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Abstract Remarkable progress has been made over the past decade in controlling light propagation and

absorption in compact devices using nanophotonic structures and metamaterials. From sensing and modulation,

to on-chip communication and light trapping for solar cells, new device applications and opportunities motivate

the need for a rigorous understanding of the modal properties of metamaterials over a broad range of frequencies.

In this review, we provide an overview of a metamaterial band theory we have developed that rigorously models

the behavior of metamaterials made of dispersive materials such as metals. The theory extends traditional

photonic band theory for periodic dielectric structures by coupling the mechanical motion of electrons in the

metal directly to Maxwell’s equations. The solution for the band structures of metamaterials is then reduced

to a standard matrix eigenvalue problem that nevertheless fully takes into account the dispersive properties of

the constituent materials. As an application of the metamaterial band theory, we show that one can develop a

perturbation formalism based on this theory to physically explain and predict the effect of dielectric refractive

index modulation or metallic plasma frequency variation in metamaterials. Furthermore, the metamaterial

band theory also provides an intuitive physical picture of the source of modal material loss, as well as a rigorous

upper bound on the modal material loss rate of any plasmonic, metamaterial structure. This in turn places

fundamental limits on the broadband operation of such devices for applications such as photodetection and

absorption.
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1 Introduction

The past two decades have seen extraordinary advances in the study and understanding of nanoscale

photonic structures such as photonic crystals and metamaterials. As researchers have sought to fully

characterize and explore the physical phenomena possessed by such nanophotonic structures, it has

become increasingly necessary to understand how such structures behave over a broad range of frequencies.

Harkening back to early studies of the broadband response of natural materials to light, it is both of

intrinsic and applied interest to develop an analytical, physical framework capable of describing the

electromagnetic modes of all metamaterial systems in a general way: a metamaterial band theory.
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While metamaterials often lend themselves to an effective-index picture [1], many metamaterial designs,

including fishnets [2] and chiral structures [3], have feature sizes that necessitate band structure computa-

tions to understand their behavior. The need to accurately calculate the eigenmodes and band structures

of such periodic structures numerically, and place analytic constraints on the modes of metamaterial

systems whose constituent materials are typically dispersive and metallic, motivates the development of

a rigorous metamaterial band theory.

The photonic band structure for any periodic material system can, in general, be determined by solving

the following equation [4]:

∇× 1

ε
∇×H =

(ω
c

)2
H , (1)

where ε is the material permittivity, H is the magnetic field and ω is the frequency of the photonic mode.

When ε is lossless and frequency-independent, Eq. (1) becomes a Hermitian eigenvalue problem [4].

Such a Hermitian formalism greatly facilitates numerical calculations [5]. In addition, it ensures mode-

orthogonality across different bands, which permits a global view of the band structure [4], and enables

advanced simulation techniques such as the Wannier function approach that speed up the calculation of

complex photonic circuits [6,7].

Since metamaterials are composed of dispersive materials, there is great interest in performing similar

band structure calculations for material systems with arbitrary frequency-dependent dielectric functions,

ε(ω). The challenge here is that with the ω dependence in ε, Eq. (1) no longer defines a standard

eigenvalue problem. While the photonic band structures for such dispersive systems have been obtained

by a variety of techniques that solve Maxwell’s equations in either the time or frequency domains [8–16], in

all these formalisms there are no apparent constraints between solutions at different bands. The resulting

band structures are thus of less utility than the standard dielectric band structure, since many important

calculations, such as the calculations of local density of states [17], rely critically on the ability to expand

the fields on an orthonormal basis formed by the eigenmodes of the system.

Beyond band structure computation, the development of a metamaterial band theory would also

allow one to fully study and characterize important metamaterial device applications. In particular,

there has been substantial recent interest in using metamaterials for active devices and sensing. While

surface-plasmon sensors are already prominent in biochemical sensing applications [18,19], remarkable

improvements in device performance have been achieved using plasmonic nanostructures and metama-

terial approaches [20–22]. Active plasmonic devices have also been implemented for modulation and

switching [23–27].

The development of metamaterial device applications is ultimately contingent on basic physical limits

related to the use of dispersive materials such as metals in these systems. The coupling of photons to

the electrons in the metal enables deep subwavelength modal confinement, but also results in a powerful

absorption and loss mechanism for electromagnetic modes in such metallic systems. This optical loss is

a limiting factor for some applications [28–35]. On the other hand, enhanced optical loss in plasmonic

systems has recently been leveraged to improve and maximize absorption for a range of applications [36]

including ultra-thin absorbers [37] and photodetectors [38]. The fundamental framework offered by a

metamaterial band theory could, in turn, place constraints on the universal behavior of metamaterial

modes as they relate to loss.

In this paper, we review a rigorous metamaterial band theory developed by the authors in three

previous works [39–41]. This review article is organized as follows. In Section 2, we demonstrate that the

band structure of dispersive photonic crystals and optical metamaterials, in general, can be obtained by

solving a standard matrix eigenvalue problem. In the case where the material can be approximated as

lossless, the eigenvalue problem is Hermitian, which directly leads to an orthogonality-condition for modes

at different frequencies. In Section 3, this metamaterial band theory is numerically implemented using

a finite-difference scheme. 2D periodic arrays of plasmonic rods in air are studied using the numerical

implementation where the plasmonic material is defined by a two-pole fit of silver’s dielectric function.

In Section 4 we build upon the band theory to construct a metamaterial perturbation theory that can

generally treat the effect of small changes in any system parameter, whether geometric or material. In
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Section 5 we use the perturbation theory to predict modal frequency shifts due to changes in the dielectric

constants of dispersive systems involving both metals and dielectrics. In Section 6, we prove rigorously

that, for any electromagnetic mode of a plasmonic metamaterial structure, there exists an upper bound on

its material loss rate. When the plasmonic material is described by a multi-pole Lorentz model, the upper

bound is a frequency-dependent weighted-average of the damping rates of the oscillators that underlie

the poles. We validate this proof by full-field simulations of a variety of systems including periodic arrays

of slot antennas [41]. Finally, we conclude in Section 7 and consider other recent uses of the band theory.

2 Metamaterial band theory formulation

We begin our analysis by considering materials whose permittivities can be described by

ε(ω) = ε∞ + ε∞
N∑

n=1

ω2
p,n

ω2
0,n − ω2 + iωΓn

. (2)

This is the standard N -pole Lorentz-Drude function used to fit the permittivities of dispersive materials

such as metals or polaritonic materials. As a short-hand we refer to all such materials as metals in

the rest of the paper but emphasize that the results reviewed herein extend to any material system

whose dielectric function can be described by a fit to Lorentz poles. The nth pole is characterized by

its resonant frequency ω0,n, its damping rate Γn, and its oscillator strength ωp,n. For many metals in

the optical wavelength range, such as silver [42], it is essential to use multiple poles in order to capture

contributions to the permittivities from both intra-band, and inter-band transitions. The intra-band

transition gives rise to free-electron behavior that is characterized by a Drude pole with its resonant

frequency ω0 = 0, whereas the inter-band transition gives rise to a Lorentz pole.

To describe such a dispersive material, for the nth pole in the dielectric function, one introduces a

polarization field Pn and a polarization velocity field Vn, satisfying

∂Pn

∂t
= Vn, (3)

∂Vn

∂t
= ω2

p,nε∞E − ω2
0,nPn − ΓnVn. (4)

These auxiliary fields [43,44] are then coupled to Maxwell’s equations through

∂H

∂t
= − 1

μ0
∇×E, (5)

∂E

∂t
=

1

ε∞

(
∇×H −

N∑
n=1

Vn

)
. (6)

For steady state, with fields varying as exp(iωt), Eqs. (3)–(6) become

iωH = − 1

μ0
∇×E, (7)

iωE =
1

ε∞
(∇×H −

N∑
n=1

Vn), (8)

iωPn = Vn, (9)

iωVn = ω2
p,nε∞E − ω2

0,nPn − ΓnVn, (10)

and thus define an eigenvalue problem for ω. Closely related to this approach, we note that similar

auxiliary fields have been employed in standard finite-difference time-domain simulations for dispersive

media [44], and have been used as a starting point for field quantization in dispersive media [45]. Eqs. (7)–

(10) also define a total energy density

W0 =
1

4
(ε∞|E|2 + μ0|H |2) +

N∑
n=1

1

4ε∞ω2
p,n

(ω2
0,n|Pn|2 + |Vn|2). (11)
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The spatial integral of (11), which represents the total energy of the system, is conserved when Γn = 0

for all poles. Further, defining x = (H ,E,P1,V1, . . . ,PN ,VN )
T
, which represents a multi-component

vector field varying over the whole space, we can write (7)–(10) as [39]

ωAx = Bx, (12)

where A = diag
(
μ0, ε∞, . . . , ω2

0,N/ω2
p,Nε∞, 1/ω2

p,Nε∞
)
and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 i∇× · · · 0 0

−i∇× 0 · · · 0 i
...

. . .
...

0 0 · · · 0 −i
ω2

0,N

ω2
p,Nε∞

0 −i · · · i
ω2

0,N

ω2
p,Nε∞

i ΓN

ω2
p,Nε∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Finally, defining y =
√
Ax, we can re-write this as an eigenvalue equation for ω:

ωy =
(√

A
)−1

B
(√

A
)−1

y. (14)

For the lossless case, Γn = 0, Eq. (14) becomes a Hermitian eigenvalue equation which results in an

orthonormality condition closely connected to the energy density expression previously introduced:

∫
dr

[
1

4
(ε∞E∗

a ·Eb + μ0H
∗
a ·Hb) +

N∑
n=1

1

4ε∞ω2
p,n

(ω2
0,nP

∗
a,n · Pb,n + V ∗

a,n · Vb,n)

]
= δab. (15)

3 Numerical band structure calculation

To numerically compute the band structure, we implement a finite-difference spatial discretization of

the E and H fields with a Yee grid [46]. The use of Yee’s grid ensures divergence-free behavior for the

electromagnetic fields [43]. The equations are written for every cell in the Yee grid, with the spatial

derivatives represented using finite-difference matrix operators [47]. Below, we will only examine systems

with 2D periodicity for simplicity, but we note here that our method is not constrained to 2D, and can

be used for 3D periodic systems. The Hermitian eigenvalue problem of (14) in particular can be solved

efficiently using the well-known Implicitly Restarted Lanczos Method [48]. The formalism introduced has

also been implemented in 3D using finite-element approaches [3].

As a specific example, we consider as our model system a 2D periodic array of square plasmonic rods

in air where the plasmonic material is described by a Lorentz-pole fit of silver’s permittivity. The system

has periodicity a = 130 nm and the rod has a side length of s = 0.45a = 58.5 nm.

The plasmonic metal’s dielectric function is defined by fitting silver’s tabulated permittivity [49] with

a Lorentz-Drude model [42], consisting of a Lorentz pole and a Drude pole. In Figure 1(a) we see that

using the two poles is more accurate than using the Drude model alone for modeling silver’s dielectric

function at optical frequencies. The Lorentz pole in this fit is defined by ω0,1 = 0.5526, ωp,1 = 0.8196,

and Γ1 = 0.1195, and the Drude pole by ω0,2 = 0, ωp,2 = 0.9615, and Γ2 = 0.0022. All frequencies in

the numerical examples are normalized to 2πc/a. A plot of the real and imaginary parts of this fit over

the relevant normalized frequency range is presented in Figure 1(b). In the formalism of Section 2, the

Drude pole has zero resonant frequency, and hence only requires the V -field as its auxiliary field. Thus,

in our system, we describe the effects of dispersion in terms of three auxiliary fields: P1 and V1 for the

Lorentz pole, and V2 for the Drude pole.

We analyze the TM and TE modes (with their electric and magnetic fields respectively polarized along

the z-dimension) of this system in Figure 2. In our finite difference implementation, we have truncated

the finite-difference grid appropriately at the metal-air interface to ensure that boundary conditions for
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Figure 1 (a) Comparing tabulated data for the real part of silver’s permittivity [49] against the Drude model and Lorentz-

Drude [42] fit used in this paper, at optical wavelengths; (b) the imaginary and real parts of the Lorentz-Drude fit [42] of

silver’s permittivity over normalized frequencies for a = 130 nm.
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Figure 2 Computed band structures for a square lattice of 2D plasmonic rods (s = 0.45a) in air for the (a) TM and

(b) TE polarization between (kx = 0, ky = 0) and (kx = π/a, ky = 0) points. The metal is describe by a Lorentz-Drude fit

of silver with the presence of the Lorentz pole at ω0,1 highlighted. The cutoff frequency for TM modes is identified at ωc,

and frequency regions where Re[ε] > 0 are highlighted in yellow.

the tangential field components of the E-field are satisfied at these interfaces [50]. For the TM case, we

find that a stop-band exists below a cutoff frequency ωc = 0.3067. In the TE case we note the presence

of dispersion-less flat bands below ω ≈ 0.4 that correspond to surface plasmon modes, and modes that

have substantial group velocity which correspond to non-surface modes. For both cases, we also observe

the presence of a dense cluster of low group-velocity modes right below ω0,1 [51] in the region where

Re[ε] > 0, highlighted yellow in Figure 1(b) and Figure 2.

4 Metamaterial perturbation theory

We now review a general perturbation theory [40] based on the generalized eigenvalue equation for the

photonic bands of dispersive nanostructures (12) developed in Section 2. We start from the unperturbed

system

ω0A0x0 = B0x0. (16)

In the presence of a perturbation, the system matrices become A = A0 +A1, and B = B0 +B1, and as

a result, we have

(ω0 + ω1)(A0 +A1)(x0 + x1) = (B0 +B1)(x0 + x1). (17)

Using (16) and keeping only first-order terms in (17), we have

ω0A0x1 + ω1A0x0 + ω0A1x0 = B0x1 +B1x0. (18)
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Eq. (16), in its most general form, describes a lossy system and cannot be written as a Hermitian

eigenvalue problem. Thus, to calculate ω1 we also need to determine the left eigenvector z0 that satisfies

ω0z0A0 = z0B0. (19)

Multiplying z0 through (18) and solving for ω1, we find

ω1 =
z0B1x0 − ω0z0A1x0

z0A0x0
. (20)

In Section 5, we apply this equation to an example of a perturbation in metamaterial systems: dielectric

refractive-index modulation.

5 Dielectric refractive-index modulation

To design active optical devices such as sensors, switches and modulators, one must calculate how a small

change in refractive index affects the device’s response function. For active devices based on dielectric

structures [52–56] described by a frequency-independent dielectric constant distribution ε(r), the effect

of an index change is described by a frequency shift ω1 of the eigenmodes of the system, which is given

by first-order perturbation theory as [53,57]

ω1 = −ω

2

∫
drΔε(r)|E(r)|2∫
drε(r)|E(r)|2 . (21)

The numerator in (21) only has contributions from the perturbed regions as described by Δε(r). The shift

in the eigenfrequency thus depends on the overlap of the modal electric field energy with the perturbed

region.

Eq. (21), however, is not applicable for metamaterial systems. ε(r) can be negative in a metal system,

and thus directly applying (21) could lead to an unphysical prediction of infinite sensitivity. Moreover, in

plasmonic systems, recent experiments have successfully varied the plasma frequency of the metal [58–60],

introducing a new degree of freedom that requires formal theoretical treatment. While we do not review

the specific case of plasma frequency variation in this paper, we showed in our original work [40], that

this case can be effectively treated using the perturbation formalism.

In this section we focus on the specific case of a small change (Δε(r)) in the dielectric constant of a

dielectric region, in a nanostructure consisting of both metal and dielectric regions. The metal region is

assumed to be unperturbed. In this case, the perturbation takes the form

A1 = diag(0,Δε(r), . . . , 0, 0), (22)

while B1 = 0. We now determine the change in modal frequency for the cases when the metal in the

metal-dielectric nanostructure is lossless and lossy.

5.1 Lossless case, Γn = 0

For the lossless case (12) both A0 and B0 are Hermitian. In this case, from (19), we have z0 = x†
0. Thus,

Eq. (20) reduces to

ω1 = −ω0
x†
0A1x0

x†
0A0x0

= −ω0

∫
drΔε(r)|E(r)|2∫

dr W0
. (23)

For the lossless dispersive system, we thus obtain a result that has the same form as (2) that is now

appropriate for a system with dispersion, provided that we consider the total energy density in the

system including contributions from the auxiliary mechanical fields. The expression for total energy,

Eq. (11), has contributions from multiple Lorentz poles and is a multi-pole extension of the energy

density expression previously derived by taking electric polarization into account explicitly [61,62]. For

the lossless case this reduces to the usual expression for energy density in metals [61]

W0 =
1

4

[
d(ωεε∞)

dω

]
|E|2 + μ0

4
|H |2. (24)
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5.2 Lossy case, Γn �= 0

For the lossy case, the matrix B0 in (16) is no longer Hermitian and z0 �= x†
0. Thus, Eq. (20) in this

case reduces to

ω1 = −ω0
z0A1x0

z0A0x0
. (25)

While no explicit expression analogous to (2) can be written for the lossy case, Eq. (25) still allows one

to calculate the frequency shift due to a dielectric refractive index change in the presence of a lossy metal;

an important ability in realistic plasmonic sensing schemes.

Eq. (25) represents the technically correct way to do perturbation theory, where one needs to determine

both the left and right eigenvectors of the general eigenvalue problem. Moreover the denominator in (25)

cannot be interpreted as an energy integral. Empirically, on the other hand, we will show numerically

that in fact z0 ≈ x†
0, even for metals with realistic loss parameters, and thus the denominator of (25),

z0A0x0 ≈
∫

drW0, (26)

where W0 is the energy density of the mode for the lossy system as defined in (11), which includes

contributions from the mechanical auxiliary fields. We note that in a lossy system, when multiple poles

are involved, there is no simple relation such as (24) that can be used to describe the total energy. Instead,

the definition of (11), which explicitly takes into account contributions from the auxiliary mechanical

fields, must be used.

5.3 Numerical example

Motivated by a recent experiment [20], we consider the model system introduced in Section 2. It consists

of a two-dimensional periodic array of square plasmonic rods in air that are uniform along the third z

direction. The system has periodicity a = 130nm and the rod has a side length of s = 0.45a = 58.5 nm.

To verify the accuracy of our perturbation theory approach we highlight a region of the TE band

structure featuring both a surface and non-surface mode in Figure 3. We alter the dielectric constant of

the dielectric region by Δε = 0.02, and calculate the resulting shift in eigenfrequency, using perturbation

theory for both lossy and lossless cases. For the lossless system, we set Γn = 0, and use (23). For the lossy

system, we can use the exact perturbation theory result of (25), as well as the approximation in terms of

energy density in (26). The results from these two forms of perturbation theory are nearly identical to

each other. These results, from both forms of the perturbation theory, are then compared to the band

structure obtained by directly solving (12) for the perturbed system. The results from the perturbation

theory show excellent agreement with results from the direct calculation for both the lossless and lossy

systems.

To illustrate the practical significance of this result, we analyze a refractive-index sensing scheme by

calculating the reflection/transmission spectrum of 50-layers of the plasmonic rod system considered

above, using a full-field 2D finite-difference frequency-domain (FDFD) simulation [36]. The plasmonic

metal, corresponding as before to the two-pole fit of silver’s dielectric function, is assumed to be lossless

for the purposes of this illustration. For the TM case, below the cutoff frequency ωc (Figure 2(a)), no

propagating modes are supported. Thus, the structure is strongly reflecting. The lowest-frequency dip

in the reflection spectrum (Figure 4) corresponds to the first mode supported by the system, identified

previously in Figure 2(a) at ωc. We can then examine the shift in this reflectivity dip when the dielectric

surrounding the rods is changed by Δε (due to, for example, the introduction of a biochemical analyte).

We observe a shift of the dip by Δω = −9.9e− 5 for Δε = 1e− 3. Using (23) we calculate the shift of the

lowest-frequency mode at k = 0, for the same Δε, to be ω1 = −9.37e− 5, which matches well with the

shift observed in the full-field simulation. Thus, the perturbation theory with respect to the eigenmodes

of the system can be used to predict shifts in features of the same system’s transmission and reflection

spectra.
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region by Δε = 1e − 3 to simulate a perturbation, a

shift in the dip of Δω = −9.9e− 5 is observed, match-

ing the theoretical prediction of (23), ω1 = −9.37e−5,

well.

6 Upper bound on the modal material loss rate

In this section we review a fundamental analysis proving that, for any electromagnetic mode of a plasmonic

metamaterial structure, there exists an upper bound on its material loss rate [41]. When the plasmonic

material is described by a multi-pole Lorentz model, the upper bound is a frequency-dependent weighted-

average of the damping rates of the oscillators that underlie the poles. We validate this proof by full-field

simulations of a variety of systems including periodic arrays of slot antennas.

The past decade has seen many numerical studies of the loss properties of plasmonic and metamaterial

structures [24,32,63–68]. The calculation of the modal material loss rate has also been used to understand

the effect of plasmonic loss in solar cell light trapping schemes [69]. However, only a few recent papers

have attempted to understand the general behavior of loss in plasmonic systems from a purely analytic

perspective [70,71]. In contrast to these previous works, we review an analysis in this section that is not

restricted to the quasi-static limit, any specific geometry or the Drude model. It is fully analytic and

rigorous, derived directly from Maxwell’s equations and for material systems described by an arbitrary

number of lossy Lorentz poles.

6.1 Derivation of the upper bound

To begin our analysis we first recast (2) by noting the Thomas-Reiche-Kuhn sum rule [72]
∑N

n=1 ω
2
p,n =

nee
2/mε∞ ≡ ω2

p where e and m are the charge and effective mass of electrons respectively. Using the

rule, we can express the oscillator strength of each pole as ω2
p,n = fnω

2
p where

∑N
n=1 fn = 1.

Solving the eigenvalue problem defined by (7)–(10) results in eigenfrequencies ω = ωr + iγ that are

complex in general, with ωr corresponding to the modal frequency and γ the mode’s material loss rate.

Below we will use (7)–(10) to constrain the behavior of the modal material loss rate γ.

From (7)–(10) we obtain

(ωr + iγ)

[
μ0H

∗ ·H +
N∑

n=1

1

fnω2
pε∞

V ∗
n · Vn

]
−

N∑
n=1

iΓn

fnω2
pε∞

V ∗
n · Vn
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= (ωr − iγ)

[
ε∞E∗ ·E +

N∑
n=1

ω2
0,n

fnω2
pε∞

P ∗
n · Pn

]
+ i(H∗ · (∇×E)−E · (∇×H∗)). (27)

We integrate both sides of (27) over space. We use the standard vector field identity on the last term of

(27) and find a
∫
dr∇· (E×H∗) term. For closed or periodic systems this term is zero, and in practice it

is ≈ 0 for many open systems of interest where the field is strongly confined to a metal-dielectric interface.

We then separate the real and imaginary components of (27) respectively to find the first result of this

section ∫
dr

(
μ0|H |2 +

N∑
n=1

1

fnω2
pε∞

|Vn|2
)

=

∫
dr

(
ε∞|E|2 +

N∑
n=1

ω2
0,n

fnω2
pε∞

|Pn|2
)
, (28)

and

γ =

∫
dr
∑N

n=1

(
Γn/4fnω

2
pε∞

) |Vn|2∫
dr W0

. (29)

We emphasize that both (28) and (29) are exact for closed and periodic systems, and in practice

accurately describe many open plasmonic systems of interest. Eq. (28) states that, for a given mode, the

sum of the magnetic energy and kinetic energy of the electrons is equal to the sum of the electric energy

and potential energy of the electrons. Eq. (29) relates the modal material loss rate to the fraction of its

total energy that is in the kinetic energy of the electrons.

Comparing (11) and (28) directly leads to an exact bound on the kinetic energy of the electrons that

is quantified by the V field:

∫
dr

N∑
n=1

1

4fnω2
pε∞

|Vn|2 �
∫

dr
1

2
W0. (30)

Substituting (30) into (29) we express the upper bound as

γ � 1

2

∑N
n=1 Γn

∫
dr 1

fnω2
pε∞

|Vn|2
∑N

n=1

∫
dr 1

fnω2
pε∞

|Vn|2
= γmax(ω). (31)

From (10) we find the following expression for |Vn|2:

1

fnω2
pε∞

|Vn|2 =
(ω2

r + γ2)fnω
2
pε∞[

ω2
0,n − (ω2

r + γ2 + γΓn)
]2

+ (ωrΓn − 2γωr)2
|E|2. (32)

Substituting (32) into (31) we find a self-consistent expression for γmax:

γ �

∑N
n=1

Γn

2
fn

[ω2
0,n−(ω2

r+γ2+γΓn)]
2
+(ωrΓn−2γωr)2∑N

n=1
fn

[ω2
0,n−(ω2

r+γ2+γΓn)]
2
+(ωrΓn−2γωr)2

≡ γmax(ωr). (33)

However, in the optical and terahertz regimes relevant to plasmonics, γ � ωr and it is not necessary to

solve this self-consistent equation. This allows us to eliminate the γ on the left hand side of the equation

that makes it a self-consistent inequality and instead reduces to a simple bound:

γmax(ωr) =

∑N
n=1

Γn

2
fn

(ω2
0,n−ω2

r)
2+ω2

rΓ
2
n∑N

n=1
fn

(ω2
0,n−ω2

r)
2+ω2

rΓ
2
n

. (34)

By defining weighting terms θn(ωr)

θn(ωr) =
fn/

(
(ω2

0,n − ω2
r)

2 + ω2
rΓ

2
n

)
∑N

n=1 fn/
(
(ω2

0,n − ω2
r)

2 + ω2
rΓ

2
n

) , (35)
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we find the second result of this section

γmax(ωr) =

N∑
n=1

θn(ωr)
Γn

2
, (36)

where
∑N

n=1 θn(ωr) = 1.

This expression is an approximation derived in the limit that γ � ωr which corresponds to most

metamaterial situations of interest. The upper bound γmax(ωr) is a frequency-dependent weighted-

average of one-half the damping rates of the poles, Γn/2. The weighting takes into account both the

strength of the damping and the strength of the pole itself. Thus a weak pole (small fn) has limited

effect on the upper bound even if it has an extremely large corresponding damping rate Γn. The behavior

of the upper bound is thus complex and depends on the distributions of pole parameters for a material.

As such, the maximum upper bound over all frequencies will not necessarily be max(Γn)/2 and, as we

show in the numerical results, it can be substantially lower than this value.

To further examine the implications of these results we briefly review a few special cases that are of

practical interest:

1) Single-pole case: The upper bound is exactly γmax = Γ1/2 for all frequencies.

2) Multi-pole case: Suppose there exists a kth pole with its frequency far away from other poles such

that θk(ωr) � θn(ωr), n �= k. Near this kth pole then we have γmax 	 1
2Γk. This is particularly relevant

when one has a Drude term as characterised by a resonant frequency ω0 = 0 and a damping rate ΓDrude.

In such cases, the Drude damping rate dominates for low frequencies away from the lowest frequency

Lorentz pole and γmax 	 ΓDrude/2.

3) High-frequency limit: The upper bound in this case is a constant sum of the damping rates of the

oscillators weighted by the strength of each oscillator:

γmax(ωr → ∞) =
N∑

n=1

fnΓn. (37)

The upper bound on γ corresponds to a lower bound on the intrinsic quality factor Qi � ωr/2γmax(ωr).

These bounds are purely dependent on material properties and cannot be overcome by varying a plasmonic

nanostructure’s shape or design. Moreover, as we show in the numerical examples below, plasmonic modes

with EM fields confined to deep subwavelength regions are often very close to this limit.

6.2 Numerical verification

We now numerically verify this result by calculating γ for the eigenmodes of a variety of plasmonic

nanostructures either analytically or numerically using the method described in Section 2. First, we

use a N = 1 Drude fit of silver where ε∞ = ε0, ω0 = 0, ωp = 2πc/a, and Γ = 0.0025ωp for a =

136 nm. We begin with a metal-air interface and calculate γ analytically for the fundamental surface

plasmon mode. The modal loss rate of the fundamental surface plasmon mode of a Drude metal-air

interface can be derived for steady-state analytically [41]. Using this analytical expression, we show in

Figure 5 that γ indeed saturates at γmax = Γ/2 as kx → ∞. For a metal-air interface this corresponds to

ωr → ωp/
√
2 ≡ ωsp, the surface plasmon frequency.

Next we consider a more complex plasmonic nanostructure consisting of a 2D periodic array of silver

slot antennas in air. For the plasmonic material we use aN = 3 fit of silver [41]. We plot the corresponding

γmax(ωr) in Figure 6(a). In consistency with case (2) of the theory presented earlier, we observe that in

the frequency region near a pole γmax(ωr) is dominated by the damping rate of such a pole. In frequency

regions between poles, γmax(ωr) is a weighted average of the damping rates of the poles. Furthermore,

in this example the maximum of the upper bound is in fact lower than the largest damping rate, Γ3/2,

due to the complex interaction of the strengths and damping terms of these three Lorentz poles.

Having discussed the upper bound of the modal material loss rate, which is determined by the plasmonic

material model only, we now consider the material loss rate of the optical modes of the antenna array.

We calculate γ of TE (Ex and Ey in-plane) modes for all wave vectors k in the irreducible first Brillouin
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in units of Γ) vs. wave vector (kx in

units of kp) for a planar metal-air inter-

face calculated analytically. The metal is

described by ε(ω) = 1−ω2
p/ω(ω− iΓ), and

kp = ωp/c. γ approaches γmax = Γ/2

for large kx, where the field is strongly

confined spatially to the interface. Figure

from [41].
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Figure 6 (a) Modal material loss rate (γ in units of 2πc/a, where a =

136 nm is the period) vs. real frequency (ωr in units of 2πc/a) for all TE

modes of a 2D periodic array of plasmonic slot antennas (shown in the inset)

in the first Brillouin zone. The plasmonic material is described by a three-

pole fit of silver’s dielectric function [41]. The γ values, numerically calculated

via the method of Section 2, are shown as individual points. Many modes

follow the upper bound γmax (marked by the blue line) but do not exceed

it. (b),(c) Electric field intensity (|Ex|2) of two eigenmodes with large and

small γ. The modes with larger γ that approach γmax exhibit field profiles

that are strongly concentrated along the metal-air interfaces of the antenna.

Figure from [41].

zone. These γ are plotted against their corresponding real frequency ωr in Figure 6(a) as squares. As in

Figure 5 the numerically calculated γ for the antenna array’s optical modes do not exceed the predicted

upper bound of γmax(ωr), but many modes do approach this bound. We compare two modes with large

and small γ in Figure 6(b) and Figure 6(c) respectively. The eigenmode with strong field confinement

(Figure 6(b)) at the metal-air interface has a large γ, approaching the limit of γmax.

As an added example we numerically calculate the material loss rate of a 2D periodic array of air holes

in silver. We plot the corresponding γmax(ωr) in, and show the cavity array schematically in the inset of,

Figure 7. As in Figure 6(a) we plot the upper bound γmax(ωr) and again observe that γmax(ωr) is domi-

nated by the damping rates of poles in frequency regions surrounding them, but otherwise is a weighted

average in frequency regions between poles. As in Figure 5 γ does not exceed the predicted γmax(ωr), but

many modes do approach the limit. Through these numerical examples, we have demonstrated that the

upper bound as derived theoretically can indeed be used to constrain modal loss behavior in plasmonic

structures in a general multi-pole, multiple mode situation.

7 Conclusion

In this review, we first discussed a metamaterial band theory that rigorously models the behavior of

plasmonic nanostructures and metamaterials over a broad range of frequencies [39]. The specific approach

used couples the mechanical motion of electrons in the metals to Maxwell’s equations as a linear system

and formulates the band structure calculation as a standard eigenvalue equation. In the lossless case

the equation is Hermitian and the eigenmodes form a complete orthonormal basis. We numerically

demonstrated the efficacy of this approach by computing the band structure of 2D periodic systems.

More recently, other researchers have extended this to 3D and used this formalism to compute the

photonic band structure of 3D periodic metamaterial systems [3]. Indeed, there is substantial demand in

the metamaterial community for the ability to compute the band structure of 3D systems numerically.

We next used the band theory to develop a metamaterial perturbation theory that rigorously treats

the effect of small variations and changes in plasmonic nanostructures and metamaterials [40]. We

considered an example of such a variation: the dielectric refractive-index in a metal-dielectric system.

While this example is of both fundamental and applied interest, we emphasize that the perturbation
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Figure 7 Material loss rate (γ in units of 2πc/a, where a = 136 nm is the period) vs. real frequency (ωr in units of

2πc/a) for TE modes of a 2D periodic array of air holes in a plasmonic material (shown in the inset) in the first Brillouin

zone. The plasmonic material is described by a three-pole fit of silver’s dielectric function [41]. The γ values, numerically

calculated via the method of Section 2, are plotted as squares. Many modes follow the upper bound γmax (marked by the

blue line) but do not exceed it. Note here that as in Figure 6(a) γmax is frequency-dependent because of the presence of

multiple poles and that its value, and the loss rates of the system’s modes, are influenced by the damping rate of the pole

closest to the mode’s real frequency but are substantially below the largest damping rate. Figure from [41].

theory itself is very general. Two recent works have used our approach to treat the effect of nonlinearities

[73] and coupling between resonators [74] in plasmonic and metamaterial systems. In addition, we see

opportunities to understand the effect of fabrication imperfections and other geometric variations using

the perturbation theory presented in this paper.

Optical loss in metallic nanostructures has been a topic of great concern and research interest from the

earliest days of metamaterials research. We have reviewed an analytical derivation of an exact energy

relation between the electromagnetic fields and the mechanical motion of electrons in dispersive plasmonic

and metamaterial systems [41]. We then showed how this relation places an upper bound on the material

loss rate of optical modes in such dispersive systems, and verified this result numerically. We highlight here

again that these results were derived exactly without electrostatic approximations and apply generally to

electromagnetic modes in any dispersive material system, including polaritonic materials. This analytical

framework and bound together place strong constraints on using metamaterial approaches to maximize

broadband absorption for photodetection and solar applications, topics of very recent interest that have

attracted much attention from the broader research community.

As research in metamaterials and nanophotonics expands to a broader range of fundamental and applied

topics, we anticipate the band theory and related extensions presented herein will prove an elucidative

framework for future inquiry.
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