
Understanding Covariance Estimates in Expectation
Propagation

William Stephenson
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA 02139

wtstephe@csail.mit.edu

Tamara Broderick
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA 02139

tbroderick@csail.mit.edu

Abstract

Bayesian inference for most models of modern interest requires approximation of
the posterior distribution. Variational inference (VI) methods formulate posterior
approximation as a particular optimization problem and have grown in popularity
due to their fast runtime on large datasets. There is recent work that suggests it
might be beneficial to instead consider an alternative optimization objective to that
used by VI, such as the one employed by expectation propagation (EP). EP has
recently been shown to scale to large datasets and complex models, and existing
theory suggests we should expect EP to overestimate—rather than underestimate—
the variance of parameters. We show through two examples that there are actually
two regimes, one in which EP overestimates covariances and one in which it
underestimates. We prove that under some conditions, the objective function behind
EP switches between these regimes depending on the log-concavity / convexity of
the approximate distribution used.

1 Introduction

Let x = (x1, . . . , xN ) represent N observed data points and θ ∈ RK a K-dimensional parameter
vector. We assume some generative model for the data described by a likelihood p(x|θ) and a prior
p(θ). A common task in Bayesian inference is find the posterior distribution px(θ) := p(θ|x). For any
mildly complex choice of generative model, the posterior cannot be computed exactly and must be
approximated. In practice, however, the end product of a Bayesian analysis is often some functional
of the posterior; for instance, we might report the posterior mean and variance for each parameter. In
these cases, a full description of the posterior is unnecessary, and computational savings might be
achieved by focusing on a faster method that is accurate for the desired functional.

Markov Chain Monte Carlo methods have been a traditional mainstay of approximate Bayesian
inference and enjoy a number of nice theoretical properties but are often too slow in practice.
Variational inference (VI), especially the variant known as mean-field variational inference (MFVI),
has grown in popularity recently due to its speed on large datasets [6, 3]. But MFVI is known to
have a number of practical failings—such as underestimating the uncertainty of model parameters,
sometimes dramatically [2, 15, 8]. A number of recent papers aim to correct this issue either via
a post-hoc correction to MFVI or within the VI framework [14, 4]. But these new methods often
have poorer scaling properties—either in the number of data points or dimension of the parameter or
both—than MFVI.

At first glance, it seems that a promising alternative would be found in expectation propagation
(EP) [9]. The motivation behind EP is to minimize an alternative optimization objective to that
used in VI. VI aims to minimize the reverse Kullback-Leibler divergence KL(q||px) over q in some
class of tractable distributions. By contrast, EP is motivated by minimization of the forward KL-
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divergence KL(px||q) over q. The same conventional wisdom that states VI tends to underestimate
uncertainties also states that minimizing the forward KL-divergence yields overestimates of parameter
uncertainties [2, 10, 5]. In some ways, this is a safer direction; overestimating uncertainty should
lead to more conservative decisions. Additionally, overestimates might be more amenable to post-
hoc corrections than underestimates. While there has been work on correcting the entirety of the
approximate distribution found by EP [12, 13], there has not yet been a correction that focuses directly
on the covariance—which might yield a more computationally efficient approach. Another reason to
consider EP is that recent work demonstrates it can be scaled to large datasets and suggests it may
even have better locality properties than VI in complex models [7, 3].

However, conventional wisdom and practical experiments seem not to agree in the literature. As
one example of uncertainty overestimation, [2, 10, 5] state or show that we expect EP to, e.g., mode-
average by stretching across modes of a multimodal posterior. Conversely, [13, 7] show practical
examples of EP fitting to a single posterior mode. Before investigating EP’s covariance estimates,
or indeed before using EP in general, we must understand exactly how EP operates in practice. In
the following, we review the forward KL-divergence in Section 2. We examine the proposition that
minimizing this objective encourages mode-averaging, and we give an example of mode-averaging
behavior in Section 3, whereas we demonstrate mode-seeking behavior in Section 4. In Section 5, we
prove that for a somewhat restrictive class of posteriors, the mode-averaging / mode-seeking behavior
of this objective depends on the log-concavity / convexity of the approximate distribution used. We
emphasize that our results mainly pertain to the objective motivating EP, which is not necessarily
what EP actually minimizes. We leave further discussion of this point for future work.

2 Kullback-Leibler Divergence and Expectation Propagation

The motivating optimization problem for EP is to choose an approximating distribution q∗ for the
posterior. In particular, we aim to choose q∗ from some class of distributionsQ such that q∗ minimizes
the forward Kullback-Leibler (KL) divergence, KL(px||q). Typically the distributions in Q are more
computationally convenient than the exact posterior; e.g., one can more easily calculate desirable
functionals under q ∈ Q. So, when the optimal q∗ exists, we wish to choose

q∗(θ) = arg min
q∈Q

KL(px||q) = arg max
q∈Q

∫
p(θ|x) log q(θ)dθ = arg max

q∈Q
E(q), (1)

where we have defined E(q) :=
∫
p(θ|x) log q(θ)dθ.

Recall that the full KL integrand is p(θ|x) log(p(θ|x)/q(θ)). So the traditional intuition [2] is that
we expect that q should not have very little mass where px has a lot of mass, or the log factor will be
large. If this were always true, we would expect q∗ to span all high-probability modes of px. But we
see from Eq. 1 that the p(θ|x) log p(θ|x) term is constant in q∗ and effectively disappears from the
objective, so it is perhaps not so simple. In fact, we see that q∗ does not always stretch across the
posterior modes below.

3 An Analytic Example of Fitting a Multimodal Posterior

We first give a case in which we can analytically maximize Eq. 1 and the conventional wisdom
for Eq. 1 always applies; that is, the q∗ minimizing KL(px||q) stretches across multiple modes of
the posterior. Suppose the exact posterior is a K-component mixture of D-dimensional diagonal-
covariance Gaussians: p(θ|x) =

∑K
k=1 πkN(θ;µk,Γ

−1
k ), where πk are weights with

∑K
k=1 πk = 1.

As is common in practice [2], we assume the approximating family Q follows the mean-field
assumption; that is, any q ∈ Q factorizes as q(θ) =

∏
i q(θi). Specifically, here we suppose

q is a single Gaussian, and the mean-field assumption implies q has diagonal covariance Λ−1:
q(θ) = N(θ; η,Λ−1). For any fixed η, we apply Eq. 1 to find that E(q) is maximized by setting the
dth diagonal entry of Λ to:

Λdd =

[
K∑

k=1

πk(Γkd + (µkd − ηd)2)

]−1
(2)
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Figure 1: Left: Illustration of Section 3, where the true posterior is a 1-D mixture of Gaussians.
The optimal Gaussian q∗ fits across both modes of px with a wide variance, regardless of the
separation between them. Right: Illustration of Section 5. For a symmetric bimodal posterior
px(θ) = 1

2f(θ) + 1
2f(θ − d), a convex log q(θ) yields mode-seeking behavior (ηq = 0) whereas a

concave log q(θ) yields mode-averaging behavior (ηq = d/2).
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Figure 2: Density plots of samples from posterior p(µ1, µ2|x) of a 1-D Gaussian mixture model, as
described in Section 4, with mean and covariance found by EP (red) plotted on top. In each case,
the true µ∗1 = 2, while µ∗2 varies from left to right as 5, 3.5, 2.25. In the case of a strongly bimodal
posterior (left), EP fits to only one mode of the posterior.

and the mean η =
∑

k πkµk. A brief derivation can be found in Appendix A. In the case of
πk = 1/K, we see that q places significant mass on every mode of p(θ|x), as expected from the
conventional wisdom; see Fig. 1 (left) for an illustration.

4 An Empirical Example: Gaussian Mixture Model

We now give an empirical case that contrasts the results of Section 3; that is, we find EP fitting q to
a single mode of the posterior. We take the case of Gaussian mixture models, where the likelihood
distribution p(x|θ) is a mixture of Gaussians. We then expect the posterior to be multimodal, but not
a finite mixture of Gaussians as in Section 3. We note that capturing all multimodality in the current
example would typically be undesirable as symmetry turns each “real” mode into K! modes. Still,
this provides a simple illustration of a real multimodal posterior.

We sampled 100 1-dimensional points from a GMM with K = 2 components and true parameters
π∗1 = π∗2 = 0.5, σ∗1 = σ∗2 = 1.0, and variable means. We ran three experiments, with fixed µ∗1 = 2,
and varied µ∗2 = {5, 3.5, 2.25}. Our choice of approximate distribution follows [13] and factorizes
as:

q(π, µ,Λ) = q(π)

K∏
k=1

q
(
µk, σ

−2
k

)
,
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where each q(µk, σ
−2
k ) is a normal-Wishart distribution and q(π) a Dirichlet distribution. In this

case, it is not possible to analytically minimize the KL-divergence in Eq. 1, so we run the actual
EP algorithm [9], which we emphasize does not necessarily minimize KL(px||q). Our chosen q
has a Student’s t-distribution as its marginal q(µ), which quickly approaches the Gaussian q used in
Section 3, so we might expect similar behavior as in Section 3.

In Fig. 2, we show MCMC samples from the true marginal posterior p(µ1, µ2|x) along with the mean
and covariance of the EP approximate distribution q(µ). When the modes of px are very distant,
EP centers itself at a single mode of px. However, as the modes come closer, EP chooses to place
q in-between them. Though this is similar behavior to that observed experimentally by [7, 13], it
is surprisingly distinct from that in Section 3 and the typically cited behavior of minimizing the
KL-divergence KL(px||q).

5 Understanding the Different Behavior

Although it is at first surprising that the seemingly similar examples of Section 3 and Section 4
yield different behavior, we now show that this difference is due to the concavity / convexity of
`(θ − ηq) := log q(θ), with ηq being the mean of q. Notably, we show this holds for any symmetric
bimodal true posterior px:
Theorem 1. Suppose `(θ − ηq) := log q(θ) is symmetric around ηq and concave in θ. Then for any
bimodal symmetric true posterior of the form px(θ) = 1

2f(θ) + 1
2f(θ − d), the choice of ηq = d

2
yields a KL-divergenceKL(px||q) at least as small as the choice of ηq = 0. Conversely, if ` is convex,
ηq = 0 yields a smaller KL-divergence.

Proof. A short proof can be found in Appendix B.

This theorem explains the above behavior. In Section 3, q was a Gaussian so that log q(θ) = −θ2/2
is concave, and we indeed saw that the optimum of KL(px||q) placed q in-between the modes of px
(i.e. ηq = d/2). In Section 4, our choice of q(µ) was a Student’s t-distribution, which has ` neither
convex nor concave so that Theorem 1 does not apply. Still, we can give a heuristic argument about
its behavior in Fig. 2. A Student’s t-distribution with ν degrees of freedom is log-convex outside
the interval [−

√
ν,
√
ν] and log-concave inside this interval [1]. If

√
ν is large enough to cover both

modes of px, we effectively have a log-concave distribution, which Theorem 1 implies will prefer
mode-averaging. On the other hand, if

√
ν is small compared to d, we have a “mostly” log-convex

distribution, in which case Theorem 1 implies it will be mode-seeking. We see this behavior Fig. 2;
the ν recovered by EP is roughly the same across all three cases, and EP moves to mode-averaging
when the posterior modes are sufficiently close.

6 Conclusion

We have demonstrated the tendency for EP to fit to either one or many modes of the posterior and
given a theoretical explanation as to why and when this occurs. A number of questions remain:
1) Can we derive similar properties for other divergences used in practice [5]? 2) Can we derive
the exact separation d between posterior modes at which EP changes between fitting one mode to
both? 3) How does this mode-fitting behavior affect practical applications of EP, and can we see it
in previous applications of EP in models such as LDA [11]? Additionally, we have not given much
attention to the fact that EP does not necessarily maximize the objective given by Eq. 1, and instead
approximates it. How this approximation affects the above three questions is another avenue for
future work.
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A Derivation for Mixture of Gaussians Posterior

Here, we derive the results from Section 3.1. We start with the assumption that the posterior and
approximate distributions over θ ∈ RD are of the form:

p(θ|x) =

K∑
k=1

πkN(θ;µk,Γ
−1
k ) , q(θ) = N(θ; η,Λ−1).

The integral in Eq. 1 that we want to maximize is just the expectation of log q(θ) under p:

Ep[log q(θ)] = E
[
−1

2
(θT Λθ − 2θT Λη + ηT Λη) +

1

2
log |Λ| − D

2
log 2π

]

= −1

2

(
K∑

k=1

πk

D∑
d=1

(
Λdd(µ2

kd − 2µkdηd + η2d + Γkd)

))
+

D∑
d=1

log Λdd −
D

2
log 2π.

Taking the derivative with respect to Λdd and setting it equal to zero gives Eq. 2:

Λdd =

[
K∑

k=1

πk

(
(µkd − ηd)2 + Γkd

)]−1
.
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To find the optimal η, we can appeal to the moment-matching properties of KL(px||q). That is,
if Q represents exponential family distributions—a popular class of distributions that allows easy
normalization and moment calculation, then Eq. 1 is maximized by choosing the parameters of
q so that its expected sufficient statistics are equal to their expectation under px [2]; that is, if
q(θ) ∝ expλT θ, we can minimize Eq. 1 by picking λ such that:

Epx
[θ] = Eq[θ].

In particular, since q here is a Gaussian, we must set η as:

η = Ep[θ] =

K∑
k=1

πkµk.

B Proof of Theorem 1

We restate and prove Theorem 1 from Section 5:
Theorem 1. Suppose `(θ − ηq) := log q(θ) is symmetric around ηq and concave in θ. Then for any
bimodal symmetric true posterior of the form px(θ) = 1

2f(θ) + 1
2f(θ − d), the choice of ηq = d

2
yields a KL-divergenceKL(px||q) at least as small as the choice of ηq = 0. Conversely, if ` is convex,
ηq = 0 yields a smaller KL-divergence.

Proof. Consider ` concave and symmetric around 0 and px of the given form. Recalling that
minimizing KL(px||q) is equivalent to maximizing Eq. 1, we evaluate Eq. 1 as a function of ηq:

E(ηq) =

∫ (
1

2
f(θ)`(θ − ηq) +

1

2
f(θ − d)`(θ − ηq)

)
dθ

=

∫
f(θ)

(
1

2
`(θ − ηq) +

1

2
`(θ − ηq + d)

)
dθ, (3)

which holds by a change of variable f(θ− d)`(θ− ηq) = f(θ′)`(θ′− ηq + d). Now, we can consider
setting ηq = 0 (placing q on top of one mode of px) or ηq = d

2 (placing q in-between the modes of
px):

E(0) =

∫
f(θ)

(
1

2
`(0) +

1

2
`(θ + d)

)
dθ , E

(
d

2

)
=

∫
f(θ)`

(
θ +

d

2

)
dθ,

where the evaluation of E(d
2 ) uses the symmetry of ` around 0. Since f ≥ 0, we see that if ` is

concave, the integrand on the right is strictly larger, giving E
(
d
2

)
≥ E(0). Conversely, if ` is convex,

we get E(0) ≥ E
(
d
2

)
.
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