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Wonseok Shina) and Shanhui Fanb)

E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

(Received 7 July 2015; accepted 11 October 2015; published online 26 October 2015)

The behavior of the modal loss rate in deep-subwavelength metallic structures depends strongly on

frequency: as the mode size decreases, at optical frequencies, the modal loss rate always increases

to the theoretical upper bound C=2, whereas at microwave frequencies, it remains far lower than

C=2, where C is the electron collision frequency of the metal. By analyzing the metallic slot wave-

guide as a model system, we show that these significantly different behaviors of the modal loss rate

at optical and microwave frequencies are actually two extreme cases of a single universal behavior.

Specifically, we show that as the mode size decreases, the loss rate always plateaus first and then

increases to C=2, regardless of frequency. The only difference between frequencies is the properties

of the plateau: at optical frequencies, the plateau is narrow, allowing the loss rate to reach C=2 at a

relatively large mode size, whereas at microwave frequencies, the plateau is wide and formed at
1ffiffi
3
p x, defining a practically attainable maximum loss rate that is far lower than C=2. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4934707]

Metallic structures provide the capability of manipulat-

ing electromagnetic (EM) fields at deep-subwavelength

scale. At radio and microwave frequencies, many compo-

nents such as antennas and transmission lines rely on such a

capability to collect and guide EM waves efficiently in a

deep-subwavelength volume and area.1,2 Similarly, at optical

frequencies, there have been tremendous efforts toward

manipulating EM waves at deep-subwavelength scale by uti-

lizing metallic structures, as evidenced by the recent pro-

gress in plasmonics and optical metamaterials.3,4

Because metals are always lossy, understanding the

behavior of the loss rate of the deep-subwavelength EM

modes supported by metallic structures is of fundamental

technological importance. For all frequencies x ranging

from radio to visible frequencies, the permittivity of a free-

electron metal is described by the Drude model as

em xð Þ ¼ e1 1�
x2

p

x x� iCð Þ

 !
; (1)

where e1 is the value of em at x ¼ 1; xp is the plasma fre-

quency of the metal, and C is the electron collision frequency

of the metal.

It has been shown that for any structures consisting of

such a metal and lossless dielectrics, the loss rates of the EM

modes are always bounded above by C=2.5–8 Furthermore, at

optical frequencies, it has been shown that the modal loss rates

do approach this upper bound for modes whose dimension is a

fraction of the free-space wavelength6–8 (though for sub-

nanometer structures this upper bound can be exceeded as the

classical Drude model breaks down due to surface effects9).

On the other hand, at microwave frequencies, the modal

loss rates are far below the upper bound in practice, even for

deep-subwavelength modes.7 For example, typical values of

C=2 of metals are in the order of 1014 s�1.10 A waveguide

mode with such a loss rate would have a propagation dis-

tance of vg=ðC=2Þ � c=ðC=2Þ, where vg is the group velocity

of the mode and c is the speed of light, and therefore would

have a propagation distance in the order of micrometers or

less. In reality, however, at a microwave frequency of

1 GHz, the standard coaxial cables, which have deep-

subwavelength cross sections, have propagation distances in

the order of several meters.1 Thus, at microwave frequencies,

the modal loss rates are in fact far below C=2 in typical sub-

wavelength structures.

In this letter, we take a step toward developing a theoret-

ical picture that unifies such significantly different loss

behaviors of deep-subwavelength modes at optical and

microwave frequencies. For that purpose, we examine a

metallic slot waveguide11 illustrated in Fig. 1 as a model sys-

tem. The waveguide is composed of a narrow dielectric slot

of width d and permittivity ed , embedded in an infinite metal

of the permittivity em of Eq. (1).

The choice of the metallic slot waveguide as a model

system has a number of merits: (a) it supports a tightly con-

fined mode within the slot,12 so it is straightforward to obtain

a deep-subwavelength mode by simply narrowing the slot;

FIG. 1. Metallic slot waveguide and its fundamental mode. The waveguide

is composed of a dielectric slot of width d embedded in an infinite metal. Its

fundamental mode, whose out-of-page H-field has the magnitude illustrated

by the red curve, propagates with wavenumber b and temporal loss rate c at

frequency x. The permittivities of the dielectric and metal are ed and em,

where em is described by the Drude model.
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(b) its simple structure allows us to analyze the modal loss

rate analytically from the waveguide dispersion relation; (c)

it is one of the most widely used waveguides in plas-

monics,13–16 so the thorough understanding of its modal loss

behavior is of practical importance; (d) at deep-

subwavelength scale, it often approximates waveguides with

more complex geometry accurately,17 so its understanding

can be directly extended to a variety of waveguides; (e) its

metal-dielectric-metal structure is often the basic building

block of more complex systems such as hyperbolic metama-

terials,18 so its understanding can provide insights into sys-

tems beyond waveguides.

In our analysis, we solve for modes whose temporal and

longitudinal dependences are in the form of eiðXt�bzÞ, where

the propagation wavenumber b along the longitudinal direc-

tion z is taken to be real; the complex eigenfrequency X
¼ xþ ic has the oscillation frequency x and loss rate c of the

mode as the real and imaginary parts.19 Note that the imagi-

nary part of the complex frequency can be nonzero only in the

presence of loss. This is in contrast to an alternative approach

that uses real frequency and complex wavenumber, whose

imaginary part can be nonzero even in the absence of loss.20,21

We consider the fundamental mode of the waveguide,

whose dispersion relation is22

tanh jd
d

2

� �
¼ � jm=jd

em=ed
; (2)

where
jd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � X2l0ed

q
;

jm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � X2l0em

q
:

(3)

Here, l0 is the vacuum permeability, and the values of em at

complex X’s are obtained via analytic continuation of Eq.

(1) into the complex plane. For numerical evaluation,

ed ¼ e0; e1 ¼ e0, and C ¼ 0:002xp, which correspond to air

and silver,10 are used throughout this letter.

From Eq. (2), we obtain the x–b curve of the waveguide

mode for a given d, as shown in Fig. 2. For every d consid-

ered in the figure, the waveguide supports a guided mode

extending from x ¼ 0 to the surface plasmon frequency

xp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ed=e1

p
. Note that b increases with decreasing d for

a given x.

Now, we present the main result of our analysis: the c–d
curve of the waveguide mode at different frequencies. Figure 3

shows the resulting c–d curve at five different frequencies

x ¼ 100C; 10C;C; 0:1C; and 0:01C. As the slot width d, and

thus the size of the waveguide mode, shrinks to deep-

subwavelength scale, the modal loss rate c exhibits a universal

behavior regardless of x: it reaches a plateau first before even-

tually increasing to the theoretical upper bound C=2.

However, the strong dependence of the width and level

of the plateau on x makes the behavior of the modal loss

rate appear significantly different at optical and microwave

frequencies. At optical frequencies (x� C), a narrow pla-

teau is formed at c ¼ C=4 close to C=2, so c increases

quickly to C=2 at a relatively large d, in a good agreement

with the well-known behavior of the modal loss rate of plas-

monic systems.5–8 At microwave frequencies (x� C), on

the other hand, a wide plateau is formed at c ¼ 1ffiffi
3
p x. Also,

the wide plateau persists until the waveguide mode becomes

unrealistically small: as shown in Fig. 3, c approaches C=2

only after d decreases approximately below 10�6=kp

¼ 10�6kp=2p, which corresponds to an unrealistically nar-

row slot width of around 10�4 nm for noble metals (e.g.,

kp ¼ 138 nm for silver10). Therefore, at microwave

FIG. 2. (a) x–b relation of the fundamental mode of the metallic slot wave-

guide for three slot widths d ¼ 10=kp; 1=kp; 0:1=kp, where kp ¼ xp
ffiffiffiffiffiffiffiffiffi
l0e0
p

.

(b) The same x–b relation in logarithmic scale. The horizontal lines indicate

five frequencies x ¼ 100C; 10C;C; 0:1C; and 0:01 C. The material parame-

ters used are ed ¼ e0; e1 ¼ e0, and C ¼ 0:002xp.

FIG. 3. c–d relation of the fundamental mode of the metallic slot waveguide

for the five different frequencies x ¼ 100C; 10C;C; 0:1C; and 0:01C corre-

sponding to the horizontal lines in Fig. 2. The dashed lines and arrowheads

indicate the estimates from our theory. The material parameters used are

ed ¼ e0; e1 ¼ e0, and C ¼ 0:002xp. For x ¼ 0:01C, the three values of c at

d � 10�6=kp are due to negative group velocity existing in the x–b relation

for such extremely small d.

171102-2 W. Shin and S. Fan Appl. Phys. Lett. 107, 171102 (2015)
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frequencies, reaching the theoretical upper bound C=2 is

rather hypothetical; instead, the plateau defines a practically

attainable maximum loss rate at 1ffiffi
3
p x, which is far lower

than C=2.

Note also in Fig. 3 that for slot width less than or compa-

rable to the plasma wavelength (d � 1=kp), the loss rate is an

order of magnitude smaller at microwave frequencies than at

optical frequencies, even though the degree of confinement

compared to a wavelength is much stronger at microwave fre-

quencies. This observation suggests that nanometer-scale

structures, despite their small dimensions, may suffer from

relatively low loss at microwave frequencies.

In the rest of the letter, we provide more detailed discus-

sions on the behavior of c. In Fig. 3, we consider three differ-

ent regimes as d decreases: in the surface loss regime, c
increases; in the plateaued loss regime, c plateaus; and in the

maximum loss regime, c reaches the theoretical upper bound

C=2. Below, we derive the analytic expressions of c in these

three different regimes.

The frequency range considered in the derivation is

x� xp, which includes all frequencies from radio up to

visible frequencies for the typical xp of metals;10 note that

the five x’s chosen in Fig. 3 are within this range. Also, we

assume C� xp, as is typically the case for metals.10 Then,

Eq. (1) for complex frequency is approximated by

em ¼ �e1
x2

p

X X� iCð Þ ; (4)

because c � C=2 in X ¼ xþ ic, and thus the denominator in

Eq. (4) is far less in magnitude than the numerator.

We begin with the maximum loss regime. We will show

b� jXj
ffiffiffiffiffiffiffiffiffiffiffiffi
l0jemj

p
; (5)

is the condition for c to be in the maximum loss regime.

Because jemj � ed for x� xp, Eq. (5) implies b�
jXj ffiffiffiffiffiffiffiffiffil0ed
p

as well. Hence, Eq. (3) is approximated by jd ¼ b
and jm ¼ b, and Eq. (2) by

tanh b
d

2

� �
¼ � ed

em
: (6)

Because the left-hand side and ed are real, em should also be

real for this equation to hold. From Eq. (4), em is real if and

only if XðX� iCÞ ¼ ðxþ icÞðxþ iðc� CÞÞ is real, or

equivalently if 2c� C ¼ 0. Therefore, when the condition

(5) holds, we have

c ¼ C
2
; (7)

which is the modal loss rate in the maximum loss regime.

We can also obtain the condition on d for the maximum

loss regime. Substituting Eq. (7) into Eq. (4), we get

em ¼ �e1
x2

p

jXj2
: (8)

Substituting Eq. (8) into Eq. (6) and using tanh�1/ ’ / for

j/j � 1, we obtain an approximate expression of b. The

expression is used in Eq. (5) to produce the condition

d � ed

e1

2

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

x2 þ C=2ð Þ2

x2
p

; (9)

for the maximum loss regime. Equation (9) indicates that the

maximum loss regime begins at larger d for higher x. The

range (9) of d is indicated by the arrowheads in Fig. 3. Note

that for all x’s, the modal loss rate indeed reaches C=2 in

this range of d, though for x� C reaching such a loss rate

requires unrealistically small d and therefore is hypothetical

as mentioned earlier.

Next, we examine the plateaued loss regime. In this

case, as compared with Eq. (5), we will show that

jXj ffiffiffiffiffiffiffiffiffil0ed
p � b� jXj

ffiffiffiffiffiffiffiffiffiffiffiffi
l0jemj

p
(10)

is the condition for c to be in the plateaued loss regime.

Under this condition, Eq. (3) is approximated by jd ¼ b and

jm ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0ð�emÞ

p
, and thus the dispersion relation (2) is

approximated by

tanh b
d

2

� �
¼ �X

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0

e2
d

�emð Þ

s
: (11)

Substituting Eq. (4) into Eq. (11), we obtain

X3 X� iCð Þ ¼
4x2

pe1
l0e

2
dd2

b
d

2
tanh b

d

2

� �� �2

; (12)

from which the relationship between the real and imaginary

parts of X can be inferred without explicitly calculating them.

Suppose that argðXÞ ¼ h. Then, we have tan h ¼ c=x. We

also have tanð�3hÞ ¼ ðc� CÞ=x, because the right-hand side

of Eq. (12) is positive and thus argðX3ðX� iCÞÞ ¼ 3h
þargðxþ iðc� CÞÞ ¼ 0. Eliminating c between the two trig-

onometric equations, we obtain

tan hþ tan 3h ¼ C=x; (13)

whose solution h is used in the first trigonometric equation to

describe the relationship between x and c under the condi-

tion (10) as

c ¼ x tan h: (14)

Note that h dictated by Eq. (13) is independent of d.

Therefore, Eq. (14) indicates the existence of the plateau

under the condition (10) and provides an approximate value

of the modal loss rate in the plateaued loss regime.

Equation (14) can be further approximated in the fre-

quency regimes x� C and x� C. For x� C, we have

h� 1 from Eq. (13). Therefore, Eq. (13) is approximated by

hþ 3h ¼ C=x, and Eq. (14) by

c ¼ xh ¼ C
4
; (15)

for x� C. For x� C, on the other hand, the right-hand

side of Eq. (13) increases toward infinity, so tan 3h on the

left-hand side, which increases faster than tan h, should

increase toward infinity as well. Therefore, we have

tan 3h� 1, or h ’ p=6, and Eq. (14) is approximated by

171102-3 W. Shin and S. Fan Appl. Phys. Lett. 107, 171102 (2015)
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c ¼ 1ffiffiffi
3
p x; (16)

for x� C. Hence, for x� C, the modal loss rate in the pla-

teaued loss regime is independent of the dielectric and metal

used in the slot waveguide.

We can also obtain the condition on d for the plateaued

loss regime. Notice that the right-hand side of Eq. (12) is

proportional to the form ½w tanh w�2. Applying Eq. (10) on

the right-hand side of the absolute value of Eq. (12) and

using w2tanh w2 � w1tanh w1 for w2 � w1 > 0, we can

eliminate b from the inequalities. Subsequently, using

tanh�1/ ’ / for j/j � 1, we obtain the condition

ed

e1

2j1� i C=Xð Þj
3
2

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

jXj2

x2
p

� d � 2j1� i C=Xð Þj
1
2

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p ; (17)

for the plateaued loss regime, where X ¼ xþ ic has c of Eq.

(14). Equation (17) can be further simplified to

ed

e1

2

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

x2

x2
p

� d � 2

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p ; (18)

for x� C using c of Eq. (15), and

ed

e1

2:15

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

ffiffiffiffiffiffiffiffiffi
C3x
p

x2
p

� d � 1:86

xp
ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

ffiffiffiffi
C
x

r
; (19)

for x� C using c of Eq. (16).

In Fig. 3, the horizontal dashed line segments are drawn

at c ¼ x tan h over the range (17) for x ¼ C; at c ¼ C=4

over the range (18) for x ¼ 100 C; 10C; at c ¼ 1ffiffi
3
p x over the

range (19) for x ¼ 0:1C; 0:01C. The good agreement between

the dashed line segments and the corresponding c–d curves val-

idates our derivation. In the figure, for x� C, we observe a

pronounced plateau that persists over a wide range of d. For

x� C, on the other hand, the width of the plateau decreases

quickly with increasing x: for x ¼ 10C, we still observe a siz-

able plateau at c ¼ C=4, but for x ¼ 100C, the plateau is no

longer visible in the plot. Therefore, we see that the deep-

subwavelength metallic slot waveguide mode has drastically

different loss behaviors at optical and microwave frequencies.

Finally, we examine the surface loss regime. Here, we

limit the analysis to microwave frequencies (x� C), for

which surface resistance can be defined.1 (For optical fre-

quencies, a similar result can be obtained using the field pen-

etration depth into the metal.23) For the stored energy U and

dissipating power P, the modal loss rate is expressed as

c ¼ P=2U. By estimating P per unit area of the metal surface

as 1
2

RsjHsj2 and U per unit volume within the slot as
1
2
l0jHsj2, where Hs is the H-field on the metal surface, Rs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0x=2r

p
is the surface resistance of the metal, and r

¼ x2
pe1=C is the metal conductivity, we have

c ¼ 1

2

1

2
RsjHsj2ðd=2

0

1

2
l0jHsj2dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xC=2

p
xp

ffiffiffiffiffiffiffiffiffiffiffi
l0e1
p

1

d
(20)

in the surface loss regime.

The slanted dashed asymptotes in Fig. 3 indicate Eq.

(20) for the two frequencies in the x� C regime. The good

agreement between the c–d curves and the asymptotes con-

firms the applicability of surface resistance to explaining the

modal loss behavior in the surface loss regime. We note,

however, that surface resistance fails to explain the modal

loss behavior in the maximum and plateaued loss regimes,

because it is an overly simplified model that cannot fully

capture the correct physics occurring at deep-subwavelength

scale.

The detailed analysis given so far was for a simple

system of the metallic slot waveguide, but the overall trend

that the modal loss rate plateaus before reaching C=2 as

the mode shrinks should exist in more general systems as

well. For example, consider a system with two metallic

objects, such as two metallic spheres, brought in close

proximity with a deep-subwavelength dielectric gap in

between. In this system, the mode is mostly concentrated

in the gap region, like it is in the metallic slot waveguide.

Hence, to account for the loss rate of the mode, one may

approximate the system by a metallic slot waveguide with

varying slot width. Then, at sufficiently low frequencies

where the plateau in Fig. 3 becomes wide enough to

include the range of the varying slot width of the approxi-

mating waveguide, a plateau should appear. Therefore, we

can expect a plateaued loss regime to appear for the deep-

subwavelength modes between any two metallic objects at

sufficiently low frequencies.

In conclusion, we have presented a unified theoretical

description that accounts for the significantly different modal

loss rates at optical and microwave frequencies in metallic

structures. Our main analysis was carried out for simple me-

tallic slot waveguides, but we expect the conclusion to hold

for more complex structures as well.
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