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1. INTRODUCTION
Understanding the forms of the densities of energy and power
dissipation in dispersive media has been a topic of interest for
decades [1–4] and has found renewed interest recently due to
thedevelopmentofmetamaterials [5–11].Whenelectric disper-
sion is concerned [12], a dispersivemedium is characterized by
a frequency-dependent dielectric constant ε�ω� � ε0�ω�−
i ε00�ω�. Assuming a time-harmonic electric field (E-field)
E�t� � E0eiωt, it iswell-known that in a lossless dispersivemed-
ium, where ε00�ω� � 0, the time average of the electric energy
density is [3]

�ue �
1
4

d�ωε�ω��
dω jE0j2. (1)

The time average of the electric energy density is known also in
a lossy dispersive medium, where ε00�ω� > 0, provided that the
medium is a Lorentz medium, i.e., ε�ω� described by a Lorentz
pole [2,6,8,13]. In addition, the time average of the electric
power dissipation density in a lossy dispersive medium is [3]

�qe �
1
2
ωε00�ω� jE0j2; (2)

which holds for any lossy dispersive medium including the
Lorentz medium.

Most of the previous works on electric energy and power
dissipation have focused on the time-averaged quantities
[Eq. (1) and Eq. (2)]. The present paper, on the other hand,
derives the formulae for instantaneous electric energy den-
sity and electric power dissipation density. The instantaneous
quantities in a dispersive medium were also studied in [7], but
their analysis was limited to a dielectric constant described by
a single Lorentz pole. In contrast, we derive, for a lossless dis-
persive medium, a formula for the instantaneous energy den-
sity for a generic dielectric constant, provided that the E-field
is harmonic in time.

Because we consider a time-harmonic E-field, each instan-
taneous quantity is expressed as the sumof the aforementioned
time-averaged quantity and sinusoidal oscillation. We refer to
the time average and sinusoidal oscillation as the DC and AC
components of the instantaneous quantity, respectively.

Examining Eq.(1), we notice that evaluating �ue at a given
frequency requires the values of both ε and d ε∕dω at the fre-
quency. In other words, measuring ε at the frequency alone is
insufficient to determine �ue; we need additional information
on the dispersion of ε, which is characterized by d ε∕dω in this
case. We refer to quantities such as �ue as being “dispersion-
dependent.” Interestingly, in contrast to �ue, �qe of Eq. (2) re-
quires only the value of ε at the frequency and does not require
the information on the dispersion of ε. We refer to quantities
such as �qe as being “dispersion-independent.” One of our ob-
jectives in this paper is to show that some DC and AC com-
ponents of the instantaneous quantities in dispersive media
are dispersion-independent.

The paper is organized as follows. In Section 2 we introduce
the notations and conventions used in this paper. In Section 3
we provide a derivation of the instantaneous electric energy
density in a lossless dispersive medium, which is the main re-
sult of this paper. Since instantaneous energy density has
rarely been discussed in the literature, for completeness we
provide the corresponding formula for a lossy Lorentz med-
ium in Section 4 based on a recent work [13]. In Section 5 we
derive the instantaneous electric power dissipation density for
the same Lorentz medium and investigate the phase relation-
ship between the oscillations of energy and power dissipation.
Finally, in Section 6, we demonstrate that direct visualization
of the AC component of the instantaneous electromagnetic
(EM) energy density provides new insights in frequency-
domain simulations of EM wave propagation compared to
the conventional approaches.

2. NOTATIONS AND CONVENTIONS
Throughout this paper, bold capital symbols are used for com-
plex vector fields, whereas the corresponding curly capital
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symbols indicate their real parts; for example, E�t� �
RefE�t�g � RefE0 ei ω tg for a time-harmonic E-field.

In equations, c.c. refers to the complex conjugate of the pre-
ceding quantity; for instance, E�t� � RefE�t�g � 1

2 �E�t� � c:c:�.
Finally, jEj2 � E · E� and E2 � E · E; note that jEj2 ≠ E2.

3. INSTANTANEOUS ELECTRIC ENERGY
DENSITY IN LOSSLESS DISPERSIVE MEDIA
The time-averaged electric energy density in a lossless disper-
sive medium is Eq. (1). In this section, we extend the deriva-
tion of Eq. (1) to calculate the instantaneous electric energy
density. Even though a dispersive medium cannot be lossless
for all frequencies due to Kramers–Kronig relations [14], many
materials such as dielectrics have negligible loss in some fre-
quency bands, where the analysis in this section applies.

By Poynting’s theorem and conservation of energy, the in-
stantaneous electric energy density ue�t� in a lossless medium
satisfies

∂ue

∂t
� E ·

∂D
∂t

� 1
4

�
E ·

∂D
∂t

� E� ·
∂D
∂t

�
� c:c: (3)

We integrate Eq. (3) over time to calculate ue�t�. Here, follow-
ing [3], we consider E�t� � E0�t� ei ω t as an approximation to a
purely time-harmonic E-field, where the envelope E0�t� varies
much more slowly than ei ω t. Because E0�t� � 1����

2π
p

R
∞
−∞

E0;α ei α tdα, we have

∂D
∂t

� 1�������
2 π

p
Z

∞

−∞

i�ω� α�ε�ω� α�E0;α ei �ω�α� tdα. (4)

Because of the slowly varying envelope assumption, E0;α, and
thus the integrand of Eq. (4), is nonzero only for α≃ 0. Since
�ω� α�ε�ω� α�≃ ωε�ω� � d�ωε�ω��

dω α for α≃ 0, Eq. (4) is
approximated to

∂D
∂t

≃

�
iωε�ω�E0�t� �

d�ωε�ω��
dω

∂E0�t�
∂t

�
eiωt: (5)

From now on, we write ε�ω� as ε for simplicity. Substituting
Eq. (5) to Eq. (3) gives

∂ue

∂t
� 1

4

��
iωεE0�t�2 �

d �ωε�
dω E0�t� ·

∂E0�t�
∂t

�
ei2ωt

�
�
iωεjE0�t�j2 �

d�ωε�
dω E0�t�� ·

∂E0�t�
∂t

��
� c:c: (6)

Because ε� � ε for a lossless medium, Eq. (6) is further
simplified to

∂ue

∂t
� 1

4

�
2ωεRefiE0�t�2 ei2ωtg�

d�ωε�
dω Re

�
2E0�t� ·

∂E0�t�
∂t

ei 2ω t

�

� d�ωε�
dω

∂

∂t
jE0�t�j2

�
: (7)

To express ∂ue∕∂t in terms of E�t�, we use E0�t� � E�t� e−iωt.
Then, Eq. (7) reduces to

∂ue

∂t
� −

1
2
ω2 dε

dω RefiE�t�2g � 1
2
d�ωε�
dω

∂

∂t
E�t�2: (8)

By integrating Eq. (8) over time, we obtain the instantaneous
electric energy density

ue�t� �
1
2
d�ωε�
dω E�t�2 − 1

2
ω2 dε

dω Re
�Z

iE�t�2 dt
�
� C; (9)

where C is a constant of integration.
For a purely time-harmonic field E�t� � E0eiωt, Eq. (9)

reduces to

ue�t� �
1
2
d�ωε�
dω E�t�2 − 1

4
ω dε
dω RefE�t�2g � C

� 1
4
d�ωε�
dω jE0j2 �

1
4
εRefE�t�2g � C; (10)

where we have utilized an identity

W2 � 1
4
�W�W��2 � 1

2
jWj2 � 1

2
RefW2g (11)

that holds for any complex vector field W and its real part W.
The comparison of Eq. (10) with the well-known result
[Eq. (1)] proves C � 0 because the time average of the second
term of Eq. (10) is zero. Therefore, the instantaneous electric
energy density for a time-harmonic field is

ue�t� � �ue � ~ue�t�; (12)

where the DC component �ue is Eq. (1) and the AC component
~ue�t� is

~ue�t� �
1
4
ε0 RefE�t�2g for ε00 � 0: (13)

By comparing Eq. (1) and Eq. (13) we notice that the AC
component of ue�t� is dispersion-independent, whereas the
DC component of ue�t� is dispersion-dependent. Therefore,
in a lossless dispersive medium, if we are interested only in
the amplitude and phase of the oscillation of the instanta-
neous electric energy density, we do not require knowledge
of the dispersion of ε; the only information of ε needed is
the value of ε at the frequency of the E-field.

We also note that the AC component [Eq. (13)] for a lossless
medium is either in-phase with RefE�t�2g for ε0 > 0 or 180° out-
of-phase with RefE�t�2g for ε0 < 0.

4. INSTANTANEOUS ELECTRIC ENERGY
DENSITY IN LOSSY DISPERSIVE MEDIA
In general, Poynting’s theorem

−

I
S
�E ×H� · da �

Z
V

�
E ·

∂D
∂t

�H ·
∂B
∂t

�
dv (14)

holds for both lossy and lossless media, with −
H
S�E ×H� · da

being the power influx through the surface S enclosing a
volume V . On the other hand, by considering energy conser-
vation alone, in a lossy medium we expect that
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−

I
S
�E ×H� · da �

Z
V

�
∂ue

∂t
� ∂um

∂t

�
dv�

Z
V
�qe � qm�dv;

(15)

where um�t� is the instantaneous magnetic energy density;
qe�t� and qm�t� are the instantaneous electric and magnetic
power dissipation densities, respectively. Comparing Eq. (14)
and Eq. (15), we see that for lossy media it is no longer pos-
sible to identify the integrand of the right-hand side of Eq. (14)
as the time derivative of the energy density, like we did in
Section 3 for lossless media. As a result, Eq. (1) is in general
not correct for a lossy dispersive medium [2,6,7,9].

In this and the next sections, we provide derivations of ue�t�
and qe�t� in a lossy dispersive medium. For this purpose, we
follow [2,6–8,13] and consider a medium whose dielectric
function is described by multiple Lorentz poles:

ε�ω� � ε∞
�
1�

XN
i�1

ω2
p;i

ω2
0;i − ω2 � iωΓi

�
: (16)

The ith pole in the dielectric function can be understood as
resulting from electrons moving in a harmonic potential char-
acterized by the resonance frequency ω0;i while experiencing
a damping force with the damping coefficient Γi. When an E-
field is applied, the equation of motion for such an electron is

m
d2ri
dt2

� −mΓi
dri
dt

−mω2
0;iri − eE; (17)

wherem, −e, ri are the mass, charge, and the displacement of
the electron, respectively. We further assume that the density
of such electrons is ni. The polarization field Pi due to these
electrons is then Pi � −nieri, and its dynamics is described
by

∂2Pi

∂t2
� Γi

∂Pi

∂t
� ω2

0;iPi � ω2
p;iε∞E; (18)

where ωp;i �
����������������������
nie2∕mε∞

p
. For time-harmonic fields, Eq. (18)

dictates

−ω2Pi � iωΓiPi � ω2
0;iPi � ω2

p;iε∞E; (19)

from which Eq. (16) recovered.
Now, we define Vi � ∂Pi∕∂t that corresponds to the polar-

ization velocity field [13]. Then Eq. (18) can be written as

∂Vi

∂t
� ΓiVi � ω2

0;iPi � ε∞ω2
p;iE: (20)

Using D � ε∞E � P and Eq. (20), we obtain

E ·
∂D
∂t

�
XN
i�1

1
ε∞ ω2

p;i

ΓiV2
i

� ∂

∂t

�
1
2
ε∞E2 �

XN
i�1

ω2
0;i

2ε∞ω2
p;i

P2
i �

XN
i�1

1

2ε∞ω2
p;i

V2
i

�
: (21)

Substituting Eq. (21) in Eq. (14) and equating Eq. (14) to
Eq (15), we have

qe�t� �
XN
i�1

1

ε∞ω2
p;i

ΓiV2
i ; (22)

which is the density of the power dissipated by electric
damping, and

ue�t� �
1
2
ε∞E2 �

XN
i�1

ω2
0;i

2ε∞ω2
p;i

P2
i �

XN
i�1

1

2ε∞ω2
p;i

V2
i ; (23)

where the three terms in the right-hand side are the densities
of the energy of the E-field, potential energy of the electrons,
and kinetic energy of the electrons. Equations (22) and (23)
are consistent with [2,6,7,13]. We note that Eq. (22) and
Eq. (23) are valid for any time-varying E�t�.

For a time-harmonic E�t�, we now reduce Eq. (23) into a
formula that is independent of the fields other than E�t�. From
Eq. (19) we have

Pi�t� � ε∞
ω2
p;i

ω2
0;i − ω2 � iωΓi

E�t�; (24)

and therefore

Vi�t� �
∂Pi�t�
∂t

� ε∞
iωω2

p;i

ω2
0;i − ω2 � iωΓi

E�t�: (25)

We decompose E2, P2
i , and V2

i in Eq. (23) into DC and AC com-
ponents by Eq. (11) and use Eq. (24) and Eq. (25) to obtain

ue�t� � �ue � ~ue�t� (26)

with the DC component

�ue �
1
4
ε∞
�
1�

XN
i�1

ω2
p;i�ω2

0;i � ω2�
�ω2

0;i − ω2�2 � ω2Γ2
i

�
jE0j2 (27)

and the AC component

~ue�t� �
1
4
ε∞ Re

��
1�

XN
i�1

ω2
p;i�ω2

0;i − ω2�
�ω2

0;i − ω2 � iωΓi�2
�
E�t�2

�
: (28)

Equations (27) and (28) agree with Eq. (1) and Eq. (13), re-
spectively, when we use the dielectric function of Eq. (16)
with Γi � 0. We note that Eq. (28) is considerably simplified
in cases where the Lorentz medium consists of a single pole,
as shown in Appendix A.

For ue�t�, both its DC component [Eq. (27)] and AC com-
ponent [Eq. (28)] depend on the parameters ω0;i, ωp;i, Γi,
and ε∞. These parameters cannot be determined from the val-
ue of the ε of Eq. (16) at single ω. Therefore, both �ue and ~ue�t�
for a lossy dispersive medium are dispersion-dependent.

We also note that the AC component [Eq. (28)] for a lossy
medium is in general out-of-phase with RefE�t�2g. This is due
to the phase delay in Pi�t� with respect to E�t�; in a damped
harmonic oscillator, the displacement typically lags behind
the driving force [15,16]. Because Pi�t�, and thus Vi�t�, is out-
of-phase with E�t� in general, we see from Eq. (23) that ue�t�
and E�t�2, or their AC components ~ue�t� and 1

2 RefE�t�2g, do not
oscillate in-phase for a time-harmonic E�t�.
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We end this section by noting that the instantaneous energy
density ue�t� is always positive, as can be seen from Eq. (23).
From Eq. (26) we therefore have ~ue�t� ≥ −�ue. Since the AC
component ~ue�t� oscillates sinusoidally, this further implies
that

−�ue ≤ ~ue�t� ≤ �ue: (29)

In other words, the amplitude of the AC component of the in-
stantaneous energy density cannot exceed the time-averaged
energy density. Also,

0 ≤ ue�t� ≤ 2 �ue; (30)

so the instantaneous energy density, which is always positive,
does not exceed twice the time-averaged energy density.

5. INSTANTANEOUS ELECTRIC POWER
DISSIPATION DENSITY IN LOSSY
DISPERSIVE MEDIA
For a time-harmonic E-field, we decompose V2

i in Eq. (22) into
DC and AC components by Eq. (11) and use Eq. (25) to obtain

qe�t� � �qe � ~qe�t� (31)

with the DC component

�qe �
1
2
ε∞

XN
i�1

ω2
p;iω2Γi

�ω2
0;i − ω2�2 � ω2Γ2

i

jE0j2 (32)

and the AC component

~qe�t� � −
1
2
ε∞ Re

�XN
i�1

ω2
p;iω2Γi

�ω2
0;i − ω2 � iωΓi�2

E�t�2
�
: (33)

Because Eqs. (32) and (33) depend on the parameters ω0;i,
ωp;i, Γi, and ε∞ that cannot be determined by the value of the ε
of Eq. (16) at single ω, it would seem that both the DC and AC
components of qe�t� are dispersion-dependent. However, it
turns out that Eq. (33) reduces to Eq. (2), so the DC compo-
nent of qe�t� is dispersion-independent. On the other hand, the
AC component of qe�t� is dispersion-dependent, because it
satisfies

~qe�t� π∕4ω�
2ω � ~ue�t� −

1
4
RefεE�t�2g; (34)

which can be proved by direct substitution of Eqs. (16), (28),
and (33). The first term of the right-hand side of Eq. (34) is
dispersion-dependent as shown at the end of Section 4,
whereas the second term is not. Hence, the left-hand side
of Eq. (34) should be dispersion-dependent.

Table 1 summarizes the dispersion dependencies of the DC
and AC components of the instantaneous quantities examined
so far.

We now investigate the relationship between the oscillation
phases of the instantaneous electric energy density, power
dissipation density, and electric field. We consider silver as
an example of a lossy material. The parameters ω0;i, ωp;i,
Γi, and ε∞ describing the ε�ω� of silver are taken from [17].

Using these parameters, we evaluate ~ue�t� and ~qe�t� in silver
for two vacuum wavelengths λ0 � 620 nm and λ0 � 1550 nm,
for both of which ε00Ag∕ε0Ag ≃ −0.08.

Figure 1 displays ~ue�t� and ~qe�t� for the two vacuum wave-
lengths; RefE�t�2g is also plotted for comparison. We first note
that ~ue�t� is nearly 180° out-of-phase with RefE�t�2g. This is
because jε00Ag∕ε0Agj ≪ 1 and thus silver can be treated as nearly
lossless for both the wavelengths; see the comment at the end
of Section 3.

We also compare the phases of ~ue�t� and ~qe�t�. Because

~ue�t�≃ �Equation �13��≃ 1
4
RefεE�t�2g for jε00∕ε0j≪ 1; (35)

themagnitude of ~ue�t� − 1
4 RefεE�t�2g is close to zero. However,

Eq. (35) does not impose any restriction on the phase of
~ue�t� − 1

4 RefεE�t�2g. As a result, the phase of ~qe�t� in Eq. (34)
can have a range of values, as demonstrated in Figs. 1(a)
and 1(b). In particular, Fig. 1(a) implies that the instantaneous
densities of electric energy and electric power dissipation are
not necessarily maximized at the same time, even if the
medium is nearly lossless. We also note that the phases of
~qe�t� in Figs. 1(a) and 1(b) are quite different regardless of
the nearly identical loss tangents ε00Ag∕ε0Ag ≃ −0.08 for the two
wavelengths used.

6. VISUALIZATION OF THE AC
COMPONENT OF THE INSTANTANEOUS
EM ENERGY DENSITY CARRIED BY EM
WAVES
In this section, we demonstrate that visualizing the AC com-
ponent of the instantaneous EM energy density in numerical
simulations provides new insights into photonic device
physics.

In frequency-domain EM simulations, it is conventional to
visualize simulation results by plotting a single coordinate
component of the E- or H-field (e.g., Ex in the Cartesian co-
ordinate system,Hφ in the spherical coordinate system). How-
ever, this method describes the propagation of EM waves
correctly only when the field is polarized dominantly in one
direction, which is in general not true for waves propagating
through 3D structures.

For example, consider EM wave propagation through a me-
tallic slot waveguide bend [18] illustrated in Fig. 2. Such a slot
waveguide structure is important in integrated nanophotonics
since it provides broadband nanoscale guidance of EM waves
[19]. Our numerical simulation of a metallic slot waveguide

Table 1. Dispersion Dependencies of the DC

and AC Components of the Instantaneous

Electric Energy Density ue�t� and
Instantaneous Electric Power Dissipation

Density qe�t� in Lossless and Lossy Dispersive

Mediaa

Lossless Lossy

ue ue qe

DC D D I
AC I D D
aD indicates dispersion-dependent, and I indicates dispersion-

independent.
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bend described in Fig. 2 reveals that the transmission is about
80% at a vacuum wavelength λ0 � 1550 nm. The rest of the
incident power divides into the two leakage channels indi-
cated in Fig. 2: about 10% of the incident power couples into
a surface plasmon mode bound to the metal film, and another
10% radiates into the background dielectric.

Now, we consider the visualization of the EM wave that
best illustrates the underlying physics. One could plot a single
Cartesian component of the EM field. In this case, becauseHy

is the only EM field component that is dominant inside the slot
waveguide both before and after the bend, it is natural to plot
Hy over all space. However, as shown in Fig. 3(a), while the
plot ofHy indeed describes light going around the bend, it dis-
plays neither the energy leaking into the surface mode nor the

spherical wavefronts that are characteristic of the radiation
into the background dielectric.

Alternatively, one may plot the time-averaged EM energy
density �u as in Fig. 3(b). The time-averaged EM energy density
is a scalar quantity that contains contributions from all com-
ponents of the E- and H-fields, so it can show the distribution
of energy in space properly without being sensitive to varia-
tion in the dominant polarization direction. However, since
the time-averaged EM energy density does not contain any
phase information, it cannot describe wave propagation.

To overcome the limitations of plotting a single Cartesian
component of the EM field or the time-averaged EM energy
density, we can plot the AC component ~u � ~ue � ~um of the
instantaneous EM energy density. The AC component of the
instantaneous EM energy density has the merits of both quan-
tities discussed above: it retains phase information like a sin-
gle Cartesian component of the EM field, and it is insensitive
to variation in the dominant polarization direction of the EM
field like the time-averaged EM energy density. Therefore, ~u is
indeed an appropriate quantity to plot to visualize EM wave
propagation through arbitrary 3D routes.

Figure 3(c) visualizes ~u for the same solution of the
frequency-domain Maxwell’s equations used in Fig. 3(a) and
3(b). The resulting plot successfully shows high transmission
through the bend, and it also correctly describes the energy
coupled to the surface plasmon mode and the spherical
wavefronts of the radiation. Moreover, the plot clearly shows
the phase variation of the field. Note, however, that the spatial
frequency of ~u in Fig. 3(c) is twice as fast as that of Hy in
Fig. 3(a) because ~u contains E2 and H2.

One could visualize RefE2g to achieve the same advantages
that the plot of ~u has. However, we note that ~u has a direct
physical significance, and it also includes the contributions
from both the electric and magnetic fields.

In calculating ~u � ~ue � ~um for Fig. 3(c), we use Eq. (13) for
~ue and

1
4 μ0 RefH2g for ~um at each spatial point. Even though

silver is lossy, the loss is very small at the wavelength used;
linear interpolation of the experimentally measured data tabu-
lated in [20] gives εAg � �−129 − i 3.28� ε0 as the dielectric con-
stant of silver at λ0 � 1550 nm, so jε00Ag∕ε0Agj≃ 0.0254 ≪ 1.
Therefore, silver is nearly lossless to the infrared wave used
in the numerical simulation, so the use of Eq. (13) is valid as

ue t

qe t

Re E t 2

0 2 4 6 8 10 12

4

2

0

2

4

t fs

ue t

qe t

Re E t 2

0 5 10 15 20 25 30

30

20

10

0

10

20

30

t fs

Fig. 1. (Color online) Plots of ~ue�t�, ~qe�t� and RefE�t�2g for time-harmonic electric fields E�t� � x̂ E0 eiωt in silver (Ag). The quantities are plotted for
two vacuumwavelengths: (a) λ0 � 620 nm and (b) λ0 � 1550 nm. Note that ~ue�t� is nearly 180° out-phase with RefE�t�2g for both cases. Also notice
that ~qe�t� is out-of-phase with ~ue�t� in (a) whereas it is nearly in-phase with ~ue�t� in (b). The units of ~ue�t�, ~qe�t�, and RefE�t�2g in the vertical axes are
ε0 E2

0, ωε0 E2
0, and E2

0, respectively.

Fig 2. (Color online) Metallic slot waveguide bend composed of two
silver (Ag) films immersed in silica (SiO2). The two red arrows indi-
cate the directions of the energy flow inside the slot region before and
after the bend. The dashed blue arrow indicates the energy leakage
into a mode bound to the metal film. The blue arcs indicate the radia-
tion into the background silica. The dominant H-field component is
shown for each energy flow channel. Note that the leakage channels
have the dominant H-field polarized in different directions than the
slot waveguide channel. The vacuum wavelength and relevant dimen-
sions of the structure are indicated in the figure. At the specified
vacuum wavelength, the dielectric constants of Ag [20] and SiO2
[21] are εAg � �−129 − i 3.28�ε0 and εSiO2

� 2.085ε0 , respectively.
The magnetic permeabilities of both materials are μ0.
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shown in Eq. (35). In cases where substantially lossy materials
are used, we can still calculate ~ue using Eq. (28) with fitting
parameters tabulated in the literature such as [17] or using a
simple method introduced in Appendix A that requires a single
fitting parameter ε∞ when ω is close to a resonance frequency
of ε�ω�.

7. CONCLUSION
We have derived an expression for the instantaneous electric
energy density in lossless dispersive media for a time-
harmonic electric field. For lossy dispersive media described
by Lorentz poles, we have derived an expression for the in-
stantaneous electric power dissipation density as well as
the instantaneous electric energy density.

Each instantaneous quantity is decomposed into DC and
AC components. Interestingly, some of the DC and AC com-
ponents do not depend on the dispersion of dielectric con-
stants. The AC component of the instantaneous EM energy
density exhibits wavelike oscillation and contains contribu-
tions from all polarization components of the EM field. Plot-
ting such a quantity therefore provides a convenient and
informative way to visualize energy transport in complex
EM structures and future integrated nanophotonic devices.

APPENDIX A: SIMPLE METHOD TO
CALCULATE THE AC COMPONENTS OF
ue�t� AND qe�t� FOR LOSSY MEDIA
DESCRIBED BY A SINGLE LORENTZ POLE
In this section, we provide a simple method to calculate the
AC components of the electric energy density and electric
power dissipation density in a lossy medium described by a
dielectric function with a single Lorentz pole:

ε�ω� � ε∞
�
1� ω2

p

ω2
0 − ω2 � iωΓ

�
: (A1)

The method involves only one fitting parameter ε∞.
For a medium described by the dielectric function

[Eq. (A1)], Eq. (28) reduces to

~ue�t� �
1
4
Re
�
ε∞
�
1� ω2

p�ω2
0 − ω2�

�ω2
0 − ω2 � iωΓ�2

�
E�t�2

�
: (A2)

The four parameters ω0, ωp, Γ, and ε∞ needed to calculate
Eq. (A2) are typically obtained by fitting experimentally mea-
sured ε�ω� around ω � ω0 to Eq. (A1).

We seek to simplify Eq. (A2) into a form that involves only
the value of ε at a given ω and ε∞. Using the electric suscept-
ibility χe�ω� � ω2

p∕�ω2
0 − ω2 � iωΓ�, we rewrite the factor

multiplied to E�t�2 within the curly braces in Eq. (A2) as

ε∞
�
1� ω2

p�ω2
0 − ω2�

�ω2
0 − ω2 � iωΓ�2

�
� ε∞

�
1� χe�ω�2 Re

�
1

χe�ω�

��
:

(A3)

Because χe�ω� � ε�ω�∕ε∞ − 1, Eq. (A3) is also written as

ε∞
�
1� ω2

p�ω2
0 −ω2�

�ω2
0 −ω2 � iωΓ�2

�
� ε∞ ��ε�ω� − ε∞�2Re

�
1

ε�ω� − ε∞

�
:

(A4)

By substituting Eq. (A4) in Eq. (A2), we reach

~ue�t� �
1
4
ε∞ RefE�t�2g

� 1
4
Re

�
1

ε�ω� − ε∞

�
Ref�ε�ω� − ε∞�2 E�t�2g: (A5)

Equation (A5) allows us to calculate ~ue�t� using a single fitting
parameter ε∞; the other parameter ε�ω� in Eq. (A5) is an ex-
perimentally measured quantity found in references such
as [20,21].

We also obtain a simplified formula for ~qe�t� by substituting
Eq. (A5) into Eq. (34):

~qe�t� � −
1
2
ω Imf�ε�ω� − ε∞�E�t�2g

� 1
2
ωRe

�
1

ε�ω� − ε∞

�
Imf�ε�ω� − ε∞�2 E�t�2g: (A6)

Fig 3. (Color online) Visualization of wave propagation through the metallic slot waveguide bend. The fields here are obtained by solving the
frequency-domain Maxwell’s equations using the finite-difference frequency-domain method. The quantities (a) Hy, (b) time-averaged energy den-
sity �u � �ue � �um, and (c) AC component of instantaneous energy density ~u � ~ue � ~um of the solution of the frequency-domain Maxwell’s equations
are plotted on two planes: a horizontal y � �const:� plane on top of the metal film and a vertical x � �const:� plane containing the central axis of the
input port. Red, green, and blue indicate positive, zero, and negative, respectively. The area enclosed by the white dashed line in each figure is
where the coupling of the EM energy into the surface plasmon mode is supposed to be observed. Note that (a) fails to capture such a coupling; (b)
captures the coupling but loses the phase information; (c) displays both the coupling and phase information properly. Also notice the weak but
discernible pattern of spherical wavefronts in the vertical plane in (c). The thin orange lines around the y � 0 plane outline the two metal pieces.
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