalty function
with a threshold Rd.
Figure 2a shows a shot gather with t2 gain from Yilmaz’s data set.

There are two distinct types of noise in these data: First is the linear
noise caused by all kinds of surface waves, which can be attenuated
by taking advantage of their physical properties; second is the
abnormally high-amplitude bursty noise at the near offsets, which
is difficult to fit into a physical model.
Figure 2 shows the inversion results of different methods.

Because of the existence of the high-amplitude noise at the near-
offset, a velocity scan without inversion yields no meaningful result
(Figure 2b and 2c). In the result of the l2 inversion (Figure 2d), the
horizontal stripes contain the dominant energy, making it difficult to
identify the velocity trend for the early time. In the reconstructed
data from l2 inversion (Figure 2e), large noise on the near-offset
trace has spread to neighboring traces.
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b) c)
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f) g)

Figure 2. Inversion results of different methods. Panels in the left
column are the results of velocity scans, and panels on the right are
the corresponding reconstructed data. First row: input data; second
row: no inversion is applied (adjoint only); third row: inversion re-
sults of l2; bottom row: inversion results of HYCD.
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For comparison, we clip Figure 2f and 2g to the same value as
Figure 2d and 2e, respectively. Obviously, the velocity scan in
Figure 2f shows clear velocity trends, and the near-offset bursty
noise in the reconstructed data (Figure 2g) is reduced because
the inversion has given more attention to the rest of the data.

ALIASED DATA MIGRATION

Kirchhoff migration was widely used before the era of wave-
equation migration for marine data, and is still the principal migra-
tion method for land data. It always involves summing over or
spreading along certain traveltime surfaces in 3D, which reduce to
curves in 2D. For the purpose of testing our solver, we define the
forward operator to be the Kirchhoff modeling operator, whose
adjoint is the traditional Kirchhoff migration operator.

We formulate the inversion problem as follows:

min
m

kFm − dk2 þ ϵHmðmÞ; (6)

where F is the forward Kirchhoff modeling operator, m is the sub-
surface reflectivity model, d is the seismic response recorded at the
surface and Hm denotes the hyperbolic penalty function with a
threshold Rm. The second term in equation 6 is a damping term,
where the hyperbolic measure is applied to retrieve the sparse
model. Trad (2003) had a similar fomulation, using a model-space
diagonal weighting matrix to impose the sparsity constraint.
In field acquisition, data are often irregular and aliased in space.

This problem is more severe in the crossline direction. To illustrate
the problem, Figure 3a shows an example of highly aliased and ir-
regularly sampled hyperbolas. The aliasing makes the inversion

problem an underdetermined problem; therefore,
the result of the inversion relies heavily on the
regularization. With the model space sampling
being 128 × 128, the sampling of data space is
only 128 × 16. Same as the previous example,
we experiment with l2 and HYCD method to
compare their results.
Figure 4 shows the original model and the in-

version results with both schemes. The results
show that HYCD is superior for retrieving the
spiky result that resembles the original model
the most. Although severely aliased, the inver-
sion result recovers the exact position and most
of the amplitude. Notice how close the two
spikes sit next to each other at 0.7 s and 1150 m
in Figure 4a. Check the distinct result of HYCD
and the smeared result of l2 in Figure 4b and
Figure 4c, respectively. Figure 3b shows the
reconstructed data from the HYCD solver. The
original data is accurately recovered. This super-
ior result given by HYCD suggests that by prop-
erly choosing the model regularization, we can
overcome the aliasing problem in the presence
of a sparse model.

BLOCKY INTERVAL VELOCITY
ESTIMATION

The Dix equation (Dix, 1952) finds interval
velocities from root-mean-square (rms) velocity,
which is picked during velocity scanning in pre-
stack seismic data (Example 1). The equation can
be written as

v2
intðkÞ ¼ kV2

k − ðk − 1ÞV2
k−1; (7)

or

Xk
i¼1

v2
intðkÞ ¼ kV2

k; (8)

where vint is interval velocity, V is rms velocity,
and k is the sample number, which can be
regarded as traveltime depth. Direct calculation
of the interval velocity from equation 7 can easily

a) b)

Figure 3. (a) Highly aliased and nonuniformly sampled hyperbola. Input data for the
Kirchhoff inversion. (b) Reconstructed data from the HYCD inversion.

a) b)

c)

Figure 4. (a) True sparse reflectivity model, (b) inversion result of HYCD, and
(c) inversion result of l2.
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yield wildly unreasonable results because of the error in the picked
rms velocity. Therefore, it is necessary to solve this problem as a
regularized inversion. The problem is linear if we chose the un-
known to be interval velocity squared (v2int), instead of the interval
velocity itself (vint).
Thus we can formulate the Dix inversion problem as follows

min
m

HdðWdðFu − dÞÞ þ ϵHmðDzuÞ; (9)

where Hd and Hm denote the hyperbolic measure with different
thresholds for data residual and model residual, respectively. The
first term in equation 9 represents the data-fitting goal, where u
is the squared interval velocity we are inverting for, d is the known
data computed from the rms velocity, F is the causal integration
operator andWd is a data residual weighting function, which is pro-
portional to our confidence in the rms velocity. The second term in
equation 9 is the model-styling goal, where Dz is the vertical deri-
vative of the velocity model and ϵ is the weight controlling the
strength of the regularization.
The input rms velocity with 1000 samples is shown in Figure 5.

It is obvious that the violent variation at the end of the trace is
not realistic. Thus, we use the hyperbolic norm to ignore the large
residuals in the data fitting, which are considered to be noise. At
the same time, to obtain a blocky interval velocity model, the
large residual in the derivative of the interval velocity should be
“invisible” to the measure. Therefore, the hyperbolic norm on
the model styling is the best choice. For illustration, we have
chosen a model with homogeneous blocks. Should one prefer zones
of linear trend, it is a matter of changing the model threshold
and ϵ.
To compare the inversion results, we also use l2 solver on the

same data with comparable parameters. The inversion results are
shown in Figure 6. The left column shows the inverted interval
velocity, while the right column shows the corresponding recon-
structed rms velocity. The result shows that compared with the l2
results, the HYCD successfully retrieves the blocky velocity model,
and the corresponding reconstructed rms velocity contains less
noise while keeping the trend of the original data.

Parameter tuning and sensitivity analysis

In this subsection, we discuss the parameter tuning and the sen-
sitivity analysis for HYCD method. In this example of interval
velocity estimation, we need to choose thresholds for model fitting
and data fitting. In general, the thresholds are subjective choices.
However, the model and data statistics can guide us to a small range
of the parameters.
In the input rms velocity, we notice that the picking noise causes

fluctuations in all scale. Therefore, we decide to treat at most 30%
of the data points with less importance. Then the data threshold
quantile is set to be between 0.70 and 0.99. For the model threshold,
smaller model quantile yields a blockier model. Therefore, we test
the model threshold quantile from 0.35 to 0.99. The tested results
are shown in Figures 7 and 8. Notice that in Figure 7, the model
blockiness keeps constant due to the fixed model quantile, but
the variation at the end of the time series is more significant when
more data residual is appreciated by increased data quantile. Notice
the inversion results in Figure 8 converge to the l2 solution with
increasing model quantile. The inversion result by HYCD in

Figure 6a is produced using data quantile at 0.83 and model quantile
at 0.53.
From the inversion tests, we can conclude that the HYCDmethod

is not sensitive to the parameters, and the inversion results will
evolve stably and smoothly as the user adjust the parameters.
The subjectively “best” result is then picked by users according
to their geological assumptions.
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Figure 5. Input 1D rms velocity.
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Figure 6. Comparison of the inversion results. Panels on the left
column are the estimated interval velocity, and panels on the right
are the corresponding reconstructed rms velocity. Top panels: inver-
sion results of HYCD; bottom panels: inversion results of l2. Notice
that although the reconstructed rms velocity from these two meth-
ods (b and d) are very similar, the interval velocity from HYCD (c)
is more blocky than the l2 result (a).

HYCD sparse inversion V5

D
ow

nl
oa

de
d 

10
/1

4/
13

 to
 1

71
.6

4.
17

3.
24

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



CONCLUSIONS

We set out to find a fast and reliable mean of dealing with erratic
data and blocky models.
We developed a method based on a hyperbolic penalty function

(which is a composite of l1 norm and l2 norm). When the physics is
linear, convergence is guaranteed by the convexity of the penalty
function. The speed of the convergence is beyond the scope of this
paper, but experience shows that the cost of the HYCD solver is on
the same order as a conventional conjugate direction solver. The two

new parameters introduced by the penalty function are threshold for
data residual and threshold for model residual, which must be de-
termined according to the noise level in the data and the desired
sparsity in the model, respectively.
We tested the method with field data on rms velocity estimation

and Dix interval velocity estimation, and we tested Kirchhoff mi-
gration of aliased synthetic data. All results were excellent. Beside
these three examples, three other applications have been done suc-
cessfully using the new HYCD solver in our research group. We
expect this method to become the default method in our laboratory.
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Figure 7. Inversion result using different data
quantile (qntd). (a) qntd ¼ 0.70; (b) qntd ¼ 0.75;
(c) qntd ¼ 0.80; (d) qntd ¼ 0.83; (e) qntd ¼ 0.85;
(f) qntd ¼ 0.88; (g) qntd ¼ 0.90; (h) qntd ¼ 0.99.
Model quantile is fixed at 0.53.
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Figure 8. Inversion result using different model
quantile (qntm). (a) qntm ¼ 0.35; (b) qntm ¼
0.45; (c) qntm ¼ 0.53; (d) qntm ¼ 0.68;
(e) qntm ¼ 0.76; (f) qntm ¼ 0.81; (g) qntm ¼
0.88; (h) qntm ¼ 0.95; (i) qntm ¼ 0.99. Data
quantile is fixed at 0.83.
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In principle, we introduce extra nonlinearity into the optimization
by using the hyperbola, but the hyperbolic penalty function is con-
vex, so gradient methods are assured to lead us to a universal mini-
mum penalty when the original problem is linear. The number of
required iterations is not known theoretically, but with large image-
estimation applications we commonly cease iteration long before
the theoretical requirement. When doubts arise, we resolve them
by initiating solutions from different locations. Although this paper
investigates only the hyperbola as a penalty function, actually, the
only property for HYCD to succeed is the convexity of the hyper-
bolas. Therefore, other convex functions might be tried.
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APPENDIX A

MODEL DERIVATIVES

Here is the usual definition of residual ri of theoretical dataP
jFi;jmj from observed data di

ri ¼
�X

j

Fi;jmj

�
− di or r ¼ Fm − d: (A-1)

Let HðriÞ be a convex function (H 0 0 ≥ 0) of a residual mismatch ri
that grows with mismatch size and gives a measure of mismatch.
The average penalty measure for mismatch measure between theory
and data is

H̄ðmÞ ¼ 1

N

XN
i¼1

HðriÞ:

Let H 0ðriÞ denote dH∕dr evaluated at ri. Define a vector H 0ðrÞ
by applying H 0ðÞ to each component of r

H 0ðrÞ ¼ dHðriÞ
dri

: (A-3)

In the steepest-descent method, the model updates in the direction
Δm, the gradient of the mismatch measure of the residual. The jth
element of the gradient is

Δm ¼ ∂H̄
∂mj

¼ 1

N

X
i

dHðriÞ
dri

∂ri
∂mj

¼ 1

N

X
i

H 0ðriÞFi;j

¼ 1

N
FTH 0ðrÞ: (A-4)

The gradient vanishes at the minimum giving “normal equations”
0 ¼ FTH 0ðrÞ like those with the simple least-squares method. In
other words, at minimum average mismatch, the fitting functions
(rows of FT ) are orthogonal (normal) to the soft clipped residual.
Define a model update direction by the gradient Δm ¼ FTH 0ðrÞ.

Because r ¼ Fm − d, the residual update direction is Δr ¼ FΔm.
To find the distance α to move in those directions

m←mþ αΔm; (A-5)

r←rþ αΔr; (A-6)

choose the scalar α to minimize the average penalty

H̄ ¼ 1

N

X
i

Hðri þ αΔriÞ: (A-7)

The sum in equation A-7 is a sum of “dishes,” shapes between l2
parabolas and l1 V-shaped curves. The ith dish is centered on
α ¼ −ri∕Δri. It is steep and narrow if Δri is large, and low and
flat where Δri is small. The sum of convex functions is convex.
There are no local minima. equation A-7 now is a 1D function
of α. The minimum is found by the Newton method.
Express Hi ¼ Hðri þ αΔriÞ in a Taylor expansion keeping only

the first three terms. Let H 0
i and H 0 0

i be first and second derivatives
of HðriÞ at ri. Then equation A-7 becomes a familiar least-squares
problem

H̄ ¼ 1

N

X
i

ðHi þ αΔriH 0
i þ ðαΔriÞ2H 0 0

i ∕2Þ: (A-8)

To find α, set dH̄∕dα ¼ 0

0 ¼ dH̄
dα

¼ 1

N

X
i

ðΔriH 0
i þ αðΔriÞ2H 0 0

i Þ; (A-9)

and solve for α

α ¼ −
P

iΔriH 0
iP

i
ðΔriÞ2H 0 0

i
; (A-10)

which resembles the familiar least-squares caseH ¼ r2∕2,H 0
i ¼ ri,

and H 0 0 ¼ 1, where α comes out α ¼ −
P

iΔriri∕
P

iðΔriÞ2.
Now move the solution m to mþ αΔm and likewise update the

residuals. At the new location the convex function and its deriva-
tives ðHi;H 0

i ; H
0 0
i Þ take new values. Thus, we can find another α to

update a second time, or more. This is line search. This is cheap. If
the residual grows instead of shrinking, then α←α∕2, etc. Even-
tually, we get to the bottom of the line we are scanning and are ready
for a new line, so we pay the money to compute a new
Δm ¼ FTH 0ðrÞ and Δr ¼ FΔm. Finally, geophysical applications
sometimes involve costly operators (e.g., migration), sometimes
cheap ones (e.g., gradient). For the costly ones we do more Newton
iterations; for the cheap ones fewer.

APPENDIX B

PLANE SEARCH

The most universally used method of solving immense linear re-
gressions such as imaging applications is the conjugate gradient
(CG) method. It has the remarkable property that in the presence
of exact arithmetic, the exact solution is found in a finite number
of iterations. A simpler method with the same property is the CD
method. It says not to move along the gradient direction line, but
somewhere in the plane of the gradient and the previous step taken.
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Similar to Bube and Nemeth (2007), we determine the scaling fac-
tors for the gradient and the previous step iteratively.
With the steepest-descent method, we improve the model m by

adjusting a single scalar parameter α that multiplies Δm ¼
g ¼ FTr. With the hyperbolic penalty function this becomes
Δm ¼ g ¼ FTH 0ðrÞ. Extending to the CD method there are two
parameters, α and β, and two vectors. One vector is the gradient
vector g. The other vector is the previous step s. These vectors
may be viewed in data space or in model space. We are going
to take linear combinations of g and s in both spaces and we need
to choose notation for distinguishing them.
We need some unconventional notation. In matrix analysis, low-

er-case letters are conventionally vectors and upper-case letters are
matrices. But in Fourier analysis, lower-case letters become upper-
case upon transformation. By analogy, we handle g and s this way:
Keep using bold capitals for operators but now use ordinary italic
for vectors with model space being lower-case italic and data space
being upper-case italic.
At the kth iteration, we update the model m with gradient g and

step s where

skþ1 ¼ αkgk þ βksk; (B-1)

and the scalars α and β are yet to be found. The corresponding
change of the residual in data space is found by multiplying through
with F:

Δr ¼ Skþ1 ¼ Fskþ1 ¼ Fðαkgk þ βkskÞ (B-2)

¼αkFgk þ βkFsk; (B-3)

Δrðα; βÞ ¼ αkGk þ βkSk: (B-4)

In standard l2 optimization, there is a 2 × 2 matrix to solve for
ðα; βÞ. We proceed here in the same way with the hyperbolic penalty
function. Here, we are embedded in a giant multivariate regression
in which we have a bivariate regression (two unknowns). From the
multivariate regression, we are given three vectors in data space, r̄i,
Gi, and Si. Our next residual will be this perturbation of the old one:

ri ¼ r̄i þ αGi þ βSi: (B-5)

Minimize the average penalty by variation of ðα; βÞ:

H̄ðα; βÞ ¼ 1

N

X
i

Hðr̄i þ αGi þ βSiÞ: (B-6)

Let the coefficients ðHi;H 0
i ; H

0 0
i Þ refer to a Taylor expansion of

HðrÞ in small values of ðα; βÞ about r̄i. Each residual of each data
point has its own Taylor series fitting the hyperbola at its own loca-
tion. So all the residuals that do not move far have good approx-
imations. Then equation B-6 becomes

H̄ðα; βÞ ¼ 1

N

X
i

Hi þ ðαGi þ βSiÞH 0
i

þ ðαGi þ βSiÞ2H 0 0
i ∕2: (B-7)

There are two unknowns, ðα; βÞ in a quadratic form. Set dH̄∕dα ¼
0 and dH̄∕dβ ¼ 0 getting

�
0

0

�
¼

X
i

H 0
i

�
Gi

Si

�

þH 0 0
i

�� ∂
∂α
∂
∂β

�
ðαGi þ βSiÞ

�
ðαGi þ βSiÞ; (B-8)

resulting in a 2 × 2 set of equations to solve for α and β.

�X
i

H 0 0
i

��
Gi

Si

�
ðGi Si Þ

���
α
β

�
¼ −

X
i

H 0
i

�
Gi

Si

�
:

(B-9)

New (to us) in equation B-9 is the presence of H 0 and H 0 0.
(Previously with the l2 penalty function, we had H 0

i ¼ ri and
H 0 0

i ¼ 1.) The solution of any 2 × 2 set of simultaneous equations
is well-behaved with minor exceptions. The determinant would van-
ish if the gradient was in the same direction as the previous step, but
that would imply the previous step did not go the proper distance.
Experience shows the determinant does vanish when all the inputs
are zero, and it may vanish if we do so many iterations that we
should have stopped already, in other words, when the gradient
and previous step are both tending to zero.
After updating m←mþ αgþ βs and updating the residuals, at

the new residual location, the values of ðHi;H 0
i ; H

0 0
i Þ have changed.

Thus, we repeat updating α and β a second time or more. Do not
update s yet. Eventually, we found the best location in the plane. We
have finished the plane search. It is usually cheap. Now it is time to
get a new plane. For the new plane, we update s and we pay the
money (run the operator FT ) to compute a new g ¼ FTH 0ðrÞ. This
is the nonlinear CD method. WithHðrÞ being the hyperbola, we call
it the HYCD method.
In our experience, the presence of some residuals out in the l1

region do not greatly increase the number of iterations compared
to the usual l2 parabolic penalty function. Should anyone choose
a threshold R so small that it drives many of the residuals into
the l1 region, convergence might be slow. While we do not doubt
this might happen, we have not yet found an application that drove
us to this difficulty.
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