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Abstract— In most wireless communications research, the
channel models considered experience less severe fading than the
classic Rayleigh fading case. In this work, however, we investigate
MIMO channels where the fading is more severe. In these envi-
ronments, we show that the coefficient of variation of the channel
amplitudes is a good predictor of the link mutual information,
for a variety of models. We propose a novel channel model for
severely fading channels based on the complex multivariate t
distribution. For this model, we are able to compute exact results
for the ergodic mutual information and approximations to the
outage probabilities for the mutual information. Applications
of this work include wireless sensors, RF tagging, land-mobile,
indoor-mobile, ground-penetrating radar, and ionospheric radio
links. Finally, we point out that the methodology can also be
extended to evaluate the mutual information of a cellular MIMO
link and the performance of various MIMO receivers in a cellular
scenario. In these cellular applications, the channel itself is not
severely fading but the multivariate t distribution can be applied
to model the effects of inter-cell interference.

I. INTRODUCTION

Typical wireless communications channels experience con-
siderable multipath propagation which causes signal fading at
the receiver. Several amplitude probability distributions have
been used in the literature to describe random fading. These
include the Rician distribution for a range of line-of-sight
and non-line-of-sight channels, the Nakagami distribution for
wideband channels, and the Weibull distribution for propa-
gation in non-homogeneous media. The Rayleigh distribution
is commonly used to model the fading in strongly dispersive
linear channels comprising homogeneous media, such as some
urban wireless channels. Based on the Jakes model, this
description assumes a large number of overlapping taps with
uniformly distributed phases and angles-of-arrival. Results on
the mutual information of Rayleigh-faded MIMO channels are
widely available in the literature [1].

It is well known that the Nakagami-m distribution can model
the amplitude for cases when the fading is more severe than
Rayleigh. These scenarios arise in a variety of applications.
For example, measurements reported in [2] were considerably
more severe than Rayleigh for an RF tagging application.
Other areas where severe fading models are useful include
wireless sensors [3], land-mobile, indoor-mobile and iono-

spheric radio links [4]. Despite the range of applications where
severe fading may be encountered, relatively little attention
has been given to such channels, with the exception of the
Nakagami model. For severely fading MIMO channels, there
is even less information available in literature, partly due
to the difficulty of performing statistical analysis of random
Nakagami matrices.

In this paper, we investigate MIMO channels where the
fading is more severe than Rayleigh fading. We propose
a novel channel model for this scenario which is simple,
flexible, lends to closed form analysis, and is a direct extension
of the Rayleigh model to the severe fading region. Here,
fading severity is defined in terms of the probability of deep
fading events. It does not concern the level crossing rate, the
average fade duration, or Doppler effects, and the propagation
channel is assumed to be narrowband. We show that the
coefficient of variation of the channel amplitudes yields a
good prediction of the mutual information. We also propose
using the complex multivariate t distribution to model the
channel amplitudes for a variety of channels. We compute the
associated ergodic mutual information and approximate outage
probabilities. Finally, we show how the methodology is easily
extended to evaluate the mutual information of cellular MIMO
and the performance of various MIMO receivers. For these
scenarios, the multivariate t distribution is used to model the
inter-cell interference.

II. A COMPARISON OF SEVERE FADING CHANNEL
MODELS

A. System Model

Consider a single user (nT , nR) MIMO system with nT

transmit antennas and nR receive antennas. The system equa-
tion is given by [5], [6]

r = Hs + n (1)

where r is the nR ×1 received signal vector, s is the complex
nT ×1 transmitted signal vector, n is an nR×1 additive white
complex Gaussian noise vector with unit modulus variance,
and H is an nR ×nT complex channel matrix. In this section



we consider the channel coefficients, hrs = (H)rs, to be of
the form, hrs = Ars exp(jθrs), where θrs are independent
and identically distributed (iid) uniform phase variables over
[0, 2π] and the Ars are iid amplitudes drawn from a range
of distribution types. As is standard practice, eg. [5], [6], we
normalize the amplitude distributions so that the mean power
is unity, E(A2

rs) = 1. This allows a fair comparison across
distribution types. Classical models for the amplitude prob-
ability distribution include Rayleigh, Ricean and Nakagami.
We also consider a range of alternative distributions including
lognormal, gamma, beta, uniform, truncated-t and truncated-
Gaussian. Both the truncated distributions are truncated at zero
to give positive amplitudes. The distributions are chosen to
give a wide variation in the type of amplitude variable and to
cover severe fading scenarios. Note that the selected models
include short tailed (Gaussian), long tailed (lognormal), finite
support (uniform) and infinite support (Nakagami) distribu-
tions. The Weibull distribution is another distribution that is
worth consideration in a more comprehensive study, since it
also covers the severe fading region.

Hence, there are considerable differences between the am-
plitude distributions considered in this work, covering a large
variety of channel propagation conditions.

B. Coefficient of Variation and Mutual Information

The fading severity of a channel model can be measured by
the coefficient of variation (CV), which is defined by [7]

CV =

√

V ar(A)

E(A)
=

√

1

E(A)2
− 1 (2)

for the case of amplitudes, A, normalized to give E(A2) = 1.
Another measure of fading is the amount of fading (AF), which
is defined as AF = CV 2 = V ar(A)/[E(A)]2. Clearly, CV
and AF are closely related, and we will use the CV for the
analysis in the rest of this paper.

In this section, we study the ergodic mutual information
of the system in (1) as a function of the CV. The mutual
information (MI) is defined by [5], [6]

I = log2

[

det
(

InR
+

ρ

nT

HH
†

)]

b/s/Hz (3)

where ρ is the average SNR per receiver branch, and † denotes
the complex conjugate transpose.

Note that the MI in (3) is often described as the capacity for
the scenario when the transmitter has no channel information.
We investigate the sensitivity of the ergodic MI to the type of
amplitude distribution and whether the CV is a good measure
of the effect of the fading severity on the ergodic MI.

C. Amplitude Distributions

The amplitude distributions considered here are all 2-
parameter distributions. Distributions such as the uniform
(U [a, b]) and Beta (Beta[p, q]) have 2 parameters in their
standard form. Others, such as the t, have only 1 parameter
in their standard form but can be scaled by a constant to give

an extra parameter. The 2 parameters are necessary since one
is fixed by the normalization E(A2) = 1 and the remaining
parameter is varied to give a range of CV values. This allows
us to investigate the effect of CV on ergodic MI for a fixed
type of normalized amplitude distribution. For example, if A is
uniform over [a, b], for 0 < a < b, then 0 < a < 1 is required
to satisfy the normalization condition, which can be written
as E(A2) = (a2 + b2 + ab)/3 = 1. Solving this constraint
for b gives, b = −a/2 +

√
12 − 3a2/2. Now, we compute the

mean amplitude as, E(A) = (a+b)/2 = a/4+
√

12− 3a2/4.
As a varies from 0 to 1, the mean varies from its minimum
value (E(A) =

√
3/2) to the maximum value (E(A) = 1).

Inserting these values in (2) gives a possible range for the CV
values in the interval [0, 1/

√
3]. Hence, for uniform amplitudes

we are only able to consider the variation in ergodic MI over
0 < CV < 1/

√
3. Several of the other distributions also have

restrictions on the range of CV values that can be achieved.
A thorough description of all these distributions can be found
in [8].

D. Results

For a range of amplitude distributions and a wide range
of CV values the ergodic MI was simulated from (3) using
100,000 replicates. Results for a (4,2) MIMO system with
a SNR of 18 dB and 0 dB are shown in Figs. 1 and
2, respectively. Note that the legends in these figures refer
to ‘t’ and ‘Gaussian’, whereas truncated versions of these
distributions were actually used. Figure 1 shows that at high
SNR the CV is an excellent predictor of the ergodic MI which
is not greatly affected by the precise amplitude distribution.
Figure 2 shows that this conclusion begins to break down at
low SNR where the ergodic MI is more sensitive to the type
of distribution. Four of the distributions considered can only
give CV values less than 1. Hence the MI curves for these
distributions are overlaid by the others and are difficult to see.
As a reference point, the CV for a Rayleigh channel is 0.526.
Clearly, for small CV values, all the amplitude distributions
give very similar results. The top curve, which diverges from
the others, corresponds to the beta distribution. This achieves
the higher CV values by becoming bimodal. Hence the am-
plitude distribution is very different to physical reality and
this case is an extreme example. In Fig. 2, where the curves
diverge, the short-tailed distributions (Nakagami and gamma)
are similar and the long-tailed distributions (lognormal and
truncated-t) are similar. Hence, at high SNR all the curves are
similar, whereas at low SNR, distributions which are similar
in nature show similar patterns.

These results motivate the development of a simple channel
model which can cover the full range of severely fading
channels, CV > CVRayleigh, and act as an approximation to
other severely fading channels with the same CV. In the next
section we propose the complex multivariate t model and show
that it has the desired properties.
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Fig. 1. Ergodic MI vs CV for a range of amplitude distributions in a (4,2)
MIMO system with SNR=18dB
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Fig. 2. Ergodic MI vs CV for a range of amplitude distributions in a (4,2)
MIMO system with SNR=0dB

III. THE COMPLEX MULTIVARIATE T CHANNEL MODEL

A. Introduction

Motivated by the desire to study severe fading in MIMO
channels and the results in section III, we seek a model
for the elements of the channel matrix which is simple,
analytically tractable and covers the full range of cases in
the region CV > CVRayleigh. Such a model is the complex
multivariate t (CMT) distribution [9], [10]. The CMT is one
of the family of elliptical multivariate distributions [9] and
hence a wide body of knowedge is available. Also, the CV
of the amplitudes resulting from the use of the CMT satisfies
the requirement that CVCMT > CVRayleigh. Furthermore, the
marginal distributions for any channel matrix element are
complex t distributed and this includes the baseline case of
complex Gaussian entries as a special case. Hence the CMT
model generalizes the classical complex Gaussian matrix to
the severe fading scenario.

The simplest description of the CMT channel matrix, HCMT,
is to express it as the ratio of an iid complex Gaussian matrix,
H and the square root of an independent scaled χ2 variable
[9], [10]. This formulation is:

HCMT =
H

√

S2

r−1

(4)

where S2 has a complex χ2 distribution with r degrees
of freedom and probability density function fS2(x) =
xr−1 exp(−x)/Γ(r), where r > 1, x > 0 and Γ(·) is the
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Fig. 3. A comparison of the amplitude distributions for the CMT model
(r=1.1, 1.3 and 3) with the Rayleigh case.

gamma function. Note that the division of the iid matrix H

by a single, common random variable results in dependent
entries for HCMT. However, the independence of the H matrix
preserves the uncorrelated nature of the entries. With this
definition, the elements of HCMT are uncorrelated, identically
distributed, complex t variables with uniform phase over
[0, 2π]. When r → ∞, the model collapses to the baseline
iid complex Gaussian matrix and the elements of HCMT have
amplitudes with CV equal to CVRayleigh. For finite r, the
amplitudes are longer tailed than the Rayleigh case and give
severe fading scenarios with a CV easily derived as

CVCMT =

√

Γ(r)2

Γ(r − 1/2)2Γ(3/2)2(r − 1)
− 1 (5)

From (5) it is straightforward to show that CVCMT →
CVRayleigh as r → ∞ and CVCMT → ∞ as r → 1. The
probability density functions for the amplitudes of the entries
of the HCMT matrix are shown in Fig. 3. Three densities are
shown, corresponding to r = 1.1, r = 1.3 and r = 3. These
are compared to the Rayleigh density and it can be seen that
the severe fading cases put more of the probability close to
zero, but balance this by a longer tail to keep the average
power at unity. Note that the Nakagami distribution achieves
larger CV values by the rather non-physical mechanism of
placing a peak at the origin. Hence, the Nakagami distribution
gives severe fading channels where amplitudes close to zero
have the largest probability. This is in contrast to the CMT
channel where the basic shape of the density is similar to the
Rayleigh but pushed towards the origin.

Representations for HCMT, including the probability density
function, can be obtained from the viewpoint of multivariate
statistical theory [9], [10] but the representation in (4) is
sufficient for our purposes and leads to a simple analytical
method for computing both MI and system performance.



B. Mutual Information

Consider the link model (1) with the CMT channel matrix
HCMT. We use the representation for the ergodic MI, E(I),
defined by [6]

E(I) = E

[

m log2

(

1 +
ρ

nT

λCMT

)]

(6)

where λCMT is an arbitrary, non-zero eigenvalue of
HCMT H

†
CMT and m = min(nR, nT ). Using (4), we can write

(6) as

E(I) = E

[

m log2

(

1 +
ρ

nT

(r − 1)λ

S2

)]

(7)

where λ is an arbitrary, non-zero eigenvalue of the usual
Wishart matrix, HH

†. The expectation in (7) is over both
λ and S2. Note that the effect of the CMT model is to leave
the form of solution for an iid Rayleigh fading MIMO channel
unchanged, but to replace the fixed SNR, ρ by a variable SNR,
ρ(r− 1)/S2. This formulation allows us to derive the ergodic
MI exactly, as shown below.

E(I) = E

[

m log2

(

1 + δ
λ

S2

)]

=
m

log 2

∫ ∞

0

log(1 + δ x) fX (x) dx (8)

where δ is defined as ρ(r−1)/nT and X = λ/S2 has density
fX(x). Note that log, with no subscript, refers to the natural
logarithm. We derive the density of X below.

Consider the pair of transformations X = λ/S2, Y = S2.
Standard transformation theory for random variables gives:

fX,Y (x, y) = fλ,S2(xy, y) J (9)

where J = det

[

y x
0 1

]

. Hence

fX,Y (x, y) = fλ(xy) fS2(y) y (10)

=

n+m−2
∑

j=n−m

cj

Γ(r)
xjyr+je−(1+x)y dy (11)

where we have used the pdf for λ given in [11] and n =
max(nR, nT ). Hence, fX(x) is evaluated as

fX(x) =

n+m−2
∑

j=n−m

(

cj

Γ(r)
xj

)
∫ ∞

0

yr+je−(1+x)y dy

=

n+m−2
∑

j=n−m

cjx
j

Γ(r)

Γ(r + j + 1)

(1 + x)r+j+1
(12)

Substituting (12) in (8), E(I) is written as

E(I) =
m

log 2

n+m−2
∑

j=n−m

cjΓ(r + j + 1)

Γ(r)

∫ ∞

0

log(1 + δ x) xj

(1 + x)r+j+1
dx

(13)
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Fig. 4. Ergodic Mutual Information vs SNR for a (3,3) MIMO system with
the CMT channel and r = 2, 3, 40. Lines represent analytical results and
circles denote simulations.

where cj is defined as [11]

cj =
1

m

m−1
∑

l=d i

2
e

m−1
∑

k=l

(−1)j+m−n(2l)!
(

2k−2l
k−l

)(

2n−2m+2l
2l−j−m+n

)

22k−j−m+nl!(j + m − n)!(n − m + l)!

(14)
and i = j + m− n with d e representing the ceiling function.

After evaluating the integral in (13), a closed-form expres-
sion for the MI of the CMT channel is derived as

E(I) =
m

Γ(r) log 2

n+m−2
∑

j=n−m

cjΓ(r + j + 1) ×

i=0
∑

j

(

j

i

)

(−1)j−i 1

(r + j − i)2
×

2F1

(

1, r + j − i, r + j − i + 1,−1

θ

)

(15)

where 2F1 is a Gauss hypergeometric function and θ is given
by θ = δ/(1− δ). Note that when r is an integer, (15) can be
further simplified since 2F1 can be written in closed form. In
Fig. 4, the ergodic MI is computed via (15) for a (3, 3) MIMO
system in a CMT channel with r = 2, 3, 40 and a range of
SNR values. The analytical results are verified by simulation.
The ergodic MI is shown to increase with r, i.e., as the CMT
channel approaches a Rayleigh channel, which matches the
results in Figs. 1 and 2.

C. Mutual Information Outage

For a fixed value of S2, the MI is known to be well-
approximated by a Gaussian random variable [12], [13].
Hence, we can approximate the MI outage of the CMT model
by

P (I < x) =

∫ ∞

0

Φ

(

x − µI(y)

σI(y)

)

fS2(y)dy (16)
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where µI(y) and σI(y) are the mean and standard deviation of
the MI respectively, for a fixed SNR denoted P = ρ(r−1)/y.
In (16), the function Φ is the cumulative distribution function
of the standard Gaussian distribution. It is possible to use the
exact mean and variance results for I found in [6], [12], but
for simplicity we prefer to use the more compact asymptotic
results [11], [14], obtained for the case where nT → ∞ and
nT /nR → β. The variance result is

σ2
I(y) = − log

(

1 − (1 − η)2

β

)

(17)

where β = nT

nR

, η = 1 − F (γ,β)
4γ

, γ = PnR

nT

and

F (γ, β) = (
√

γ(1 +
√

β)2 + 1 −
√

γ(1 −√
β)2 + 1)2

The result for the mean is µI(y) = mv where

v = β log

(

1 + γ − F (γ, β))

4

)

+ log

(

1 + γβ − F (γ, β)

4

)

− loge

4γ
F (γ, β) (18)

In Fig. 5, the cumulative distribution function (CDF) of the
MI is computed via (16) for a (4, 4) MIMO system in a CMT
channel with r = 2 and SNR = 0, 10, 20dB. The analytical
approximation is shown by simulation to be very accurate for
all SNR values. Figures 4 and 5 demonstrate that the CMT
channel leads to compact, closed form expressions for both
the ergodic MI and outage probabilities. In addition, from (5),
the CMT channel has a CV in the desired region, CVRayleigh <
CVCMT < ∞. Furthermore, as discussed in section IV, the
CMT model can lead to a range of analytical results, including
performance analysis, in addition to the work on MI described
in section III.

IV. APPLICATIONS TO CELLULAR MIMO

A. Mutual Information

The approach taken in Section III is to average the well
known results for an iid Rayleigh fading channel over a
variable SNR. This is exactly the scenario considered in [15]
where a cellular MIMO system is investigated and the system
equation is written as

r =
√

ΓHs + n. (19)

In (19), r, H, s and n are defined as before and Γ is the SINR
resulting from noise and inter-cellular interference. Note the
equivalence to the system equation for a CMT channel which
can be written

r = HCMTs + n =
√

r−1
S2 Hs + n. (20)

The distribution of Γ was simulated in [15] for various cel-
lular scenarios, including the effects of lognormal shadowing,
distance attenuation, cell size, frequence reuse, sectorization
and random user locations. The scenarios considered in [15]
are primarily defined by the number of sectors per cell and
the frequency reuse. We consider 3, 6 or 12 sectors per cell,
denoted S3, S6 and S12, and a reuse factor of 1 and 1/3,
denoted F1 and F3 respectively. With F1, the same frequency is
used in all sectors, whereas under F3, each cell uses 3 disjoint
frequency bands. Full details of the other parameters used,
such as cell size, path loss exponent, etc., can be found in
[15]. The 6 cellular scenarios considered can be abbreviated
by S3F1, S3F3, S6F1, S6F3, S12F1 and S12F3.

For each of the 6 scenarios, we have replicated the results
in [15] and have found that the distribution of Γ is well
approximated by the scaling variable in the CMT model,
namely a variable of the form, (r − 1)/S2, a scaled inverse
χ2 variable. For increased accuracy in fitting we allow the
variable S2 to have fractional degrees of freedom. Hence, we
are able to quantify the behaviour of cellular MIMO systems
in terms of ergodic MI and MI outage by a direct application
of the results in section III. Sample results are given in Fig. 6,
which shows the ergodic MI for the 6 scenarios as computed
via (15) and also from the cellular simulations. Clearly, the
analytical results are very accurate in all cases.

B. System Performance

The CMT model can be considered as a classic Rayleigh
fading channel with variable SNR. This makes a wide range
of results available. For example, consider a MIMO receiver
with outage probability Pout(SNR) and bit error rate, Pe(SNR)
in an iid Rayleigh channel. Both metrics are functions of the
SNR and we obtain the corresponding results for the CMT
channel by averaging the classical results over the inverse χ2

scaling variable. Hence, we have:

Pout,CMT(SNR) = E (Pout(SNR)) (21)

and
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Pe,CMT(SNR) = E (Pe(SNR)) (22)

where SNR = ρ(r − 1)/S2, and the expectation is over the
variable S2. For reasons of space, results are not presented
here, but a preliminary analysis shows that several systems can
be handled in this way, e.g., linear MIMO receivers using zero-
forcing or minimum-mean-squared-error (MMSE) combiners.
In section IV, we have shown that the CMT model can be
applied to cellular MIMO systems and allows a closed form
evaluation of both MI and performance.

V. CONCLUSION

Fading severity is often measured by the CV of the ampli-
tudes and we have shown that for a fixed CV, the ergodic MI
of a MIMO channel is relatively insensitive to the exact type
of amplitude distribution. This conclusion is especially valid
when the fading is not too severe or at high SNR. In the severe
fading region, i.e., CV > CVRayleigh, we have proposed a novel
model which is simple and analytically tractable, based on
the complex multivariate t distribution. For this model, exact
ergodic MI results are derived as well as approximations to
the MI outage. The model has applications to wireless sensors,
RF tagging, land-mobile, indoor-mobile and ionospheric radio

links in addition to cellular MIMO systems where we
have shown that the model fits simulated cellular scenarios
very well. Furthermore, the model has obvious extensions to
MIMO performance analysis through the simple approach of
averaging well-known iid Rayleigh fading results over the
inverse χ2 scaling variable.
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