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We  have  developed  the neural  spike  train  analysis  toolbox  (nSTAT)  for Matlab®.
nSTAT  makes  existing  point  process/GLM  methods  for  spike  train analysis  more  accessible  to the  neuroscience  community.
nSTAT  adopts  object-oriented  programming  to allow  manipulation  of  data  objects  rather  than  raw  numerical  representations.
nSTAT  allows  systematic  building/testing  of neural  encoding  models  and  allows  these  models  to  be  used  for  neural  decoding.
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a  b  s  t  r  a  c  t

Over  the  last  decade  there  has been  a tremendous  advance  in the  analytical  tools  available  to  neuro-
scientists  to understand  and  model  neural  function.  In  particular,  the  point  process  – generalized  linear
model  (PP-GLM)  framework  has  been  applied  successfully  to  problems  ranging  from  neuro-endocrine
physiology  to neural  decoding.  However,  the  lack  of  freely  distributed  software  implementations  of  pub-
lished  PP-GLM  algorithms  together  with  problem-specific  modifications  required  for  their  use,  limit  wide
application  of these  techniques.  In  an  effort  to make  existing  PP-GLM  methods  more  accessible  to  the
neuroscience  community,  we  have  developed  nSTAT  – an  open  source  neural  spike  train  analysis  tool-
box for  Matlab®. By  adopting  an  object-oriented  programming  (OOP)  approach,  nSTAT  allows  users  to
easily  manipulate  data  by  performing  operations  on  objects  that  have  an  intuitive  connection  to  the
experiment  (spike  trains,  covariates,  etc.),  rather  than  by  dealing  with  data  in vector/matrix  form.  The
algorithms  implemented  within  nSTAT  address  a number  of  common  problems  including  computation  of
peri-stimulus  time  histograms,  quantification  of the temporal  response  properties  of neurons,  and  char-

acterization  of neural  plasticity  within  and  across  trials.  nSTAT  provides  a  starting  point  for  exploratory
data  analysis,  allows  for simple  and  systematic  building  and  testing  of  point  process  models,  and  for
decoding  of  stimulus  variables  based  on point  process  models  of  neural  function.  By  providing  an  open-
source  toolbox,  we  hope  to establish  a platform  that  can be easily  used,  modified,  and  extended  by  the
scientific  community  to address  limitations  of  current  techniques  and  to  extend  available  techniques  to
more  complex  problems.
. Introduction

Understanding and quantifying how neurons represent and
ransmit information is a central problem in neuroscience. Whether
t involves understanding how the concentration of a particular
hemical present within the bath solution of an isolated neu-
on affects its spontaneous spiking activity (Phillips et al., 2010)

r how a collection of neurons encode arm movement informa-
ion (Georgopoulos et al., 1986), the neurophysiologist aims to
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decipher how the individual or collective action potentials of neu-
rons are correlated with the stimulus, condition, or task at hand.

Due to the stereotypic all-or-none nature of action potentials,
neural spiking activity can be represented as a point process, a time
series that takes on the value 1 at the times of an action potential
and is 0 otherwise (Daley and Vere-Jones, 1988). Many other com-
mon phenomena can be described as point processes ranging from
geyser eruptions (Azzalini and Bowman, 1990) to data traffic within
a computer network (Barbarossa et al., 1997). Generalized linear
models (GLMs) (McCullagh and Nelder, 1989), a flexible generaliza-

tion of linear regression, can be used in concert with point process
models to yield a robust and efficient framework for analyzing neu-
ral spike train data. This point process – generalized linear model
(PP-GLM) framework has been applied successfully to a broad range

dx.doi.org/10.1016/j.jneumeth.2012.08.009
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:iahn@mit.edu
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f problems including the study of cardiovascular physiology (Chen
t al., 2011, 2010a,b, 2008b, 2009a, 2008a; Barbieri and Brown,
004, 2006a,b; Barbieri et al., 2005a),  neuro-endocrine physiology
Brown et al., 2001), neurophysiology (Schwartz et al., 2006; Frank
t al., 2002, 2004, 2006; Eden et al., 2004b; Vidne et al., 2012),
nd neural decoding (Barbieri et al., 2004, 2008; Eden et al., 2004a;
rinivasan et al., 2006, 2007; Wu  et al., 2009; Ahmadian et al., 2011).
ruccolo et al. (2005) and Paninski et al. (2007) provide a broad
verview of the PP-GLM framework.

While much progress has been made on the development
nd application of PP-GLM methods within neuroscience, the
se of these methods typically requires in-depth knowledge of
oint process theory. Additionally, while there are widely avail-
ble implementations for the estimation of GLMs within software
ackages such as Matlab® (The Mathworks, Natick, MA), S, or R
rogramming languages, their use to analyze neural data requires
roblem specific modifications. These adaptations require much
ork on the part of the experimentalist and detract from the goal

f neural data analysis. These barriers are exacerbated by the fact
hat even when software implementations are made publicly avail-
ble they vary greatly in the amount of documentation provided,
he programming style used, and in the problem-specific details.

Numerous investigators have successfully addressed common
roblems within neuroscience (such as spike sorting, data filter-

ng, and spectral analysis) through the creation of freely available
oftware toolboxes. Chronux (Bokil et al., 2010), FIND (previously
EA-Tools) (Meier et al., 2008; Egert et al., 2002), STAToolkit

Goldberg et al., 2009), and SPKtool (Liu et al., 2011) are a few exam-
les of such tools. Chronux offers several routines for computing
pectra and coherences for both point and continuous processes
long with several general purpose routines for extracting specified
ata segments or binning spike time data. STAToolkit offers robust
nd well-documented implementations of a range of information-
heoretic and entropy-based spike train analysis techniques. The
IND toolbox provides analysis tools to address a range of neural
ctivity data, including discrete series of spike events, continu-
us time series and imaging data, along with solutions for the
imulation of parallel stochastic point processes to model multi-
hannel spiking activity. SPKtool provides a broad range of tools
or spike detection, feature extraction, spike sorting, and spike train
nalysis. However, a simple software interface to PP-GLM specific
echniques is still lacking.

The method for data analysis within the PP-GLM framework is
onsistent and amenable to implementation as a software toolbox.
here are two main types of analysis that can be performed: (1)
ncoding analysis and (2) decoding analysis. In an encoding anal-
sis, the experimenter seeks to build a model that describes the
elationship between spiking activity and a putative stimulus and
ovariates (Paninski et al., 2007). This type of analysis requires
odel selection and assessing goodness-of-fit. A decoding analy-

is estimates the stimulus given spiking activity from one or more
eurons (Donoghue, 2002; Rieke, 1999). An example of this type
f analysis would aim to estimate arm movement velocity given
he population spiking activity of a collection of M1  neurons and a

odel of their spiking properties such as that developed by Moran
nd Schwartz (1999).

We  use the consistency of the data analysis process within the
P-GLM framework in the design of our neural spike train analy-
is toolbox (nSTAT). Our object-oriented software implementation
ncorporates knowledge of the standard encoding and decoding
nalysis approaches together with knowledge of the common ele-
ents present in most neuroscience experiments (e.g. neural spike
rains, covariates, events, and trials) to develop platform that can
e used across a broad range of problems with few changes.
bject-oriented programming (OOP) represents an attempt to
ake programs more closely model the way people think about
e Methods 211 (2012) 245– 264

and interact with the world. By adopting an OOP approach for soft-
ware development we  hope to allow the user to easily manipulate
data by performing operations on objects that have an intuitive
connection to the experiment and hypothesis at hand, rather than
by dealing with raw data in matrix/vector form. Building the tool-
box for Matlab®, we  make sure that users can easily transfer their
data and results from nSTAT to other public or commercial soft-
ware packages, and develop their own extensions for nSTAT with
relative ease.

nSTAT address a number of problems of interest to the neuro-
science community including computation of peri-stimulus time
histograms, quantification of the temporal response properties of
neurons (e.g. refractory period, bursting activity, etc.), character-
ization of neural plasticity within and across trials, and decoding
of stimuli based on models of neural function (which can be pre-
specified or estimated using the encoding methods in the toolbox).
Importantly, the point process analysis methods within nSTAT are
not limited to sorted single-unit spiking activity but can be applied
to any binary discrete spiking process such as multi-unit threshold
crossing events (see for example Chestek et al., 2011). It should be
noted that while all of the examples presented in the paper focus
on the PP-GLM framework, nSTAT contains methods for analyz-
ing spike trains when they are represented by their firing rate and
treated as a Gaussian time-series instead of a point process. These
include time-series methods such as Kalman Filtering (Kalman,
1960), frequency domain methods like multi-taper spectral estima-
tion (Thomson, 1982), and mixed time-frequency domain methods
such as the spectrogram (Cohen and Lee, 1990; Boashash, 1992).
For brevity, and because these methods are also available in other
toolboxes, we do not discuss these elements of the toolbox herein.

This paper is organized as follows: Section 2.1 summarizes the
general theory of point processes and generalized linear models
as it applies to our implementation. We  include brief descriptions
of some of the algorithms present in nSTAT to establish consistent
notation across algorithms developed by distinct authors. Section
2.2 describes the software classes that make up nSTAT, the relation-
ships among classes, and relevant class methods and properties.
Section 2.3 describes five examples that highlight common prob-
lems addressed using the PP-GLM framework and how they can
be analyzed using nSTAT. Lastly, results for each of the differ-
ent examples are summarized in Section 3. nSTAT is available for
download at http://www.neurostat.mit.edu/nstat/. All examples
described herein (including data, figures, and code) are contained
within the toolbox help files. The software documentation also
includes descriptions and examples of the time-series methods not
discussed herein for brevity.

2. Materials and methods

2.1. Summary of the PP-GLM framework

In this section, we describe the PP-GLM framework and the
model selection and goodness of fit techniques that can be applied
within the framework to select among models of varying com-
plexity. The peri-stimulus time histogram (PSTH) and its PP-GLM
analogue, the GLM-PSTH, are then presented together with exten-
sions that allow for estimation of both within-trial and across-trial
neural dynamics (SSGLM). We  then discuss how point process
models can be used in decoding applications when neural spiking
information is used to estimate a driving stimulus.
2.1.1. Point process theory
Due to the stereotyped all-or-none nature of action potentials,

neural spiking activity can be represented as a point process, i.e.
as a time series that takes on the value 1 at the time of an action

http://www.neurostat.mit.edu/nstat/
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otential and is 0 otherwise. Given an observation interval (0, T] and
 time t ∈ (0, T], we define the counting process N(t) as the total num-
er of spikes that have occurred in the interval (0, t]. A point process

s completely characterized by its conditional intensity function
CIF) (Daley and Vere-Jones, 1988) defined as

(t|Ht) = lim
� → 0

Pr(N(t + �)  − N(t) = 1 | Ht)
�

(1)

here Ht is the history information from 0 up to time t. For any finite
,  the product �(t|Ht)� is approximately the probability of a single

pike in the interval (t, t + �]  given the history up to time t. The
onditional intensity function can be considered a generalization
f the rate for a homogeneous Poisson process.

If the observation interval is partitioned into {tj}J
j=0 and individ-

al time steps are denoted by �tj = tj − tj−1, we  can refer to each
ariable by its value within the time step. We  denote Nj = N(tj) and
efer to �Nj = Nj − Nj−1 as the spike indicator function for the neu-
on at time tj. If �tj is sufficiently small, the probability of more than
ne spike occurring in this interval is negligible, and �Nj takes on
he value 0 if there is no spike in (tj−1, tj] and 1 if there is a spike.
n cases where fine temporal resolution of the count process, N(t),
s not required we define �N(tA, tB) to equal the total number of
pikes observed in the interval (tA, tB].

.1.2. Generalized linear models
The exponential family is a broad class of probability models that

nclude many common distributions including the Gaussian, Pois-
on, binomial, gamma, and inverse Gaussian distributions among
any others. The key concept underlying generalized linear models

GLMs) (McCullagh and Nelder, 1989) involves expressing the natu-
al parameter of the probability model from the exponential family
s a linear function of relevant covariates. Efficient and robust algo-
ithms for linear regression can then be employed for maximum
ikelihood parameter estimation. Thus if the conditional inten-
ity function is modeled as a member of the exponential family,
e have an efficient algorithm for estimating CIF model parame-

ers. Additionally, this approach allows effective selection between
ompeting models via the likelihood criteria described below. In
articular, we will use two main types of GLMs for the conditional

ntensity functions herein:
(1) Poisson regression models where we write log(�(tj|Htj

)�) as
 linear function of relevant covariates, e.g.

og(�(tj|Htj
)�)  = xT

j  ̌ (2)

nd (2) binomial regression models where we write the inverse of
he logistic function, logit(�(t|Ht)�), as a linear function of covari-
tes, e.g.

ogit(�(tj|Htj
)�)  = xT

j  ̌ (3)

here xT
j

is the jth row of the design matrix X and  ̌ is the vector
f model parameters to be estimated. The spike indicator function,
Nj, is taken as the observation, termed yj, and is modeled either as

 Poisson or binomial random variable. That is yj = �Nj∼ exp(xT
j
ˇ)

r yj∼
exp(xT

j
ˇ)

1+exp(xT
j

ˇ)
.

.1.3. Model selection
Goodness of fit measures currently implemented in nSTAT

nclude the time rescaling theorem for point processes (Brown

t al., 2002), Akaike’s information criteria (AIC) (Akaike, 1973),
nd Bayesian information criteria (BIC) (Schwarz, 1978). Briefly,
he time rescaling theorem states that given the true condi-
ional intensity function of a point process, �, and a sequence of
e Methods 211 (2012) 245– 264 247

spike times 0 < t1 < t2 < . . . < ts < . . . < tS < T, the rescaled spike times
defined as

us = 1 − exp(

∫ ts

ts−1

�(�|H�)d�) (4)

where s = 1, . . .,  S are independent, identically distributed, uniform
random variables on the interval (0, 1). To use the time-rescaling
theorem to test model goodness of fit, one can apply Eq. (4) to each
candidate model, �i, to obtain a set of candidate rescaled spike times
ui

s that can then be tested for independence and their closeness (to
be made precise below) to an uniform distribution.

The Kolmogorov–Smirnov (KS) test can be used to compare
how close the empirical distribution of rescaled spike times, us’s,
are to a reference uniform distribution on the interval (0, 1). The
visual representation of this test, termed a KS plot (Brown et al.,
2002), together with corresponding confidence intervals (Johnson
and Kotz, 1970) allows for comparison of multiple models simulta-
neously. If the candidate model is correct, the points on the KS plot
should lie on a 45◦ line (Johnson and Kotz, 1970). The KS statistic
is the largest deviation from the 45◦ line. Application of the time-
rescaling theorem to sampled data produces some artifacts within
KS plots since the actual spike times could have occurred anywhere
within the finite-sized time bins. These artifacts are addressed
within nSTAT using the discrete time rescaling theorem (Haslinger
et al., 2010).

Independence of the rescaled spike times can be assessed by
plotting ui

s+1 vs. ui
s (Truccolo et al., 2005). In this case, a corre-

lation coefficient statistically different from zero casts doubt on
the independence of the rescaled spike times. A stronger test for
independence uses the fact that uncorrelated Gaussian random
variables are also independent. If the ui

s’s are uniform random vari-
ables on the interval (0, 1), then

xi
s = ˚−1(ui

s) (5)

where ˚−1(·) is the inverse of the standard normal distribution
cumulative distribution function (CDF), will be normally dis-
tributed with zero mean and unit variance. Significant non-zero
coefficients of the auto-correlation function of the xi

s’s at non-zero
lags demonstrates that the rescaled spike times are not inde-
pendent (Truccolo et al., 2005). The 95% confidence interval for
the non-zero lag coefficients of the auto-correlation function is
±1.96/

√
n where n is the total number of rescaled spike times.

Goodness of fit can also be assessed by examining the struc-
ture of the point process model residuals (Andersen, 1997; Truccolo
et al., 2005) defined over non-overlapping moving time windows
of size B as

Mi
j = M(tj) =

j∑
n=j−B

�N(tn) −
∫ tj

tj−B

�i(�|H�, �̂)d� (6)

for j − B ≥ 1. Strong correlations between covariates absent from
the model for �i and Mi

j
are indicative of potentially important un-

modeled effects.
The AIC, BIC, rescaled spike times, and the point process resid-

uals are computed within the nSTAT Analysis class for each
candidate model, �i, and stored within the returned FitResult
object (see Section 2.2 for more details). The FitResult method
plotResults displays the KS plot, the plot of ui

s+1 vs. ui
s and corre-

sponding correlation coefficient, the auto-correlation function of
the xi

s’s, and the point process residual for each of the candidate
�i’s.
2.1.4. Simulating point processes
Validation and testing of new algorithms requires generat-

ing spiking activity according to known prior behavior. Given an
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ntegrable CIF �(t|Ht) for 0 ≤ t ≤ T, a realization of the point process
ompatible with this CIF can be generated via time rescaling (Brown
t al., 2002) as follows:

. Set t0 = 0; set s = 1.

. Draw zs an exponential random variable with mean 1.

. Find ts as the solution to zs =
∫ ts

ts−1
�(�|H�)d�.

. If ts > T, then stop.

. s = s + 1

. Go to 2.

n instances where the CIF is independent of history (e.g. a homoge-
ous or inhomogenous Poisson process), the more computationally
fficient point process thinning algorithm (Lewis and Shedler,
978; Ogata, 1981) can be used. The nSTAT CIF class contains
tatic methods (e.g. CIF.simulateCIF, CIF.simulateCIFByThinning,  and
IF.simulateCIFByThinningFromLambda) to generate a realization of

 point process based on either time rescaling or the point process
hinning algorithm.

.1.5. PSTH and the GLM framework
In neurophysiology, the peri-stimulus time histogram and post-

timulus time histogram, both abbreviated PSTH or PST histogram,
re histograms of the times at which neurons fire. These histograms
re used to visualize the rate and timing of neuronal spike dis-
harges in relation to an external stimulus or event. To obtain a
STH, a spike train recorded from a single neuron is aligned with
he onset, or a fixed phase point, of an identical repeatedly pre-
ented stimulus. The aligned sequences are superimposed in time
nd then combined to construct a histogram (Gerstein and Kiang,
960; Palm et al., 1988).

For concreteness, suppose that a PSTH is to be constructed from
piking activity of a neuron across K trials each of duration T. The
ime interval T is partitioned into N time bins each of width � and
he spike trains represented by their value (0 or 1) within each
in. To estimate the firing rate via the PSTH, we partition the time

nterval T into R time bins (with T/R > �),  sum the number of spikes
resent across all trials within the each of the R time bins, and divide
he total counts by the bin width (T/R). According to Czanner et al.
2008), the PSTH is a special case of the CIF defined by the following
LM

og(�(k, n�|�)�) =
R∑

r=1

�rgr(n�) (7)

or k = 1, . . .,  K and n = 1, . . .,  N. Here k and n are the trial number
nd bin within a trial respectively, and

r(n�) =
{

1 if n = (r − 1)NR−1 + 1, . . . , rNR−1

0 otherwise
(8)

re the unit pulse functions in the observation interval (0, T] (e.g.
1(n�) = 1 from n = 1, . . .,  NR−1 and zero outside this time interval).
his conditional intensity function is the same for all trials k = 1, . . , K.
ote that since there are R unit pulse functions over the N observed

amples, the width of each unit pulse function is NR−1. For the bin in
hich gr(n�) = 1, the spiking activity obeys a homogenous Poisson
rocess with mean rate exp(�r)/�, and since the basis functions

n Eq. (8) are orthogonal, the values exp(�r)/� r = 1, . . .,  R can be
stimated independently of each other. The maximum-likelihood
stimate of exp(�r)/� is the number of spikes that occur in the bin in
hich gr(n�) = 1, summed across all trials, and divided by the num-
er of trials and the bin width (e.g. equal to the value of the PSTH in
he rth time bin). Within nSTAT, the PSTH and the GLM-PSTH can
e computed for any collection of neural spike trains (represented
y the class nstColl) by specifying the bin width T/R. The GLM-PSTH
e Methods 211 (2012) 245– 264

routine (psthGLM method) also allows for the estimation of spiking
history effect of the same form as described in Section 2.1.6.

2.1.6. State space GLM framework
The standard PSTH treats each trial as independent to produce

an estimate of the firing rate. In many experiments it is of interest
to not only capture the dominant variation in firing rates within
a trial, but also to examine changes from one trial to the next
(for example to examine neural plasticity or learning). Czanner
et al. (2008) formulated the state-space generalized linear model
(SSGLM) framework to allow for this type of analysis. Briefly the
SSGLM framework proposes that the CIF be modeled as

log(�(k, n�|�)�) =
R∑

r=1

�k,rgr(n�) +
J∑

j=1

�j�Nk(tn − tj−1, tn − tj)

(9)

where k is the current trial index and �Nk(tA, tB) equals the total
number of spikes observed in the interval (tA, tB] of the kth trial.
The stochastic trial-to-trial dependence between the parameters
�k = [ �k,1 . . . �k,r . . . �k,R ] is described by the random walk model

�k = �k−1 + �k (10)

for k = 1, . . .,  K, where K is the total number of trials, �k is an R-
dimensional Gaussian random vector with mean 0 and unknown
covariance matrix ˙. The initial vector �0 is also assumed to be
unknown. Because the parameters �k and � j of the GLM and the
covariance parameter, ˙, of the random walk model are unknown,
an iterative Expectation-Maximization algorithm (Dempster et al.,
1977) is employed to estimate them.

The spike rate function on the interval [t1, t2] is defined as

(t2 − t1)−1	k(t1, t2) = (t2 − t1)−1
∫ t2

t1

�(k, �|�k, �, Hk,�)d� (11)

where 	k(t1, t2) corresponds to the expected number of spikes
in the interval [t1, t2]. The corresponding maximum likelihood
estimate of the spike rate function is obtained by evaluating Eq.
(11) with the estimated conditional intensity function. Confidence
intervals can be constructed via the Monte Carlo methods described
by Czanner et al. (2008).  Statistical comparisons of the spike rate
function between trials can be performed in order to examine expe-
rience dependent changes or learning across trials. In particular,
for a given interval [t1, t2] and trials m and k we can compute the
maximum-likelihood estimates of Eq. (11) and use Monte Carlo
methods to compute

Pr[(t2 − t1)−1	̂m(t1, t2) > (t2 − t1)−1	̂k(t1, t2] (12)

for any k = 1, . . .,  K − 1 and m > k. The smallest m such that proba-
bility in Eq. (12) is greater than or equal to 95% is denoted as the
learning trial with respect to trial k (i.e. the first trial where the spike
rate function in the time interval [t1, t2] is significantly different
than the spike rate function in trial k).

The SSGLM algorithm is implemented by the nstColl class and
requires specification of the number of J + 1 time points ([t0, t1, . . .,
tJ]) that are used to construct J time windows of prior spiking activ-
ity, along with the number of within-trial bins, R, to be used. The
method returns estimates of �k for k = 1, . . .,  K; ˙; and � = [�1, . . .,
� J].

2.1.7. Point process adaptive filter

In some situations, one has prior knowledge of the form of the

conditional intensity function, �c(t| x(t), �, Ht) for c = 1, . . .,  C, where
C is the number of individual neurons being observed, x(t) is a
vector of stimuli/covariates of interest, � is a vector of parameters
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typically obtained via GLM), and Ht is all of the relevant history
p to time t. The decoding problem is then, given a collection
f CIFs, to estimate the stimuli/covariates x(t) = [ x1(t) . . . xN(t) ]T

ased on the spiking activity of the ensemble �N1:C (t). It is cus-
omary to discretize time and adopt the notation xk = x(t)|t=kT.

e denote the spiking activity in the kth time step by the vector

N1:C
k =

[
�N1

k
�N2

k
. . . �NC

k

]T
of binned spike counts. The

th element of �Nk
1:  C contains the total number of spikes gen-

rated by the cth neuron in the kth time step. Spike history is
epresented by Hk =

[
�N1:C

1 �N1:C
2 . . . �N1:C

k−1

]
.

The system of equations for the state (stimuli) vector are defined
s

k+1 = Akxk + ωk

here Ak is the state transition matrix and ωk is a zero mean Gauss-
an random vector with covariance Qk. The effect of the stimuli is
nly observed via the spiking of each of the individual cells, i.e.

(�Nc
k |xk, Hk) ≈ �c

k� (13)

or c = 1, . . .,  C, where p(�Nc
k
|xk, Hk) denotes the conditional prob-

bility distribution function of a spike in the kth time bin by the cth
ell conditioned on the current stimulus, xk, and history. Decoding
s then equivalent to estimating the posterior density, p(xk|�Nk

1: C ,
k). From Bayes rule,

(xk|�Nk
1:C , Hk) = p(�Nk

1:C |xk, Hk)p(xk|Hk)

p(�Nk
1:C |Hk)

(14)

he second term in the numerator of Eq. (14) is the one-step pre-
iction density defined by the Chapman–Kolmogorov equation as

(xk|Hk) =
∫

p(xk|xk−1, Hk)p(xk−1|�Nk
1:C , Hk−1)dxk−1 (15)

Eden et al. (2004a) proposed a Gaussian approximation to this
osterior and demonstrated that the recursive estimates for the
timulus mean and covariance at time k are given by the point
rocess adaptive filter (PPAF) equations.

Prediction:

k+1|k = Akxk|k (16)

k+1|k = AkWk|kAT
k + Qk (17)

Update:

Wk|k)−1 = (Wk|k−1)−1 −
C∑

c=1

⎛
⎝ ∂

∂xk

[(
∂log(�c

k
�)

∂xk

)T

(�Nc
k

− �c
k
�)

]
xk=xk|k−1

⎞
⎠
(18)

k|k = xk|k−1 + Wk|k

C∑
c=1

((
∂log(�c

k
�)

∂xk

)T (
�Nc

k − �c
k�
))

(19)

f the final state xK is known (e.g. reaching to a known target),
he point process adaptive filter can be modified according to
rinivasan et al. (2006) so that the final state estimate matches the
nown final state. Decoding of both discrete and continuous states,
k and xK respectively, from point process observations termed the
oint process hybrid filter (PPHF) was derived by Srinivasan et al.
2007). The equations for the PPHF are not reproduced here for
revity but are implemented within nSTAT.

The PPAF is implemented by the PPDecodeFilter and PPDecode-

ilterLinear methods of the DecodingAlgorithms class. It requires
he specification of the state transition matrix, Ak, the covariance

atrix, Qk, a description of the CIF for each cell, the observed spik-
ng activity, �Nk

1:  C for k = 1, . . .,  K, and optionally target specific
e Methods 211 (2012) 245– 264 249

information. The method returns estimates of states xk|k and xK+1|k,
and the corresponding covariances Wk|k and Wk+1|k. The PPHF is
implemented by the PPHybridFilter and PPHybridFilterLinear meth-
ods of the DecodingAlgorithms class. It requires the specification
of the matrices, Ak

(sk=i) and Qk
(sk=i) for each possible value of the

discrete state, sk, a description of the CIF for each cell under for
each value of sk, the observed spiking activity, �Nk

1:  C for k = 1, . . .,
K, a matrix of state transition probabilities p(sk|sk−1), and option-
ally target-specific information. The method returns estimates of
sk|k, xK |k and Wk|k.

2.2. Object oriented program structure

Object oriented programming (OOP) is a programming lan-
guage model that is organized around “objects”– data structures
consisting of data fields and methods. Objects are specified by
their class definitions which specify the fundamental properties
of the object and how the data within the object can be manip-
ulated. This programming approach allows for inheritance – the
notion that a more sophisticated class can reuse the properties
and methods of elementary classes. The PP-GLM framework con-
sists of some fundamental elements that lend themselves directly
into this model. While the specific applications and experiments
might range widely, encoding and decoding analysis within the
framework often consists of the same basic elements: spike trains,
covariates, trials, and events within trials. The benefits of this
approach are

1.  Data encapsulation: once an object is created, it can be manip-
ulated only in the ways pre-specified by the class. The helps
maintain the consistency of the data as the object is manipu-
lated during the analysis process. This encapsulation is essential
for complex problems where specific implementation details
might become overwhelming. For example, when manipulating
an object of the Trial class, users need not focus on the imple-
mentation details of spike trains (class nspikeTrain), covariates
(class Covariate), and events (class Event),  but can rather per-
form operations on trials as a whole via the methods provided
by the Trial class.

2. Method access: each class has methods that are relevant to it and
the type of information that it contains. This helps users know
what kinds of operations can be performed on different types of
objects.

3. Code reuse: due to inheritance, methods need not be imple-
mented for each new object. This leads to organization of
methods across classes and simplified code maintenance. This
property also improves code testing and maintenance by yield-
ing increased code clarity and readability. For example, consider
the computation of the time rescaling theorem. Suppose we  have
a collection of spike times, 0 < t1 < t2 < . . . < ts < . . . < tS < T, repre-
sented as a vector called spikeTimes, and a conditional intensity
function, �(t|Ht), represented as a SignalObj called lambda. The
rescaled spike times, us, from the time rescaling theorem are
computed by the following code:

%% Tim e Rescalin g Theore m
t_s = spikeTime s(2:end ); % t_ 1,... , t_ S
t_sMinus1 = spikeTime s(1:en d−1); % 0,t_1,.. .,t_{ S−1}
lambdaInt = lambda.integra l;
% lambdaIn t(t ) = integra l fro m 0 to t of lambd a(t )
z_s=lambdaInt.getValueA t(t_s ) − lambdaInt.getValueA t(t_sMinus1) ;
u_s=1−ex p(z_s) ;
where the integral method of class SignalObj returns a SignalObj
object. Since lambdaInt is an object of class SignalObj it has a get-
ValueAt method that can be used to obtain the value of the integral
at each of the spike times in the vectors t s and t sMinus1.
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    % Load D ata    
    spikeTimes = impo rtdata('spikeD ata.t xt');

    % Perform  Anal ysis 
    results =Anal ysi s.Run Anal ysisFor AllNeu rons(t ria l,tcc,0);

    % Specify how  to analy ze d ata

    tc{1}.setName( 'Consta nt Baseline');

    

    % Create the t rial stru ctu re
    trial     =  Trial(spike Col l,covar Coll);

  
    nst = nspikeTrain(spik eTimes);
    time = 0:(1/sampleRate):ns t.ma xTime;
    spikeColl = nst Coll(nst);
    
  
    baseline  = Covariate(tim e,ones(length(time),1) ,'Baseline ','time ','s ','',{'\mu'});
    covar Coll =  CovColl({baseline});

Visuali ze  Results     % Vizuali ze  Results
    h=results.plot Results;

Code

Fig. 1. Visual overview of the data analysis workflow, relevant classes, and code using nSTAT. This particular example shows the typical workflow in the testing of candidate
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i
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onditional intensity functions. For brevity, the workflow for decoding stimuli usin
atlab  help files for these examples and for the corresponding code).

Fig. 1 highlights how the standard PP-GLM workflow is related
o the nSTAT classes, and how a particular problem can be ana-
yzed using nSTAT. In this case, the included code corresponds
o the first portion of Example 1. Fig. 2 uses unified model-
ng language (UML) formalism (Booch et al., 2005; Bézivin and

uller, 1999) to show how the classes that make up nSTAT are
elated.

.2.1. nSTAT classes

1. SignalObj – a class representing a signal abstraction. In gen-
eral, a signal is any time-varying or spatially-varying quantity
(e.g. a time-series). This implementation of the signal abstrac-
tion consists of the pair (t, x(t)), where t is a one-dimensional
indexing variable (time, space, etc.) and x(t) is the correspond-
ing data specified at each value of the indexing variable. A signal
can be multivariate if at every value of the indexing variable, a
vector of data is specified (the size of this vector determines the
dimension of the signal). SignalObj’s have a number of methods
that facilitate the manipulation of their data such as maxima,
minima, and frequency spectra. SignalObj’s can be integrated,
differentiated, filtered, shifted, scaled, added, and subtracted
among other operations and the result of these operations is
also a SignalObj.

2. Covariate – a class representing the explanatory variables used
in the construction of conditional intensity function models

within the PP-GLM framework. Covariates are SignalObj’s with
mean � and standard deviation �.

3. CovColl – a container for multiple Covariate objects. This con-
tainer ensures that all the covariates have the same sampling
oint process adaptive filter or the hybrid point process filter is not shown (see the

rate, start time, and end time. CovColl has a covMask field
that allows some Covariates to be masked or effectively hid-
den from the current analysis. Additionally, the CovColl can
be converted to a matrix by the dataToMatrix method. Only
covariates that are currently selected in the covMask field are
used in the creation of the matrix representation of the CovColl.
This matrix representation is used to generate part of the design
matrix, X , for GLM analysis (see Eqs. (2) and (3)). The other
portions of the design matrix are determined by the number
history windows specified by the History object in the current
TrialConfig.

4. nspikeTrain – a neural spike train object consists of a set
of spike times. The spike train can be represented as a sig-
nal of class SignalObj with a particular sampling rate. Note
that if the bin size resulting from the specified sample rate is
larger than the difference between any two  spike times, the
neural spike train will not have a binary SignalObj represen-
tation. Effectively, specification of sample rate for an object
of class nspikeTrain specifies how the spike train will be
binned.

5. nstColl – a container for objects of class nspikeTrain that
ensures that all the contained spike trains have the same start
time, end time, and sample rate. Similar to covColl, nstColl
has a neuronMask field that allows selection of a subset of all
the spike trains in the collection. nstColl includes methods for
the generation of inter-spike interval (ISI) histograms and peri-

stimulus time histograms (PSTH). The method dataToMatrix can
be used to obtain a matrix representation of the spike trains
that is used by the Analysis class to obtain the observations,
yj = �N(tj), used in GLM analysis.
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Fig. 2. Class diagrams. (A) Unified modeling language (UML) representation of the classes that implement the encoding and decoding analysis methods and store the relevant
r
esults and (B) UML  diagram of the remaining classes within nSTAT.

6. Event – consists of a collection of pairs of times and labels, (tk,
 k), that are used to identify important time-points within Trial
objects.

7. History – defines a collection of time window edges/boundaries
within which the spiking activity of a nspikeTrain is to be ana-

lyzed. For example the vector of window times, [0, 0.002, 0.01],
specifies one window from 0 to 2 ms  and another from 2 ms
to 10 ms.  Calling the computeHistory method on a spike train
using the previously mentioned window times would yield a
Covariate object with two dimensions. The first dimension
would be a time-series that at time t has the value of the
summed spiking activity in the interval [t − 2, t) (e.g. the
summed spiking activity of the prior 2 ms) and the second a
time-series that at time t equals the sum of the spiking activity

in the interval [t − 10, t − 2) (e.g. the summed spiking activity
from 2 ms  to 10 ms  in the past).

8. Trial – consists of covColl, nstColl, and Event objects and
implements the abstraction of an experimental trial by
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Fig. 3. Example 1 data. (A) Experimental setup, (B) mini excitatory post-synaptic
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keeping all of the corresponding data together. The trial data
can be visualized using the plot method. This class ensures that
the spike trains and covariates are all properly sampled and
aligned in time.

9. TrialConfig – a class that specifies the manner in which a Trial
object should be analyzed. Each TrialConfig object specifies the
name of the covariates to be included in the analysis, the sample
rate to be used for all of the covariates and spike trains, the
history windows to be used, and the time window for analysis
(i.e. can perform analysis on a subset of all the trial data).

0. ConfColl – a container for multiple TrialConfig objects.
1. Analysis – a collection of static methods for analyzing a Trial

according to the specifications included in a ConfigColl. Given a
Trial and ConfigColl object, the method RunAnalysisForAllNeu-
rons returns a FitResult object for each spike train in the trial.
Each FitResult object contains the results of all the different
configurations specified in the ConfigColl as applied to each
spike train.

2. FitResult – contains the GLM coefficients (with corresponding
standard errors), AIC, BIC, KS statistics, rescaled spike times, and
point process residual for each of the specified configurations
in ConfigColl.  Includes methods to visualize the results of each
of the different configurations to assist in the model selection
process. For example, the plotResults method overlays the KS
plot, the autocorrelation function of the ui

s’s, the lag-1 corre-
lation coefficient of the ui

s’s, the GLM fit coefficients with 95%
confidence intervals, and the point process residual for each of
the models specified in the ConfigColl.

3. FitResSummary – given a collection of FitResult objects (one
for each neuron, each containing the results of multiple regres-
sions), computes summary statistics across all neurons and all
configurations in the ConfigColl.  This class allows visualization
of commonalities in the data across multiple neurons.

4. CIF – conditional intensity function abstraction. Allows a con-
ditional intensity function to be defined symbolically. Symbolic
differentiation of the CIF can be performed to compute the Jaco-
bian and Hessian of log(�c(t| x(t), �, Ht)�)  and �c(t| x(t), �, Ht)�
required for computation within the point process adaptive fil-
ter or the point process hybrid filter. The CIF class also contains
static functions that allow simulating point processes based
on specification of the conditional intensity function via time
rescaling or the point process thinning algorithm.

5. DecodingAlgorithms – includes static methods that imple-
ment the point process adaptive filter (PPAF), the state-space
GLM (SSGLM) filter, and the point process hybrid filter (PPHF)
among others. This class also implements non-point process
algorithms such as the Kalman Filter (Kalman, 1960) and the
Kalman Smoother (Rauch et al., 1965).

.3. Examples

.3.1. Example 1 – homogeneous/inhomogenous Poisson models
 the miniature excitatory post-synaptic current

Miniature excitatory post-synaptic currents (mEPSCs) have
ecome a primary measure of synaptic modification during devel-
pment, plasticity, and disease. These post-synaptic currents (or
mini’s”) represent the response of postsynaptic receptors to the
pontaneous fusion of vesicles in the pre-synaptic membranes.
ecent work by Phillips et al. (2010) has shown that the arrival
f mEPSCs under a constant concentration of magnesium is well

escribed as a homogenous Poisson process (i.e. the time between
EPSCs is exponentially distributed). Additionally, as the magne-

ium concentration is decreased, the rate of mEPSC arrivals begins
o increase.
currents under a constant magnesium concentration, and (C) mEPSCs as the mag-
nesium concentration of the bath is reduced.

Image in panel A courtesy of Marnie Phillips, PhD.

We  illustrate the use of nSTAT to analyze the arrival of mEP-
SCs under two  distinct experimental conditions. First, we confirm
homogeneous Poisson behavior under constant magnesium condi-
tions by fitting a constant conditional intensity function model to
the data in Fig. 3B, e.g.

log(�(t|Ht)�)  = � (20)

and refer to this CIF as �CONST.
As seen in Fig. 3C, when the magnesium concentration is

decreased, the rate of mEPSC arrivals increases over time. There
are many potential ways to analyze how the underlying firing rate
changes with time. For example, under the assumption that the
form of the conditional intensity function remains the same as Eq.

(20) we could decode the rate parameter, �(t), using the point pro-
cess adaptive filter described in Section 2.1.7 and used in Example
5. However, in this example we take a simpler approach. The spike
train is visually separated into three distinct epochs where the
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Fig. 4. Example 2 data. Thalamic neuron discharge during periodic whisker displacement, (top) spiking activity of a single unit in the ventral posteromedial nucleus (VPm)
of  the thalamus during periodic deflection of its principal whisker (PW), (middle) whisker deflection and (bottom) whisker deflection velocity. Note that the unit tends to
show  spiking activity that is in-phase with the applied stimulus and short bursts of activity when the stimulus is absent.

Fig. 5. Example 3 PSTH data. Simulated and actual data for PSTH computation. (A) (Top) graph of �(t) from Eq. (24) (bottom) 20 simulated point process sample paths
obtained from the conditional intensity function in Eq. (24) via the point process thinning algorithm, (B) 9 trials of stimulus exposure to a V1 neuron for 2 s, and (C) same as
(B)  with different neuron. Note that the timescale (x-axis range) across the plots is not identical.
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ig. 6. Example 3 SSGLM data. Time varying stimulus response. The within-trial stim
cross  trials. The simulated neural raster is generated via the time rescaling algori
unction is obtained from Eq. (27).

aseline firing rates are assumed to be constant within each epoch
shown in Fig. 3C). Under this assumption, we fit a piecewise con-
tant conditional intensity function

og(�(t|Ht)�)  =

⎧⎪⎨
⎪⎩

�1 T0 ≤ t < T1

�2 T1 ≤ t < T2

�3 T2 ≤ t < Tf

(21)

e refer to this CIF as �CONST−EPOCH since it is constant within each
ime epoch. For comparison, we also fit the constant baseline model
f Eq. (20) to this data.

.3.2. Example 2 – neural responses in the presence of a known
xternal stimulus (whisker stimulus/thalamic neurons)

In many experimental settings, the stimulus is directly con-
rolled. In these cases it is of interest to understand how the
timulus modulates the neural spiking. To illustrate we use a sam-
le data set that has been summarized previously by Temereanca
nd Simons (2003) and Temereanca et al. (2008).  Briefly, a piezo-
lectric stimulator was used to caudally deflect the principal
hisker (e.g. the whisker that evoked the most robust response

rom an isolated thalamocortical unit in the ventral posteromedial
ucleus). In the data shown here, the whisker was deflected 1mm

n the caudal direction beginning from the whisker’s neutral posi-
ion at a velocity of 80 mm/s  for 2 s with inter-stimulus interval of
.5 s (see Fig. 4).

Given such a data set, several important neurophysiologic ques-
ions become of interest: (1) is there a significant modulatory effect

f the stimulus on the neural spiking? (2) What is the temporal
elationship (lead vs. lag) of the neural response to the applied
timulus? (3) Does the neural spiking behave as a simple inho-
ogenous Poisson process or is there a significant history effect
 is modulated by the across-trial stimulus gain in order to simulate neural plasticity
escribed in Section 2.1.4 using the nSTAT CIF class. The true conditional intensity

(refractoriness, etc.)? (4) If there is a significant history effect, over
what time period is this effect important?

In order to address these questions, we proceed as follows:

1. We  fit a constant baseline conditional intensity function, �CONST,
as in Eq. (20).

2. We  look at the cross-correlation between the point process
residual MCONST(tk) (see Eq. (6))  for the �CONST fit and the known
stimulus, s(t), to determine the stimulus lag, � lag.

3. We  fit a baseline plus stimulus model

log(�(t|Ht)�) = � + b1s(t − �lag) (22)

and refer to this CIF as �CONST+STIM.
4. We  use model selection techniques to determine the number of

history windows to include in a model with 30 logarithmically
spaced history windows in the past 1 s. That is

log(�(t|Ht)�) = � + b1s(t − �lag) +
J∑

j=1

�j�N(tj, tj−1) (23)

where �N(tj,tj−1) is the total number of spikes that occurred in
the time interval [t − tj, t − tj−1) and J is the number of history
windows to be determined via model selection. The time win-
dows are defined such that t1 = 0, t30 = 1, and tj for 2 < j < 29 are
logarithmically spaced between 0 and 1. We  refer to this CIF as
�CONST+STIM+HIST.

5. Having determined the “optimal” number of history windows
(via AIC, BIC, and KS statistics), we compare the three can-

didate conditional intensity functions �CONST, �CONST+STIM, and
�CONST+HIST+STIM using the time-rescaling theorem (KS statistic
and rescaled spike times), GLM regression coefficients and their
significance, and the point process residuals for each model.
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Fig. 7. Example 4 data. Hippocampal neural spiking during free foraging. Four cells recorded while a rat was freely foraging in a circular environment. The x–y position
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t  which the cell fires is denoted in red and superimposed on the path of the freel
thers.  The goal in experiments such as this one is to estimate the receptive field or
eferences to color in this figure legend, the reader is referred to the web  version of

.3.3. Example 3 – neural responses to an unknown/implicit
timulus

Recording single-neuron activity from a specific brain region
cross multiple trials in response to the same stimulus or execution
f the same behavioral task is a common neurophysiology proto-
ol. In order to capture the effective neural stimulus that results
rom the applied physical stimulus, many investigators turn to the
eri-stimulus time histogram. To illustrate the construction of PSTH
ased on a neural raster using nSTAT, we use both simulated and
ctual data. In Fig. 5A, the point process thinning algorithm was
sed to generate 20 realizations of a point process governed by the
onditional intensity function

ogit(�(t)�) = sin(2�ft) + � (24)
here f = 2 and � = −3.
Fig. 5B and C shows the response of two V1 neurons when a

isual stimulus was shown to an adult monkey during a fixation
ging rat in blue. Note that each cell tends to fire near certain locations more than
” field of each cell based on the recorded spiking activity. (For interpretation of the

rticle.)

period in response to a moving bar. This data has been published
previously (Pipa et al., 2012).

SGLM-PSTH. To demonstrate how the SSGLM framework
described in Section 2.1.6 can be applied to estimate both within-
trial and across-trial effects we simulate the following conditional
intensity function

logit(�(k, tn|Htn )�)  = � + bksin(2�ftn)

+
J∑

j=1

�j�Nk(tn − tj−1, tn − tj) (25)
bk = 3k

K
(26)

where �(k, tn|Htn ) is the CIF in the nth time bin of the kth trial,
� = −3 (corresponds to a baseline firing rate of approximately
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ig. 8. Example 5 data (Section 2.3.5.1). (Top) driving stimulus, (middle) conditio
inusoidal stimulus.

0 Hz), � = 0.001 s, f = 2, K = 50 is the total number of trials,

 = 3, tj = j milliseconds for j = 0, . . .,  J, and � = [ �1 �2 �3 ]T =
−4 −1 −0.5 ]T . The inclusion of the history term models
he refractory period of the cell. We  refer to sin(2�ft) as the

Fig. 9. Example 5 data 
ensity function for each cell, (bottom) raster of simulated cells begin driven by a

within-trial stimulus (since it is consistent across all trials) and b
k
as the across-trial stimulus. The aim of the SSGLM framework is
to estimate the history parameter vector, � , and the non-history
dependent stimulus parameters. The SSGLM framework returns

(Section 2.3.5.2).
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Fig. 10. Example 1 results. (A) nSTAT results summary for the constant baseline firing rate model (Eq. (20)) for the mEPSC data in Fig. 3(B). (Top, left to right) original neural
raster,  autocorrelation function of the us ’s, KS plot, and conditional intensity function estimate and (B) (top, left to right) raster of mEPSC data under varying magnesium
c at the
b o zero
T serve

a
e

l

f

oncentration, autocorrelation function of the us ’s, KS plot and CIF estimate. Note th
ands  and produces rescaled event times whose autocorrelation function is closer t
he  estimated CIF (lower right panel) is able to capture the increased rate that is ob

n estimate of the stimulus-dependent component of the CIF,
.g.
ogit(�stim(k, t|Ht)�)  = � + bksin(2�ft) (27)

or k = 1, . . .,  50.
 piecewise constant rate model yields a KS plot that falls within the 95% confidence
 across all lags – suggesting independence of the rescaled times under �CONST−EPOCH .
d in Fig. 3(C).

2.3.4. Example 4 – neural responses to a continuous stimulus –
hippocampal place cells
In the rat hippocampus (a region of the brain important for long-
term memory formation) pyramidal neurons known as place cells
form spatial receptive fields as the animal forages in its environ-
ment (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; O’Keefe and
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Fig. 11. Example 2 results. (A) Cross-correlation of the constant baseline model residual, MCONST(t), with the stimulus, s(t). The peak at 0.119 s (solid red circle) suggests that
the  neural activity lags the stimulus by just over 100 ms  and (B) model selection for number of history windows. The model in Eq. (21) was fit for J = 1, . . ., 30. A minimum
in  the AIC, BIC, and KS-statistic (denoted by the red *) is observed when J = 9 (9 logarithmically spaced time windows over the interval [0, 12 ms]), suggesting this as the best
choice  for the length of history dependence, (C) KS plot comparison of �CONST , �CONST+STIM , and �CONST+STIM+HIST . Inclusion of the stimulus effect yields an improvement in the KS
plot  but the resulting model does not fall within the 95% confidence bands. Addition of the history dependence produces a KS plot that does fall within the 95% confidence
bands, and (D) GLM coefficients for all three candidate models (* indicate statistically significant coefficients, p < 0.05). Note that the history coefficients capture an initial
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efractory period (within the first 1 ms  of spiking), a region of increased spiking pro
bsence of the stimulus, and a subsequent period of decreased spiking probability.
o  the web version of the article.)

onway, 1978). In order to show how the spatial receptive fields can
e estimated using nSTAT, we reconsider the analysis of Barbieri
t al. (2005b) which compared the accuracy of receptive fields con-
tructed using a Gaussian kernel vs. Zernike polynomials. Briefly, a
ong-Evans rat was allowed to freely forage in a circular environ-
ent 70 cm in diameter with 30 cm high walls and a fixed visual

ue. A multi-electrode array was implanted into the CA1 region
f the hippocampus. The simultaneous activity of 49 place cells
as recorded from the electrode array while the animal foraged

n the open circular environment for 25 min. Simultaneous with
he recording of the place cell activity, the position was measured
t 30 Hz by a camera tracking the location of two infrared diodes
ounted on the animal’s head stage. Fig. 7 shows the response of

 randomly selected cells.
Estimation of the spatial receptive fields using a Gaussian kernel

s equivalent to finding the mean, covariance, and baseline firing
ate for the conditional intensity function, �G, defined as

og(�G(t|x(t), �G)�)  =  ̨ − 1
2

(x(t) − �)T Q −1(x(t) − �) (28)

here  ̨ is the baseline firing rate, x(t) = [x(t), y(t)]T is the normal-
zed position vector consisting of the x and y coordinates of the rat

ithin the circular environment, and � the mean and Q the covari-
nce of the two-dimensional Gaussian kernel respectively. Here �G

epresents the parameters on the right hand side of Eq. (28). In
rder to perform the model fits we need to specify the covariates

hat will be used in the GLM regression. We  expand Eq. (28) and
ewrite in standard matrix notation as

og(�G(t|x(t), �G)�)  = XG(t)ˇG (29)
ty shortly thereafter (from 1 ms  to 5 ms) corresponding to the bursting seen in the
nterpretation of the references to color in this figure legend, the reader is referred

where 1 is a vector with every element equal to 1 and of appro-
priate length, XG(t) = [ 1 x(t) x(t)2 y(t) y(t)2 x(t) · y(t) ] is a
row vector of the terms from Eq. (28) in each column, and ˇG a col-
umn  vector of parameters to be estimated. The design matrix, XG ,
is obtained by placing the data for each time point, t, in subsequent
rows. We define each of the columns of the design matrix, XG , as a
Covariate object for the fitting of the GLM in Eq. (29). The second
model for the conditional intensity function, corresponding to the
Zernike polynomial basis, �Z, is defined as

log(�Z (t|x(t), �Z)�)  = � +
L∑

l=0

l∑
m=−l

�l,mzm
l (p(t)) (30)

where zm
l

is the mth component of the lth order Zernike polyno-
mial, p(t) = [�(t), �(t)] is the polar coordinate representation of the
Cartesian position vector x(t) and �Z = {{�l,m}l

m=−l
}L
l=0. We  rewrite

the equation in matrix notation

log(�Z (t|x(t), �Z)�)  =
[

1 z1(p(t)) . . . z10(p(t))
]
⎡
⎢⎢⎢⎢⎣

�

�1

...

�10

⎤
⎥⎥⎥⎥⎦ (31)

= XZ(t)ˇZ (32)
where the notation has been replaced by an ordered numbering of
the 10 unique non-zero Zernike polynomials for L = 3 as used by
Barbieri et al. (2005b). We  define each of the columns of the design
matrix, XZ , as a Covariate for the fitting of the GLM in Eq. (31).
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Fig. 12. Example 3 PSTH results. (A) (Top) Raster of 20 cells obtained from the conditional intensity function in Eq. (24) via the point process thinning algorithm. (Bottom)
Comparison of PSTH (red) and PSTH-GLM (black) with 50 ms  seconds bins to the actual conditional intensity function (blue). Note that the standard PSTH and the PSTH-GLM
match  exactly translucent. (B) m #6 raster (top) with corresponding PSTH and PSTH-GLM (bottom), and (C) neuron #1 raster (top) and corresponding PSTH and PSTH-GLM
(bottom). Confidence bands for the PSTH-GLM are indicated by the thin black lines. (For interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

Table 1
History dependence parameter estimates. Note that both the GLM PSTH and SSGLM methods estimate the same parameters but SSGLM yields estimates with a smaller
standard error. This is likely due to more stringent convergence criteria for the SSGLM algorithm (i.e. given additional iterations the GLM PSTH estimates would also yield
estimates with smaller standard errors).

History coefficient Actual GLM PSTH estimates
(mean ± se)

SSGLM estimates
(mean ± se)

−3.40
−0.90
−0.35

2
p
2
S
i

l

a
t
e
F
a
l
f
s

2
v
C

�1 −4 

�2 −1 

�2 −0.5 

.3.5. Example 5 – decoding continuous stimuli based on point
rocess models
.3.5.1. Decoding a driving stimulus from point process observations.
uppose we have a collection of c = 1, . . .,  C cells with conditional
ntensity function

ogit(�c(t)�) = bc
0 + bc

1sin(2�ft) (33)

s shown in Fig. 8. We  define the stimulus x(t) = sin(2�ft) and aim
o obtain an estimate x̂(t) of the true stimulus x(t) based on the
nsemble spiking activity �N1: C (t) and knowledge of each �c(t).
or this example we choose, C = 20, f = 2, b0∼N(� = −4.6, � = 1),
nd b1∼N(� = 0, � = 1). A value of b0 = −4.6 corresponds to a base-
ine firing rate of approximately 10 spikes/s. Simulated spike trains
or each cell, obtained via the point process thinning algorithm, are
hown in Fig. 8.
.3.5.2. Decoding a movement trajectory from point process obser-
ations. Suppose that we have a collection of cells c = 1, . . .,

 with condition intensity function adapted from a model of
47 ± 0.2671 −3.4047 ± 0.0024
44 ± 0.0734 −0.9044 ± 0.0085
68 ± 0.0643 −0.3568 ± 0.0094

primary motor cortex (Moran and Schwartz, 1999; Srinivasan et al.,
2006)

log(�c(t|vx, vy)�) = ˇc
0 + ˇc

1(v2
x + v2

y)1/2cos(� − �c
p)

= ˇc
0 + ˛c

1vx + ˛c
2vy

(34)

where vx and vy are velocities of the arm end-effector in ortho-
gonal directions. An arm reach from an initial position, x0 = [0, 0]T,
to a target at x0 = [−35, 20]Tcm was  simulated using the reach-to-
target equation in Srinivasan et al. (2006).  The resulting velocities
were used to generated a CIF according to Eq. (34) and neural
rasters were generated using the point process thinning algorithm.
The final and initial state covariances were 	x0 = 	xT = � × I4×4,
where � = 10−6 and I4×4 is the 4 × 4 identity matrix. The corre-
sponding receptive field parameters were selected so that each cell
had preferred direction uniformly distributed between −� and �,

and ˇc

0∼N(� = −4.6, � = 1). The same velocity information was
used to simulate the spiking of C = 20 distinct cells 20 times to
show how the algorithm performed in the presence of varying cell
responses (see Fig. 9).
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Fig. 13. Example 3 SSGLM results. (A) SSGLM estimated vs. actual stimulus response. Both the PSTH and SSGLM estimates partitioned the time axis using 40 ms time bins.
(B)  comparison of PSTH, SSGLM, and actual stimulus response. (C) plot of the spike rate function, (t2 − t1)−1	k(t1, t2), for k = 1, . . .,  50 and the learning trial estimate obtained
by  computation of the probability in Eq. (12) (shown in E for all trials). The learning trial, trial 9, is indicated by the vertical red line. (D) comparison of the within-trial spike
firing  rate (stimulus effect) between the baseline (first) trial and the learning trial for comparison. (E) spike rate function comparison matrix. The probability in Eq. (12) was
computed for k = 1, . . .,  49 and m > k. For each trial k on the vertical axis, the * indicates which trials m > k (on the horizontal axis) have an estimated spike rate function that
is  greater than the spike rate function at trial k with probability greater than 95%. (For interpretation of the references to color in this figure legend, the reader is referred to
the  web  version of the article.)
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. Results

.1. Example 1 – homogeneous/inhomogenous Poisson models –
he miniature excitatory post-synaptic current
Fig. 10 summarizes the results of mEPSC data in Example 1.
nder constant magnesium concentrations, the mEPSC data is
ell fit by the constant conditional intensity function in Eq. (20),

uggesting that the inter-spike-interval (ISI) distribution for the
mEPSC events is well described by an exponential distribution.
The KS plot for �CONST lies within the 95% confidence bounds. The
autocorrelation function of the xs’s help us determine that the
transformed times are also independent. Together, these results
indicate that �CONST is a good approximation to the true underly-

ing CIF describing the mEPSC process under constant magnesium
concentrations.

Fig. 10B shows a comparison of the constant rate model in Eq.
(20) and the piecewise constant rate model in Eq. (21). Since both
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Fig. 14. Example 4 results. Hippocampal place cell receptive field estimates. (A) Gaussian place fields, (B) Zernike place fields. Note that the place fields estimated with the
Zernike  polynomial basis are able to capture receptive field asymmetries better than the Gaussian estimates, (C) comparison of Zernike and Gaussian receptive field for cell
#25.  The Gaussian fit is in blue and the Zernike polynomial fit is in green, and (D) box plot of change in KS statistics, AIC and BIC across all 49 cells computed as value of
statistic  in the Gaussian fit minus the value in the Zernike polynomial fit. Note that while the median KS statistics using Gaussian or Zernike basis are similar, the model
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orresponding to the Zernike receptive fields yield an improvement in terms of the c
ata.  Note that for some cells (the outliers marked in red), the improvement is quit
o  color in this figure legend, the reader is referred to the web  version of the article

he KS plot and the autocorrelation function of the xs’s for the
iecewise constant model lie within the 95% confidence interval,
e conclude �CONST−EPOCH more adequately approximates the true
nderlying CIF describing the mEPSC activity under varying mag-
esium concentrations.

.2. Example 2 – neural responses in the presence of a known
xternal stimulus (whisker stimulus/thalamic neurons)

Fig. 11 summarizes the results of the analysis presented in
ection 2.3.2. Analysis of the cross-correlation function between
he point process residual from the model in Eq. (20) and the
hisker-deflection stimulus demonstrates that the neural spik-

ng lags the stimulus by 119 ms.  Changes in AIC, BIC and KS
tatistic are shown in Fig. 11B  for increasing values of J and indi-
ate that J = 9 history windows is most consistent with the data
red star). Fig. 11D demonstrates how this length of history cap-
ures important temporal properties of the neuron including the
efractory period and bursting (i.e. increased spiking probability
hen last spike occurred in the last 1–5 ms). Additionally, the
LM regression coefficient for the baseline firing rate indicates

hat the neuron has a baseline rate of exp(− 5)/� ≈ 6.5 Hz and
hat the increased whisker displacement (positive stimulus) has
n excitatory effect on the neural spiking. Lastly, Fig. 11 demon-

trates that �CONST+STIM+HIST yields a KS plot that lies within the
5% confidence interval and thus is an adequate description of
he true underlying CIF according to the time rescaling theo-
em.
 in AIC and BIC – indicating that the Zernike polynomial models are better fits to the
atic with the use of the Zernike polynomials. (For interpretation of the references

3.3. Example 3 – neural responses in the presence of an
unknown/implicit stimulus

3.3.1. PSTH
Fig. 12 compares estimation of PSTH via the standard approach

(Gerstein and Kiang, 1960; Palm et al., 1988) and using the GLM
formulation of Czanner et al. (2008).  Note that the standard PSTH
and the PSTH-GLM match exactly.

3.3.2. SSGLM-PSTH
Fig. 13 summarizes the application of the standard PSTH and

SSGLM frameworks to the data in Fig. 6. As shown in Fig. 13A  and
B, the SSGLM estimate of the stimulus effect with 40 ms bins is
in close agreement with the true underlying stimulus effect. The
standard PSTH method (also using 40 ms  bins) fails to capture the
across-trial dynamics (because of its assumption that all of the trials
are identical and independent) but is able to capture the within-
trial dynamics grossly. Table 1 summarizes the history parameter
estimates for both the PSTH and SSGLM models.

3.4. Example 4 – neural responses in the presence of a continuous
stimulus – hippocampal place cells

As demonstrated by Barbieri et al. (2005b), the Zernike polyno-
mial model gave a more accurate and parsimonious description of

the individual place fields according to both Akaike and Bayesian
Information Criterion (see Fig. 14D). The Zernike place field esti-
mates were concentrated in a smaller area and had a wider range
of asymmetric shapes (Fig. 14A vs. B).
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Fig. 15. Example 5 results. (A) Stimulus decoding using the point process adaptive filter. The spiking activity of the 20 simulated cells was used with the PPAF in order to
decode  the stimulus in Eq. (24). The estimated stimulus is shown in black with the corresponding 95% confidence intervals illustrated by surrounding lines in black. The actual
stimulus  is shown in blue. (B) decoded movement trajectory using the PPAF (green) and the PPAF with target information (blue). For each trace, the true velocity information
was  used to simulate the spiking of 20 distinct cells according to Eq. (34) using the point process thinning algorithm. Each cell had a randomly chosen preferred direction.
This  process was  repeated 20 times to show how the algorithms performed in the presence of different cell populations. (Top) The PPAF +goal estimated path in a more
faithful reconstruction of the true movement path and shows significantly less variability across the 20 simulations. Note, however, that comparison the actual movement
trajectories shows that the PPAF without goal information is more closely able to track the actual movement dynamics (albeit with significant variability). As the covariance
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f  the final target increases (i.e. certainty in the final target decreases), the PPAF +g
For  interpretation of the references to color in this figure legend, the reader is refe

.5. Example 5 – decoding continuous stimuli based on point
rocess models

.5.1. Decoding a driving stimulus from point process
bservations

Fig. 15 shows the results of decoding the sinusoidal stimu-
us in Eq. (33) using 20 cells. Note that even though the original

eural raster in Fig. 8 showed very little correspondence to the
riving stimulus, the aggregate information across the popula-
ion of cells was sufficient to yield an adequate estimate of the
timulus.
timated trajectories become more similar to the PPAF estimates (data not shown).
 the web  version of the article.)

3.5.2. Decoding a movement trajectory from point process
observations

Fig. 15B shows the results of decoding a simulated reach using
the point process adaptive filter (green) and the point process adap-
tive filter with the addition of target information (blue). Note that
inclusion of target information causes deviation from the actual
movement trajectories, but results in improved estimates of the

true movement path and ensures arrival at the final target. When
the target information is not present, the PPAF tracks the true tra-
jectories more reliably (albeit with larger variability) but rarely
reaches the true final target. As the degree of certainty in the final
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arget is decreased (i.e. the final target covariance increases), the
ecoded trajectories become increasingly similar to the standard
PAF without target information.

. Discussion

We  have developed the neural spike train analysis toolbox
nSTAT) for Matlab® to facilitate the use of the point process –
eneralized linear model framework by the neuroscience commu-
ity. By providing a simple software interface to PP-GLM specific
echniques within the Matlab® environment, users of a number of
xisting open source toolboxes (i.e. Chronux, STAToolkit, etc.) will
e able to easily integrate these techniques into their workflow. It

s our hope that making nSTAT available in an open-source man-
er will shorten the gap between innovation in the development of
ew data analytic techniques and their practical application within
he scientific community. For the neurophysiologist, we  hope the
vailability of such a tool will allow them to quickly test the range
f available methods with their data and use the results to both
nform the quality of their data and refine the protocols of their
xperiments.

Via a series of examples we have demonstrated the use of the
oolbox to solve many common neuroscience problems including:
1) systematic building of models of neural spiking, (2) characteri-
ation of explicit experimental stimulus effects on neural spiking,
3) spike rate estimation using the PSTH and extensions of the PSTH
SSGLM) that allow quantification of experience-dependent plas-
icity (across-trial effects), (4) receptive field estimation, and (5)
ecoding stimuli such as movement trajectories based on mod-
ls of neural firing. All of the data, code, and figures used here are
ncluded as part of the toolbox. We  hope that users will be able to
asily modify these examples and use them as a starting point for
nalysis of their own data.

While the current release of nSTAT contains many commonly
sed algorithms for analysis of neural data within the PP-GLM
ramework, there are many avenues for future improvement. In
articular, optimization of current algorithm implementations to
upport the GPU- and parallel-computing methods within Matlab®

re likely to be important for dealing with large data sets. We
ncourage users to identify areas were the software can be made
ore efficient and to make their contributions available to the com-
unity at large. Future work for nSTAT will include the addition of
ethods to deal with simultaneous analysis of neural ensembles

sing multivariate point-process theory together with multino-
ial generalized linear models (mGLMs) (Chen et al., 2009b; Ba,

011; Brown et al., 2004), network analysis of multivariate spike
rains(Brown et al., 2004; Krumin and Shoham, 2010; Stam and
eijneveld, 2007; Bullmore and Sporns, 2009), and incorporation
f causal modeling techniques for neural ensembles (Kim et al.,
011) among others.
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