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Abstract:  We introduce a simple method to accelerate the convergence
of iterative solvers of the frequency-domain Maxwell's equations for
deep-subwavelength structures. Using the continuity equation, the method
eliminates the high multiplicity of near-zero eigenvalues of the operator
while leaving the operator nearly positive-definite. The impact of the modi-
fied eigenvalue distribution on the accelerated convergence is explained by
visualizing residual vectors and residual polynomials.
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1. Introduction

To understand electromagnetic (EM) and optical phenomena, it is essential to solve Maxwell's
equations efficiently. In the frequency domain, assuming a time depeneléffcand nonmag-
netic materials, Maxwell's equations reduce to

Ox 0xE— w’lgeE = —iwpod, (1)

wheree is the electric permittivity (which can be compleyl; is the magnetic permeability of
vacuum;w is the angular frequency andJ are the electric field and electric current source
density, respectively.

To solve Eq. (1) numerically, one can use a method such as the finite-difference frequency-
domain (FDFD) method [1-3] or the finite element method (FEM) [4] to construct a large
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system of linear equations
AX=Db, 2)

whereA is a matrix representing the operafir< (Ox ) — w?Log]; X is an unknown column
vector representing; b is a column vector representirg wiipd. The matrixAthus constructed

is sparse (with only 13 nonzero elements per row when generated by the FDFD method) and
typically very large (often with more than 10 million rows and columns for three-dimensional
(3D) problems). To solve a system with such a large and sparse matrix, iterative methods are
usually preferred to direct methods [5].

However, in the “low-frequency regime” where the wavelength is much longer than the
grid cell sizeA, it is well-known that convergence is quite slow when the iterative meth-
ods are directly applied to solve Eg. (1). The low-frequency regime arises, for example, in
nanophotonics [6—8] and geophysics [9-11] where structures have feature sizes that are at deep-
subwavelength scale, and it will be defined more rigorously in Sec. 2. The huge null space of
the operatof] x (Ox ) was shown to be the origin of the slow convergence [10,11], and
several techniques to improve the convergence speed have been developed.

The first class of techniques is based on the Helmholtz decomposition, which decomposes the
E-field asE = W+ ¢, whereW is a divergence-free vector field afds a scalar field [9-15].
Becausdl-W =0, Eq. (1) is written as

—0?Y — w?poe(W+ 0¢) = —iwpod, (3)

where the operatdr] x (Ox ), which has a huge null space, is replaced with the negative
Laplacian—[2, which is positive-definite for appropriate boundary conditions and thus has the
smallest possible null space. However, these techniques either solve an extra equation for the
extra unknowrp at every iteration step [9-12], which can be time-consuming, or increase the
number of the rows and columns of the matrix by about 33% [13-15], which requires more
memory.

The second class of techniques utilizes the charge-free condition

0-(¢E)=0. (4)

The condition (4) holds at every source-free (iJe= 0) position, where Eq. (1) can be modified
to
Ox OxE4s0[0-((6/&)E)] — w?HoeE =0 (5)

for an arbitrary constarg, note that the right-hand side is 0 becadse 0. In this class of
techniques, Egs. (1) and (5) are solved at positions with and without sources, respectively.

Reference [16] applied the above technique vgita +1 to boundary value problems de-
scribed in [17] and achieved accelerated convergence. Such boundary value problems satisfied
J =0 everywhere, so Eq. (5) was solved throughout the entire simulation domain.

However, Ref. [16] did not conduct a detailed comparison of convergence speed between
differentvalues o§. It also did not report whether its technique leads to accelerated convergence
for problems with sources, even though many problems have nonzero electric current §ources
inside the simulation domain. Reference [1] applied the techniqueswith 1 to problems with
sources, but only in order to suppress spurious modes rather than to accelerate convergence.

In this paper, we develop a modification of Eq. (1) that improves convergence speed even
if electric current source3 exist inside the simulation domain [18]. Unlike the previous tech-
nigue that made the modification only at source-free positions, our technique modifies Eq. (1)
everywhere including positions with sources. For the maodification, we utilize the continuity
equation

iwp+0-J=0, or D-(sE):al—)D-J, ©6)
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which can be derived by taking the divergence of Eq. (1). When Eq. (6) is manipulated appro-
priately and then added to Eq. (1), we obtain

OxOxE+sd[e 0 (€E)] — w?HoeE = —iwpio) +s;—)D (10 @)

for a constans. The modified equation (7) is the equation to solve in this paper.

The solutionE-field of Eq. (7) is the same as the solution of the original equation (1) re-
gardless of the value &f because the solution of Eq. (1) always satisfies Eq. (6). However, the
choice ofs affects the convergence speed of iterative methods significantly. In this paper, we
demonstrate that= —1 induces faster convergence speed than other valudsyodomparing
the convergence behavior of iterative methodssfer —1,0, +-1; the latter two values of are
of particular interest, because= 0 reduces Eq. (7) to the original equation (1) and +1 is
the value that Ref. [16] used in Eq. (5), which is similar to Eq. (7).

We also show that the difference in convergence behavior results from the different eigen-
value distributions of the operators for differenThere are many general mathematical studies
about the dependence of the convergence behavior on the eigenvalue distribution [19-26]. Our
aim here is instead to provide an intuitive understanding of the convergence behavior specifi-
cally for the operator of Eq. (7). For this purpose, at each iteration step we visualize the residual
vector and residual polynomial, which are widely used concepts to explain the convergence be-
havior of iterative methods [5] and also defined briefly in Sec. 3. As a result, we find that
convergence speed deteriorates substantiallys fer0 because the operator has eigenvalues
clustered near zero, and fee= +1 because the operator is strongly indefinite.

The rest of this paper is organized as follows. In Sec. 2 we investigate the eigenvalue dis-
tribution of the operator in Eq. (7) fa= 0, —1,+1 for a simple homogeneous system. We also
define the low-frequency regime rigorously in the section. In Sec. 3, we relate the eigenvalue
distribution with the convergence behavior of an iterative method. In Sec. 4, we solve Eq. (7)
for a wide range of realistic 3D problems to compare the convergence behavior of an iterative
method for the three values sfand we conclude in Sec. 5.

2. Eigenvalue distribution of the operator for a homogeneous system

In this section, we consider the operator in Eq. (7) for a homogeneous system and show that
the properties of the eigenvalue distribution of the operator strongly depend on the value of
The impact ofs on the eigenvalue distribution has been studied in detail in the literature of the
deflation method (also known as the penalty method) [27-29]. Here we only highlight those
aspects that are important for the present study.

For a homogeneous system wheris constant, Eq. (7) is simplified to

DxD><E+sD(D~E)—oo2uosE:—iwqu+s&D(D-J), ®)
where the operator

T=0x(0x )+sI(0 )—w?oe ©)

is Hermitian for reak. Because is constant in this section, the eigenvalue distributiofl o
shifted from the eigenvalue distribution of a Hermitian operator

To=0Ox(Ox )+sO(0- ) (10)

by a constant-w?pige. In the low-frequency regime such shift is negligible, and thus the eigen-
value distribution ofTy approximates that of very well. Hence, we examine the eigenvalue
distribution of To below to investigate the eigenvalue distributioriTof
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Table 1. Properties of the eigenvalue distributiong@for differents. Depending on the
sign ofs, Ty has very different eigenvalue distributions in terms of the multiplicity of the
eigenvalue 0 and the definitenessTgf

s=0 s<0 | s>0
multiplicity of A =0 || very high low
definiteness ol positive-semidefinitq indefinite

In Appendix A, we show thaEe K" with

kx kz - ky
F k = ky ) O 9 kX ( 1 1)
kZ - kX 0

are the three eigenfunctions of bdth< (Ox ) andOd(O- ) for each wavevectdt. We also
show in the same appendix that the corresponding three eigenvalues are

A =0, [k |k (12)
forOx (Ox ), and
A=—k[? 0,0 (13)
for J(O- ). Therefore;Tp has
A =—sk? [k [k? (14)

as three eigenvalues for each wavevektor

Equation (14) indicates that the eigenvalue distributiofydé greatly affected by the value
of s. Specifically, the multiplicity of the eigenvalue O depends critically on whesher0 or
not: fors= 0 Tp has a very high multiplicity of the eigenvalue 0 because Eq. (14) has 0 as
an eigenvalue for every, whereas fos £ 0 Tp does not have such a high multiplicity of the
eigenvalue 0. The definiteness Tyf also depends on the value ®ffor s < 0 Ty is positive-
semidefinite because the three eigenvalues in Eq. (14) are always nonnegative, whereas for
s> 0 Tp is indefinite because Eq. (14) has both positive and negative numbers as eigenvalues.
The different properties of the eigenvalue distributionggfor s= 0, s < 0, ands > 0 are
summarized in Table 1.

The above description of the eigenvalue distributiongg$hould approximately hold for
the eigenvalue distributions af as well in the low-frequency regime, as mentioned in the
discussion of Egs. (9) and (10). Moreover, even tholigh a differential operator defined in
an infinite space, it turns out that the description also applies to the ndatfiscretized from
T that is defined in a spatially bounded simulation domain.

To demonstrate, we numerically calculate the eigenvaluésfof a two-dimensional (2D)
system shown in Fig. 1, a square domain filled with vacuum. The domain is discretized on a
finite-difference grid witiNy x Ny = 50 x 50 cells and cell sizA = 2nm. Therefore, the matrix
Aforeachshas 3NN, = 7500 rows and columns, where the extra factor 3 accounts for the three
Cartesian components of tiefield. We choosev corresponding to the vacuum wavelength
Ao = 1550nm, which puts the system in the low-frequency regime as will be seen at the end of
this section. The matricesare constructed for three valuesoD, —1, and+1, each of which
represents each categorysih Table 1.

The distributions of the numerically calculated eigenvalues fofr s= 0, —1,+1 are shown
as three plots in Fig. 2. In each plot, the horizontal axis represents eigenvalues, and it is divided
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______________________

A=2nm
A, = 1550 nm

vacuum

Fig. 1. A 2D square domain filled with vacuuna £ &) for which the eigenvalue dis-
tribution of T is calculated numerically fos = 0,—1,+1. The domain is homogeneous
in the z-direction, whereas it andy-boundaries are subject to periodic boundary condi-
tions. The square domain is discretized on a finite-difference grid with celsiz nm.

The domain is composed of 5050 grid cells, which lead to 7500 eigenvalues in total. A
vacuum wavelengtilg = 1550 nm, which puts the system in the low-frequency regime, is
assumed for the electric current source to be used in Sec. 3.

2600
2400 N 1 ﬁ

800

600

400

ZOOE Lﬂﬂﬁ“ﬁﬂv& E

2 1 0 1 2 2 1
A
(@)s=0 (b)s=-1 (c)s=+1

Fig. 2. The eigenvalue distribution éfdiscretized fronT for (a)s= 0, (b)s= —1, and (c)

s= +1 for the vacuum-filled domain illustrated in Fig. 1. All 7500 eigenvaldesf A are
calculated for eachand categorized into 41 intervals in the horizontal axis that represents
the range of the eigenvalues; the unit of the horizontal axis is2aifihe height of the
column on each interval represents the number of the eigenvalues in the interval. In (b) and
(c), the black dots indicate the eigenvalue distributionsfer0 shown in (a). The vertical

axes are broken due to the extremely tall columi at 0 in (a). The local maxima at

A = +1nm 2 are the Van Hove singularities [30] arising from the lattice structure imposed
by the finite-difference grid.

into 41 intervalst_»,...,to,...,t20 Wheretg > 0. The height of the column on each interval
corresponds to the number of the eigenvalues in the interval.

The eigenvalue distributions & shown in Fig. 2 agree well with the description of the
eigenvalues ofly in Table 1: the very tall column oty in Fig. 2(a) indicates the very high
multiplicity of A ~ 0 for s= 0, and the eigenvalues distributed ovef andtjo in Fig. 2(c)
indicate a strongly indefinite operator fee= +1. In addition, the height of the column &n
in Fig. 2(a) is about 2500, or one third of the total number of eigenvalues, which agrees with
Eq. (14) fors= 0 where one of the three eigenvalues is 0 for dade columns ot~ are
about 15 times taller in Fig. 2(b) than in Fig. 2(a), which also agrees with Eq. (14) where the
number oflk|? increases from two fos= 0 to three fors= —1.

We end the section by providing a quantitative definition of the low-frequency regime. Sup-
pose thaty, is the matrix discretized frofy of Eq. (10). Fois= 0, the eigenvalues &, range
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from O to S/Afnin, wherelAnin is the minimum grid cell size [31]; note that the range agrees
with Fig. 2(a). The eigenvalue distribution &fis the shifted eigenvalue distribution &§ by
—w?Loe. The low-frequency regime is where the magnitude of the shift is so smalk the an
almost identical eigenvalue distribution Ag. Therefore, the condition for the low-frequency
regime is

W’ Hole| < 8/Dfn. (15)
Equation (15) is consistent with the condition introduced in [10], but here we provide a condi-
tion that is based on a more accurate estimate of the maximum eigenvaly&/\éé can rewrite
Eq. (15) in terms of the vacuum wavelengias

Ao/Bmin > 11/ |&r]/2, (16)

whereg, = €/¢& is the relative electric permittivity. The system described in Fig. 1 satisfies
Eq. (16), soitis in the low-frequency regime.

3. Impact of the eigenvalue distribution on the convergence behavior of GMRES

In this section, we explain how the different eigenvalue distributions for different valugs of
examined in Sec. 2 influence the convergence behavior of an iterative method to solve Eq. (8).
For each ofs= —1,0,+1, we discretize Eq. (8) using the FDFD method for the system
illustrated in Fig. 1 with ax-polarized electric dipole current source placed at the center of the
simulation domain. We then solve the discretized equation by an iterative method to observe
the convergence behavior. The iterative method to use in this section is the general minimal
residual (GMRES) method [33], which is one of the Krylov subspace methods [5]. We use
GMRES without restart because the system is sufficiently small.

Like other iterative methods, GMRES generates an approximate sok4tiohAx = b at the
mth iteration step. Asn increasesx, eventually converges to the exact solution. We assume
that convergence is achieved when the residual vector

satisfied|rm||/||b|| < T, where||-|| is the 2-norm and is a user-defined small positive number.
In practice,r = 10~% is sufficiently small for accurate solutions. We uge= 0 as an initial
guess solution throughout the paper.

Figure 3 showdrm||/||b|| versus the numben of iteration steps for the three valuessof\s
can be seen in the figure, the convergence behavior of GMRES is quite different for di§erent
with s= —1 far more superior than the other two choices.of

The overall trend of the convergence behavior shown in Fig. 3 is consistent with the mathe-
matical theories of iterative methods. For example, the convergence stagnates initgHyor
and according to [21] this is typical behavior of GMRES for a matrix with many eigenvalues
close to 0 such as odrfor s= 0 (see Fig. 2(a)). Also, the convergence is very slovsfer+1,
and Ref. [23] argues that in general the Krylov subspace methods converge much more slowly
for indefinite matrices such as oArfor s= +1 (see Fig. 2(c)) than for definite matrices. In
this section we provide a more intuitive explanation for the convergence behavior by using the
residual polynomial.

We first review the residual polynomial of GMRES briefly. Suppose f#atis the set of all
polynomialspr, of degree at mosh such that

Pm(0) = 1. (18)
For eachpy € £, we can define a column vector
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0 100 200 m 300 400 500

Fig. 3. Convergence behavior of GMRES for the vacuum-filled domain illustrated in Fig. 1.
Three systems of linear equations discretized from Eq. (8sfer0,—1,+1 are solved

by GMRES. In the iteration process of GMRES for eachve plot the relative residual
norm |Irm||/||b|| at each iteration stem. Notice that fors = O the relative residual norm
stagnates initially; fos= —1 it stagnates arouna = 100; fors= +1 it does not stagnate,

but decreases very slowly. The upper and lower “X” marks on the vertical axis indicate
the values around which our theory expelfts||/||b|| to stagnate fos = 0 ands= —1,
respectively.

At the mth iteration step of GMRES, the residual vectgy of Eq. (17) is thery with the
smallest 2-norm [5]. We refer to thay, Tor fim = ry @s the residual polynomigky,. Therefore,
from Eqg. (19) we have

rm= pm(A)ro. (20)

Below, we show how the eigenvalue distributionfahfluencespm at each iteration step and
hence influences the convergence behavior of GMRES. The mfai"*" for our homo-
geneous system described in Fig. 1 is Hermitian because it is discretized from the Hermitian
operatofT of Eq. (8). Hence, the eigendecompositiorAaé

A=VAVT, (21)
where
A1
A= , V=[wv1 - vy | (22)
An
with real eigenvalues; and the corresponding normalized eigenvectgrandV' is the con-

jugate transpose &f; note thav is unitary, i.e.VTV = I. Substituting Eq. (21) in Eq. (19), we
obtain

Fm =V Pm(A)V 1o (23)
becauséVAV 1)K =VAkvT for any nonnegative integér We then define a column vector
Zm =V (Fm/|Ib), (24)

whoseith element, which is referred to &g "below, is the projection ofy/||b|| onto the
direction of theth eigenvectoy;. Similarly, we also define

Zm =V (rm/[ID]). (25)
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! m=0 ! m=2 ! m=4
0.5 0.5 0.5
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
A A A

Fig. 4. Initial evolution ofrm/||b|| for s= —1. Relative residual vectors,/||b|| are visual-

ized at three iteration steps= 0, 2,4. In each plot, the column on each interval represents
the norm ofr,/||b|| projected onto the sum of the eigenspaces of the eigenvalues contained
in the interval. Notice that all the columns almost vanish only after four iteration steps. In
the plots form= 2 andm = 4, the residual polynomialgy, are also plotted as solid curves;
note that they always satisfy the condition (18).

From Eqg. (25) fom= 0 and Eqgs. (23) and (24), we obtain

Pm(A1)
Zn = Pm(N\)20 = 2, (26)

which can be written element-by-element as
Zmi = Pm(Ai)Z01- (27)

Becausé|Zy|| = ||Fmll/||bll, GMRES minimizes|Zy|| to ||zm|| when it minimizes|fm|| to ||rm||
at themth iteration step.

According to Eq. (27)|Zyi| is minimized to 0 wherpy, hasA; as a root. Thus, the most
ideal pm has all then eigenvalues oA as its roots, because it redudis|| to 0. Howeverpn
has at mosin roots, andm, which is the number of iteration steps, is typically far less than
Therefore pm needs to have its roots optimally placed near the eigenvalues to minjiéize
Hence, the eigenvalue distribution&fjreatly influences the convergence behavior of GMRES.

We now seek to understand the convergence behavior of GMRES for the different choices
of s. We begin withs= —1. In Fig. 4 we plot,/||b|| for s= —1 as bar graphs at the first few
iteration steps. The horizontal axis in each plot represents eigenvalues. We divide the range of
eigenvalues into the same 41 intervalsy, .. .,to,...,too used in Fig. 2; note thag > 0. The
height of the column on each interval is the norm of the projection@flb|| onto the space
spanned by the eigenvectors whose corresponding eigenvalues are contained in the interval.
More specifically, the height of the column grafterm iteration steps is

} v (28)

himj = {z/\ietj zngnl

Note that[y ; hZ]%/2 = [|rm||/[|b], and thus the sum of the squares of the column heights is a
direct measure of convergence.

A few properties of /||b|| for s= —1 shown in Fig. 4 are readily predicted from the corre-
sponding eigenvalue distribution of the matfiypresented in Fig. 2(b). For instandehas no
eigenvalues it; g, and thereforen,/||b|| has components only if-o throughout the iteration
process as demonstrated in Fig. 4. Aladas very few eigenvalues tg, and thus/||b|| has
a very weak component ig as can be seen in tlme= 0 plot in Fig. 4.

Now, we relatery,/||b|| with the residual polynomial to explain the convergence behavior
of GMRES fors = —1. The residual polynomigm(A), which is obtained by solving a least

#194688 - $15.00 USD Received 26 Jul 2013; revised 8 Sep 2013; accepted 9 Sep 2013; published 18 Sep 2013
(C) 2013 OSA 23 September 2013 | Vol. 21, No. 19 | DOI:10.1364/0OE.21.022578 | OPTICS EXPRESS 22586



m=0 m=2 m=4
- HTWTWHTHW - - Z
0 0 0
2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
A A A

Fig. 5. Initial evolution ofrm/||b|| for s= 0. Relative residual vectorg,/||b|| are visualized

at three iteration steps = 0,2, 4. In each plot, the column on each interval represents the
norm ofry/||b|| projected onto the sum of the eigenspaces of the eigenvalues contained in
the interval. Notice that most columns almost vanish only after four iteration steps, except
for the very persistent column at~ 0. In the plots form = 2 andm = 4, the residual
polynomialspy, are also plotted as solid curves; note that they always satisfy the condition
(18).

squares problem, is also plotted in Fig. 4 at each iteration step. As the iteration proceeds, the
residual polynomial in Fig. 4 has more and more roots, but ortiy.i) because the eigenvalues
exist only intj>o and the roots of residual polynomials should stay close to the eigenvalues as
mentioned in the discussion following Eq. (27). Also, as Eq. (27) predicts, the columns in each
plot of Fig. 4 almost vanish at the roots of the residual polynomial. Therefore, all the columns
quickly shrink as the number of the roots of the residual polynomial increases in the iteration
process of GMRES. The fast reduction of the column heights provides visualization of the fast
convergence of GMRES fa&= —1 shown in Fig. 3.

Next, we examine the convergence behaviorder 0. Figure 5 showsn/||b|| for s=0
at the first few iteration steps. Note thal/||b|| has a tall column oy becauseA has many
eigenvalues iffp as shown in Fig. 2(a). Also, the tall column Gnpersists during the initial
period of the iteration process.

To explain the above convergence behaviorser 0, we show that for a nearly positive-
definite matrix the column oty is persistent during the initial period of the iteration process
of GMRES in general. For that purpose, we compare the three polynopias#?,, shown
in Fig. 6. The thregpy, are chosen as candidates for the residual polynomidbr a nearly
positive-definite matrix, and therefore the roots of the polynomials are pla¢ggiaccording
to the discussion following Eq. (27). The thrpg liave the same roots except for their smallest
roots: pm in Fig. 6(a) does not have its smallest rootgnwhereasgpy in Figs. 6(b) and 6(c)
do. Note that the latter twpy, can shrink the column oty more effectively than the firgd,’
according to Eq. (27).

However, the slopes at the roots of the latter fpypare steeper than the slopes at the corre-
sponding roots of the firgt,, as shown in Fig. 6. In Appendix B, we prove rigorously that the
slopes ofpy, at all roots indeed increase as the smallest root decreases in magnitude. In gen-
eral, pm with steeper slopes at the roots oscillates with larger amplitudes around the horizontal
axis because it varies faster around the axis; compare the amplitudes of oscillation in Fig. 6(a)
with those in Figs. 6(b) and 6(c). The increased amplitudes of oscillation aniplifyoverall
according to Eq. (27), and thii&y|| as well.

In other words, shrinking the column dg (by placing the smallest root gy, in to) is
achieved only at the penalty of amplifying the columng;oi. This penalty is too heavy when
the columns ortj.o constitute a considerable portion p#.||. Therefore, roots of residual
polynomials are not placed tg until the columns ot;-.o become quite small, which results in
the persistence of the column tyduring the initial period of the iteration process.

Because the height of the column grremains almost the same at the initial iteration steps
of GMRES, hy of Eq. (28), which is the initial height of this column, provides an approximate
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(a) Referencepm (b) Smallest root made smaller (c) Smallest root made smaller and
negative

Fig. 6. Impact of the magnitude of the smallest root of a polynomigle"%m, on the
oscillation amplitudes opm. Threepm, of degree 6 are shown. In each figure, a solid line
represents a polynomial; an open dot on the horizontal axis indicates the smallest root; solid
dots indicate the other roots; dashed lines show the slopes of the polynomial at the roots.
The three polynomials have the same roots except for their smallest roots: the smallest root
in (a) becomes smaller positive and negative roots in (b) and (c), respectively. Notice that
the slopes at all roots in (a) become steeper in (b) and (c) as the smallest root decreases in
magnitude, and as a result the amplitudes of oscillatiopsparound the horizontal axis
increase.

lower bound of||zy|| = ||rml|/||b|| during the initial period of the iteration process. A more
accurate lower bound is calculated as the normygfib|| projected onto the eigenspace of the
eigenvalue closest to 0. For our example systems fo0 the calculated lower bound isAD7.
Note that||rm||/||b|| for s= 0 indeed stagnates initially at this value in Fig. 3. Ber —1 the
calculated lower bound is.#6 x 10~7, at which||ry||/||b|| also stagnates as shown in Fig. 3.
However, this value is much smaller than the lower boundsfer0O, because fos = —1 the
initial height of the column oty is almost negligible as shown in tlme= 0 plot in Fig. 4. In
fact, the value is smaller than the conventional toleraneel0 6 mentioned below Eq. (17),
so the stagnation does not deteriorate the convergence speed fot.

Lastly, we examine the convergence behaviosfer+1. Figure 7 showsy/||b|| for s= +1
at some firstifh = 0,4,7,11) and later ih = 120, 140) iteration steps. Because the mathix
for s= +1 has both positive and negative eigenvalues as indicated in Fig.rg{dh| has
components in both~o andtjo, but in the present example the components,fib|| are
concentrated inj g initially (m = 0 plot in Fig. 7). Thus GMRES begins with the roots of
residual polynomials placed th.o (m= 4 plotin Fig. 7). However, such residual polynomials
have large values it}-.o, so they amplify the initially very small componentsrgf/ ||b|| intj~o
according to Eq. (27), and eventually we reach a point where the componerjd|bf| in tj~o
andtj.o become comparablen(= 7 plot in Fig. 7). Afterwards, GMRES places the roots of
residual polynomials in boty-.o andt; g so that the componentsfi/||b|| in both regions are
reduced.

We note that the convergence behaviorger +1 is initially quite similar to that fors =
—1 becauseo/||b|| for s= +1 has components concentratedjing and only a very weak
component irty. Therefore ||rm||/||b|| reduces quickly fos = +1 without stagnation during
the initial period of the iteration process as shown in Fig. 3.

During the later period of the iteration process, however, the reductipr,f ||b|| for s=
+1 slows down significantly, and eventualy- +1 produces the slowest convergence among
the three values of as shown in Fig. 3. The slow reduction [fy||/||b|| is due to the very
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Fig. 7. Evolution ofrm/||b|| for s= +1. Relative residual vectors,/||b|| are visualized at
iteration stepsn=0,4,7 in the first row and atn= 11,120,140 in the second row. In each

plot, the column on each interval represents the normygfib|| projected onto the sum of

the eigenspaces of the eigenvalues contained in the interval. The vertical scale of the plot
is magnified as the iteration proceeds. Notice that the columin-al is very persistent
during the later period of the iteration process= 120,140). In the plots fom=4,7,11,

the residual polynomialpn, are also plotted as solid curves; the residual polynomials are
not plotted form = 100 andm = 120 because they have too many roots.

persistent column oty: comparing the plots fam = 120 andm = 140 in Fig. 7 shows that the
column barely reduces for 20 iteration steps.

We have shown earlier that the columntgiis quite persistent for a nearly positive-definite
matrix. The argument relied on the properties proved in Appendix B about a polynpmal ~
P with only positive roots. We can easily extend the proof in the appendpx,tith both
positive and negative roots, and then show that the coluntgisipersistent also for a strongly
indefinite matrix, which explains the slow convergenceder +1 described above. However,
the explanation is insufficient to explain why the convergeneauch slower fors= +1 than
for s= 0 as indicated in Fig. 3.

Here, we show that the column &is in fact even more persistent for a strongly indefinite
matrix than for a nearly positive-definite matrix. For that purpose, we compare the two poly-
nomialspm € m shown in Fig. 8. As can be seen from the locations of their roots, they are
candidates for the residual polynomials for different matriggsstiown in Fig. 8(a) is appro-
priate for a nearly positive-definite matrix (referred taag; below), andom, shown in Fig. 8(b)
is appropriate for a strongly indefinite matrix (referred taAgg below). Moreover, we choose
these twaopm to have the same smallest-magnitude @ah to. Being elements o, both o,
satisfy Eq. (18). Hence, we hay@,({o)| =~ 1/|{o| for both gm, wherep}, is the first derivative
of Pm.

Now, we note thatpy,| evaluated at a root g, tends to decrease as the root gets closer to
the median of the roots; see Appendix C for a more rigorous explanation. H@f¢es 1/|{o|
tends to hold at most roots pf, Tor Ager, becausey is one of the farthest roots from the median
of the roots. On the other hand,| > 1/|{o| tends to hold at most roots pf, for Ajng, because
{o is one of the closest roots to the median of the roots. Thergigrimr Aing has much steeper
slopes at most roots thamy, Tor Ager in general, and thus has larger amplitudes of oscillation
around the horizontal axis, as demonstrated in Fig. 8.

Combined with Eq. (27), the above argument shows that shrinking the colurtg(bw
placing the smallest-magnitude root |, ih tp) increased|zy|| much more for a strongly in-
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(a) pm for a nearly positive-definite (b) Pm for a strongly indefinite matrix
matrix

Fig. 8. Candidates for the residual polynomials for (a) a nearly positive-definite matrix and
(b) strongly indefinite matrix. In each figure, a solid line represents a polyngopja ~

Zm; an open dot on the horizontal axis indicates the smallest-magnitude root; solid dots
indicate the other roots; dashed lines show the slopes of the polynomial at the roots. The
two polynomials have the same smallest-magnitude £goand thus have approximately

the same slope-1/{p at their smallest-magnitude roots. Note that for bpghttie slopes

get steeper at the roots further away from the median of the roots. Hence, the slopes of most
dashed lines are gentler thaf|Jp| in (a) and steeper thary {{p| in (b). As a resultpm in

(b) has larger amplitudes of oscillation around the horizontal axis phan (a).

definite matrix than for a nearly positive-definite matrix. Therefore, the columg slmould be
much more persistent for a strongly indefinite matrix than for a nearly positive-definite matrix
in general, which explains the much slower convergencefor-1 than fors= 0 in Fig. 3.

In summary of this section, we have shown that —1 produces the most superior con-
vergence behavios = 0 induces stagnation during the initial period of the iteration process
due to the high multiplicity of eigenvalues near zese; +1 leads to the slowest convergence
overall due to the strongly indefinite matrix. We have provided a graphical explanation of the
difference in the convergence behavior of GMRES, for which a strong theoretical basis exists,
using a simple system of a homogeneous dielectric medium.

The arguments provided in this section can be easily extended to shaswthat is indeed
optimal among all values in general. Compared with the case-of 1, according to Eq. (14),
for s> 0 Ais always more strongly indefinite and therefore the convergence should be slower;
for —1 < s< 0 Ahas more eigenvalues clustered near zero and thus the initial stagnation period
should be longer; fos < —1 A has a wider eigenvalue value range, so the condition number of
A should be larger and the convergence should be slower [23]. In other vgotds,1 is the
value that leaveé nearly positive-definite while removing the eigenvalues clustered near zero
sufficiently without increasing the condition number. With separate numerical experiments we
have verified thats = —1 is indeed superior to values other ttean 0 ands= +1 as well.

In the next section we will see that the difference in the convergence behavior for different
choices ofsis in fact quite general in practical situations.

4. Convergence behavior of QMR for 3D inhomogeneous systems

In this section, we solve Eqg. (7) for 3D inhomogeneous systems of practical interest by an itera-
tive method, and demonstrate tisat —1 still induces faster convergence tren 0 ands= +1.

We note that the systems examined in this section are inhomogeneous and have eoimplex
general. The analyses in Secs. 2 and 3, therefore, do not hold strictly here. Nevertheless, we
will see that the analyses for the homogeneous system in the previous sections provide insight
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Fig. 9. Three inhomogeneous systems for which Eq. (7) is solved for-1,0,+1 by

QMR: (a) a slot waveguide bend formed in a thin silver film (Slot), (b) a straight silicon
waveguide (Diel), and (c) an array of gold pillars (Array). The figures in the first row
describe the three systems. The directions of wave propagation are shown by red arrows,
beside which the vacuum wavelengths used are indicated. For all three systems, the waves
are excited by electric current sourckstrictly inside the simulation domain. The plots in

the second row show the convergence behavior of QMR. Note that for all three systems
QMR converges fastest far= —1, whereas it barely converges for= +1. The relative
electric permittivities of the materials used in these systems?&\‘%’ =—-129-i3.28 [34],

gsiica — 2 085 [35], g5ilicon — 12,09 [35], ande?®' = —10.78—0.79 [36], respectively.

Table 2. Specification of the finite-difference grids used for the three systems in Fig. 9. Slot
uses a nonuniform grid with smoothly varying grid cell size. The marixas 3NyNyN;
rows and columns, where the extra factor 3 accounts for the three Cartesian components of

theE-field.
Slot Diel Array
Ny, Ny, N || 192 192,240 | 220,220,320 | 220,220,130
Dy, Ay, 1, 2~20nm 10nm 5,5,20nm

in understanding the convergence behavior for more general systems examined in this section.

The three 3D inhomogeneous systems we consider are illustrated in the first row of Fig. 9.
To prevent reflection of EM waves from boundaries, we enclose each system by the stretched-
coordinate perfectly matched layer (SC-PML), because SC-PML produces a much better-
conditioned matrix than the more commonly used uniaxial PML (UPML) [32]. For each system,
we construct three systems of linear equatiérs= b corresponding t@ = —1,0,+1 by the
FDFD method. The number of the grid celg, Ny, andN, and the grid cell sizeAy, Ay, and
A, of the finite-difference grid used to discretize each system are shown in Table 2. Considering
the parameters summarized in Table 3 and the condition (16), all the three systems are in the
low-frequency regime.

The constructed systems of linear equations are solved by the quasi-minimal residual (QMR)
method [37], which is another Krylov subspace method. GMRES that was used in Sec. 3 to
solve a 2D problem is not suitable for 3D problems here because it requires too much memory
[5].

The second row of Fig. 9 shows the convergence behavior of QMR for the three systems.
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Table 3. Parameters used in Eq. (16) for the three systems in Fig. 9. When substituted in
Eq. (16), these parameters prove that all the three systems are in the low-frequency regime.

Slot Diel Array

Ao 1550nm| 1550nm| 6328 nm
Amin 2nm 10nm 5nm
max|& | 1290 12.09 10.81

Note that for all three systems the choicesef —1 results in the fastest convergence, and the
choice ofs= +1 barely leads to convergence. The three systems shown in Fig. 9 are chosen
deliberately to include different materials such as dielectrics and metals and geometries with
different degrees of complexity. Therefore, Fig. 9 suggests that the superiosity efl over
boths= 0 ands= +1 is quite general.

Even though both the iterative method and the systems in this section are significantly differ-
ent from those in the previous section, the convergence behaviors are very similar. We explain
the resemblance as follows.

The matrix for an inhomogeneous system is actually not much different from that for a
homogenous system in many cases. Indeed, most inhomogeneous systems consist of several
homogeneous subdomains. Inside each homogeneous subdomain of such an inhomogeneous
system, the differential operator in Eq. (7) for the inhomogeneous system is the same as the
differential operator (9) for a homogeneous system, whereas at the interfaces between the sub-
domains it is not. Nevertheless, the number of finite-difference grid points assigned at the in-
terfaces is usually much smaller than that of the grid points assigned inside the homogeneous
subdomains. Therefore most rows of the matrix for the inhomogeneous system should be the
same as those for a homogeneous system discretized on the same grid.

In addition, the differential operator (9) for a homogeneous system is nearly Hermitian in the
low-frequency regime even & is complex, because it is approximated well by the Hermitian
operator (10).

Hence, the matrix for an inhomogeneous system is actually quite similar to the nearly Her-
mitian matrix for a homogeneous system. Because QMR reduces to GMRES for Hermitian
matrices in exact arithmetic [38], it is reasonable that the convergence behavior of QMR for an
inhomogeneous system is similar to that of GMRES for a homogeneous system.

The matrix for an inhomogeneous system deviates more from that for a homogeneous sys-
tem as the number of homogeneous subdomains increases, because then the number of grid
points assigned at the interfaces between homogeneous subdomains increases. Therefore, we
can expect that the convergence behavior for an inhomogeneous system would deviate from
that for a homogeneous system as the number of homogeneous subdomains increases. Such
deviation is demonstrated in Fig. 9(c), where the system has many metallic pillars; note that the
convergence behavior fer= —1 is no longer very different from that fer= 0 in this case.

5. Conclusion and final remarks

We have introduced a new method to accelerate the convergence of iterative solvers of the
frequency-domain Maxwell’s equations in the low-frequency regime. The method solves a new
equation that is modified from the original Maxwell’'s equations using the continuity equation.

The operator of the newly formulated equation does not have the high multiplicity of near-
zero eigenvalues that makes the convergence stagnate for the original operator. At the same
time, the new operator is nearly positive-definite, so it avoids the long-term slow convergence
that indefinite operators suffer from.

In this paper, we have considered only nonmagnetic matefiats o). For magnetic mate-

#194688 - $15.00 USD Received 26 Jul 2013; revised 8 Sep 2013; accepted 9 Sep 2013; published 18 Sep 2013
(C) 2013 OSA 23 September 2013 | Vol. 21, No. 19 | DOI:10.1364/0OE.21.022578 | OPTICS EXPRESS 22592



rials (u # Up), we note that a similar equation
Ox u'0xE+sO[(ue) *0- (6E)] — w’€E = —iwd +s;—)D [(ue)t0-J], (29)

which can also be formulated from Maxwell's equations and the continuity equation, can be
used instead of Eq. (7) to accelerate the convergence of iterative methods. We leave the dis-
cussion on the optimal value ein this equation for future work.

Because our method achieves accelerated convergence by formulating a new equation, it
can be easily combined with other acceleration techniques such as preconditioning and better
iterative methods.

Appendix A: Eigenvalues and eigenfunctions of] x (Ox )and O(0O- )

Using thek-space representations of the operators, in this section we derive the eigenvalues
Eqg. (12) ofdx (Ox )and Eq. (13) ofJ(d- ) as well as their corresponding eigenfunctions.
Because both] x (Ox ) andO(O- ) are translationally invariant, their eigenfunctions
have the form [39] .
F=Fe kT, (30)

wherer represents positiot, = Xk + Yky + ZK, is a real constant wavevector, alfd= XF +
gF. +2F7 is ak-dependent vector.

We reformulate the eigenvalue equatidhs (0 x F) = AF andO(O- F) = AF by substitut-
ing Eq. (30) forF. Then, the eigenvalue equation forx (Ox ) is

K+kE —keky  —keke FX FX
ke Kk —kgk FRI=A| R |, (31)

ke —kky KK Fe Fe

and the eigenvalue equation fafJ- ) is

K2 keky  Kiks R R
koke  koky K2 Fe R’
By solving Egs. (31) and (32) for a givén we obtain
A =0, [k [k (33)
which is Eq. (12), as the eigenvaluegok (Ox ), and
A=-lk? 0,0 (34)

which is Eq. (13), as the eigenvalueddf- ), and Eq. (30) with

ke ke —ky
Fe=|k |, | 0|, ] k (35)
ke “ky 0

as the eigenfunctions corresponding to both Egs. (33) and (34).
We note from Egs. (33) and (34) thatx (Ox ) andd(O- ) are positive-semidefinite and
negative-semidefinite, respectively.
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Appendix B: Effect of the smallest root of i, € &1,y on the slopes at the roots

In this section, we show that the slopes at the roots of a polyngmial 2, with all positive
roots become steeper when the smallest root decreases in magnitude. This behavior is illustrated
in Fig. 6.

Sincepm € Y satisfies the condition (18), it can be factored as

br(7) = |d'l (1-5): (36)

wheredy < mis the degree opy, and(j’s are the roots opy. Hence, the slope giy, at a root

{is
=] (1— Z) 37)

Now, suppose that & {; < --- < {g,,. We can easily show thafy,({x)| increases for ank
when{; decreases toward zero (while remaining positive) as followskFol., we have

@) =7 (-2 ) (1-2). (38)

which clearly increases a5 decreases to 0. F&r> 1, we have

ol (1) |21,

where the parentheses enclose the only quantity that is dependéntWa can therefore see
that |B/,({«)| increases ag, decreases fok > 1 as well. Therefore, for a givepme Pn
whose roots are all positive, the slopespaf at the roots become steeper if the smallest root
decreases in magnitude while remaining positive. This situation is illustrated by the transition
from Fig. 6(a) to Fig. 6(b).

The slopes at the roots also become steeper when the originally pdsitiveeplaced by
a negative value, as long as the negative value is smaller in magnitude than the d@riginal
Replacing the originally positivé; with a negative quantity that is smaller in magnitude is
equivalent to first replacing; with a smaller positive value and then flipping its sign. Because
we have already shown above that the slopes get steeper when the originally p@sisve
replaced by a smaller positive value, it is sufficient to show that flipping the sidgn wfakes
the slopes even steeper. For a negafivehe slopes at the roots are

3 2l > ( |zll>
[Pm(0)| = 1z; (” S (40)
L

[P Zk‘_(ﬂﬂ) g

for k > 1. These slopes are steeper than Egs. (38) and (39), respectively, which are the slopes
for a positive{; with the same magnitude. Therefore, for a giygene %y, whose roots are

all positive, the slopes g, at the roots become steeper if the smallest root is replaced by the
one that is smaller in magnitude but negative. This situation is illustrated by the transition from
Fig. 6(a) to Fig. 6(c).

1%

Gi

] (39)

and
1

Zk||_|

#1k

dk

1 (41)
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Appendix C: Trend in the slopes of a polynomial at the roots

In this section, we consider a polynomialwith all real roots, and show that the slopemwf

evaluated at a root closer to the median of the roots tends to be gentler than the slope evaluated

at a root farther away from the median of the roots. This behavior is illustrated in Fig. 8.
Consider a polynomial of degree,

m

PO =a @) (42)

with {1 < --- < {m. The slope ofp at a rootly is

P'(l) =a I_L(Zk - ). (43)
i

Now, we evaluatep’({ky1)|/]p ({k)|- We first consider the case where the roots are evenly
spaced, i.e{i;1— (i = (const), for which we have

P(dea)| _ K(m=k-D! Kk (44)

P~ k=D m-k! ~ m-k

Equation (44) is an increasing functionlofor 1 <k <m-—1, and it is less than 1 fdr< m/2
and greater than 1 fé> m/2. Therefore}p’({x)| is largest fok = 1 andk = m, and it decreases
ask becomes closer tk= |(m+1)/2| andk = [(m+1)/2], which are the medians of the
indices. In other words, fop with evenly spaced roots, the slopespofet gentler at the roots
closer to the median of the roots.

It is reasonable to expect that the above trend in the slopes also holdsvitr unevenly
spaced roots, unless the unevenness is too severe. To verify the expectation, we examine
P (G- 1)1/ 1P ()| without assuming .1 — ¢ = (const):

P (G| MigkaalGers =il 11— dil _kl(ZkJrl—Zi) |r_n| < Zk+1>
[P (k)] Mizk |k — il #EJH |4k — Gl D &—-4 /At

| =) L) «

Here, the factors within the first (second) brackets are always greater (less) than 1, so
the number of factors greater (less) than 1 increases (decreases) for incilealsieigce,

|0 (¢k:1)]/|P' (4k)| tends to be less than 1 for smallerand it tends to be greater than 1 for
largerk. This means that asincreasesp’({x)| tends to decrease first and then tends to in-
crease. Therefore, even if the rootgdire unevenly spaced, the slopegpdénd to get gentler

at the roots closer to the median of the roots.
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