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Outline

I A motivating example

I Aronow & Samii (2017), “Estimating Average Causal Effects
Under Interference Between Units”.

I Ugander, Karrer, Backstrom, & Kleinberg (2013), “Graph
Cluster Randomization: Network Exposure to Multiple
Universes”.

I Eckles, Karrer & Ugander (2017), ”Design and analysis of
experiments in networks: Reducing bias from interference”.

I Aral (2016), “Networked Experiments”.
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A motivating example
The goal: We want estimate the treatment effect of a policy.
The problem: We cannot observe two counterfactual worlds
simultaneously!
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Figure 1: The goal is to compute the difference between a world where
everyone is treated and and the other world where everyone is not treated.
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A motivating example

One solution: Randomly assign individuals to treatment or
control.
The problem: Strong network effects may exist.
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Figure 2: The problem of Bernoulli randomization.
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A motivating example

The other solution: Graph cluster randomization!
Result: Getting closer to the truth.
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Figure 3: An example of graph cluster randomization.
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Aronow & Samii (2017)
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Key message

Proposing a framework for networked experiments

1. Treatment assignment
– probability distribution for treatment vector P(Z)

2. Exposure mapping
– from treatment assignment vector z to exposure, for
i = 1, 2, ...,N

3. Estimands
– e.g., direct or indirect treatment effects
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Treatment assignment

Treatment assignment

I Z = (Z1, ...,ZN): random vector

I z = (z1, ..., zN): treatment assignment vector

I zi ∈ {1, ...,M}; M = 2 for binary treatment

I Ω: support for Z; the size could be as large as MN

I We can design P(Z)!

Example

I Bernoulli randomization: (Zi
i.i.d.∼ Bern(p))

I Graph cluster randomization: imagine when we have only 2
clusters...
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SUTVA

The stable unit treatment value assumption (SUTVA)

I No spillover effect

I The treatment of j , Zj , does not affect the outcome of i Yi ;
or Yi (Z) = Y ′i (Zi ).

I It does not hold in many cases: vaccines, advertisements, ...
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Use exposures to address violation of SUTVA

Exposure: The exposure of j , Dj , does not affect the outcome of i
Yi ; or Yi (Z) = Y ′′i (Di ) (Conditions 1 & 2).
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Figure 4: The causal diagrams when exposure mappings are included.

10 / 63



Exposure mapping

Exposure mapping: for i , Di = f (z, θi )
Examples for θi :

I Index for i and f (z, θi ) = zi
I ith row of adjacency matrix (only consider i ’s neighbors)

I Group index for individual i (e.g., groups have different
susceptibility to neighbors’ treatments)

I Any heterogeneous effects...

Q: Are those exposure mappings realistic?
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Some notations for exposure mapping

I f (z, θi ) ∈ {d1, ..., dK}
I πi (dk) = P(f (z, θi ) = dk)

I πij(dk) = P(f (z, θi ) = dk , f (z, θj) = dk)

I Prop. 3.1: Approximate πi (dk) and πij(dk) by R random
replications of z (|Ω| may be too large).
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Estimating y
Horvitz-Thompson estimator:

ŷTHT (dk) =
N∑
i=1

1(Di = dk)
Yi

πi (dk)
(1)

which is unbiased (Lemma 4.1):

E[ŷTHT (dk)] =
N∑
i=1

E[1(Di = dk)]
yi (dk)

πi (dk)
=

N∑
i=1

yi (dk)

Var[ŷTHT (dk)] =
N∑
i=1

πi (dk)[1− πi (dk)][
yi (dk)

πi (dk)
]2+

N∑
i=1

∑
j 6=i

[πij(dk)− πi (dk)πj(dk)]
yi (dk)

πi (dk)

yj(dk)

πj(dk)

(2)

Issue (solved by conservative estimators in Section 5):
I yi (dk)yj(dk) is not observed if πij(dk) = 0, and thus

unidentified.
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Estimating τ
Following estimators for y :

τ̂HT (dk , dl) =
1

N
[yi (dk)− yi (dl)] (3)

E[τ̂HT (dk , dl)] =
1

N
[yi (dk)− yi (dl)] (4)

Var[τ̂HT (dk , dl)] =
1

N2
{Var[yTHT (dk)] + Var[yTHT (dl)]

−2Cov[yTHT (dk), yTHT (dl)]}
(5)

Cov[ŷTHT (dk), ŷTHT (dl)] =
N∑
i=1

∑
j 6=i

yi (dk)

πi (dk)

yj(dl)

πj(dl)
[πij(dk , dl)−

πi (dk)πj(dl)]−
N∑
i=1

yi (dk)yi (dl)

(6)

Issue (solved by conservative estimators in Section 5):

I yi (dk)yi (dl) is never observed, and thus unidentified.
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Variance estimators

Horvitz and Thompson estimator:

V̂ar[ŷTHT (dk)] =
N∑
i=1

1(Di = dk)[1− (Di = dk)][
Yi

πi (dk)
]2+

N∑
i=1

∑
j 6=i

1(Di = dk)1(Dj = dk)

πij(dk)
[πij(dk)− πi (dk)πj(dk)]

YiYj

πi (dk)πj(dk)

(7)

According to the equation above, we derive V̂ar[τ̂THT (dk , dl)], and
show the variance estimator is conservative (Prop. 5.6):

E[V̂ar[τ̂THT (dk)]] ≥ Var[τ̂THT (dk)]
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Quick summary for Sections 6-8

Section 6

I Consistency and confidence intervals (under some conditions)

Section 7

I Covariate adjustment

I Hájek estimation (alternative to Horvitz–Thompson; (slightly)
biased; small variance)

Section 8

I Misspecification (one exposure corresponds to multiple
outcomes–Prop 8.1 weight the outcomes by their probability)
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Evaluation: Simulation

Network structure on AddHealth.
1/10 individuals are randomly treated.

yi (d11) = 2yi (d00)

yi (d10) = 1.5yi (d00)

yi (d01) = 1.25yi (d00)
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Exposure conditions and results

Results (Table 1): the proposed estimators are unbiased; OLS is
biased...
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Evaluation: Field experiment

1. 28 of 56 schools were randomly selected to host the
anti-conflict program, via block randomization (si = 1).

2. Within all schools, a group of between 40 to 64 students were
nonrandomly selected as eligible to participate in the program.

3. Within each school hosting the program, half of the eligible
students were then block randomized to participate in the
program, with blocking on gender, grade, and a measure of
network closure (zi = 1).

Results: HT, Hajek, and WLS with covariates have similar
estimations for effects of exposures.
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Discussion questions

I For the experiments: Are the exposure assumptions realistic?

I How can we effectively test the estimators in real-world data?

I Is it really necessary to assume a small number of exposure
conditions (can we just parametrize exposure mapping
f (z, θi ))?
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Ugander et al. (2013)
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Motivations

The goal is to estimate

τ(Z = ~1,Z = ~0) =
1

N

N∑
i=1

[yi (Z = ~1)− yi (Z = ~0)] (8)

but yi (Z = ~1) and yi (Z = ~0) cannot be observed at the same time.
Solutions?

I Analysis step: Make assumptions about exposure conditions:
neighborhood/core exposure!

I Design step: Design a proper treatment assignment policy
(P(Z)): graph cluster randomization! Nodes in a cluster
receive the same assignment.

22 / 63



Network exposure: exposure assumptions

Use exposures σ1
i , σ0

i to approximate Z = ~1 and Z = ~0.

yi (Z = ~1) = yi (Z = z1), for z1 ∈ σ1
i ;

yi (Z = ~0) = yi (Z = z0), for z0 ∈ σ0
i .

23 / 63



Neighborhood exposure

Neighborhood exposure (only consider i ’s immediate graph
neighborhood, N (i))

I Full neighborhood exposure
I σ1

i = {z : zi = 1 and zj = 1,∀j ∈ N (i)}
I σ0

i = {z : zi = 0 and zj = 0,∀j ∈ N (i)}
I Absolute k-neighborhood exposure

I σ1
i = {z : zi = 1 and

∑
j∈N (i) zj ≥ k}

I σ0
i = {z : zi = 0 and

∑
j∈N (i) 1− zj ≥ k}

I Fractional q-neighborhood exposure
I σ1

i = {z : zi = 1 and
∑

j∈N (i) zj ≥ q|N (i)|}
I σ0

i = {z : zi = 0 and
∑

j∈N (i) 1− zj ≥ q|N (i)|}

1. σ1
i ∪ σ0

i 6= Ω: losing statistical power!
2. We may introduce bias if exposure conditions are chosen
inappropriately!
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k-core and fractional q-core
k-core: maximal subgraph where every node has a degree ≥ k1

Fractional q-core: maximal subgraph where every node has a
degree ≥ q|N (i)|

1
Image source: www.geeksforgeeks.org/find-k-cores-graph/
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Core exposure

I Component exposure: nodes in the same component receive
the same treatment

I Absolute k-core exposure: neighbors in the same k-core graph
receive the same treatment

I Fractional q-core exposure: neighbors in the same fractional
q-core graph receive the same treatment

Stronger requirements than associated notwork exposures!
Q: how practical are these core exposure conditions?
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Exposure probability

Consider cluster randomization: for each cluster, draw ∼ Bern(p)
Non-trivial to compute P(Z ∈ σ1

i ) and P(Z ∈ σ0
i ) for absolute and

fractional neighborhood exposure conditions

I Dynamic programming

k-core and fractional q-core? (core ⇒ neighborhood)

I P(Z ∈ σxi |k-core) ≤ P(Z ∈ σxi |k-nhood)

I P(Z ∈ σxi |frac q-core) ≤ P(Z ∈ σxi |frac q-nhood)

27 / 63



Estimators

Horvitz-Thompson estimator

I the same as Aronow & Samii (2017) [pp. 13]

I Di ∈ {σ1
i , σ

0
i }

(Prop 3.3) The variance of the Horvitz-Thompson estimator under
graph cluster randomization is (O(1/N)) if

I Maximum degree O(1): no “hub”.

I Cluster size O(1): O(N) clusters.
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Application: Cycles

Actual treatment effect: Yi (σ
1
i ) = Ȳ , Yi (σ

0
i ) = 0 and full

neighborhood exposure.

Trade-off: probability of full neighborhood exposure vs dependency
between nodes (# clusters)
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k-power Cycle Graphs
”Watts-Strogatz model without rewiring”–connecting to nodes
with a distance ≤ k .

Q: Why does the variance increase with respect to k?
(#full-neighborhood exposure)
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Clustering Restricted Growth Graphs

Restricted growth graph:

I |Br+1(v)| ≤ κ|Br (v)|.
I |Br (v)| is the set of nodes whose distance with v no greater

than r .

Clustering algorithm (ε-net):
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Variance bounds
Lower bound for Bernoulli randomization:

Upper bound for the proposed graph cluster randomization:

Discussion:

I Recall O(1) maximum cluster size is a condition for O(1/n)
variance (Prop. 3.3). The maximum cluster size is κ3 (Prop.
4.2)!
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Discussion questions

I How would neighborhood exposure assumptions affect our
results?

I What conditions are used to show the variance bounds? Are
they realistic?

I How realistic are restricted-growth graphs (think about
Facebook friendship network)?

I Why not use community detection methods or other methods?
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Eckles et al. (2017)
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Key message

Motivations

I “Evaluate methods for designing and analyzing randomized
experiments under minimal, realistic assumptions compatible
with broad interference.”

I “Aim to reduce bias and possibly overall error in estimates of
average effects of a global treatment.”

Again, the goal is to estimate

τ(Z = z1,Z = z0) =
1

N

N∑
i=1

[yi (Z = z1)− yi (Z = z0)] (9)

Prototype: z1 = ~1 and z1 = ~0.
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Model of experiments in networks

I Initiation: generates the graph and vertex characteristics

I Design: randomization

I Outcome generation: observe/simulate behavior

I Analysis: estimators
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Initiation and Design

Initiation:

I Network formation

I Vertex characteristics and prior behaviors

Design (focused on cluster randomization):

I Global community detection methods (do not distinguish
small clusters)

I Local clustering methods (e.g., 3-net clustering)

I Observed community membership (villages)

37 / 63



Outcome generation and observation

Yi = fi (z,θ):

I Very similar to the exposure mapping in Aronow & Samii
(2017)...

I But this function directly maps to outcomes rather than
exposures!

Treatment response assumptions (Manski, 2013)

I Individualistic treatment response (ITR): SUTVA!

I Constant treatment response (CTR): equivalent to exposure
assumption (effective treatments)

I Neighborhood treatment response (NTR): outcome Y only
depends on zi , and zj for j ∈ N (i)
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Illustration of response models
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Q: Where do k-core and fractional q-core neighborhood exposure
assumptions belong?
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Implausibility of tractable treatment response assumptions

Issue:

I For example, even NTR is often not realistic (time, peers’
behavior, 2-hop influence, ...)

Dynamic model with discrete time steps

yi ,t = hi ,t(z, yi∪N (i),t−1,θ) : (10)

I z: assignment vector

I yi∪N (i),t−1: the behavior of i and i ’s immediate neighbors at
the last time step

I θ: characteristics of all individuals (including network
structure)
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Implausibility of tractable treatment response assumptions

Figure 5: (a) Neighborhood treatment response (NTR). (b) Egos’
behavior are affected by the behaviors of peers at time t − 1. (c) Egos’
behavior are affected by the behaviors of peers of peers at time t − 2.
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Linear-in-means model

Y ∗i ,j = α + βZi + γ
A′iYt−1

ki
+ Ui ,t

Yi ,j = a(Yi ,j∗)

where Ai is the i row of adjacency matrix A; ki is the degree of i ;
a(x) can be binary (a(x) = 1[x ≥ 0]) or continuous (a(x) = x).
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Bias reduction through design

Thm. 2.1 in one sentence: Graph cluster randomization can
reduce bias!
Assumptions:

1. Linear outcome model: E[Yi (z)] = ai +
∑

j Bijzj

2. Monotonicity: Yi (z) is monotonically increasing in z (or
Bij ≥ 0).

Results:
Any graph cluster randomization has a bias smaller than Bernoulli
randomization.

Relative bias = τgcrITR(1, 0)/τ(1, 0)−1 =

∑N
i=1

∑N
j=1 Bij1[C (i) = C (j)]∑N
i=1

∑N
j=1 Bij

−1

Q: Are those assumptions realistic enough?
Q: Derivation of Eq. (7)?
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Bias reduction through analysis

Thm 2.3 in one sentence: We can reduce bias by making more
restrict treatment response assumptions!
Def 2.2 Treatment response A is more restrictive than treatment
response B if gA

i (z) = gA
i (z′) implies gB

i (z) = gB
i (z′).

I Fractional neighborhood treatment response (FNTR) is more
restrictive than ITR and NTR

I NTR is more restrictive than ITR

Q: Why don’t we make the most restrictive assumptions to
minimize bias?
bias-variance trade-off?
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Estimators

Sample means

I ŷTS (dk) =
∑N

i=1 1(Di = dk) Yi∑N
i=1 1(Di=dk )

I Biased

I Smaller variacne

Horvitz-Thompson estimator

I ŷTHT (dk) =
∑N

i=1 1(Di = dk) Yi
πi (dk )

I Unbiased

I Very large variance

Hajek

I ŷTHajek(dk) = (
∑N

i=1
1(Di=dk )
πi (dk ) )−1

∑N
i=1

Yi1(Di=dk )
πi (dk )

I Slightly biased

I Smaller variance
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Experiments: Setup

Setting:

I Small-world network (N = 1000; degree= 10; with rewiring
probability {0, 0.01, 0.1, 0.5, 1})

I Degree-corrected block model (N = 1000, 10 communities,
within community edges: {0.2, 0.5, 0.8}; log-normal degree
distribution)

Outcome generation

Design: ε-net graph clustering
Analysis: ITR + sample mean; FNTR + sample mean; FNTR +
Hajek.
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Experiments: Results (Bias)
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Experiments: Results (Bias+Variance=RMSE)

Q: Why do graph cluster randomization sometimes have a worse
RMSE? 48 / 63



Experiments: Results of Degree-corrected block model

Why the performance is worse than that in small-world networks?
More high-degree nodes, lower clustering coefficients?
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Discussion

1. Can we test those methods on real-world data sets?
2. How we can check if our randomization methods and response
assumptions are reasonable choices?
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Aral (2016)
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Key decisions in networked experiments

I Design
I Setting
I Sampling
I Randomization
I Assignment

I Analysis
I Modeling
I Inference
I Estimation
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Setting

Context

Network

Lab Field

Individual

Dyadic

Network 
structure
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Sampling

Goals:

I Estimate node or edge attributes

I Collect representative subgraphs

I Collect paths that reliably reproduce diffusion events

Sampling methods:

I Node & edge

I Snowball

I Random walk

I Forest fire

I Respondent driven
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Sampling methods

Original graph Node sampling Edge sampling
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Snowball sampling Random walk sampling Forest fire sampling

Q: Where can we apply these sampling methods?
Q: Is there selection bias?
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Randomization
Mechanism designs vs peer encouragement designs2

Structural designs (network structure) and setting designs
(context; e.g., randomize incentives)

2
Eckles et al. (2016) Estimating peer effects in networks with peer encouragement designs
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Treatment

Network autocorrelation

I e.g., graph cluster randomization

Sequencing

I e.g., global treatment impact vs statistical power (Aral and
Walker (2011))
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Key decisions in networked experiments

I Design
I Setting
I Sampling
I Randomization
I Assignment

I Analysis
I Modeling
I Inference
I Estimation
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Modeling

Exposure/Response assumptions

I CTR (exposure), ITR (SUTVA), NTR (neighborhood
exposure), etc.

Model assumptions

I e.g., linear-in-means model
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Inference

Estimands

I Direct causal effects: Yi (zi = 1, z−i )− Yi (zi = 0, z−i )

I Indirect causal effects: Yi (zi = 0, z−i )− Yi (zi = 0, z−i = 0)

I Total causal effects: Yi (zi = 1, z−i = 1)−Yi (zi = 0, z−i = 0)
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Estimation

I Model specification
I Average treatment effects, heterogeneous treatment effects,

more sophisticated model (hazard)

I Interference
I Inference strategies (e.g., exposure assumptions; challenge:

how to validate?)
I Design strategies (treatment cluster vs treatment separating3)

I Estimators
I Horvitz-Thompson, Hajek estimators..

3Separate treated nodes (make their distance long.)
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Summary and future directions

Summary

I Design: setting, sampling, randomization, and assignment

I Analysis: Modeling (assumptions), inference, and
estimation

Future directions

I Adaptive treatment assignment (sequential)

I Novel randomization techniques

I Linking online treatments to offline responses (e.g.,
voting, HIV)

I Experimental validation of observational methods
(propensity score matching)
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Outline

I Aronow & Samii (2017): A theoretical framework for network
interference.

I Ugander, Karrer, Backstrom, & Kleinberg (2013): A good
example to address network interference.

I Eckles, Karrer & Ugander (2017): Theoretical explains for
cluster randomization and exposure assumptions.

I Aral (2016): A high-level framework for networked
experiments and examples
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