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Modulation Depth Estimation and Variable Selection
in State-Space Models for Neural Interfaces
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Abstract—Rapid developments in neural interface technology
are making it possible to record increasingly large signal sets of
neural activity. Various factors such as asymmetrical information
distribution and across-channel redundancy may, however, limit
the benefit of high-dimensional signal sets, and the increased com-
putational complexity may not yield corresponding improvement
in system performance. High-dimensional system models may also
lead to overfitting and lack of generalizability. To address these
issues, we present a generalized modulation depth measure using
the state-space framework that quantifies the tuning of a neural
signal channel to relevant behavioral covariates. For a dynamical
system, we develop computationally efficient procedures for esti-
mating modulation depth from multivariate data. We show that this
measure can be used to rank neural signals and select an optimal
channel subset for inclusion in the neural decoding algorithm. We
present a scheme for choosing the optimal subset based on model
order selection criteria. We apply this method to neuronal ensemble
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spike-rate decoding in neural interfaces, using our framework to
relate motor cortical activity with intended movement kinematics.
With offline analysis of intracortical motor imagery data obtained
from individuals with tetraplegia using the BrainGate neural inter-
face, we demonstrate that our variable selection scheme is useful
for identifying and ranking the most information-rich neural sig-
nals. We demonstrate that our approach offers several orders of
magnitude lower complexity but virtually identical decoding per-
formance compared to greedy search and other selection schemes.
Our statistical analysis shows that the modulation depth of human
motor cortical single-unit signals is well characterized by the gener-
alized Pareto distribution. Our variable selection scheme has wide
applicability in problems involving multisensor signal modeling
and estimation in biomedical engineering systems.

Index Terms—Brain–computer interface (BCI), brain–machine
interface (BMI), feature selection, modulation depth (MD), neural
decoding, neural interface, state-space model, tetraplegia, variable
selection.

I. INTRODUCTION

N EURAL interfaces, also referred to as brain–machine in-
terfaces (BMI) or brain–computer interfaces (BCI), offer

the promise of motor function restoration and neurorehabilitaion
in individuals with limb loss or tetraplegia due to stroke, spinal
cord injury, limb amputation, ALS, or other motor disorders
[1]. A neural interface infers motor intent from neural signals,
which may consist of single-unit actions potentials (or spikes),
multiunit activity (MUA), local field potentials (LFP), electro-
corticograms, or electroencephalograms (EEG). The movement
intention may then be converted into action by means of restora-
tive (e.g., functional electrical stimulation) or assistive technol-
ogy (e.g., a computer cursor, robotic arm, wheelchair controller,
or exoskeleton). Recent clinical studies have demonstrated the
potential of chronically implanted intracortical neural interface
systems for clinical rehabilitation of tetraplegia [2]–[4].

Recent advances in neural interface technology have led to
the possibility of simultaneously recording neural activity from
hundreds of channels, where a channel may refer to a single unit
or an electrode on a microelectrode array. The features, or vari-
ables, derived from these signals may constitute a much larger
space, e.g., each LFP variable comprising power from one of
several frequency bands in the signal recorded at each electrode.
The problem is compounded since typical neural decoding algo-
rithms, such as a cascade Weiner filter or a point-process filter,
use multiple parameters per input variable. A large parameter
space can severely affect the generalizability of the model due to
overfitting. Additionally, model calibration and real-time decod-
ing can become computationally prohibitive and impracticable.

0018-9294 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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The need for a computationally efficient variable selection
scheme becomes even more pronounced when a neural inter-
face employs frequent filter recalibration [5] to combat neural
signal nonstationarity [6].

To address this issue, signal dimensionality reduction has
been a topic of considerable interest in neural interface sys-
tem design. Dimensionality reduction by variable selection, also
referred to as feature selection or signal subset selection, in-
volves ranking and identifying the optimal subset of signals on
the basis of their signal-to-noise ratio, information content, or
other characteristics important from an estimation and detec-
tion viewpoint [7]. The goal of variable selection is to eliminate
low-information channels, resulting in improved computational
efficiency and generalization capability. The variable selection
process involves finding the optimal tradeoff between model
complexity and performance.

A common approach to variable selection involves a lin-
ear transformation to an optimal basis, such as with principal
components analysis (PCA) [8]– [10], independent components
analysis [11], or factor analysis [12]. Projection-based tech-
niques such as these disconnect the resulting abstract features
from their underlying neurophysiological meaning, making in-
tuitive understanding difficult. Also, since all input channels
are used to compute the projections by linear combinations,
they must all be recorded and preprocessed. Furthermore, tech-
niques such as PCA do not take the behavioral correlation into
account, so the largest principal components may be unrelated
to the task conditions [1]. It is, therefore, of interest to study
selection methods devoid of such transformations, instead oper-
ating in the original space of the physical channels. Several such
variable selection algorithms have been explored in the context
of neural interfaces with lower complexity than the NP-hard
exhaustive search method. An example is greedy search or step-
wise regression, which consists of forward selection [9], [13],
[14] or backward elimination (random [15] or selective neuron
dropping [16], [17]).

Alternatively, information-theoretic metrics such as Shan-
non mutual information have been used for channel ranking
[13], [18], [19]. Methods for computing mutual information
have been presented both for continuous-time neural signals
[20] and for spike-trains using point process models [21], [22].
Mutual information computation, however, not only requires
prohibitively large amounts of data, but reduced-complexity ap-
proaches that compute bounds on mutual information may be
highly erroneous due to inaccurate assumptions [23]–[25]. Fur-
thermore, information-theoretic measures may not necessarily
predict filter-based decoding performance of a variable sub-
set, especially in neural interface applications. An alternative to
information-theoretic analysis for channel ranking is decoding
analysis [25]. Pearson’s correlation coefficient and coefficient
of determination are common measures of task-related infor-
mation used for variable selection in decoding analysis. Strictly
speaking, these are valid only for linear regression or reverse
correlation models and not for Bayesian or other models. Ex-
tensions of such Gaussian regression measures to generalized
linear models have been presented [26]. Although some of the
highest information carrying channels are identified consistently

irrespective of the ranking method, the differences can some-
times be significant [16]. From a complexity viewpoint, such
decoding-based measures may be unsuitable for practical and
real-time systems since they require repeating the decoding anal-
ysis with each individual channel or subset for the purpose of
performance-based ranking, increasing the selection algorithm’s
computational complexity with the input signal dimensionality.

We introduce a highly efficient variable selection scheme
based on the state-space formulation, which is consistent with
commonly used Bayesian decoding techniques such as the
Kalman filter [27]. Within this Gaussian linear dynamical frame-
work, we estimate the modulation depth (MD) of a channel as
the ratio of its task-dependent response to its spontaneous ac-
tivity and noise. As such, MD can be used to quantify each
variable’s relative importance to decoding in a neural interface
and to identify the optimal variable subset [see Fig. 1(a)]. In the
next section, we present a mathematical description of the MD
estimation procedure for state-space models, followed by its
application to channel selection in neural interfaces for people
with tetraplegia.

II. SYSTEM MODEL AND METHODS

We use a state-space model to estimate intended movement
kinematics from neural activity during performance of a 2-D
motor imagery task. We denote the vector time series of ob-
servations (e.g., single-unit binned spike rates) at time t with
m-dimensional vector y(t), where m is the number of chan-
nels (e.g., single units). Assuming a velocity encoding model
for primary motor cortical neurons [28], [29], we represent the
intended movement velocity by the n-dimensional latent vari-
able, x(t), to be estimated from spike-rates y(t) using a state-
space paradigm. We consider the intended velocity in the 2-D
Cartesian coordinate system, i.e., n = 2 in our case, while m
represents the neuronal ensemble size. We estimate the MD of
each of the m channels as described below.

A. Dynamical System Model

We consider a continuous-time linear time-invariant (LTI)
Gaussian dynamical system model consisting of a latent mul-
tivariate random process, x(t), with Markovian dynamics, re-
lated to multivariate observations, y(t). We can express this
state-space model as

ẋ(t) = Fx(t) + ω(t) (1)

y(t) = Hx(t) + ν(t) (2)

where t ∈ R+ , x(t) is the n-dimensional state vector, y(t) is the
m-dimensional observation vector, ω(t) is the n-dimensional
process noise vector, ν(t) is the m-dimensional measurement
noise vector, and F(t) and H(t) are the n × n system matrix
and n × m observation martix, respectively. The noise processes
have mean zero, i.e., E {ω(t)} = E {ν(t)} = 0. The noise co-
variances are E {ω(t)ω′(τ)} = Qcδ(t − τ), E {ν(t)ν ′(τ)} =
Rcδ(t − τ), and E {ω(t)ν ′(τ)} = 0, where δ(·) is the Dirac
delta function and (·)′ denotes matrix transpose. We assume
that Qc is a symmetric positive semidefinite matrix and Rc is
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Fig. 1. Schematic representation of variable selection scheme and behavioral task design for neural recordings. (a) Decoder in a neural interface with optimal
variable subset selection based on MD ranking. (b) Open-loop center-out-back task for recording neural activity under motor imagery, with four peripheral targets
and a computer-controlled cursor. Bounding rectangle represents the computer screen, and scale bar is in units of visual angle.

a symmetric positive definite matrix. We assume that the obser-
vations are zero mean, i.e., E {y(t)} = 0.

B. Modualtion Depth Estimation

We consider (2) and define Hx(t) as the signal and ν(t) as
the noise in our model. We further define the MD of a channel
as its signal-to-noise ratio (SNR), i.e., the ratio of the signal
and noise covariances. For our multivariate state-space model,
we denote the m × m signal and noise covariance matrices by
Λs(t) and Λn (t), respectively. Then, the m × m time-varying
SNR matrix of observations y(t) is

S(t) = Λs(t)Λ−1
n (t)

= E
{
[Hx(t)] [Hx(t)]′

}
[E {ν(t)ν(t)′}]−1

= HPc(t)H′R−1
c (3)

where the n × n matrix Pc(t) is defined by x(t) ∼
N (μc(t),Pc(t)).

The definition in (3) extends the notion of SNR of a discrete-
time single-input single-output state-space model, derived in
[30], to that of a continuous-time multiple-input multiple-output
state-space model. The (i, j)th and (j, i)th elements of the sym-
metric matrix Λs(t) represent the signal covariance between ith
and jth channels at time t. Similarly, the (i, j)th and (j, i)th
elements of Λn (t) represent the noise covariance between chan-
nels i and j. If channels i and j have uncorrelated noise, then
R is a diagonal matrix. Then, the (i, j)th element of S(t) rep-
resents the signal covariance of channels i and j relative to the
noise covariance of channel j, whereas the (j, i)th element rep-
resents the signal covariance of channels i and j relative to the
noise covariance of channel i. Irrespective of the structure of
Λs(t) and Λn (t), the ith diagonal element of S(t) represents
the SNR of the ith channel at time t.

For the homogeneous LTI differential equation ẋ(t) =
Fx(t), the fundamental solution matrix is Φ(t) such that
ẋ(t) = Φ(t)x(0), where the state-transition matrix Φ(t, τ) =
Φ(t)Φ−1(τ) represents the system’s transition to the state at
time t from the state at time τ and Φ(t, 0) = Φ(t). For the
dynamical system in (1), the state transition matrix Φ(t, τ) =

eF(t−τ ) only depends on the time difference t − τ . The solution
to the nonhomogeneous differential equation (1) is

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)ω(τ)dτ (4)

= eF(t−t0 )x(t0) +
∫ t

t0

eF(t−τ )ω(τ)dτ. (5)

The covariance matrix of x(t) in (4) is given by [31]

Pc(t) = Φ(t, t0)Pc(t0)Φ′(t, t0)

+
∫ t

t0

Φ(t, τ)QcΦ′(t, τ)dτ. (6)

C. Model Discretization

We can discretize the system model in (5) by sampling at
tk = kΔt = tk−1 + Δt for k = 1, . . . ,K, so that

x(tk ) = eFΔtx(tk−1) +
∫ tk

tk −1

eF(tk −τ )ω(τ)dτ. (7)

We define the state-transition matrix Φ = eFΔt , so the equiva-
lent discrete-time system can be represented by

x[k + 1] = Φx[k] + w[k] (8)

y[k] = Hx[k] + v[k] (9)

where k ∈ Z+ , E {w[k]} = E {v[k]} = 0, E {w[k]w′[l]} =
Qdδ[k, l], E {v[k]v′[l]} = Rdδ[k, l], and δ[·, ·] is the Kronecker
delta function. The state x[k] is a Gaussian random variable ini-
tialized with x[0] ∼ N (μd [0],Pd [0]).

From the power series expansion for a matrix exponential

Φ = eFΔt = I + FΔt + O(Δt2) ≈ I + FΔt. (10)

We can write the covariance of x[k + 1] in (8) as [30]

Pd [k + 1] = ΦPd [k]Φ′ + Qd . (11)

The equivalent discrete-time SNR can be written by discretizing
(3) and substituting the discrete-time covariances, so that

S[k] =
1

Δt
HPd [k]H′R−1

d . (12)
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Note that for the above continuous-time and discrete-time
system models to be equivalent, we use the approximation
Qd ≈ QcΔt and Rd ≈ Rc/Δt, neglecting O(Δt2) terms [32],
[33]. Under this condition, the continuous- and discrete-time
covariance matrices are equal, i.e., Pc(t) = Pd [k] [34].

Next, we consider certain classes of linear dynamical systems
that occur frequently in practice and that admit special forms
for MD estimation.

D. Steady-State System

On differentiating (6), using the relation Φ̇(t, t0) =
FΦ(t, t0), and solving, we obtain [31]

Ṗc(t) = FPc(t) + Pc(t)F′ + Qc . (13)

For a stable LTI continuous-time system at steady state, we
can write (13) as limt→∞ Ṗc(t) = 0 [27], [30]. Thus, the
steady-state covariance, P̄c = limt→∞ Pc(t), is given by the
continuous-time algebraic Lyapunov equation

FP̄c + P̄cF′ + Qc = 0. (14)

If λi(F) + λj (F) 	= 0 ∀ i, j ∈ {1, ..., n}, where λi(F) denotes
an eigenvalue of F, the solution to the above equation is given
by [34]

P̄c =
∫ ∞

0
eFτ QceF ′τ dτ. (15)

Similarly, let us consider the discrete-time covariance in (11).
The system is stable if |λi(Φ)| < 1 ∀ i ∈ {1, . . . , n}, where
λi(Φ) denotes an eigenvalue of Φ. For a stable LTI system, the
steady-state covariance, limk→∞ Pd [k] = P̄d , can be obtained
from (11) and expressed in terms of the discrete-time algebraic
Lyapunov equation or Stein equation

ΦP̄dΦ′ − P̄d + Qd = 0. (16)

If λi(Φ)λj (Φ) 	= 1 ∀ i, j ∈ {1, . . . , n}, the solution to the
above equation is given by [34]

P̄d =
∞∑

k=0

ΦkQd(Φ′)k . (17)

We can solve (15) and (17) numerically using, for example, the
Schur method [35].

The steady-state SNR, S̄ = limk→∞ S[k], can therefore be
expressed in terms of discrete-time system parameters as

S̄ =
1

Δt
HP̄dH′R−1

d . (18)

E. Time-Variant System

The expression in (12) gives the instantaneous SNR of the
observations at the kth time-step. It can be used to estimate
the SNR of a time-varying or nonstationary system. Then, we
express the state transition matrix as Φ[k + 1, k], the observa-
tion matrix as H[k], and the process noise covariance matrix
as Qd [k]. The time-varying state covariance of a state-space
system propagates as [30]

Pd [k + 1] = Φ[k + 1, k]Pd [k]Φ′[k + 1, k] + Qd [k]. (19)

By recursive expansion of the above equation and using the
property Φ[k] = Φ[k, 0] = Π1

i=kΦ[i, i − 1], we can write

Pd [k] = Φ[k]Pd [0]Φ′[k]

+
k−1∑

i=0

Φ[k, k − i]Qd [k − i − 1]Φ′[k, k − i]. (20)

If the process noise is wide-sense stationary, then Qd [k] = Qd ,
and the above equation simplifies to

Pd [k] = Φ[k]Pd [0]Φ′[k]

+
k−1∑

i=0

Φ[k, k − i]QdΦ′[k, k − i]. (21)

The above expressions provides an estimate of the state co-
variance at time k in terms of the initial state covariance and the
process noise covariance.

F. Trajectory SNR Estimation

So far, we have considered SNR estimation for two classes
of linear dynamical systems: the instantaneous SNR S[k] for
a time-varying system, and the steady-state SNR S̄ for a time-
invariant and stable sytem. These quantities provide measures
of instantaneous information flow between the two multivari-
ate stochastic processes under consideration, namely x[k] and
y[k]. Following the nomenclature used in recent work on mu-
tual information estimation for point process data [36], we refer
to this measure as the marginal SNR. We now consider the
alternate problem of information flow between the entire trajec-
tories of the random processes, as opposed to the instantaneous
(marginal) measure. To rephrase, the trajectory SNR is a mea-
sure of the SNR conditioned on the entire set of observations for
k = 1, . . . ,K. This formulation is useful for SNR estimation by
offline, batch processing of data for a time-varying system.

Given the time-varying observation matrix H[k] and state-
transition matrix Φ[k], and assuming the noise processes w[k]
and v[k] are zero mean and stationary with covariance matrices
Qd and Rd , respectively, we can obtain the m × m trajectory
SNR matrix as

S = HPdH′R−1
d (22)

where H = [H[1], . . . ,H[K]] is an m × nK block matrix and

Pd =

⎡

⎢
⎣

Pd [1, 1] · · · Pd [1,K]
...

. . .
...

Pd [K, 1] · · · Pd [K,K]

⎤

⎥
⎦ (23)

is an nK × nK block matrix. Here, Pd [i, j] denotes the co-
variance between x[i] and x[j] for i, j ∈ {1, . . . , K}, i 	= j,
defined as [30]

Pd [i, j] =

⎧
⎪⎪⎨

⎪⎪⎩

Pd [i]Φ′[j, i], for i < j

Pd [i], for i = j

Φ[i, j]Pd [j], for i > j.

(24)
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G. Colored Measurement Noise

We consider the case that the multivariate measurement noise
v[k] in our state-space model (9) is a colored noise process.
We assume that v[k] is zero mean and stationary. According
to Wold’s decomposition theorem, we can represent v[k] as an
m-dimensional vector autoregressive process of order p, i.e.,
VAR(p), given by

v[k] =
p∑

i=1

ψiv[k − i] + ζ[k] (25)

where ζ[k] is an m-dimensional zero-mean white noise process
with covariance E

{
ζ[i]ζ ′[j]

}
= Wδ[i, j], and ψi is an m ×

m VAR coefficient matrix. We can express the above VAR(p)
process in VAR(1) companion form as

V [k] = ΨV [k − 1] + Z[k] (26)

where V [k] is the mp × 1 vector

V [k] = [v′[k], v′[k − 1], . . . ,v′[k − p + 1]]′ (27)

Z[k] is the mp × 1 whitened noise vector

Z[k] =
[
ζ ′[k], 0, . . . , 0

]′
(28)

with covariance E {Z[i]Z′[j]} = diag {Wδ[i, j],0}, Ψ is the
mp × mp VAR(p) coefficient matrix

Ψ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ1 ψ2 · · · ψp−1 ψp

Im 0 · · · 0 0

0 Im · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)

and Im denotes the m × m identity matrix.
With this formulation, we can augment the state-space

with V [k] so that the augmented state vector has dimensions
(n + m) × 1 and is given by X [k] = [x′[k],V ′[k]]′ [33]. The
SNR estimation methodology described earlier can then be ap-
plied directly. It should be noted that when using this state aug-
mentation approach for noise whitening, the parameter space
can increase substantially if the measurement noise is modeled
as a high-order VAR process, which may result in overfitting.
The optimal VAR model order, p, can be estimated using stan-
dard statistical methods based on the Akaike Information Crite-
rion or Bayesian Information Criterion (BIC).

H. Uncorrelated State Vector

We now consider the special case that the n states, repre-
sented by the random n-dimensional vector x[k] at discrete
time k, are mutually uncorrelated. Practically, this situation may
occur in neural interface systems when, for example, the de-
coder’s state vector has three components representing intended
movement velocity in 3-D Cartesian space. Then, we have
Φ = diag {φ1,1 . . . , φn,n} and Qd = diag {q1,1 . . . , qn,n}. The
steady-state covariance of the state, given by (17), simplifies to

P̄d = Qd(I − ΦΦ′)−1 (30)

where we have used the formula for the Neumann series ex-
pansion for a convergent geometric series, and the fact that
λi(ΦΦ′) = λi(Φ)λi(Φ), and therefore |λi(ΦΦ′)| < 1 so that
ΦΦ′ is stable. We can write (30) as

P̄d = diag

{
q1,1

1 − φ2
1,1

, . . . ,
qn,n

1 − φ2
n,n

}

. (31)

The diagonal elements in P̄d then correspond to the covariances
of a set of n mutually independent first-order autoregressive pro-
cesses each with autoregression coefficient φi,i and white noise
variance qi,i for i = 1, . . . , n. For this asymptotically stable sys-
tem with a diagonal state-transition matrix, the steady-state SNR
in (18) can be obtained as

S̄ =
1

Δt
HQd(I − ΦΦ′)−1H′R−1

d . (32)

When Rd is also diagonal, the SNR of the ith channel is given
by the ith diagonal element of S̄ for i = 1, . . . , m, i.e.,

si = si,i =
1

Δt ri,i

n∑

j=1

qj,j

(1 − φ2
j,j )

h2
i,j . (33)

Note that if the state vector consists, for example, of position,
velocity, and acceleration in Cartesian space, the condition of
independence is violated due to coupling between the states,
which is reflected in the nonzero off-diagonal entries of Φ [33].

The SNR expressions (12) and (32) include the sampling in-
terval, Δt, since the quantities on the right-hand side correspond
to the discrete-time system representation. We now show that
if the SNR estimate is converted to the original continuous-
time representation, Δt factors out of the SNR equation. To
demonstrate this, we transform the discrete-time variables in
(32) into the corresponding continuous-time variables by sub-
stituting Φ = I + FΔt, Qd = QcΔt, and Rd = Rc/Δt, ne-
glecting higher order terms O(Δt2), so that

S̄ = −HQc [F + F′]−1 H′R−1
c . (34)

The variables in the above expression correspond to the
continuous-time system model. The above expression shows
that the SNR is consistent when derived using equivalence rela-
tions for continuous- and discrete-time systems.

III. RESULTS

In our neural interface system model, the 2-D state vec-
tor x[k] consisted of the horizontal and vertical components
of computer cursor movement velocity at discrete time k.
We aggregated single-unit spikes (action potentials) within
nonoverlapping time-bins of width Δt = 50 ms to obtain binned
spike-rates, y[k], which we centered at 0 by mean subtraction.
Since this system exhibits short-term stability and convergence
[27], we assumed time-invariant state-space system matrices
{Φ,H,Qd ,Rd}. Using the Neural Spike Train Analysis Tool-
box (nSTAT) [37], we obtained maximum-likelihood estimates
of the system parameters as part of filter calibration with training
data. We used the expectation-maximization (EM) algorithm for
state-space parameter estimation, which we initialized with or-
dinary least squares (OLS) parameter estimates obtained using
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Fig. 2. MD of human motor cortical single-unit spike rates. (a) Distribution of MD (radial length) and preferred direction (angle) of 39 individual channels
(single units) recorded in one research session. (b) Cumulative MD as a function of optimal subset size. Blue, red, and green dashed lines: number of channels
required to achieve at least 50%, 90%, and 95% of total MD, respectively.

the procedure described in [27]. As a result of OLS-based pa-
rameter initialization, the EM algorithm consistently converged
in under five iterations. We estimated the steady-state SNR ma-
trix S̄, and the MD si =

[
S̄
]
i,i

for channels i = 1, . . . ,m, using

(18). To prevent numerical errors, we set the constraint S̄ ≥ 0.
This clinical study was conducted under an Investigational

Device Exemption and Massachusetts General Hospital IRB ap-
proval. Neural data were recorded using the BrainGate1 neural
interface from clinical trial participant S3, who had tetraplegia
and anarthria resulting from a brainstem stroke that occurred
nine years prior to her enrollment in the trial. A 96-channel
microelectode array was surgically implanted chronically in
the motor cortex in the area of arm representation. The data
presented in this paper were recorded in separate research ses-
sions conducted on five consecutive days, from Day 999 to Day
1003 postimplant. A center-out-back motor task with four ra-
dial targets was developed in which the participant observed
and imagined controlling a computer cursor moving on a 2-D
screen [see Fig. 1(b)]. A single target, selected pseudorandomly,
was highlighted, the computer-controlled cursor moved toward
the target and then back to the home position with a Gaussian
velocity profile. This constituted one trial, and this process was
repeated 36 times within four blocks for a total of about 6 min in
each session. This motor imagery task was performed under the
open-loop condition, i.e., the participant was not given control
over cursor movement during this epoch. The cursor position
and wideband neural activity were recorded throughout the task
duration. The neural data were bandpass filtered (500 Hz–5 kHz)
and spike-sorted to identify putative single units. For decoding
analysis, these data were used to calibrate a steady-state Kalman

1Caution: Investigational Device. Limited by Federal Law to Investigational
Use.

filter [27] and estimate the imagined movement velocity of the
cursor using leave-one-out cross validation.

We investigated the MD characteristics of an ensemble of
single units. Unless otherwise specified, the representative re-
sults presented below are from the session conducted on day
1003 postimplant. The neural data from the session consisted
of the spiking activity of m = 39 putative single units isolated
by spike-sorting. We estimated the MD of each of the 39 chan-
nels and found its magnitude to be highly asymmetrical across
channels [see Fig. 2(a)]. The MD of the best (most strongly mod-
ulated) channel (s = 3.8) was nearly twice as high as that of the
next best channel (s = 2.0). We estimated the MD distribution
skewness as 3.5 (unbiased estimate, bootstrap).

We defined the preferred direction of the ith channel in the
2-D Cartesian space as θ̄i = tan−1 (hi,2/hi,1). The preferred
directions of the channels appeared to be distributed approxi-
mately uniformly in the [0, 360◦) range when the MDs [radial
lengths in Fig. 2(a)] were disregarded. MD, however, is instru-
mental in informing us that only a small number of channels are
principally relevant for decoding, and the preferred-direction
spread of those high MD channels is of key importance. The
preferred directions of three best channels were estimated as
330◦, 290◦, and 100◦, respectively. Although the preferred di-
rections of the most strongly modulated channels did not form
an orthogonal basis in 2-D Cartesian space, they were not clus-
tered together. This result suggests that for this task, a small
number of channels, with large MD and substantial spread in
preferred direction, may be adequate for representing movement
kinematics in this 2-D space.

We studied the increase in total MD with increasing ensem-
ble size by analyzing the cumulative MD curve [see Fig. 2(b)],
obtained by adding successive values of MD sorted in descend-
ing order. As the MD distribution is highly nonuniform, the
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Fig. 3. Decoding using optimal channel subset. (a) Open-loop center-out-back
task with rightward peripheral target (gray circle). Blue line: computer cursor
trajectory from home position outward to target and back; red line: cursor
trajectory estimated by decoding neural activity of the m best channels ranked
by MD; black rectangle: computer screen location and dimensions; scale bar
in units of visual angle. (b) Decoding of the system’s hidden state (imagined
cursor velocity) from neural activity using m best channels. The trials, each of
12 s duration, start with target onset at time 0. Blue arrow: direction of selected
target relative to home position.

increase in ensemble size follows the law of diminishing re-
turns. We found 2, 12, and 18 channels to yield 50%, 90%, and
95%, respectively, of the total MD obtained with all 39 channels.

To address the problem of optimal subset selection for decod-
ing in a neural interface, we studied the effect of ensemble size
on decoding performance. When only the most strongly mod-
ulated channel was used for decoding, the decoded trajectory
was restricted to a unidimensional axis [see representative trial
in Fig. 3(a)]. This 150–330◦ axis was defined by the preferred
direction of the corresponding channel [see Fig. 2(a)]. When the
two best channels were used for decoding, the trajectory esti-
mate spanned both spatial dimensions. The trajectory estimate
improved with more channels but the improvement associated
with an increase in selected subset size rapidly saturated. For the
trajectory estimate in Fig. 3(a) obtained by decoding open-loop
motor imagery data, the neural activity remarkably reflects the

outward movement, reversal of direction, and inward movement
phases along the correct axis even in the absence of feedback
control.

We compared the velocity estimates obtained with a single
(most strongly modulated) channel, five of the most strongly
modulated channels, and all 39 channels [see Fig. 3(b)]. In tri-
als where the cursor movement axis was closer to the preferred
direction of the strongest channel, the single-channel decoder
provided reasonable velocity estimates [see Trials 1 and 4 in
Fig. 3(b)]. The reason was that the horizontal projection of
the encoding vector of that channel [shown in Fig. 2(a)] pro-
vided significant movement information. On the other hand, the
single-channel decoder performed poorly in trials with move-
ment along the vertical axis (Trials 2 and 3), orthogonal to the
dominant component of the encoding vector for that channel,
as expected. With five channels, the decoded velocity was qual-
itatively indistinguishable from that obtained with the entire
ensemble.

To characterize quantitatively the relation between MD and
decoding performance of a given channel, we analyzed the vec-
tor field correlation between true (computer-controlled) and de-
coded 2-D cursor velocity. We used each channel individually
to calibrate the filter and decode under cross validation, and
computed the correlation [see Fig. 4(a)]. To obtain chance-level
correlation, we generated surrogate data by bootstrapped phase
randomization. The most strongly modulated channels provided
significantly larger decoding correlation than weakly modulated
channels. The single-channel correlation appeared to follow an
exponential relationship with MD for a few channels in the high
MD regime, but did not have a significant relationship in the
low MD regime. This result shows that channel ranks are not
independent of the evaluation criteria, in this case correlation
and MD, as also reported in [16].

To study the implications of channel ranks on decoding per-
formance, we compared the true and decoded state correlation
obtained with a subset of channels selected on the basis of
MD and of individual channel correlation [see Fig. 4(b)]. The
strongest modulated channel alone provided a correlation of
over 0.5, and the correlation exceeded 90% of its limiting value
of 0.7 with five highest MD channels (see Table I). We also
evaluated the decoding correlation achieved with greedy selec-
tion and random selection to obtain upper and lower bounds
on performance, respectively. Decoding performance of chan-
nel subsets chosen by correlation and MD ranking performed
almost identically despite differences in the individual chan-
nel ranks noted above. The decoding performance of these two
schemes was nearly as good as that of greedy selection but sub-
stantially better than random selection; this difference reduced
as the selected subset size increased. We investigated the op-
timal model order in terms of the tradeoff between decoding
accuracy and model complexity using the BIC. The addition of
each channel contributed three parameters to our 2-D velocity
decoding model according to (2), namely a row to H and a main
diagonal element to R. Based on BIC, the optimal subset size
was 12 channels [see Fig. 4(c)], which matches the number of
channels that contribute 90% of the total MD [see Fig. 2(b)].
The nonsmooth and nonmonotonic BIC curve reflects the fact
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Fig. 4. Effect of neural channel MD on decoding performance. (a) Relation
of MD to open-loop decoding correlation of true computer cursor velocity
with velocity estimate obtained by decoding each neural channel individually.
Shaded region: 95% CI of chance-level decoding correlation. (b) Improvement
in decoding correlation with increasing channel subset size chosen using the
specified scheme. (c) Normalized BIC as a function of channel subset size
chosen by MD. Red circle: optimal subset size with lowest BIC.

that the relative improvement in decoding performance on in-
creasing the neural channel subset size is highly irregular when
the subset size is small; increasing the subset from 1 to 2 chan-
nels does not reduce the estimation error as much as it increases
the parameter space, and so on.

TABLE I
COMPARISON OF EXECUTION TIME AND DECODING CORRELATION (USING

SELECTED FIVE OF THE AVAILABLE 39 CHANNELS) OF VARIOUS SELECTION

SCHEMES ON A STANDARD PERSONAL COMPUTER

Selection Scheme Execution Time, mean±s.e. (s) Correlation

Greedy search 1.8 × 103 ± 7.2 0.69
Decoding correlation 1.2 × 102 ± 3.8 × 10−1 0.67
MD 4.7 × 10−4 ± 1.4 × 10−5 0.65
Random selection 5.8 × 10−6 ± 9.4 × 10−8 0.35

We investigated the phenomenon of loss of the most infor-
mative channels and the decoder sensitivity to such loss. This
situation may occur in practice due to relative micromovements
of the recording array and single units [6]. We found that decod-
ing performance deteriorates progressively as the highest MD
channels are removed from the decoder, as expected, but the
detrimental effect on decoding correlation is particularly dra-
matic when the number of high-information channels dropped
is small (see Fig. 5). This result shows that although a small
number (say m = 5) of the highest modulated channels are suf-
ficient to obtain accurate decoding (see Fig. 3), the system is
fairly resilient to the loss of highly modulated channels and suf-
fers only a small loss in decoding performance that could be
easily compensated under feedback control.

MD estimation has substantially lower algorithmic complex-
ity than ranking based on decoding correlation, greedy search,
or exhaustive search, all of which involve multiple iterations of
decoding analysis with the entire dataset. As a practical measure
of complexity, we compared the time taken to perform subset
selection using various schemes on our computing platform
(Desktop PC with 2XQuadCore Intel Xeon 3.2-GHz processor,
24-GB RAM, Windows 8.1 operating system, running MAT-
LAB software). We did not consider exhaustive search in this
analysis due to its prohibitive complexity, so greedy search was
the most complex scheme in our analysis and served as the
performance benchmark. Decoding correlation-based selection
had an order of magnitude lower complexity than greedy search
while MD based selection was seven orders of magnitude lower
(see Table I). The complexity of the MD scheme was within two
orders of magnitude of that of random selection, the simplest
approach possible. Thus, MD offers vastly reduced computa-
tional complexity than other schemes with only a small cost in
performance and thus offers a superior selection mechanism.

In order to verify that our analysis of MD characteristics was
generalizable across sessions, we analyzed the MD distribution
in each of the five sessions. The observation of a long-tailed
distribution was consistent across sessions [see Fig. 6(a)]. A
small number of outliers, i.e., channels with MD several times
higher than the median MD, were observed in each session. We
characterized the statistical properties of the MD by estimating
the best-fit distribution. For this analysis, we pooled together
the MD data from all five sessions and estimated the probability
distribution from the normalized histogram. Since the MD dis-
tribution was highly asymmetric, we used Doane’s formula to
compute the optimal number of histogram bins. We investigated
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Fig. 5. Effect of dropping some of the highest modulated channels on decoding performance. (a) Decrease in total MD (top) and open-loop decoding correlation
between true and estimated cursor velocity (bottom) when the specified number of the best channels are removed from the neural decoder. Shaded region: 95%
CI of chance-level decoding correlation. (b) Open-loop center-out-back cursor trajectories decoded from m channels with the lowest MD. Blue lines: computer
cursor trajectory; red lines: imagined velocity decoded from neural channel subset; black rectangle: computer screen.

Fig. 6. Statistical characterization of single-unit MD. (a) Distribution of MD
of various channels in each of five research sessions. Red line: median; box:
interquartile range [q1 , q3 ]; whiskers: extreme points that are not outliers and lie
within the range q3 ± 1.5 (q3 − q1 ); red circles: outliers. (b) (Left) Histogram
of MD data from five research sessions, along with the scaled best-fit generalized
Pareto probability density function. (Right) Cumulative distribution function of
MD data and best-fit generalized Pareto distribution.

a number of candidate probability distributions to obtain accu-
rate statistical description of the data. We obtained maximum-
likelihood parameter estimates for each candidate distribution
and conducted the Anderson–Darling test with the null hypoth-
esis that the data were sampled from the estimated distribution.

Of the distributions that passed the test with the null hypothesis
at the 5% significance level, we found that the generalized Pareto
distribution provided the best fit (p = 0.714), followed by the
Weibull distribution (p = 0.074). The alternative hypothesis was
found to be true for the lognormal, exponential, extreme value,
Gaussian, and several other distributions (p < 10−6). Based on
these results, we conclude that the generalized Pareto distri-
bution provides the most accurate statistical characterization
of MD with maximum likelihood estimates of shape parameter
k = 0.93 [0.64, 1.22] and scale parameter σ = 0.06 [0.04, 0.08]
(mean and 95% confidence intervals). This is illustrated by the
close agreement of the generalized Pareto probability density
with the data [see Fig. 6(b)]. The Pareto distribution, originally
formulated to describe unequal distribution of wealth among in-
dividuals, is widely used for modeling asymmetric, peaky data
in many applications. In our analysis, the significant positive
value of parameter k reflects heavy-tailed behavior, i.e., the
presence of a small number of highly modulated channels. We
also analyzed MD statistics for each session individually and
found the generalized Pareto distribution to provide the best fit
to the data in each of the five sessions, followed by the Weibull
distribution, confirming our earlier observations.

IV. DISCUSSION

We have presented a simple and efficient method for estimat-
ing the MD of a channel in a multivariate state-space system.
This definition of MD is an extension of the notion of a single-
input single-output state-space system’s SNR [30] to a multi-
variate system. It is analogous to dimensionless SNR and is
consistent across sensorimotor tasks, behavioral state variables,
neural signals, and sample rates, due to which it can be used
for comparative analysis of a variety of system configurations
and experimental conditions. MD can be used as a metric to
rank channels and select the optimal subset in a neural interface
system. It can be used to analyze and compare the information
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content and decoding potential of multiple neural signal modal-
ities, such as binned spike-rates and LFP, and also signals
recorded from different areas in the brain. The total MD summed
across the ensemble could be used in conjunction with a pre-
specified threshold to determine whether the information quality
is poor and filter recalibration should be initiated.

Most of the computational procedures required to estimate
MD are performed as part of the standard Kalman filter calibra-
tion process and therefore incur little additional computational
cost. The only additional computation required to obtain the
SNR matrix, S, consists of relatively simple matrix operations,
i.e., matrix multiplications involving the measurement noise co-
variance matrix that usually has a diagonal structure. Compared
to alternative approaches for computing channel modulation
measures and ranks, such as those involving neural decoding
with correlation-based greedy subset selection, our method has
substantially lower computational complexity. It is, therefore,
highly suited to real-time neural decoding and high-throughput
offline analyses with high-dimensional state or observation vec-
tors or large number of temporal samples. The low computa-
tional cost makes repeated estimation of MD possible as may
be required during online real-time decoding for performance
monitoring or closed-loop recalibration [5]. In a nonstationary
setting, the time-varying form of the system SNR and MD can
provide an instantaneous measure of signal quality.

MD estimation may be useful in a wide range of systems
neuroscience applications beyond movement-related neural in-
terfaces. It is widely applicable to analyses of neural systems
involving a set of behavioral correlates and multichannel record-
ings. Our framework can be applied directly, for example, to an
experiment measuring sensory response of a primary visual cor-
tex neuron to a visual stimulus, and the MD then quantifies the
response evoked in that neuron by the stimulus applied, leading
to a tuning curve estimate for that neuron. Repeating this analy-
sis across a neuronal ensemble can help in comparative analysis
of neuronal tuning properties. This approach can be applied to
any neuroscience experiment in which the underlying system
can be expressed in the form of a state-space model, comprising
both intracortical (spike-rate, multiunit threshold crossing rate,
analog MUA, or LFP), epicortical (elecrtrocorticogram), or epi-
cranial (EEG or functional magnetic resonance imaging) neural
signals.

Our state-space formalism can be modified to incorporate a
temporal lead or lag between the latent state and the neural
activity. Motor cortical single-unit spike signals typically lead
movement by about 100 ms in able-bodied monkeys [38] and are
more variable in humans with paralysis [29], and similarly LFP
beta rhythm leads movement due to its encoding of movement
onset information [39]. Such temporal effects can be analyzed
through the covariance structure of model residuals or the like-
lihood function, and the optimal lags can be included in the
observation equation on a per-channel basis, after which MD
can be estimated in the usual manner.

The channel-wise MD computation does not take into account
cross-channel covariance, which may be substantial for certain
signals. For example, LFPs recorded intracortically using a mi-
croelectrode array may exhibit significant spatial correlation in

the lower frequency bands due to the proximity of the elec-
trodes [40]. The same challenge is encountered with various
other measures of neural modulation and ranking, such as cor-
relation and coefficient of determination. In the case of highly
correlated signals, one possible solution could be to first reduce
signal dimensionality by projection to an orthogonal basis, and
then compute the MDs of the resulting set of features.

V. CONCLUSION

We have presented a framework for estimating the MD of
observation variables in a multivariate state-space model for
neural interfaces and other applications. This MD estimator is
closely related to the Kalman filtering paradigm and is suitable
for channel ranking in a multichannel neural system. In con-
trast with greedy selection and information-theoretic measures,
our state-space MD estimation scheme has high computational
efficiency and thus provides a method for real-time variable sub-
set selection useful for closed-loop decoder operation. Due to
these characteristics, our MD estimation and ranking scheme is
highly suitable for both offline neuroscience analyses and online
real-time decoding in neural interfaces. This approach will en-
able optimal signal subset selection and real-time performance
monitoring in future neural interfaces with large signal spaces.
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