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Abstract— Providing diversity is one of the two possible ob-
jectives (the other one is providing multiplexing) of a multi-
input multi-output (MIMO) system. For Ultra wide-band (UWB )
impulse radio systems using rake receivers, there are already
richly inherent multipath diversities. However, there may be
UWB applications making use of more than one UWB transmit
antenna and/or receive antenna, which leads to UWB MIMO
systems. The difference between the diversity analyse of a UWB
MIMO system from that of a narrow band system lies in the
different choice of propagation channel model for the branches
linking each transmit antenna and receive antenna. Similarto
the narrow band system, the existence of the correlation between
the branches can severely degrade the diversity performance,
and complicate the performance analyse. In this paper, the wide-
band propagation channel for the UWB MIMO system, with
pre-defined correlation model for the branches, is broken down
into several uncorrelated elementary narrow-band propagation
channels with equivalent diversity performance. Based on this,
a novel method for evaluating the diversity performance of a
MIMO UWB impulse radio system is presented.

I. INTRODUCTION

UWB systems in the form of impulse radio can provide
a stable level of received signal power due to the highly
resolvable multi-path diversity [1]. This requires a rake re-
ceiver that can combine an adequate number of multi-path
components [2]. However, due to the limited number of
fingers that can be incorporated in practice, the rake recevier
may not collect enough signal energy from the multi-path
components. Applying multi-antennas can help reduced the
required number of rake fingers and [3] be one of the solutions
to compensate this shortage of the UWB impulse system.
The consideration is how to balance the number transceive
antennas and the number of fingers built in the rake receivers.

Diversity order has been interpreted in [5] as the slope of
symbol error probability (SEP) curve when the signal-to-noise
ratio (SNR) approaches infinity. There is a tradeoff between
the diversity order and the multiplexing [5]; maximum di-
versity performance is achieved when the system does not
provide any multiplexing. However, diversity order can notbe

used to evaluated the deteriorated diversity performance due
to the impact of the correlation between the branches linking
different transceive antennas because, as we will show later in
this paper, the curves of the SEP of MIMO systems undergoing
any degree of correlations (except the case that the correlation
is equal to 1) have the same slops in the high-SNR region.

This paper focuses on the diversity performance of the
MIMO UWB impulse radio systems with correlated propa-
gation branches. The maximum diversity performance is of
interest here and is regarded as the diversity performance
of the system. We will derive a measure of the diversity
performance for a MIMO UWB impulse radio system with
arbitrarily correlated branches, build up a link between this
measure and the correlations, and give the expression of the
measure for two pre-defined correlation model.

Several assumptions have been made as follows. Firstly,
this paper focuses on the UWB indoor wireless propagation
environment, so it is reasonable to assume that the propagation
channels are time invariant for a large number of symbols and
spatially stationary in a sufficient small area [7]. Secondly, it
is assumed that full channel information and perfect synchro-
nisation are achieved on the receiver side. Thirdly, the channel
magnitude is Nakagami-m distributed [8]. Finally, anti-podal
modulation scheme, that is, binary phase shift keying (BPSK),
is applied on the transmitted pulses when analysing the symbol
error probability (SEP) performance of the system.

The rest of this paper is organised as follows: in Section II,
the matrix structure is given to describe the MIMO propagation
channel for the UWB impulse radio system; in Section III,
virtual branches technique is used to break down the correlated
propagation channels into uncorrelated channel components;
a measure of evaluating the diversity performance is derived
Section IV; a link between this measure and the correlation
between the branches is presented in Section V for two special
structures of the covariance matrix of the channels; conclusion
and future work appears in Section VI.



II. CHANNEL MATRIX OF THE UWB IMPULSE
RADIO MIMO SYSTEM

Suppose thatNt transmit antennas andNr receive antennas
are employed in the UWB MIMO communication system.
The MIMO channel matrix can be represented by a three
dimensional matrix as follows

H(τ) =











H11(τ) H12(τ) · · · H1Nt
(τ)

H21(τ) H22(τ) · · · H2Nt
(τ)

...
...

. . .
...

HNr1(τ) HNr2(τ) · · · HNrNt
(τ)











(1)

whereHpq(τ) itself is a tapped-delay line channel model

Hpq(τ) =

Npq−1
∑

i=0

apq,iδ(τ−i·∆τ), 1 ≤ p ≤ Nr, 1 ≤ q ≤ Nt

(2)
∆τ is the minimum resolved time bin-width, which is ap-
proximately the reciprocal of the bandwidth occupied by the
transmitted signal;Npq is the total number of the resolved time
bins, which can be calculated asNpq = τe/∆τ , whereτe is
the channel excess delay. For the first arriving component, the
delay is zero.apq,i is set to be zero when there is no multi-path
component appearing in theith time bin.

Assume that the transmitted signal iss(t). The received
signal, rpq(t), corresponding to the sub-channel connecting
the qth transmit antenna andpth receive antenna is given as

rpq(t) = s(t) ∗ Hpq(t) (3)

where∗ denotes convolution.
A sequence of matched filters with different delays are

employed in the rake receiver for the selected paths. With
full channel information and perfect synchronisation at the
receiver, maximum ratio combining (MRC) is applied on each
finger with finger weighta∗

pq,i, where ∗ indicates complex
conjugate here. The signal energy at the output of the rake
receiver,γpq, is thus the combination of the energy born on
the selected paths as follows

γpq =
∑

i∈IR

|apq,i|2 ·
∫ ∞

−∞

|s(τ)|2dτ

=
∑

i∈IR

|apq,i|2
(4)

where the pulse energy has been normalised to 1, i.e.,
∫∞

−∞
|s(τ)|2dτ = 1. IR is the aggregate set of the indexes of

the chosen paths, depending on the type of the rake receiver,
selective rake (S-rake) or partial rake (P-rake) [10], [11].

Becauseapq,i is Nakagami-m distributed,γpq has a Gamma
distribution [9] given below:

pγpq
(γpq) =

m
mpq

pq γmpq−1

γmpqΓ(mpq)
exp

(

−mpqγ

γ

)

(5)

whereΓ(mpq) is the gamma function with the m-parameter
mpq associated with the Nakagami-m propagation channel
between thepth transmit antenna and theqth receive antenna,
andγ = E{γ} is the expectation ofγ over the fading channel.

Note that in order to apply virtual-branch de-construction
[15] on the correlated propagation channels,2mqp has to be
constrained to be an integer in the rest of this paper.

For convenience of analysis,γpq are organised in anNr ×
Nt matrix similar to the channel matrix for the narrow band
MIMO system

Hγ =











γ11 γ12 · · · γ1Nt

γ21 γ22 · · · γ2Nt

...
...

. . .
...

γNr1 γNr2 · · · γNrNt











(6)

III. VIRTUAL BRANCHES OF THE RAKE OUTPUT
MATRIX

When MRC is applied at the receiver, the signal-to-noise
ratio at the input to the decision block,SNRr, is the sum of
SNRs of the selected paths from all transmit-receive antenna
links. Assuming that all the channels share the same noise
power spectral densityN0, SNRr can be written as

SNRr =

Nt
∑

p=1

Nr
∑

q=1

Ebγpq

N0

= SNRt · γ
(7)

where Eb is the signal energy per bit,SNRt = Eb

N0

is
the signal-to-noise ratio at the transmitter side, andγ =
Nt
∑

p=1

Nr
∑

q=1

γpq.

Generally speaking, since the different transmit-receivean-
tenna links are correlated,γpq are correlated with each other,
which makes it difficult to apply the moment generation
function (MGF) [12] directly to the integral form of bit error
probability (BEP) in order to derive a closed form expression.
Fortunately, by using the Karhunen-Loeve (KL) expansion
[13],[14], the rake output matrix in equation (6) can be
projected onto a set of virtual branches that have independent
elements [15].

A. Virtual Branches Representation of MatrixHγ

First, Hγ in equation (6) needs to be vectorised as

~hγ = vec{Hγ}
= [γ11 γ12 · · · γ1Nt

γ21 γ22 · · · γNrNt
]T

(8)

whereγpq = ~rT
pq · ~rpq, and~hγ is an NrNt × 1 vector.~rpq is

a 2mpq × 1 Gaussian distributed vector with zero-mean and
covariance matrixdiag{ ¯γpq

2mpq
}, wherediag{X} is a diagonal

matrix withX being on the diagonal. The total collected signal
energy can now be written as

γ = ~rT · ~r (9)

where

~r = [~rT
11~r

T
12...~r

T
21~r

T
22...~r

T
NrNt

]T = [~rT
1 ~rT

2 ...~rT
Nr·Nt

]T (10)

Note that the 2-dimensional indexes of~rpq have been changed
to 1-dimensional indexes in the above equation for analytical
convenience.



Since~r is zero mean, it can be KL expanded to

~r =

N−1
∑

i=0

νi ~ϕi (11)

whereN is the total number of non-zero eigenvalues1 of the
covariance matrixC~r = E{~r~rT }, ~ϕi are orthonormal vectors,
and νi are independent Gaussian distributed KL coefficients
with zero means and covariancesλi, i.e.,νi ∼ N(0, λi), where
λi is an arbitrary non-zero eigenvalue of the covariance matrix
C~r.

Substituting (11) into (9) results in

γ =

(

N−1
∑

i=0

νi ~ϕi

)T (N−1
∑

i=0

νi ~ϕi

)

=

N−1
∑

i=0

ν2
i

(12)

where ν2
i has a Gamma distribution withmpq = 1/2 and

ν2
i = λi.
In this paper,̄γ is normalised to 1, that is

γ̄ =
N−1
∑

i=0

λi = tr{C~r} = E{~rT~r} = 1 (13)

wheretr{·} is the trace of the matrix.

B. Structure of the Covariance Matrix

An expression for the correlation coefficients between the
received energies from different diversity branches, i.e., Hij(t)
in (1), has been given in [15]. The derivation of the correlation
coefficient is given here. However, the expression of the
correlation coefficient is slightly different from the result given
in [15].

C~r has the following form

C~r = {Ci,j} i, j ∈ {1, 2, · · · , NrNt} (14)

C~r is composed of matricesCi,j , and eachCi,j is a 2mi ×
2mj diagonal matrix:

Ci,j = diag{ρi,j · σiσj} (15)

where σ2
i = E{~ri(k)2} = γ̄i

2mi
, and ρi,j =

E{~ri(k)·~rj(k)}
σiσj

.

~ri(k) is thekth element of~ri in (10), andk is any integer in
[1, min{2mi, 2mj}].

Under the assumption that the indoor wireless propagation
environment is spatially stationary, the statistical parameters
describing the propagation channels should be the same for
different realizations of the channels. Thus,

σ2
i = σ2

j =
γ̄

2mNrNt
(16)

wheremi = mj = m. C~r can thus be rewritten as:

C~r = {diag{ρi,j}} ·
γ̄

2mNrNt
(17)

1Eigenvalues with multiplicities of more than 1 are counted as different
eigenvalues.

wherediag{ρi,j} are all2m × 2m diagonal matrices
The correlation coefficient of the received energies from

different transmit-receive antenna pairs is defined as

ργi,γj
=

E{γiγj} − γi · γj

σγi
σγj

(18)

σ2
γi

= E{(γi − γi)
2} is the variance ofγi

Making use of the expression of the4th order moment of a
Gaussian real vector,[a b c d]T , with zero mean vector given
below [18]

E{abcd} = E{ab}E{cd} + E{ac}E{bd}+ E{ad}E{bc}
(19)

we have

E{γiγj} = γi · γj +
ρ2

i,jγi · γj

max(mi, mj)
(20)

and

σ2
γi

=
γi

2

mi
(21)

And finally equation (18) can be rewritten as2

ργi,γj
=

√
mimj

max(mi, mj)
ρ2

i,j (22)

Thus the correlation coefficients,ργi,γj
, between the diver-

sity branches are linked to the correlation coefficients,ρi,j ,
between the Gaussian distributed components of~ri.

C. Simplification of the Covariance Matrix

It can be seen in the previous sub-section that the covariance
matrix, C~r, is a sparse matrix, since the correlation between
different paths in the same transmit-receive antenna link is
nearly zero, as stated earlier. For propagation channels with
the same m-parameter,C~r can be simplified to anNrNt ×
NrNt matrix Cr = {ρi,j} containingρi,j ·σiσj as the(i, j)th

element.
Theorem 1:λi is one of the eigenvalues of a Hermitian

matrix, C, with a multiplicity of µi. Let Cl = C ⊗ Il×l,
where⊗ indicates the matrix Kronecker production, andIl×l

is an l × l identity matrix. Thenλi are the eigenvalues ofCl

with a multiplicity of µil.
The proof is given in appendix I.
With the help of the above theorem, we only need to

consider the spread of the eigenvalues ofCr = {ρi,j} with a
size ofNrNt×NrNt, instead ofC~r with a size of2NrNtm×
2NrNtm. Note thatργi,γj

= ρ2
i,j becausemi = mj . The

eigenvalues ofC~r in (17) are given the the eigenvalues ofC~r

multiplied with 1/(2mNrNt), with a multiplicity of 2m.

IV. EVALUATION OF DIVERSITY PERFORMANCE

Based on an upper bound of the SEP performance, a
measure of the diversity performance of the UWB impulse
radio MIMO system with correlated propagation channels is
derived in this section.

2It is slightly different from the corresponding equation, equation (2), in
[15]. However, the author believes that the derivation in this paper is correct.



A. Average SEP of the system

For anti-podal modulation BPSK scheme, the average SEP
given as

Pe = E{Pins(SNRr)}

=
1

π

∫ π/2

0

N−1
∏

i=0

(

sin2 θ

sin2 θ + 2λi · SNRt

)1/2

dθ
(23)

where Pins(SNRr) is the instant SEP,λi and N are the
non-zero eigenvalues and the rank of the sparse covariance
matrix C~r, respectively. Note that under the assumption that
all transmit-receiver antenna links have the same m-parameter
m, N is the product of the rank of the covariance matrixCr

and2m.

B. Upper Bound on SEP

Sinceλi is non-zero, an upper bound on the SEP can be
given as

Pe <
1

π

∫ π/2

0

N−1
∏

i=0

(

sin2 θ

2λi · SNRt

)1/2

dθ

= K · SNRt
−N/2 · dλ

(24)

where

K = π−12−N/2

∫ π/2

0

sinN θdθ (25)

dλ =

(

N−1
∏

i=0

λi

)−1/2

(26)

and
∫ π/2

0

sinN θdθ =

{

(N−1)!!
N !! · π

2 , N is even
(N−1)!!

N !! , N is odd
(27)

(N)!! is given as

N !! =

{

N · (N − 2) · · · 1, N is odd

N · (N − 2) · · · 2, N is even
(28)

The tightness of the upper bound can be seen in Figure 1.
Note that if anyλi approaches 0, it is required thatSNRt

grows large enough to ensure the tightness.

C. A Measure for the Diversity Performance of UWB Impulse
Radio MIMO System

Now we derive a measure for the diversity performance
of UWB impulse radio MIMO system. According to the
arithmetic-geometric inequality [19],dλ satisfies the following
inequality

dλ =

(

N−1
∏

i=0

λi

)−1/2

≥
(

1

N

N−1
∑

i=0

λi

)−N/2

=

(

1

N

)−N/2

(29)
with equality iff λi are all of the same value. WhenN is
fixed andSNRt → ∞, the logarithmed ratio of thePe with

MIMO correlated propagation channels to that with uncorre-
lated MIMO propagation channels,Pλ, can be expressed as

Pλ = −1

2

N−1
∑

i=0

log10 λi +
N

2
log10

1

N
(30)

The parameterPλ is the order of the difference between
the SEP performances with zero correlation and with non-zero
correlation whenSNRt → ∞. The degraded SEP due to the
abscence of the correlation is10Pλ dB.

When SNRt → ∞, the increasedSNRt to maintain the
same SEP performance as if there is no correlation between
the MIMO propagation channels can be given as

SNRs =
Pλ

10 tan θ
= − 1

20N

N−1
∑

i=0

log10 λi+
1

20
log10

1

N
(31)

wheretan θ = N .

V. THE SPREAD OF THE EIGENVALUES OF THE
COVARIANCE MATRIX

As shown in the previous section, the measure of the
diversity performance of the UWB MIMO system,Pλ, is a
function of the eigenvalues of the covariance matrixC~r, which
is simplified toCr in this paper. In this section, two different
mathematical models for the matrixCr that are of practical
interest are presented. Eigenvalues ofCr for these two special
cases are analysed, thus a link is built up between the diversity
performance,Pλ, and the correlation coefficient,ργi,γj

.

A. Sameρi,j for All the Transmit-Receive Antenna Links

The MIMO propagation channels experience similar corre-
lation when the antennas are closely placed [16]. Letρi,j = ρ
for i, j = 1 · · ·NrNt and i 6= j, thenCr becomes a circulant
matrix as follows

Ccir =











1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1











(32)

The eigenvalues of a circulant matrix can be given by the
discrete Fourier transform (DFT) of its first row [17]. Thus,
the NrNt eigenvalues ofCcir in (32) are given as

λi =

{

[1 + ρ(NrNt − 1)], i = 0

(1 − ρ), i = 1, 2...NrNt − 1
(33)

and λi

2mNrNt
is the eigenvalues ofC~r in (14) with a multi-

plicity of 2m, according to theorem 1. Substituting λi

2mNrNt

into (30)

Pλ = −m log10[1+ρ(NtNr−1)]−m(NtNr−1) log10(1−ρ)
(34)

whereρ =
√

ργi,γj
, i, j = 1, 2...NrNt, i 6= j.

As shown by the measurement results in [20], the m-
parameter of the Gamma pdf in (5) range from 10 to 39,
depending on the number of rake fingers used and the prop-
agation environment. Thus the size of the covariance matrix



Cr̃ can range from several tens to several hundreds, depending
on the number of the transceiver antennas. Figure 1 shows the
SEP and its upper bound as a function of the transmitSNRt.
The m-parameter of the channel is set to be 20.Nr · Nt is
set to be 2, which means that it can be 2 transmitters and 1
receiver, or 1 transmitter and 2 receivers. It can be seen that
the existence of the correlation between the transmit-receive
antenna links can cause a parallel shift of the upper bound of
the SEP. BothPλ and SNRs can be used to described this
shift, and their relation is given by (31).
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Fig. 1. SEP and its bounds as a function of the transmit SNR. m=20.

Figure 2 showsPλ as a function of the correlation coeffi-
cient,ργi,γj

= ρ2
i,j , between the energies of different channels.

It can be seen that the existence of the correlation between the
transmit-receive antennas links can bring huge differenceon
the SEP performance, which also depends on the m-parameter
and the value ofNrNt.
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B. ρi,j obey the Bessel function

In this subsection, the correlation coefficientsρi,j are mod-
eled by a Bessel function of the first kind with0th order [19]

ρ(di,j) = J0(2πdi,j) =
1

2π

∫ π

−π

ej·2πdi,j ·sin θdθ (36)

wheredi,j is the parameter ofρ(di,j) between theith andjth

branch. Note that becauseJ0(2πx) is symmetric about the

ordinate, that is,ρ(x) = ρ(−x). The correlation coefficient,
ργi,γj

, of the energies from different transmit-receive antenna
links can be given as

ργi,γj
= J2

0 (2πdi,j) (37)

Since the positions of the antennas are discrete in space, it
is reasonable to discretisizedi,j in (37) as follows

tk = ρ(k · dν0) k ∈ N (38)

wheredν0 is the resolution ofdi,j .
Further assume thatdi,j between thekth and thelth branch

is given by|k−l|dν0. Thus the covariance matrixCr becomes
a Toeplitz matrix as followed:

Ctoe(k, l) = tl−k (39)

with eigenvalues asymptotically given by [17]3

λn,l = g(fsl/n) (40)

wheren = NtNr, l = 0, 1, · · · , NtNr − 1, fs = 1/dν0, and
g(f) is the Fourier transform of the sampled Bessel function
tk = ρ(k · dν0), with the expression given by

g(f) =
1

πdν0

∞
∑

k=−∞

u(f − kfs + 1) − u(f − kfs − 1)
√

1 − (f − kfs)2
(41)

whereu(x) is the step function given as:

u(x) =

{

1, x > 0

0, x ≤ 0
(42)

The expression ofPλ as a function ofdν0 can be given as
equation (35) at the top of next page, where⌈x⌉ indicates the
smallest integer no less thanx.

VI. CONCLUSION AND FUTURE WORK

The virtual-branch technique is applied in this paper to
deconstruct the MIMO propagation channel for the MIMO
UWB impulse radio system. A measure,Pλ, based on the
upper bound on the SEP performance, is proposed to evaluate
the diversity performance of the UWB impulse radio sys-
tem equipped with different numbers of transceiver antennas
and undergoing different degrees of correlations. The general
expression ofPλ is a function of the non-zero eigenvalues
of the covariance matrix of the MIMO channels. The exact
expressions ofPλ are given for two special channel covariance
matrix structures.

The result of this paper will serve as one of the elements to
build up the propagation channel models for the MIMO UWB
impulse radio system with an arbitrary correlation.
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Pλ(dν0) =















































m

⌈dν0·NrNt⌉−1
∑

l=1

log10

(

1 − l2

d2
ν0N

2
r N2

t

)

+ m(2⌈dν0 · NrNt⌉ − 1) log10

πdν0NtNr

2⌈dν0 · NrNt⌉ − 1

for 1
2dν0

> 1

−m

NrNt−1
∑

l=0

log10





∞
∑

k=−∞

u( l
dν0·NrNt

− k
dν0

+ 1) − u( l
dν0·NrNt

− k
dν0

− 1)
√

1 − ( l
dν0·NrNt

− k
dν0

)2



+ mNtNr log10(πdν0)

for 1
2dν0

≤ 1
(35)

APPENDIX I

The proof of the theorem 1 is given here. The eigenvectors
of a Hermitian matrix are orthogonal. Let~vi be one of theµi

eigenvectors corresponding toλi.

C · ~vi = λi · ~vi (43)

Based on vector~vi, we construct a matrixVi:

Vi = ~vi ⊗ Il×l (44)

where⊗ indicates the Kronecker product. It is obvious that

V
H
i · Vk = 0 for i 6= k (45)

Then we have

Cl ·Vi = (C ⊗ Il×l)(~vi ⊗ Il×l)

= (C · ~vi) ⊗ (Il×l · Il×l)

= λi · ~vi ⊗ Il×l

= λi · Vi

(46)

It is easy to show that becauseC is Hermitian, Cl is
also Hermitian. Based on matrixVi, we now construct the
orthogonal eigenvectors,~vi,j , for Cl. Let ~pj be anl×1 vector
with the jth entry being 1, and all the other entries being 0s.
Construct~vi,j as

~vi,j = Vi · ~pj (47)

Based on equation (45), it can be shown that

~vH
i,p~vk,q = 0 for p 6= q or i 6= k (48)

Multiplying both sides of equation (46) by~pj results in

Cl · ~vi,j = λi · ~vi,j (49)

where1 ≤ i ≤ µi, and1 ≤ j ≤ l.
Thus we haveλi being one of the eigenvalues ofCl with

a multiplicity of µil
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