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1. Introduction

To understand electromagnetic (EM) and optical phenomena, it is essential to solve Maxwell’s
equations efficiently. In the frequency domain, assuming a time dependencee+iωt and nonmag-
netic materials, Maxwell’s equations reduce to

∇×∇×E−ω2µ0εE =−iωµ0J, (1)

whereε is the electric permittivity (which can be complex);µ0 is the magnetic permeability of
vacuum;ω is the angular frequency;E andJ are the electric field and electric current source
density, respectively.

To solve Eq. (1) numerically, one can use a method such as the finite-difference frequency-
domain (FDFD) method [1–3] or the finite element method (FEM) [4] to construct a large
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system of linear equations
Ax = b, (2)

whereA is a matrix representing the operator[∇× (∇× )−ω2µ0ε]; x is an unknown column
vector representingE; b is a column vector representing−iωµ0J. The matrixA thus constructed
is sparse (with only 13 nonzero elements per row when generated by the FDFD method) and
typically very large (often with more than 10 million rows and columns for three-dimensional
(3D) problems). To solve a system with such a large and sparse matrix, iterative methods are
usually preferred to direct methods [5].

However, in the “low-frequency regime” where the wavelength is much longer than the
grid cell size∆, it is well-known that convergence is quite slow when the iterative meth-
ods are directly applied to solve Eq. (1). The low-frequency regime arises, for example, in
nanophotonics [6–8] and geophysics [9–11] where structures have feature sizes that are at deep-
subwavelength scale, and it will be defined more rigorously in Sec. 2. The huge null space of
the operator∇ × (∇× ) was shown to be the origin of the slow convergence [10,11], and
several techniques to improve the convergence speed have been developed.

The first class of techniques is based on the Helmholtz decomposition, which decomposes the
E-field asE = Ψ+∇ϕ , whereΨ is a divergence-free vector field andϕ is a scalar field [9–15].
Because∇ ·Ψ = 0, Eq. (1) is written as

−∇2Ψ−ω2µ0ε(Ψ+∇ϕ) =−iωµ0J, (3)

where the operator∇× (∇× ), which has a huge null space, is replaced with the negative
Laplacian−∇2, which is positive-definite for appropriate boundary conditions and thus has the
smallest possible null space. However, these techniques either solve an extra equation for the
extra unknownϕ at every iteration step [9–12], which can be time-consuming, or increase the
number of the rows and columns of the matrix by about 33% [13–15], which requires more
memory.

The second class of techniques utilizes the charge-free condition

∇ · (εE) = 0. (4)

The condition (4) holds at every source-free (i.e.,J= 0) position, where Eq. (1) can be modified
to

∇×∇×E+ s∇ [∇ · ((ε/ε0)E)]−ω2µ0εE = 0 (5)

for an arbitrary constants; note that the right-hand side is 0 becauseJ = 0. In this class of
techniques, Eqs. (1) and (5) are solved at positions with and without sources, respectively.

Reference [16] applied the above technique withs = +1 to boundary value problems de-
scribed in [17] and achieved accelerated convergence. Such boundary value problems satisfied
J = 0 everywhere, so Eq. (5) was solved throughout the entire simulation domain.

However, Ref. [16] did not conduct a detailed comparison of convergence speed between
different values ofs. It also did not report whether its technique leads to accelerated convergence
for problems with sources, even though many problems have nonzero electric current sourcesJ
inside the simulation domain. Reference [1] applied the technique withs=+1 to problems with
sources, but only in order to suppress spurious modes rather than to accelerate convergence.

In this paper, we develop a modification of Eq. (1) that improves convergence speed even
if electric current sourcesJ exist inside the simulation domain [18]. Unlike the previous tech-
nique that made the modification only at source-free positions, our technique modifies Eq. (1)
everywhere including positions with sources. For the modification, we utilize the continuity
equation

iωρ +∇ ·J = 0, or ∇ · (εE) =
i
ω

∇ ·J, (6)
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which can be derived by taking the divergence of Eq. (1). When Eq. (6) is manipulated appro-
priately and then added to Eq. (1), we obtain

∇×∇×E+ s∇
[

ε−1∇ · (εE)
]

−ω2µ0εE =−iωµ0J+ s
i
ω

∇
[

ε−1∇ ·J
]

(7)

for a constants. The modified equation (7) is the equation to solve in this paper.
The solutionE-field of Eq. (7) is the same as the solution of the original equation (1) re-

gardless of the value ofs, because the solution of Eq. (1) always satisfies Eq. (6). However, the
choice ofs affects the convergence speed of iterative methods significantly. In this paper, we
demonstrate thats =−1 induces faster convergence speed than other values ofs by comparing
the convergence behavior of iterative methods fors = −1,0,+1; the latter two values ofs are
of particular interest, becauses = 0 reduces Eq. (7) to the original equation (1) ands = +1 is
the value that Ref. [16] used in Eq. (5), which is similar to Eq. (7).

We also show that the difference in convergence behavior results from the different eigen-
value distributions of the operators for differents. There are many general mathematical studies
about the dependence of the convergence behavior on the eigenvalue distribution [19–26]. Our
aim here is instead to provide an intuitive understanding of the convergence behavior specifi-
cally for the operator of Eq. (7). For this purpose, at each iteration step we visualize the residual
vector and residual polynomial, which are widely used concepts to explain the convergence be-
havior of iterative methods [5] and also defined briefly in Sec. 3. As a result, we find that
convergence speed deteriorates substantially fors = 0 because the operator has eigenvalues
clustered near zero, and fors =+1 because the operator is strongly indefinite.

The rest of this paper is organized as follows. In Sec. 2 we investigate the eigenvalue dis-
tribution of the operator in Eq. (7) fors = 0,−1,+1 for a simple homogeneous system. We also
define the low-frequency regime rigorously in the section. In Sec. 3, we relate the eigenvalue
distribution with the convergence behavior of an iterative method. In Sec. 4, we solve Eq. (7)
for a wide range of realistic 3D problems to compare the convergence behavior of an iterative
method for the three values ofs, and we conclude in Sec. 5.

2. Eigenvalue distribution of the operator for a homogeneous system

In this section, we consider the operator in Eq. (7) for a homogeneous system and show that
the properties of the eigenvalue distribution of the operator strongly depend on the value ofs.
The impact ofs on the eigenvalue distribution has been studied in detail in the literature of the
deflation method (also known as the penalty method) [27–29]. Here we only highlight those
aspects that are important for the present study.

For a homogeneous system whereε is constant, Eq. (7) is simplified to

∇×∇×E+ s∇(∇ ·E)−ω2µ0εE =−iωµ0J+ s
i

ωε
∇(∇ ·J), (8)

where the operator
T = ∇× (∇× )+ s∇(∇· )−ω2µ0ε (9)

is Hermitian for realε. Becauseε is constant in this section, the eigenvalue distribution ofT is
shifted from the eigenvalue distribution of a Hermitian operator

T0 = ∇× (∇× )+ s∇(∇· ) (10)

by a constant−ω2µ0ε. In the low-frequency regime such shift is negligible, and thus the eigen-
value distribution ofT0 approximates that ofT very well. Hence, we examine the eigenvalue
distribution ofT0 below to investigate the eigenvalue distribution ofT .
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Table 1. Properties of the eigenvalue distributions ofT0 for differents. Depending on the
sign of s, T0 has very different eigenvalue distributions in terms of the multiplicity of the
eigenvalue 0 and the definiteness ofT0.

s = 0 s < 0 s > 0
multiplicity of λ = 0 very high low

definiteness ofT0 positive-semidefinite indefinite

In Appendix A, we show thatFke−ik·r with

Fk =





kx

ky

kz



 ,





kz

0
−kx



 ,





−ky

kx

0



 (11)

are the three eigenfunctions of both∇× (∇× ) and∇(∇· ) for each wavevectork. We also
show in the same appendix that the corresponding three eigenvalues are

λ = 0, |k|2, |k|2 (12)

for ∇× (∇× ), and
λ =−|k|2, 0, 0 (13)

for ∇(∇· ). Therefore,T0 has

λ =−s|k|2, |k|2, |k|2 (14)

as three eigenvalues for each wavevectork.
Equation (14) indicates that the eigenvalue distribution ofT0 is greatly affected by the value

of s. Specifically, the multiplicity of the eigenvalue 0 depends critically on whethers is 0 or
not: for s = 0 T0 has a very high multiplicity of the eigenvalue 0 because Eq. (14) has 0 as
an eigenvalue for everyk, whereas fors 6= 0 T0 does not have such a high multiplicity of the
eigenvalue 0. The definiteness ofT0 also depends on the value ofs: for s ≤ 0 T0 is positive-
semidefinite because the three eigenvalues in Eq. (14) are always nonnegative, whereas for
s > 0 T0 is indefinite because Eq. (14) has both positive and negative numbers as eigenvalues.
The different properties of the eigenvalue distributions ofT0 for s = 0, s < 0, ands > 0 are
summarized in Table 1.

The above description of the eigenvalue distributions ofT0 should approximately hold for
the eigenvalue distributions ofT as well in the low-frequency regime, as mentioned in the
discussion of Eqs. (9) and (10). Moreover, even thoughT is a differential operator defined in
an infinite space, it turns out that the description also applies to the matrixA discretized from
T that is defined in a spatially bounded simulation domain.

To demonstrate, we numerically calculate the eigenvalues ofA for a two-dimensional (2D)
system shown in Fig. 1, a square domain filled with vacuum. The domain is discretized on a
finite-difference grid withNx ×Ny = 50×50 cells and cell size∆ = 2nm. Therefore, the matrix
A for eachs has 3NxNy = 7500 rows and columns, where the extra factor 3 accounts for the three
Cartesian components of theE-field. We chooseω corresponding to the vacuum wavelength
λ0 = 1550nm, which puts the system in the low-frequency regime as will be seen at the end of
this section. The matricesA are constructed for three values ofs: 0,−1, and+1, each of which
represents each category ofs in Table 1.

The distributions of the numerically calculated eigenvalues ofA for s = 0,−1,+1 are shown
as three plots in Fig. 2. In each plot, the horizontal axis represents eigenvalues, and it is divided
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vacuum

L = 50Δ

Δ = 2 nm

z⊙

y

x

λ₀ = 1550 nm

Fig. 1. A 2D square domain filled with vacuum (ε = ε0) for which the eigenvalue dis-
tribution of T is calculated numerically fors = 0,−1,+1. The domain is homogeneous
in thez-direction, whereas itsx- andy-boundaries are subject to periodic boundary condi-
tions. The square domain is discretized on a finite-difference grid with cell size∆ = 2nm.
The domain is composed of 50×50 grid cells, which lead to 7500 eigenvalues in total. A
vacuum wavelengthλ0 = 1550nm, which puts the system in the low-frequency regime, is
assumed for the electric current source to be used in Sec. 3.

 0
 200
 400
 600
 800

-2 -1  0  1  2
λ

 2400
 2600
count

(a) s = 0

-2 -1  0  1  2
λ

-2 -1  0  1  2
λ

(b) s =−1

-2 -1  0  1  2
λ

-2 -1  0  1  2
λ

(c) s =+1

Fig. 2. The eigenvalue distribution ofA discretized fromT for (a)s = 0, (b)s =−1, and (c)
s =+1 for the vacuum-filled domain illustrated in Fig. 1. All 7500 eigenvaluesλ of A are
calculated for eachs and categorized into 41 intervals in the horizontal axis that represents
the range of the eigenvalues; the unit of the horizontal axis is nm−2. The height of the
column on each interval represents the number of the eigenvalues in the interval. In (b) and
(c), the black dots indicate the eigenvalue distribution fors = 0 shown in (a). The vertical
axes are broken due to the extremely tall column atλ ≃ 0 in (a). The local maxima at
λ =±1nm−2 are the Van Hove singularities [30] arising from the lattice structure imposed
by the finite-difference grid.

into 41 intervalst−20, . . . , t0, . . . , t20 wheret0 ∋ 0. The height of the column on each interval
corresponds to the number of the eigenvalues in the interval.

The eigenvalue distributions ofA shown in Fig. 2 agree well with the description of the
eigenvalues ofT0 in Table 1: the very tall column ont0 in Fig. 2(a) indicates the very high
multiplicity of λ ≃ 0 for s = 0, and the eigenvalues distributed overt j<0 andt j>0 in Fig. 2(c)
indicate a strongly indefinite operator fors = +1. In addition, the height of the column ont0
in Fig. 2(a) is about 2500, or one third of the total number of eigenvalues, which agrees with
Eq. (14) fors = 0 where one of the three eigenvalues is 0 for eachk; the columns ont j>0 are
about 1.5 times taller in Fig. 2(b) than in Fig. 2(a), which also agrees with Eq. (14) where the
number of|k|2 increases from two fors = 0 to three fors =−1.

We end the section by providing a quantitative definition of the low-frequency regime. Sup-
pose thatA0 is the matrix discretized fromT0 of Eq. (10). Fors = 0, the eigenvalues ofA0 range
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from 0 to 8/∆2
min, where∆min is the minimum grid cell size [31]; note that the range agrees

with Fig. 2(a). The eigenvalue distribution ofA is the shifted eigenvalue distribution ofA0 by
−ω2µ0ε. The low-frequency regime is where the magnitude of the shift is so small thatA has an
almost identical eigenvalue distribution asA0. Therefore, the condition for the low-frequency
regime is

ω2µ0|ε| ≪ 8/∆2
min. (15)

Equation (15) is consistent with the condition introduced in [10], but here we provide a condi-
tion that is based on a more accurate estimate of the maximum eigenvalue ofA0. We can rewrite
Eq. (15) in terms of the vacuum wavelengthλ0 as

λ0/∆min ≫ π
√

|εr|/2, (16)

whereεr = ε/ε0 is the relative electric permittivity. The system described in Fig. 1 satisfies
Eq. (16), so it is in the low-frequency regime.

3. Impact of the eigenvalue distribution on the convergence behavior of GMRES

In this section, we explain how the different eigenvalue distributions for different values ofs
examined in Sec. 2 influence the convergence behavior of an iterative method to solve Eq. (8).

For each ofs = −1,0,+1, we discretize Eq. (8) using the FDFD method for the system
illustrated in Fig. 1 with anx-polarized electric dipole current source placed at the center of the
simulation domain. We then solve the discretized equation by an iterative method to observe
the convergence behavior. The iterative method to use in this section is the general minimal
residual (GMRES) method [33], which is one of the Krylov subspace methods [5]. We use
GMRES without restart because the system is sufficiently small.

Like other iterative methods, GMRES generates an approximate solutionxm of Ax = b at the
mth iteration step. Asm increases,xm eventually converges to the exact solution. We assume
that convergence is achieved when the residual vector

rm = b−Axm (17)

satisfies‖rm‖/‖b‖< τ, where‖·‖ is the 2-norm andτ is a user-defined small positive number.
In practice,τ = 10−6 is sufficiently small for accurate solutions. We usex0 = 0 as an initial
guess solution throughout the paper.

Figure 3 shows‖rm‖/‖b‖ versus the numberm of iteration steps for the three values ofs. As
can be seen in the figure, the convergence behavior of GMRES is quite different for differents,
with s =−1 far more superior than the other two choices ofs.

The overall trend of the convergence behavior shown in Fig. 3 is consistent with the mathe-
matical theories of iterative methods. For example, the convergence stagnates initially fors = 0,
and according to [21] this is typical behavior of GMRES for a matrix with many eigenvalues
close to 0 such as ourA for s = 0 (see Fig. 2(a)). Also, the convergence is very slow fors =+1,
and Ref. [23] argues that in general the Krylov subspace methods converge much more slowly
for indefinite matrices such as ourA for s = +1 (see Fig. 2(c)) than for definite matrices. In
this section we provide a more intuitive explanation for the convergence behavior by using the
residual polynomial.

We first review the residual polynomial of GMRES briefly. Suppose thatPm is the set of all
polynomials ˜pm of degree at mostm such that

p̃m(0) = 1. (18)

For each ˜pm ∈ Pm, we can define a column vector

r̃m ≡ p̃m(A)r0. (19)
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‖rm‖
‖b‖

Fig. 3. Convergence behavior of GMRES for the vacuum-filled domain illustrated in Fig. 1.
Three systems of linear equations discretized from Eq. (8) fors = 0,−1,+1 are solved
by GMRES. In the iteration process of GMRES for eachs, we plot the relative residual
norm ‖rm‖/‖b‖ at each iteration stepm. Notice that fors = 0 the relative residual norm
stagnates initially; fors =−1 it stagnates aroundm = 100; fors =+1 it does not stagnate,
but decreases very slowly. The upper and lower “X” marks on the vertical axis indicate
the values around which our theory expects‖rm‖/‖b‖ to stagnate fors = 0 ands = −1,
respectively.

At the mth iteration step of GMRES, the residual vectorrm of Eq. (17) is the ˜rm with the
smallest 2-norm [5]. We refer to the ˜pm for r̃m = rm as the residual polynomialpm. Therefore,
from Eq. (19) we have

rm = pm(A)r0. (20)

Below, we show how the eigenvalue distribution ofA influencespm at each iteration step and
hence influences the convergence behavior of GMRES. The matrixA ∈ Cn×n for our homo-
geneous system described in Fig. 1 is Hermitian because it is discretized from the Hermitian
operatorT of Eq. (8). Hence, the eigendecomposition ofA is

A =VΛV †, (21)

where

Λ =







λ1
. . .

λn






, V =

[

v1 · · · vn
]

(22)

with real eigenvaluesλi and the corresponding normalized eigenvectorsvi, andV † is the con-
jugate transpose ofV ; note thatV is unitary, i.e.,V †V = I. Substituting Eq. (21) in Eq. (19), we
obtain

r̃m =V p̃m(Λ)V †r0 (23)

because(VΛV †)k =VΛkV † for any nonnegative integerk. We then define a column vector

z̃m ≡V †(r̃m/‖b‖), (24)

whoseith element, which is referred to as ˜zmi below, is the projection of ˜rm/‖b‖ onto the
direction of theith eigenvectorvi. Similarly, we also define

zm ≡V †(rm/‖b‖). (25)
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Fig. 4. Initial evolution ofrm/‖b‖ for s =−1. Relative residual vectorsrm/‖b‖ are visual-
ized at three iteration stepsm = 0,2,4. In each plot, the column on each interval represents
the norm ofrm/‖b‖ projected onto the sum of the eigenspaces of the eigenvalues contained
in the interval. Notice that all the columns almost vanish only after four iteration steps. In
the plots form = 2 andm = 4, the residual polynomialspm are also plotted as solid curves;
note that they always satisfy the condition (18).

From Eq. (25) form = 0 and Eqs. (23) and (24), we obtain

z̃m = p̃m(Λ)z0 =







p̃m(λ1)
. . .

p̃m(λn)






z0, (26)

which can be written element-by-element as

z̃mi = p̃m(λi)z0i. (27)

Because‖z̃m‖= ‖r̃m‖/‖b‖, GMRES minimizes‖z̃m‖ to ‖zm‖ when it minimizes‖r̃m‖ to ‖rm‖
at themth iteration step.

According to Eq. (27),|z̃mi| is minimized to 0 when ˜pm hasλi as a root. Thus, the most
ideal p̃m has all then eigenvalues ofA as its roots, because it reduces‖z̃m‖ to 0. However, ˜pm

has at mostm roots, andm, which is the number of iteration steps, is typically far less thann.
Therefore, ˜pm needs to have its roots optimally placed near the eigenvalues to minimize‖z̃m‖.
Hence, the eigenvalue distribution ofA greatly influences the convergence behavior of GMRES.

We now seek to understand the convergence behavior of GMRES for the different choices
of s. We begin withs = −1. In Fig. 4 we plotrm/‖b‖ for s = −1 as bar graphs at the first few
iteration steps. The horizontal axis in each plot represents eigenvalues. We divide the range of
eigenvalues into the same 41 intervalst−20, . . . , t0, . . . , t20 used in Fig. 2; note thatt0 ∋ 0. The
height of the column on each interval is the norm of the projection ofrm/‖b‖ onto the space
spanned by the eigenvectors whose corresponding eigenvalues are contained in the interval.
More specifically, the height of the column ont j afterm iteration steps is

hm j =
[

∑λi∈t j
z2

mi

]1/2
. (28)

Note that[∑ j h2
m j]

1/2 = ‖rm‖/‖b‖, and thus the sum of the squares of the column heights is a
direct measure of convergence.

A few properties ofrm/‖b‖ for s =−1 shown in Fig. 4 are readily predicted from the corre-
sponding eigenvalue distribution of the matrixA presented in Fig. 2(b). For instance,A has no
eigenvalues int j<0, and thereforerm/‖b‖ has components only int j≥0 throughout the iteration
process as demonstrated in Fig. 4. Also,A has very few eigenvalues int0, and thusr0/‖b‖ has
a very weak component int0 as can be seen in them = 0 plot in Fig. 4.

Now, we relaterm/‖b‖ with the residual polynomial to explain the convergence behavior
of GMRES fors = −1. The residual polynomialpm(λ ), which is obtained by solving a least
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Fig. 5. Initial evolution ofrm/‖b‖ for s= 0. Relative residual vectorsrm/‖b‖ are visualized
at three iteration stepsm = 0,2,4. In each plot, the column on each interval represents the
norm ofrm/‖b‖ projected onto the sum of the eigenspaces of the eigenvalues contained in
the interval. Notice that most columns almost vanish only after four iteration steps, except
for the very persistent column atλ ≃ 0. In the plots form = 2 andm = 4, the residual
polynomialspm are also plotted as solid curves; note that they always satisfy the condition
(18).

squares problem, is also plotted in Fig. 4 at each iteration step. As the iteration proceeds, the
residual polynomial in Fig. 4 has more and more roots, but only int j≥0, because the eigenvalues
exist only int j≥0 and the roots of residual polynomials should stay close to the eigenvalues as
mentioned in the discussion following Eq. (27). Also, as Eq. (27) predicts, the columns in each
plot of Fig. 4 almost vanish at the roots of the residual polynomial. Therefore, all the columns
quickly shrink as the number of the roots of the residual polynomial increases in the iteration
process of GMRES. The fast reduction of the column heights provides visualization of the fast
convergence of GMRES fors =−1 shown in Fig. 3.

Next, we examine the convergence behavior fors = 0. Figure 5 showsrm/‖b‖ for s = 0
at the first few iteration steps. Note thatr0/‖b‖ has a tall column ont0 becauseA has many
eigenvalues int0 as shown in Fig. 2(a). Also, the tall column ont0 persists during the initial
period of the iteration process.

To explain the above convergence behavior fors = 0, we show that for a nearly positive-
definite matrix the column ont0 is persistent during the initial period of the iteration process
of GMRES in general. For that purpose, we compare the three polynomials ˜pm ∈ Pm shown
in Fig. 6. The three ˜pm are chosen as candidates for the residual polynomialpm for a nearly
positive-definite matrix, and therefore the roots of the polynomials are placed int j≥0 according
to the discussion following Eq. (27). The three ˜pm have the same roots except for their smallest
roots: p̃m in Fig. 6(a) does not have its smallest root int0, whereas ˜pm in Figs. 6(b) and 6(c)
do. Note that the latter two ˜pm can shrink the column ont0 more effectively than the first ˜pm

according to Eq. (27).
However, the slopes at the roots of the latter two ˜pm are steeper than the slopes at the corre-

sponding roots of the first ˜pm as shown in Fig. 6. In Appendix B, we prove rigorously that the
slopes of ˜pm at all roots indeed increase as the smallest root decreases in magnitude. In gen-
eral, p̃m with steeper slopes at the roots oscillates with larger amplitudes around the horizontal
axis because it varies faster around the axis; compare the amplitudes of oscillation in Fig. 6(a)
with those in Figs. 6(b) and 6(c). The increased amplitudes of oscillation amplify|z̃mi| overall
according to Eq. (27), and thus‖z̃m‖ as well.

In other words, shrinking the column ont0 (by placing the smallest root of ˜pm in t0) is
achieved only at the penalty of amplifying the columns ont j>0. This penalty is too heavy when
the columns ont j>0 constitute a considerable portion of‖z̃m‖. Therefore, roots of residual
polynomials are not placed int0 until the columns ont j>0 become quite small, which results in
the persistence of the column ont0 during the initial period of the iteration process.

Because the height of the column ont0 remains almost the same at the initial iteration steps
of GMRES,h00 of Eq. (28), which is the initial height of this column, provides an approximate
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Fig. 6. Impact of the magnitude of the smallest root of a polynomial ˜pm ∈ Pm on the
oscillation amplitudes of ˜pm. Three ˜pm of degree 6 are shown. In each figure, a solid line
represents a polynomial; an open dot on the horizontal axis indicates the smallest root; solid
dots indicate the other roots; dashed lines show the slopes of the polynomial at the roots.
The three polynomials have the same roots except for their smallest roots: the smallest root
in (a) becomes smaller positive and negative roots in (b) and (c), respectively. Notice that
the slopes at all roots in (a) become steeper in (b) and (c) as the smallest root decreases in
magnitude, and as a result the amplitudes of oscillation of ˜pm around the horizontal axis
increase.

lower bound of‖zm‖ = ‖rm‖/‖b‖ during the initial period of the iteration process. A more
accurate lower bound is calculated as the norm ofr0/‖b‖ projected onto the eigenspace of the
eigenvalue closest to 0. For our example system, fors = 0 the calculated lower bound is 0.707.
Note that‖rm‖/‖b‖ for s = 0 indeed stagnates initially at this value in Fig. 3. Fors = −1 the
calculated lower bound is 4.16×10−7, at which‖rm‖/‖b‖ also stagnates as shown in Fig. 3.
However, this value is much smaller than the lower bound fors = 0, because fors = −1 the
initial height of the column ont0 is almost negligible as shown in them = 0 plot in Fig. 4. In
fact, the value is smaller than the conventional toleranceτ = 10−6 mentioned below Eq. (17),
so the stagnation does not deteriorate the convergence speed fors =−1.

Lastly, we examine the convergence behavior fors =+1. Figure 7 showsrm/‖b‖ for s =+1
at some first (m = 0,4,7,11) and later (m = 120,140) iteration steps. Because the matrixA
for s = +1 has both positive and negative eigenvalues as indicated in Fig. 2(c),rm/‖b‖ has
components in botht j>0 andt j<0, but in the present example the components ofrm/‖b‖ are
concentrated int j<0 initially (m = 0 plot in Fig. 7). Thus GMRES begins with the roots of
residual polynomials placed int j<0 (m = 4 plot in Fig. 7). However, such residual polynomials
have large values int j>0, so they amplify the initially very small components ofrm/‖b‖ in t j>0

according to Eq. (27), and eventually we reach a point where the components ofrm/‖b‖ in t j>0

andt j<0 become comparable (m = 7 plot in Fig. 7). Afterwards, GMRES places the roots of
residual polynomials in botht j>0 andt j<0 so that the components ofrm/‖b‖ in both regions are
reduced.

We note that the convergence behavior fors = +1 is initially quite similar to that fors =
−1 becauser0/‖b‖ for s = +1 has components concentrated int j<0 and only a very weak
component int0. Therefore,‖rm‖/‖b‖ reduces quickly fors = +1 without stagnation during
the initial period of the iteration process as shown in Fig. 3.

During the later period of the iteration process, however, the reduction of‖rm‖/‖b‖ for s =
+1 slows down significantly, and eventuallys =+1 produces the slowest convergence among
the three values ofs as shown in Fig. 3. The slow reduction of‖rm‖/‖b‖ is due to the very
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Fig. 7. Evolution ofrm/‖b‖ for s =+1. Relative residual vectorsrm/‖b‖ are visualized at
iteration stepsm = 0,4,7 in the first row and atm = 11,120,140 in the second row. In each
plot, the column on each interval represents the norm ofrm/‖b‖ projected onto the sum of
the eigenspaces of the eigenvalues contained in the interval. The vertical scale of the plot
is magnified as the iteration proceeds. Notice that the column atλ ≃ 0 is very persistent
during the later period of the iteration process (m = 120,140). In the plots form = 4,7,11,
the residual polynomialspm are also plotted as solid curves; the residual polynomials are
not plotted form = 100 andm = 120 because they have too many roots.

persistent column ont0: comparing the plots form = 120 andm = 140 in Fig. 7 shows that the
column barely reduces for 20 iteration steps.

We have shown earlier that the column ont0 is quite persistent for a nearly positive-definite
matrix. The argument relied on the properties proved in Appendix B about a polynomial ˜pm ∈
Pm with only positive roots. We can easily extend the proof in the appendix to ˜pm with both
positive and negative roots, and then show that the column ont0 is persistent also for a strongly
indefinite matrix, which explains the slow convergence fors = +1 described above. However,
the explanation is insufficient to explain why the convergence ismuch slower fors = +1 than
for s = 0 as indicated in Fig. 3.

Here, we show that the column ont0 is in fact even more persistent for a strongly indefinite
matrix than for a nearly positive-definite matrix. For that purpose, we compare the two poly-
nomials ˜pm ∈ Pm shown in Fig. 8. As can be seen from the locations of their roots, they are
candidates for the residual polynomials for different matrices: ˜pm shown in Fig. 8(a) is appro-
priate for a nearly positive-definite matrix (referred to asAdef below), and ˜pm shown in Fig. 8(b)
is appropriate for a strongly indefinite matrix (referred to asAind below). Moreover, we choose
these two ˜pm to have the same smallest-magnitude rootζ0 in t0. Being elements ofPm, bothp̃m

satisfy Eq. (18). Hence, we have|p̃ ′
m(ζ0)| ≃ 1/|ζ0| for both p̃m, where ˜p ′

m is the first derivative
of p̃m.

Now, we note that|p̃ ′
m| evaluated at a root of ˜pm tends to decrease as the root gets closer to

the median of the roots; see Appendix C for a more rigorous explanation. Hence,|p̃ ′
m| ≤ 1/|ζ0|

tends to hold at most roots of ˜pm for Adef, becauseζ0 is one of the farthest roots from the median
of the roots. On the other hand,|p̃ ′

m| ≥ 1/|ζ0| tends to hold at most roots of ˜pm for Aind, because
ζ0 is one of the closest roots to the median of the roots. Therefore, ˜pm for Aind has much steeper
slopes at most roots than ˜pm for Adef in general, and thus has larger amplitudes of oscillation
around the horizontal axis, as demonstrated in Fig. 8.

Combined with Eq. (27), the above argument shows that shrinking the column ont0 (by
placing the smallest-magnitude root of ˜pm in t0) increases‖zm‖ much more for a strongly in-
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Fig. 8. Candidates for the residual polynomials for (a) a nearly positive-definite matrix and
(b) strongly indefinite matrix. In each figure, a solid line represents a polynomial ˜pm ∈
Pm; an open dot on the horizontal axis indicates the smallest-magnitude root; solid dots
indicate the other roots; dashed lines show the slopes of the polynomial at the roots. The
two polynomials have the same smallest-magnitude rootζ0, and thus have approximately
the same slope−1/ζ0 at their smallest-magnitude roots. Note that for both ˜pm the slopes
get steeper at the roots further away from the median of the roots. Hence, the slopes of most
dashed lines are gentler than 1/|ζ0| in (a) and steeper than 1/|ζ0| in (b). As a result, ˜pm in
(b) has larger amplitudes of oscillation around the horizontal axis than ˜pm in (a).

definite matrix than for a nearly positive-definite matrix. Therefore, the column ont0 should be
much more persistent for a strongly indefinite matrix than for a nearly positive-definite matrix
in general, which explains the much slower convergence fors =+1 than fors = 0 in Fig. 3.

In summary of this section, we have shown thats = −1 produces the most superior con-
vergence behavior;s = 0 induces stagnation during the initial period of the iteration process
due to the high multiplicity of eigenvalues near zero;s = +1 leads to the slowest convergence
overall due to the strongly indefinite matrix. We have provided a graphical explanation of the
difference in the convergence behavior of GMRES, for which a strong theoretical basis exists,
using a simple system of a homogeneous dielectric medium.

The arguments provided in this section can be easily extended to show thats =−1 is indeed
optimal among all values in general. Compared with the case ofs =−1, according to Eq. (14),
for s > 0 A is always more strongly indefinite and therefore the convergence should be slower;
for −1< s < 0 A has more eigenvalues clustered near zero and thus the initial stagnation period
should be longer; fors <−1 A has a wider eigenvalue value range, so the condition number of
A should be larger and the convergence should be slower [23]. In other words,s = −1 is the
value that leavesA nearly positive-definite while removing the eigenvalues clustered near zero
sufficiently without increasing the condition number. With separate numerical experiments we
have verified thats =−1 is indeed superior to values other thans = 0 ands =+1 as well.

In the next section we will see that the difference in the convergence behavior for different
choices ofs is in fact quite general in practical situations.

4. Convergence behavior of QMR for 3D inhomogeneous systems

In this section, we solve Eq. (7) for 3D inhomogeneous systems of practical interest by an itera-
tive method, and demonstrate thats=−1 still induces faster convergence thans= 0 ands=+1.
We note that the systems examined in this section are inhomogeneous and have complexε in
general. The analyses in Secs. 2 and 3, therefore, do not hold strictly here. Nevertheless, we
will see that the analyses for the homogeneous system in the previous sections provide insight
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Fig. 9. Three inhomogeneous systems for which Eq. (7) is solved fors = −1,0,+1 by
QMR: (a) a slot waveguide bend formed in a thin silver film (Slot), (b) a straight silicon
waveguide (Diel), and (c) an array of gold pillars (Array). The figures in the first row
describe the three systems. The directions of wave propagation are shown by red arrows,
beside which the vacuum wavelengths used are indicated. For all three systems, the waves
are excited by electric current sourcesJ strictly inside the simulation domain. The plots in
the second row show the convergence behavior of QMR. Note that for all three systems
QMR converges fastest fors = −1, whereas it barely converges fors = +1. The relative
electric permittivities of the materials used in these systems areεsilver

r =−129− i3.28 [34],

εsilica
r = 2.085 [35],εsilicon

r = 12.09 [35], andεgold
r =−10.78− i0.79 [36], respectively.

Table 2. Specification of the finite-difference grids used for the three systems in Fig. 9. Slot
uses a nonuniform grid with smoothly varying grid cell size. The matrixA has 3NxNyNz

rows and columns, where the extra factor 3 accounts for the three Cartesian components of
theE-field.

Slot Diel Array
Nx,Ny,Nz 192,192,240 220,220,320 220,220,130
∆x,∆y,∆z 2∼ 20nm 10nm 5,5,20nm

in understanding the convergence behavior for more general systems examined in this section.
The three 3D inhomogeneous systems we consider are illustrated in the first row of Fig. 9.

To prevent reflection of EM waves from boundaries, we enclose each system by the stretched-
coordinate perfectly matched layer (SC-PML), because SC-PML produces a much better-
conditioned matrix than the more commonly used uniaxial PML (UPML) [32]. For each system,
we construct three systems of linear equationsAx = b corresponding tos = −1,0,+1 by the
FDFD method. The number of the grid cellsNx, Ny, andNz and the grid cell sizes∆x, ∆y, and
∆z of the finite-difference grid used to discretize each system are shown in Table 2. Considering
the parameters summarized in Table 3 and the condition (16), all the three systems are in the
low-frequency regime.

The constructed systems of linear equations are solved by the quasi-minimal residual (QMR)
method [37], which is another Krylov subspace method. GMRES that was used in Sec. 3 to
solve a 2D problem is not suitable for 3D problems here because it requires too much memory
[5].

The second row of Fig. 9 shows the convergence behavior of QMR for the three systems.
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Table 3. Parameters used in Eq. (16) for the three systems in Fig. 9. When substituted in
Eq. (16), these parameters prove that all the three systems are in the low-frequency regime.

Slot Diel Array
λ0 1550nm 1550nm 632.8nm

∆min 2nm 10nm 5nm
max|εr| 129.0 12.09 10.81

Note that for all three systems the choice ofs =−1 results in the fastest convergence, and the
choice ofs = +1 barely leads to convergence. The three systems shown in Fig. 9 are chosen
deliberately to include different materials such as dielectrics and metals and geometries with
different degrees of complexity. Therefore, Fig. 9 suggests that the superiority ofs = −1 over
boths = 0 ands =+1 is quite general.

Even though both the iterative method and the systems in this section are significantly differ-
ent from those in the previous section, the convergence behaviors are very similar. We explain
the resemblance as follows.

The matrix for an inhomogeneous system is actually not much different from that for a
homogenous system in many cases. Indeed, most inhomogeneous systems consist of several
homogeneous subdomains. Inside each homogeneous subdomain of such an inhomogeneous
system, the differential operator in Eq. (7) for the inhomogeneous system is the same as the
differential operator (9) for a homogeneous system, whereas at the interfaces between the sub-
domains it is not. Nevertheless, the number of finite-difference grid points assigned at the in-
terfaces is usually much smaller than that of the grid points assigned inside the homogeneous
subdomains. Therefore most rows of the matrix for the inhomogeneous system should be the
same as those for a homogeneous system discretized on the same grid.

In addition, the differential operator (9) for a homogeneous system is nearly Hermitian in the
low-frequency regime even ifε is complex, because it is approximated well by the Hermitian
operator (10).

Hence, the matrix for an inhomogeneous system is actually quite similar to the nearly Her-
mitian matrix for a homogeneous system. Because QMR reduces to GMRES for Hermitian
matrices in exact arithmetic [38], it is reasonable that the convergence behavior of QMR for an
inhomogeneous system is similar to that of GMRES for a homogeneous system.

The matrix for an inhomogeneous system deviates more from that for a homogeneous sys-
tem as the number of homogeneous subdomains increases, because then the number of grid
points assigned at the interfaces between homogeneous subdomains increases. Therefore, we
can expect that the convergence behavior for an inhomogeneous system would deviate from
that for a homogeneous system as the number of homogeneous subdomains increases. Such
deviation is demonstrated in Fig. 9(c), where the system has many metallic pillars; note that the
convergence behavior fors =−1 is no longer very different from that fors = 0 in this case.

5. Conclusion and final remarks

We have introduced a new method to accelerate the convergence of iterative solvers of the
frequency-domain Maxwell’s equations in the low-frequency regime. The method solves a new
equation that is modified from the original Maxwell’s equations using the continuity equation.

The operator of the newly formulated equation does not have the high multiplicity of near-
zero eigenvalues that makes the convergence stagnate for the original operator. At the same
time, the new operator is nearly positive-definite, so it avoids the long-term slow convergence
that indefinite operators suffer from.

In this paper, we have considered only nonmagnetic materials (µ = µ0). For magnetic mate-

#194688 - $15.00 USD Received 26 Jul 2013; revised 8 Sep 2013; accepted 9 Sep 2013; published 18 Sep 2013
(C) 2013 OSA 23 September 2013 | Vol. 21,  No. 19 | DOI:10.1364/OE.21.022578 | OPTICS EXPRESS  22592



rials (µ 6= µ0), we note that a similar equation

∇× µ−1∇×E+ s∇
[

(µε)−1∇ · (εE)
]

−ω2εE =−iωJ+ s
i
ω

∇
[

(µε)−1∇ ·J
]

, (29)

which can also be formulated from Maxwell’s equations and the continuity equation, can be
used instead of Eq. (7) to accelerate the convergence of iterative methods. We leave the dis-
cussion on the optimal value ofs in this equation for future work.

Because our method achieves accelerated convergence by formulating a new equation, it
can be easily combined with other acceleration techniques such as preconditioning and better
iterative methods.

Appendix A: Eigenvalues and eigenfunctions of∇× (∇× ) and ∇(∇· )

Using thek-space representations of the operators, in this section we derive the eigenvalues
Eq. (12) of∇×(∇× ) and Eq. (13) of∇(∇· ) as well as their corresponding eigenfunctions.

Because both∇ × (∇× ) and∇(∇· ) are translationally invariant, their eigenfunctions
have the form [39]

F = Fke−ik·r , (30)

wherer represents position,k = x̂kx + ŷky + ẑkz is a real constant wavevector, andFk = x̂Fx
k +

ŷFy
k + ẑF z

k is ak-dependent vector.
We reformulate the eigenvalue equations∇× (∇×F) = λF and∇(∇ ·F) = λF by substitut-

ing Eq. (30) forF. Then, the eigenvalue equation for∇× (∇× ) is





k2
y + k2

z −kxky −kxkz

−kykx k2
z + k2

x −kykz

−kzkx −kzky k2
x + k2

y









Fx
k

Fy
k

F z
k



= λ





Fx
k

Fy
k

F z
k



 , (31)

and the eigenvalue equation for∇(∇· ) is

−





k2
x kxky kxkz

kykx k2
y kykz

kzkx kzky k2
z









Fx
k

Fy
k

Fz
k



= λ





Fx
k

Fy
k

F z
k



 . (32)

By solving Eqs. (31) and (32) for a givenk, we obtain

λ = 0, |k|2, |k|2, (33)

which is Eq. (12), as the eigenvalues of∇× (∇× ), and

λ =−|k|2, 0, 0, (34)

which is Eq. (13), as the eigenvalues of∇(∇· ), and Eq. (30) with

Fk =





kx

ky

kz



 ,





kz

0
−kx



 ,





−ky

kx

0



 (35)

as the eigenfunctions corresponding to both Eqs. (33) and (34).
We note from Eqs. (33) and (34) that∇×(∇× ) and∇(∇· ) are positive-semidefinite and

negative-semidefinite, respectively.
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Appendix B: Effect of the smallest root of p̃m ∈ Pm on the slopes at the roots

In this section, we show that the slopes at the roots of a polynomial ˜pm ∈ Pm with all positive
roots become steeper when the smallest root decreases in magnitude. This behavior is illustrated
in Fig. 6.

Sincep̃m ∈ Pm satisfies the condition (18), it can be factored as

p̃m(ζ ) =
dm

∏
i=1

(

1−
ζ
ζi

)

, (36)

wheredm ≤ m is the degree of ˜pm andζi’s are the roots of ˜pm. Hence, the slope of ˜pm at a root
ζk is

p̃ ′
m(ζk) =−

1
ζk

∏
i6=k

(

1−
ζk

ζi

)

. (37)

Now, suppose that 0< ζ1 < · · ·< ζdm . We can easily show that|p̃ ′
m(ζk)| increases for anyk

whenζ1 decreases toward zero (while remaining positive) as follows. Fork = 1, we have

∣

∣ p̃ ′
m(ζ1)

∣

∣=
1
ζ1

(

1−
ζ1

ζ2

)

· · ·

(

1−
ζ1

ζdm

)

, (38)

which clearly increases asζ1 decreases to 0. Fork > 1, we have

∣

∣ p̃ ′
m(ζk)

∣

∣=

(

ζk

ζ1
−1

)

[

1
ζk

∏
i6=1,k

∣

∣

∣

∣

1−
ζk

ζi

∣

∣

∣

∣

]

, (39)

where the parentheses enclose the only quantity that is dependent onζ1. We can therefore see
that |p̃ ′

m(ζk)| increases asζ1 decreases fork > 1 as well. Therefore, for a given ˜pm ∈ Pm

whose roots are all positive, the slopes of ˜pm at the roots become steeper if the smallest root
decreases in magnitude while remaining positive. This situation is illustrated by the transition
from Fig. 6(a) to Fig. 6(b).

The slopes at the roots also become steeper when the originally positiveζ1 is replaced by
a negative value, as long as the negative value is smaller in magnitude than the originalζ1.
Replacing the originally positiveζ1 with a negative quantity that is smaller in magnitude is
equivalent to first replacingζ1 with a smaller positive value and then flipping its sign. Because
we have already shown above that the slopes get steeper when the originally positiveζ1 is
replaced by a smaller positive value, it is sufficient to show that flipping the sign ofζ1 makes
the slopes even steeper. For a negativeζ1, the slopes at the roots are

∣

∣ p̃ ′
m(ζ1)

∣

∣=
1
|ζ1|

(

1+
|ζ1|

ζ2

)

· · ·

(

1+
|ζ1|

ζdm

)

(40)

and
∣

∣ p̃ ′
m(ζk)

∣

∣=

(

ζk

|ζ1|
+1

)

[

1
ζk

∏
i6=1,k

∣

∣

∣

∣

1−
ζk

ζi

∣

∣

∣

∣

]

(41)

for k > 1. These slopes are steeper than Eqs. (38) and (39), respectively, which are the slopes
for a positiveζ1 with the same magnitude. Therefore, for a given ˜pm ∈ Pm whose roots are
all positive, the slopes of ˜pm at the roots become steeper if the smallest root is replaced by the
one that is smaller in magnitude but negative. This situation is illustrated by the transition from
Fig. 6(a) to Fig. 6(c).
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Appendix C: Trend in the slopes of a polynomial at the roots

In this section, we consider a polynomialp with all real roots, and show that the slope ofp
evaluated at a root closer to the median of the roots tends to be gentler than the slope evaluated
at a root farther away from the median of the roots. This behavior is illustrated in Fig. 8.

Consider a polynomial of degreem,

p(ζ ) = α
m

∏
i=1

(ζ − ζi), (42)

with ζ1 < · · ·< ζm. The slope ofp at a rootζk is

p′(ζk) = α ∏
i6=k

(ζk − ζi). (43)

Now, we evaluate|p′(ζk+1)|/|p′(ζk)|. We first consider the case where the roots are evenly
spaced, i.e.,ζi+1− ζi = (const.), for which we have

|p′(ζk+1)|

|p′(ζk)|
=

k! (m− k−1)!
(k−1)! (m− k)!

=
k

m− k
. (44)

Equation (44) is an increasing function ofk for 1≤ k ≤ m−1, and it is less than 1 fork < m/2
and greater than 1 fork>m/2. Therefore,|p′(ζk)| is largest fork =1 andk=m, and it decreases
ask becomes closer tok = ⌊(m+1)/2⌋ andk = ⌈(m+1)/2⌉, which are the medians of the
indices. In other words, forp with evenly spaced roots, the slopes ofp get gentler at the roots
closer to the median of the roots.

It is reasonable to expect that the above trend in the slopes also holds forp with unevenly
spaced roots, unless the unevenness is too severe. To verify the expectation, we examine
|p′(ζk+1)|/|p′(ζk)| without assumingζi+1− ζi = (const.):

|p′(ζk+1)|

|p′(ζk)|
=

∏i6=k+1 |ζk+1− ζi|

∏i6=k |ζk − ζi|
= ∏

i6=k,k+1

|ζk+1− ζi|

|ζk − ζi|
=

k−1

∏
i=1

(

ζk+1− ζi

ζk − ζi

) m

∏
i=k+2

(

ζi − ζk+1

ζi − ζk

)

=

[

k−1

∏
i=1

(

1+
ζk+1− ζk

ζk − ζi

)

][

m

∏
i=k+2

(

1−
ζk+1− ζk

ζi − ζk

)

]

. (45)

Here, the factors within the first (second) brackets are always greater (less) than 1, so
the number of factors greater (less) than 1 increases (decreases) for increasingk. Hence,
|p′(ζk+1)|/|p′(ζk)| tends to be less than 1 for smallerk, and it tends to be greater than 1 for
largerk. This means that ask increases|p′(ζk)| tends to decrease first and then tends to in-
crease. Therefore, even if the roots ofp are unevenly spaced, the slopes ofp tend to get gentler
at the roots closer to the median of the roots.
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