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ABSTRACT
A cross-layer optimization design is developed for the uplink
of multiuser multiple-input multiple-output (MIMO) systems,
in which the user-based selection scheduling is executed at
the medium access control (MAC) layer, while the antenna
selection is performed at the physical (PHY) layer. In order
to obtain the optimal cross-layer design, a framework based
on sequential Monte Carlo (SMC) optimization is presented
to jointly consider the user and antenna selection. With the
proposed joint user and antenna selection algorithm, the sum
capacity of the multiuser MIMO uplink converges to within
99% of that obtained by exhaustive search method, while the
complexity is substantial low.

Index Terms— Sequential Monte Carlo (SMC) optimiza-
tion, multiple-input multiple-output (MIMO), antenna selec-
tion, user selection, sum capacity.

1. INTRODUCTION

Future wireless communication systems are expected to pro-
vide higher data rates to meet the increasing requirements of a
range of services. To this end, a technique known as multiple-
input multiple-output (MIMO), has been extensively investi-
gated [1]. MIMO wireless systems have been demonstrated
to provide substantially higher link performance than tradi-
tional systems without any extra bandwidth by using multi-
ple antenna arrays. In practice, however, the high complexity
of MIMO eclipses its contributions for future wireless com-
munication systems. Therefore several promising techniques,
such as antenna selection [2] and user selection [3], have been
proposed to reduce the hardware complexity while obtaining
good system performance.
In this paper, a cross-layer optimization design is pro-

posed based on sequential Monte Carlo (SMC) optimization
to jointly consider the user and antenna selection at MAC and
PHY layer, respectively, in each time-slot. The proposed al-
gorithm can achieve the near-optimal sum capacity for uplink
multiuser MIMO systems with substantially lower complex-
ity.

This work was supported by EPSRC grant GR/T21769/01 and K. C.
Wong Scholarship from the University of Oxford.

2. UPLINK MULTIUSER MIMO SYSTEMMODEL

In Fig. 1, we consider the uplink multiuser MIMO system
with NR receive antennas at the base station (BS) and NT

transmit antennas at the kth user. Then the received signal at
the base station is represented as [4]

y =
K∑

k=1

Hkxk + v (1)

where y ∈ CNR×1 is the received signal vector and xk ∈
CNT ×1 is the transmitted signal vector for the kth mobile user
with Tr (Qk) ≤ P k where Qk = E{xHkxk}. Tr (·) stands
for the trace operation of its corresponding argument, Qk is
the signal covariance matrix, P k is the average power con-
straint for mobile user k, E{·} denotes the statistical expec-
tation and (·)H represents the Hermitian operation. The vec-
tor v ∈ CNR×1 is the independently identically distributed
(i.i.d.) additive white Gaussian noise vector with distribution
CN (0, N0I), whereN0 is the average noise power. The chan-
nel is described by an NR × NT complex random matrix,
denoted by Hk whose entries, [Hk](i,j), i = {1 . . . NR}; j =
{1 . . . NT }, represent the channel fading coefficient between
the ith receive antenna of BS and the jth transmit antenna of
mobile user k. For the uncorrelated channels, the entries of
Hk follow the i.i.d. complex Gaussian distribution CN (0, 1).
Moreover, it is assumed that perfect channel state informa-
tion (CSI) is available at the receiver only. The optimal sum
capacity for the MIMO multiple-access channel is [4]

C({H}K
k=1) = max�K

k=1 Tr(Qk)≤Ps

log2 det(INR
+

1
N0

K∑
k=1

HkQkHHk )

(2)
When the channel state information (CSI) is not available to
the transmitter, a reasonable transmission strategy is equal
power allocation for each user [4]. Then Qk = P kINT

/NT

where the uniform power, P k = Ps/K, and Ps is the total
power.
For the uplink multiuser MIMO systems, a joint antenna

and user selection module (JAUSM) is centralized at the base
station to generate the selected index to maximize the sum ca-
pacity of the system. Moreover, the number of selected mo-
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Fig. 1. Block diagram of the uplink multiuser MIMO system.

bile users and the number of selected receive antennas are de-
noted by Ksel and Nr,respectively. We further denote the set
of all Q =

(
NR

Nr

) × ∑Ksel

j=1

(
K
j

)
subset as Ω = {ω1, · · · , ωQ}

and the indicator of the selected subset of antennas and users
by a two-element vector index ωk = (ωk,A; ωk,U ) where
ωk ∈ Ω. The elements of ωk,A and ωk,U indicate whether
a certain receive antenna and user is selected or not. Accord-
ing to (2), the sum capacity associated with the selection is
described as

C({H}ωk
) = max

ωk∈Ω
log2 det(INR

+
ρ

NT

Ksel∑
k=1

HkH
H
k ) (3)

where ρ = P̄k/N0 is the average signal-to-noise ratio (SNR).
The matrixHk has dimensionsNr×NT and its entries define
the channel gains from transmit antennas of selected user k to
the selected receive antennas.
The simplest approach for solving (3) to obtain the opti-

mal antenna and user subset, ω∗
k, is by an exhaustive search

method, namely, finding all possible ωk out of Ω to obtain
the optimal selected user subset ω∗

k which can yield the max-
imum C({H}ω∗

k
). However, this method leads to a total of(

NR

Nr

)×∑Ksel

j=1

(
K
j

)
possible combinations and becomes com-

putationally expensive for a multiuser MIMOwireless system
with a large number of total users, K and available receive
antennas, NR. In order to reduce the computational cost, we
model (3) as the following combinatorial optimization prob-
lem:

ω∗
k = arg max

ωk∈Ω
C({H}ωk

) (4)

where ω∗
k denotes the optimal selected antenna and user sub-

set of the objective function, C({H}ωk
). After transforming

(3) into an optimization problem (4), an iterative optimization
algorithm can be applied to solve it.

3. SEQUENTIAL MONTE CARLO OPTIMIZATION

We present a novel sequential Monte Carlo (SMC) algorithm
for this complicated optimization problem. Sequential Monte
Carlo (SMC) is a class of importance sampling and resam-
pling techniques designed to simulate from a sequence of prob-
ability distributions, which have become very popular for the
last few years to solve sequential Bayesian inference prob-
lems in various disciplines [5][7]. It was recently extended to
a general framework to deal with static and sequential Bayesian
inference, as well as global optimization [6].
To apply SMC for optimization problem, a sequence of ar-

tificial intermediate distributions is needed, for example πn(·) =
[π(·)]τn where {τn}N

n=1 is such that 0 < τ1 < · · · < τN

and 1 << τN to ensure that π0(·) is easy to sample from
and πN (·) is concentrated around the set of global maxima of
π(·). In this study, the sequence of intermediate distributions
can be designed as: γn(ωk) = exp

{
C({H}ωk

)

τn

}
, where τ1 >

· · · > τN > 0, such that maximizingC({H}ωk
) is equivalent

to maximizing π(ωk) = γn(ωk)/
∑

ωk∈Ω γn(ωk) ,

ω∗ = arg max
ωk∈Ω

C({H}ωk
) = arg max

ωk∈Ω
π(ωk) (5)

Given some sequence of distributions, SMC propagates
samples forward from one distribution to the next accord-
ing to a sequence of Markov kernels, Kn, and correcting for
the discrepancy between the proposal and the target distribu-
tion by importance sampling [6]. Moreover, to ensure that
a significant fraction of the particle set have non-negligible
weights, the particle representation is resampled using some
resampling scheme, whenever the effective sample size (ESS)
is below a prespecified threshold [7].
The choice of transition kernels is critical in SMC [6].

Here Kn is set as a Markov chain transition kernel in the
adaptive Metropolized independence sampler, which has al-
ready shown a good perform in User Selection [3]. Unlike
the sampling strategy in [3], under the framework of SMC, it

494



is no need to concern about the ergodicity when using adap-
tive sampling scheme and the convergence of the algorithm is
guaranteed under mild conditions [6]. Another virtue is easy
to implement SMC in a parallel computing fashion if needed.
The adaptive sequential Monte Carlo (SMC) optimization is
applied to the joint antenna and user selection as following:

Step 1: At time n = 1, sampleN particles [ωk](i)n=1 ∼ q(ω; p0)
(i = 1, ..., N ) with an initial value p0, and compute

W
(i)
1 ∝ γ([ωk]

(i)
n=1)

q([ωk]
(i)
n=1;p0)

. If ESS ≡
[∑N

i=1(W
(i)
n )2

]−1

<

N/2, resample the particle representation
{

W
(i)
1 , [ωk](i)n=1

}
At time n ≥ 2, iterate steps 2, 3 and 4

Step 2: Sample [ωk](i)n ∼ K([ωk](i)n−1, ·) : run an adaptive
Metro-polized independence sampler using the proposal
q(ω; pn−1) [3]; compute the important weights

W (i)
n ∝ W

(i)
n−1

γn

(
[ωk](i)n−1

)
γn−1

(
[ωk](i)n−1

) (6)

Step 3: Resampling: If ESS < N/2, resample the particle
representation

{
W

(i)
n , [ωk](i)n

}
Step 4: Update the parameter pn of the adaptive proposal via

pn = pn−1 + rn

(∑N
i=1 W

(i)
n ([ωk](i)n − pn−1)∑N

i=1 W
(i)
n

)
(7)

where each pj in p = [p1, . . . , pK ]T , represents the
probability of the jth user to be chosen and rn is a se-
quence of decreasing step-sizes.

4. SIMULATION RESULTS

Fig. 2 shows the sum capacity averaged over 1, 000 chan-
nel realizations versus SNR for NT = 2, NR = 8, Nr = 4
and Ksel = 2. It is shown that the performance obtained by
proposed joint antenna and user selection (JAUS) algorithm
and the exhaustive search method are nearly same . In fact,
the simulation results indicate that the performance difference
between these two selection schemes is within 1%. Moreover,
in Fig. 3, we find that the sum capacity increases as the num-
ber of users (K) and receive antennas (NR) increase when the
number of selected antenna (Nr) and users (Ksel) are con-
stant. The reason for this gain is that the systems experience
the multiuser diversity provided by the spatially distributed
multiuser structure and antenna selection diversity provided
by the various receive antennas. Finally, the complexity order
comparison between the exhaustive search method and SMC
optimization algorithm has been depicted in Fig. 4. It can be
seen that the complexity gap is increasing with the increase
ofK and NR for a fixed number ofKsel and Nr, which indi-
cates the efficiency of our proposed algorithm.
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Fig. 2. Average sum capacity versus SNR at Ksel = 2 and
K = 32 with Nr = 4, NR = 8 and NT = 2.
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Fig. 3. Average sum capacity versus (NR; K) at Nr = 4 and
Ksel = 2 with NT = 2 and SNR = 10dB.

5. CONCLUSION

This paper presented a cross-layer optimization design for the
uplink MIMO systems. In order to obtain the maximal sys-
tem sum capacity, a joint user and antenna selection algorithm
based on sequential Monte Carlo (SMC) optimization is pre-
sented. With the proposed algorithm, we can achieve results
within 99% of the optimal capacity obtained by exhaustive
search method with a substantial low complexity. Moreover,
because of the nature parallel mechanism of SMC optimiza-
tion, it can be easy to implement on the parallel computing
facilities to further speed up computation. Considering the
low complexity and parallelity, the SMC optimization makes
the proposed cross-layer optimization design easier to imple-
ment for practical multiuser MIMO systems.
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Fig. 4. Complexity order versus (NR; K) at Nr = 4 and
Ksel = 2 with NT = 2 and SNR = 10dB.
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