Diversity Analysis of Multi-antenna UWB Impulse Radio Systems with Correlated Propagation Channels

Junsheng Liu, Mohammad Ghavami and Xiaoli Chu
UWB Communications Group
Division of Engineering
King’s College London
Strand, WC2R 2LS
London, UK
Email: junsheng.liu, mohammad.ghavami, xiaoli.chu @kcl.ac.uk

Ben Allen and Wasim Malik
Department of Engineering Science
University of Oxford
Parks Road
Oxford OX1 3PJ
UK
Email: ben.allen, wasim.malik @eng.ox.ac.uk

Abstract—Providing diversity is one of the two possible objectives (the other one is providing multiplexing) of a multi-input multi-output (MIMO) system. For Ultra wide-band (UWB) impulse radio systems using rake receivers, there are already richly inherent multipath diversities. However, there may be UWB applications making use of more than one UWB transmit antenna and/or receive antenna, which leads to UWB MIMO systems. The difference between the diversity analyse of a UWB MIMO system from that of a narrow band system lies in the different choice of propagation channel model for the branches linking each transmit antenna and receive antenna. Similar to the narrow band system, the existence of the correlation between the branches can severely degrade the diversity performance, and complicate the performance analyse. In this paper, the wide-band propagation channel for the UWB MIMO system with pre-defined correlation model for the branches, is broken down into several uncorrelated elementary narrow-band propagation channels with equivalent diversity performance. Based on this, a novel method for evaluating the diversity performance of a MIMO UWB impulse radio system is presented.

I. INTRODUCTION

UWB systems in the form of impulse radio can provide a stable level of received signal power due to the highly resolvable multi-path diversity [1]. This requires a rake receiver that can combine an adequate number of multi-path components [2]. However, due to the limited number of fingers that can be incorporated in practice, the rake receiver may not collect enough signal energy from the multi-path components. Applying multi-antennas can help reduced the required number of rake fingers and [3] be one of the solutions to compensate this shortage of the UWB impulse system. The consideration is how to balance the number transceive antennas and the number of fingers built in the rake receivers.

Diversity order has been interpreted in [5] as the slope of symbol error probability (SEP) curve when the signal-to-noise ratio (SNR) approaches infinity. There is a tradeoff between the diversity order and the multiplexing [5]; maximum diversity performance is achieved when the system does not provide any multiplexing. However, diversity order can not be used to evaluated the deteriorated diversity performance due to the impact of the correlation between the branches linking different transceive antennas because, as we will show later in this paper, the curves of the SEP of MIMO systems undergoing any degree of correlations (except the case that the correlation is equal to 1) have the same slops in the high-SNR region.

This paper focuses on the diversity performance of the MIMO UWB impulse radio systems with correlated propagation branches. The maximum diversity performance is of interest here and is regarded as the diversity performance of the system. We will derive a measure of the diversity performance for a MIMO UWB impulse radio system with arbitrarily correlated branches, build up a link between this measure and the correlations, and give the expression of the measure for two pre-defined correlation model.

Several assumptions have been made as follows. Firstly, this paper focuses on the UWB indoor wireless propagation environment, so it is reasonable to assume that the propagation channels are time invariant for a large number of symbols and spatially stationary in a sufficient small area [7]. Secondly, it is assumed that full channel information and perfect synchronisation are achieved on the receiver side. Thirdly, the channel magnitude is Nakagami-m distributed [8]. Finally, anti-podal modulation scheme, that is, binary phase shift keying (BPSK), is applied on the transmitted pulses when analysing the symbol error probability (SEP) performance of the system.

The rest of this paper is organised as follows: in Section II, the matrix structure is given to describe the MIMO propagation channel for the UWB impulse radio system; in Section III, virtual branches technique is used to break down the correlated propagation channels into uncorrelated channel components; a measure of evaluating the diversity performance is derived Section IV; a link between this measure and the correlation between the branches is presented in Section V for two special structures of the covariance matrix of the channels; conclusion and future work appears in Section VI.
II. CHANNEL MATRIX OF THE UWB IMPULSE RADIO MIMO SYSTEM

Suppose that N_t transmit antennas and N_r receive antennas are employed in the UWB MIMO communication system. The MIMO channel matrix can be represented by a three dimensional matrix as follows

$$
H(\tau) = \begin{pmatrix}
H_{11}(\tau) & H_{12}(\tau) & \cdots & H_{1N_t}(\tau) \\
H_{21}(\tau) & H_{22}(\tau) & \cdots & H_{2N_t}(\tau) \\
\vdots & \vdots & \ddots & \vdots \\
H_{N_t,1}(\tau) & H_{N_t,2}(\tau) & \cdots & H_{N_t,N_t}(\tau)
\end{pmatrix}
$$

where $H_{pq}(\tau)$ itself is a tapped-delay line channel model

$$
H_{pq}(\tau) = \sum_{i=0}^{N_{pq} - 1} a_{pq,i} \delta(\tau - i \cdot \Delta \tau), \ 1 \leq p \leq N_r, \ 1 \leq q \leq N_t
$$

$\Delta \tau$ is the minimum resolved time bin-width, which is approximately the reciprocal of the bandwidth occupied by the transmitted signal; N_{pq} is the total number of the resolved time bins, which can be calculated as $N_{pq} = \tau_s / \Delta \tau$, where τ_s is the channel excess delay. For the first arriving component, the delay is zero. $a_{pq,i}$ is set to be zero when there is no multi-path component appearing in the i^{th} time bin.

Assume that the transmitted signal is $s(t)$. The received signal, $r_{pq}(t)$, corresponding to the sub-channel connecting the q^{th} transmit antenna and the p^{th} receive antenna is given as

$$
r_{pq}(t) = s(t) * H_{pq}(t)
$$

where $*$ denotes convolution.

A sequence of matched filters with different delays are employed in the rake receiver for the selected paths. With full channel information and perfect synchronisation at the receiver, maximum ratio combining (MRC) is applied on each finger with finger weight $a_{pq,i}$, where $*$ indicates complex conjugate here. The signal energy at the output of the rake receiver, γ_{pq}, is thus the combination of the energy born on the selected paths as follows

$$
\gamma_{pq} = \sum_{i \in I_R} |a_{pq,i}|^2 \cdot \int_{-\infty}^{\infty} |s(\tau)|^2 d\tau
$$

Note that in order to apply virtual-branch de-construction [15] on the correlated propagation channels, $2m_{pq}$ has to be constrained to be an integer in the rest of this paper.

For convenience of analysis, γ_{pq} are organised in an $N_r \times N_t$ matrix similar to the channel matrix for the narrow band MIMO system

$$
H_{\gamma} = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \cdots & \gamma_{1N_t} \\
\gamma_{21} & \gamma_{22} & \cdots & \gamma_{2N_t} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{N_r,1} & \gamma_{N_r,2} & \cdots & \gamma_{N_r,N_t}
\end{bmatrix}
$$

III. VIRTUAL BRANCHES OF THE RAKE OUTPUT MATRIX

When MRC is applied at the receiver, the signal-to-noise ratio at the input to the decision block, SNR_e, is the sum of SNRs of the selected paths from all transmit-receive antenna links. Assuming that all the channels share the same noise power spectral density N_0, SNR_e can be written as

$$
\text{SNR}_e = \sum_{p=1}^{N_r} \sum_{q=1}^{N_t} \frac{E_b \gamma_{pq}}{N_0} = \text{SNR}_t \cdot \gamma
$$

where E_b is the signal energy per bit, $\text{SNR}_t = \frac{E_b}{N_0}$ is the signal-to-noise ratio at the transmitter side, and $\gamma = \sum_{p=1}^{N_r} \sum_{q=1}^{N_t} \gamma_{pq}$.

Generally speaking, since the different transmit-receive antenna links are correlated, γ_{pq} are correlated with each other, which makes it difficult to apply the moment generation function (MGF) [12] directly to the integral form of bit error probability (BEP) in order to derive a closed form expression. Fortunately, by using the Karhunen-Loeve (KL) expansion [13],[14], the rake output matrix in equation (6) can be projected onto a set of virtual branches that have independent elements [15].

A. Virtual Branches Representation of Matrix H_{γ}

First, H_{γ} in equation (6) needs to be vectorised as

$$
\vec{h}_{\gamma} = \text{vec}(H_{\gamma}) = [\gamma_{11} \ \gamma_{12} \ \cdots \ \gamma_{1N_t} \ \gamma_{21} \ \gamma_{22} \ \cdots \ \gamma_{2N_t} \ \cdots \ \gamma_{N_r,1} \ \gamma_{N_r,2} \ \cdots \ \gamma_{N_r,N_t}]^T
$$

where $\gamma_{pq} = r_{pq}^T \cdot r_{pq}$, and \vec{h}_{γ} is an $N_rN_t \times 1$ vector. r_{pq} is a $2m_{pq} \times 1$ Gaussian distributed vector with zero-mean and covariance matrix diag$\{\frac{m_{pq}}{2m_{pq}}\}$, where diag$\{X\}$ is a diagonal matrix with X being on the diagonal. The total collected signal energy can now be written as

$$
\gamma = \vec{r}^T \cdot \vec{r}
$$

where

$$
\vec{r} = [r_{11}^T r_{12}^T \cdots r_{1N_t}^T \ r_{21}^T r_{22}^T \cdots r_{2N_t}^T \ \cdots \ \ r_{N_r,1}^T r_{N_r,2}^T \cdots r_{N_r,N_t}^T]^T
$$

Note that the 2-dimensional indexes of r_{pq} have been changed to 1-dimensional indexes in the above equation for analytical convenience.
Since \bar{r} is zero mean, it can be KL expanded to
\begin{equation}
\bar{r} = \sum_{i=0}^{N-1} \nu_i \bar{\psi}_i \tag{11}
\end{equation}
where N is the total number of non-zero eigenvalues\(^1\) of the covariance matrix $C_\bar{r} = E\{\bar{r}\bar{r}^T\}$, $\bar{\psi}_i$ are orthonormal vectors, and ν_i are independent Gaussian distributed KL coefficients with zero means and covariances λ_i, i.e., $\nu_i \sim N(0, \lambda_i)$, where λ_i is an arbitrary non-zero eigenvalue of the covariance matrix $C_\bar{r}$.

Substituting (11) into (9) results in
\begin{equation}
\gamma = \left(\sum_{i=0}^{N-1} \nu_i \bar{\psi}_i \right)^T \left(\sum_{i=0}^{N-1} \nu_i \bar{\psi}_i \right)
= \sum_{i=0}^{N-1} \nu_i^2
\end{equation}
where ν_i^2 has a Gamma distribution with $m_{pq} = 1/2$ and $\bar{\nu}_i^2 = \lambda_i$.

In this paper, $\bar{\gamma}$ is normalised to 1, that is
\begin{equation}
\bar{\gamma} = \sum_{i=0}^{N-1} \lambda_i = tr\{C_\bar{r}\} = E\{\bar{r}^T \bar{r}\} = 1
\end{equation}
where $tr\{\cdot\}$ is the trace of the matrix.

B. Structure of the Covariance Matrix

An expression for the correlation coefficients between the received energies from different diversity branches, i.e., $H_{ij}(t)$ in (1), has been given in [15]. The derivation of the correlation coefficient is given here. However, the expression of the correlation coefficient is slightly different from the result given in [15].

$C_\bar{r}$ has the following form
\begin{equation}
C_\bar{r} = \{C_{i,j}\} \quad i, j \in \{1, 2, \cdots, N_r N_t\} \tag{14}
\end{equation}
$C_\bar{r}$ is composed of matrices $C_{i,j}$, and each $C_{i,j}$ is a $2m_i \times 2m_j$ diagonal matrix:
\begin{equation}
C_{i,j} = \text{diag}\{\rho_{i,j} \cdot \sigma_i \sigma_j\} \tag{15}
\end{equation}
where $\sigma_i^2 = E\{\bar{r}_i^2\} = \frac{\bar{\gamma}}{2m_i}$, and $\rho_{i,j} = \frac{E\{\bar{r}_i \bar{r}_j\}}{\sigma_i \sigma_j}$. \bar{r}_i^2 is the i^{th} element of \bar{r} in (10), and k is any integer in $\{1, \min\{2m_i, 2m_j\}\}$.

Under the assumption that the indoor wireless propagation environment is spatially stationary, the statistical parameters describing the propagation channels should be the same for different realizations of the channels. Thus,
\begin{equation}
\sigma_i^2 = \sigma_j^2 = \frac{\bar{\gamma}}{2m_r N_r N_t} \tag{16}
\end{equation}
where $m_i = m_j = m$. $C_\bar{r}$ can thus be rewritten as:
\begin{equation}
C_\bar{r} = \{\text{diag}\{\rho_{i,j}\}\} \cdot \frac{\bar{\gamma}}{2m_r N_r N_t} \tag{17}
\end{equation}
where diag$\{\rho_{i,j}\}$ are all $2m \times 2m$ diagonal matrices.

The correlation coefficient of the received energies from different transmit-receive antenna pairs is defined as
\begin{equation}
\rho_{i,j} = \frac{E\{\gamma_i \gamma_j\} - \bar{\gamma}_i \cdot \bar{\gamma}_j}{\sigma_{i,j}} \tag{18}
\end{equation}
and
\begin{equation}
\sigma_{i,j}^2 = E\{\gamma_i - \bar{\gamma}_i\}^2 \tag{19}
\end{equation}
Making use of the expression of the 4th order moment of a Gaussian real vector, $[a \ b \ c \ d]^T$, with zero mean vector given below [18]
\begin{equation}
E\{abcd\} = E\{ab\} E\{cd\} + E\{ac\} E\{bd\} + E\{ad\} E\{bc\} \tag{20}
\end{equation}
we have
\begin{equation}
E\{\gamma_i \gamma_j\} = \bar{\gamma}_i \cdot \bar{\gamma}_j + \frac{\rho_{i,j}^2 \bar{\gamma}_i \cdot \bar{\gamma}_j}{\max(m_i, m_j)} \tag{21}
\end{equation}
And finally equation (18) can be rewritten as
\begin{equation}
\rho_{i,j} = \sqrt{\frac{m_i m_j}{\max(m_i, m_j)}} \rho_{i,j}^2 \tag{22}
\end{equation}
Thus the correlation coefficients, $\rho_{i,j}$, between the diversity branches are linked to the correlation coefficients, $\rho_{i,j}$, between the Gaussian distributed components of \bar{r}.

C. Simplification of the Covariance Matrix

It can be seen in the previous sub-section that the covariance matrix, $C_\bar{r}$, is a sparse matrix, since the correlation between different paths in the same transmit-receive antenna link is nearly zero, as stated earlier. For propagation channels with the same m-parameter, $C_\bar{r}$ can be simplified to an $N_r N_t \times N_r N_t$ matrix $C_r = \{\rho_{i,j}\}$ containing $\rho_{i,j} \cdot \sigma_i \sigma_j$ as the $(i,j)^{th}$ element.

Theorem 1: λ_i is one of the eigenvalues of a Hermitian matrix, C, with a multiplicity of μ_i. Let $C_t = C \otimes I_{l \times l}$, where \otimes indicates the matrix Kronecker production, and $I_{l \times l}$ is an $l \times l$ identity matrix. Then λ_i are the eigenvalues of C_t with a multiplicity of $\mu_i l$.

The proof is given in appendix I.

With the help of the above theorem, we only need to consider the spread of the eigenvalues of $C_r = \{\rho_{i,j}\}$ with a size of $N_r N_t \times N_r N_t$, instead of $C_\bar{r}$ with a size of $2N_r N_t \times 2N_r N_t m$. Note that $\rho_{i,j} = \rho_{i,j}^2$ because $m_i = m_j$. The eigenvalues of C_r in (17) are given the the eigenvalues of C_r multiplied with $1/(2m_r N_t N_r)$, with a multiplicity of $2m$.

IV. EVALUATION OF DIVERSITY PERFORMANCE

Based on an upper bound of the SEP performance, a measure of the diversity performance of the UWB impulse radio MIMO system with correlated propagation channels is derived in this section.

\(^1\)Eigenvalues with multiplicities of more than 1 are counted as different eigenvalues.

\(^{2}\)It is slightly different from the corresponding equation, equation (2), in [15]. However, the author believes that the derivation in this paper is correct.
A. Average SEP of the system

For anti-podal modulation BPSK scheme, the average SEP given as

$$P_e = E\{P_{ins}(\text{SNR}_t)\}$$

$$= \frac{1}{\pi} \int_0^{\pi/2} \prod_{i=0}^{N-1} \left(\frac{\sin^2 \theta}{\sin^2 \theta + 2\lambda_i \cdot \text{SNR}_t} \right)^{1/2} d\theta$$

(23)

where $P_{ins}(\text{SNR}_t)$ is the instant SEP, λ_i and N are the non-zero eigenvalues and the rank of the sparse covariance matrix C_r, respectively. Note that under the assumption that all transmit-receiver antenna links have the same m-parameter m, N is the product of the rank of the covariance matrix C_r and $2m$.

B. Upper Bound on SEP

Since λ_i is non-zero, an upper bound on the SEP can be given as

$$P_e < \frac{1}{\pi} \int_0^{\pi/2} \prod_{i=0}^{N-1} \left(\frac{\sin^2 \theta}{2\lambda_i \cdot \text{SNR}_t} \right)^{1/2} d\theta$$

$$= K \cdot \text{SNR}_t^{-N/2} \cdot d_{\lambda}$$

(24)

where

$$K = \pi^{-1} 2^{-N/2} \int_0^{\pi/2} \sin^N \theta d\theta$$

$$d_{\lambda} = \left(\prod_{i=0}^{N-1} \lambda_i \right)^{-1/2}$$

(25)

and

$$\int_0^{\pi/2} \sin^N \theta d\theta = \begin{cases} \frac{(N-1)!! \cdot \pi}{2}, & N \text{ is even} \\ \frac{(N-1)!! \cdot \pi}{2N!!}, & N \text{ is odd} \end{cases}$$

(26)

(27)

$(N)!!$ is given as

$$N!! = \begin{cases} N \cdot (N-2) \cdots 1, & N \text{ is odd} \\ N \cdot (N-2) \cdots 2, & N \text{ is even} \end{cases}$$

(28)

The tightness of the upper bound can be seen in Figure 1. Note that if any λ_i approaches 0, it is required that SNR$_t$ grows large enough to ensure the tightness.

C. A Measure for the Diversity Performance of UWB Impulse Radio MIMO System

Now we derive a measure for the diversity performance of UWB impulse radio MIMO system. According to the arithmetic-geometric inequality [19], d_{λ} satisfies the following inequality

$$d_{\lambda} = \left(\prod_{i=0}^{N-1} \lambda_i \right)^{-1/2} \geq \left(\frac{1}{N} \sum_{i=0}^{N-1} \lambda_i \right)^{-N/2} = \left(\frac{1}{N} \right)^{-N/2}$$

(29)

with equality iff λ_i are all of the same value. When N is fixed and SNR$_t \to \infty$, the logarithm ratio of the P_e with MIMO correlated propagation channels to that with uncorrelated MIMO propagation channels, P_{λ}, can be expressed as

$$P_{\lambda} = -\frac{1}{2} \sum_{i=0}^{N-1} \log_{10} \lambda_i + \frac{N}{2} \log_{10} \frac{1}{N}$$

(30)

The parameter P_{λ} is the order of the difference between the SEP performances with zero correlation and with non-zero correlation when SNR$_t \to \infty$. The degraded SEP due to the absence of the correlation is $10P_{\lambda}$ dB.

When SNR$_t \to \infty$, the increased SNR$_t$ to maintain the same SEP performance as if there is no correlation between the MIMO propagation channels can be given as

$$\text{SNR}_t = \frac{P_{\lambda}}{10 \tan \theta} = -\frac{1}{20N} \sum_{i=0}^{N-1} \log_{10} \lambda_i + \frac{1}{20} \log_{10} \frac{1}{N}$$

(31)

where $\tan \theta = N$.

V. THE SPREAD OF THE EIGENVALUES OF THE COVARIANCE MATRIX

As shown in the previous section, the measure of the diversity performance of the UWB MIMO system, P_{λ}, is a function of the eigenvalues of the covariance matrix C_r, which is simplified to C_r in this paper. In this section, two different mathematical models for the matrix C_r that are of practical interest are presented. Eigenvalues of C_r for these two special cases are analysed, thus a link is built up between the diversity performance, P_{λ}, and the correlation coefficient, $\rho_{i,j}$.

A. Same $\rho_{i,j}$ for All the Transmit-Receive Antenna Links

The MIMO propagation channels experience similar correlation when the antennas are closely placed [16]. Let $\rho_{i,j} = \rho$ for $i, j = 1 \cdots N_r N_t$ and $i \neq j$, then C_r becomes a circulant matrix as follows

$$C_{cir} = \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{bmatrix}$$

(32)

The eigenvalues of a circulant matrix can be given by the discrete Fourier transform (DFT) of its first row [17]. Thus, the $N_r N_t$ eigenvalues of C_{cir} in (32) are given as

$$\lambda_i = \begin{cases} 1 + \rho (N_r N_t - 1), & i = 0 \\ (1 - \rho), & i = 1, 2 \ldots N_r N_t - 1 \end{cases}$$

(33)

and $\frac{\lambda}{2m N_r N_t}$ is the eigenvalues of C_r in (14) with a multiplicity of $2m$, according to theorem 1. Substituting $\frac{\lambda}{2m N_r N_t}$ into (30)

$$P_{\lambda} = -m \log_{10} [(1 + \rho (N_r N_t - 1)) - m(N_r N_t - 1) \log_{10} (1 - \rho)]$$

(34)

where $\rho = \sqrt{\rho_{i,j}}, i, j = 1, 2 \ldots N_r N_t, i \neq j$.

As shown by the measurement results in [20], the m-parameter of the Gamma pdf in (5) range from 10 to 39, depending on the number of rake fingers used and the propagation environment. Thus the size of the covariance matrix...
C_t can range from several tens to several hundreds, depending
on the number of the transceiver antennas. Figure 1 shows
the SEP and its upper bound as a function of the transmit SNR \(P_t \). The m-parameter of the channel is set to be 20. \(N_r \cdot N_t \) is
set to be 2, which means that it can be 2 transmitters and 1
receiver, or 1 transmitter and 2 receivers. It can be seen that the
existence of the correlation between the transmit-receive
antenna links can cause a parallel shift of the upper bound of
the SEP. Both \(P_t \) and SNR can be used to described this
shift, and their relation is given by (31).

![Fig. 1. SEP and its bounds as a function of the transmit SNR. m=20.](image)

Figure 2 shows \(P_{\lambda} \) as a function of the correlation coefficient, \(\rho_{\gamma_i,\gamma_j} \), between the energies of different channels. It can be seen that the existence of the correlation between the transmit-receive antennas links can bring huge difference on the SEP performance, which also depends on the m-parameter and the value of \(N_r \cdot N_t \).

![Fig. 2. \(P_{\lambda} \) as a function of the correlation coefficient, \(\rho_{\gamma_i,\gamma_j} \), between the powers of different channels.](image)

B. \(\rho_{i,j} \) obey the Bessel function

In this subsection, the correlation coefficients \(\rho_{i,j} \) are mod-
eled by a Bessel function of the first kind with \(0^{th} \) order [19]

\[
\rho(d_{i,j}) = J_0(2\pi d_{i,j}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j2\pi d_{i,j} \sin \theta} d\theta
\]

where \(d_{i,j} \) is the parameter of \(\rho(d_{i,j}) \) between the \(i^{th} \) and \(j^{th} \)
branch. Note that because \(J_0(2\pi x) \) is symmetric about the
ordinate, that is, \(\rho(x) = \rho(-x) \). The correlation coefficient, \(\rho_{\gamma_i,\gamma_j} \), of the energies from different transmit-receive antenna
links can be given as

\[
\rho_{\gamma_i,\gamma_j} = J_0^2(2\pi d_{i,j}) \]

Since the positions of the antennas are discrete in space, it is
reasonable to discretize \(d_{i,j} \) in (37) as follows

\[
t_k = \rho(k \cdot d_{o0}) \quad k \in \mathbb{N}
\]

where \(d_{o0} \) is the resolution of \(d_{i,j} \).

Further assume that \(d_{i,j} \) between the \(k^{th} \) and \(l^{th} \) branch is
given by \(|k-l|d_{o0} \). Thus the covariance matrix \(C_t \) becomes
a Toeplitz matrix as followed:

\[
C_{\text{t,oe}}(k,l) = t_{l-k}
\]

with eigenvalues asymptotically given by [17]

\[
\lambda_{n,l} = g(f_s l/n)
\]

where \(n = N_t \cdot N_r, l = 0, 1, \ldots, N_t \cdot N_r - 1, f_s = 1/d_{o0} \), and
\(g(f) \) is the Fourier transform of the sampled Bessel function
\(t_k = \rho(k \cdot d_{o0}) \), with the expression given by

\[
g(f) = \frac{1}{\pi d_{o0}} \sum_{k=-\infty}^{\infty} u(f - kf_s + 1) - u(f - kf_s - 1) \frac{1}{\sqrt{1 - (f - kf_s)^2}}
\]

where \(u(x) \) is the step function given as:

\[
u(x) = \begin{cases} 1, & x > 0 \\ 0, & x \leq 0 \end{cases}
\]

The expression of \(P_{\lambda} \) as a function of \(d_{o0} \) can be given as
equation (35) at the top of next page, where \(\lfloor x \rfloor \) indicates
the smallest integer no less than \(x \).

VI. CONCLUSION AND FUTURE WORK

The virtual-branch technique is applied in this paper to
deconstruct the MIMO propagation channel for the MIMO
UWB impulse radio system. A measure, \(P_{\lambda} \), based on the
upper bound on the SEP performance, is proposed to evaluate
the diversity performance of the UWB impulse radio system
equipped with different numbers of transceiver antennas and
undergoing different degrees of correlations. The general
expression of \(P_{\lambda} \) is a function of the non-zero eigenvalues
of the covariance matrix of the MIMO channels. The exact
expressions of \(P_{\lambda} \) are given for two special channel covariance
matrix structures.

The result of this paper will serve as one of the elements to
build up the propagation channel models for the MIMO UWB
impulse radio system with an arbitrary correlation.

ACKNOWLEDGEMENTS

The authors wish to thank EPSRC for supporting this re-
search under grant number GR/T21776/01 and GR/T21769/01

\footnote{In [17], the inverse Fourier kernel used is \(\exp[-j\pi x] \) rather than \(\exp[j\pi x] \). However, this would not change the properties of the Toeplitz matrix applied in this paper.}
eigenvectors corresponding to \(\lambda \)

Then we have

\[
\otimes
\]

where \(\vec{v} \)

Based on vector \(\vec{v} \), we construct a matrix \(V_i \):

\[
V_i = \vec{v} \otimes I_{\times l}
\]

where \(\otimes \) indicates the Kronecker product. It is obvious that

\[
V_i^H \cdot V_k = 0 \quad \text{for} \quad i \neq k
\]

Then we have

\[
C_i \cdot V_i = (C \otimes I_{\times l})(\vec{v} \otimes I_{\times l})
\]

\[
= (C \cdot \vec{v}) \otimes (I_{\times l} \cdot I_{\times l})
\]

\[
= \lambda_i \cdot \vec{v} \otimes I_{\times l}
\]

\[
= \lambda_i \cdot \vec{v}_i
\]

It is easy to show that because \(C \) is Hermitian, \(C_i \) is also Hermitian. Based on matrix \(V_i \), we now construct the orthogonal eigenvectors, \(\vec{v}_{i,j} \), for \(C_i \). Let \(\vec{p}_j \) be an \(l \times 1 \) vector with the \(j \)th entry being 1, and all the other entries being 0s. Construct \(\vec{v}_{i,j} \) as

\[
\vec{v}_{i,j} = V_i \cdot \vec{p}_j
\]

Based on equation (45), it can be shown that

\[
\vec{v}_{i,p}^H \vec{v}_{k,q} = 0 \quad \text{for} \quad p \neq q \quad \text{or} \quad i \neq k
\]

Multiplying both sides of equation (46) by \(\vec{p}_j \) results in

\[
C_i \cdot \vec{v}_{i,j} = \lambda_i \cdot \vec{v}_{i,j}
\]

where \(1 \leq i \leq \mu_i \), and \(1 \leq j \leq l \).

Thus we have \(\lambda_i \) being one of the eigenvalues of \(C_i \) with a multiplicity of \(\mu_i l \)

REFERENCES

