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Uplink Multiuser MIMO Systems
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Abstract—A low complexity user scheduling algorithm based
on a novel adaptive Markov chain Monte Carlo (AMCMC)
method is proposed to achieve the maximal sum capacity in an
uplink multiple-input multiple-output (MIMO) multiuser system.
Compared with the existing scheduling algorithms, our algorithm
is not only more efficient but also converges to within 99% of the
optimal capacity obtained by exhaustive search. We demonstrate
the convergence of the proposed scheduling algorithm and study
the tradeoff between its complexity and performance.

Index Terms—Adaptive Markov chain Monte Carlo (AM-
CMC), multiple-input multiple-output (MIMO), multiuser selec-
tion, scheduling, sum capacity.

I. INTRODUCTION

NEXT generation wireless communication systems are
expected to provide higher data rates to meet the in-

creasing requirements of multimedia services. In order to
utilize the spectrum efficiently, a technique known as multiple-
input multiple-output (MIMO), has been extensively investi-
gated [1]. MIMO wireless systems have been demonstrated to
provide substantially higher link performance than traditional
systems with the help of multiple antenna arrays. In multiuser
systems, selection diversity plays an important role to improve
the system performance, gauged in terms of the sum capacity
and bit error rate (BER) [2]. To illustrate this, we consider a
multiuser system, in which there is a base station (BS) with
multiple receive antennas, and mobile users each with multiple
transmit antennas, as shown in Fig. 1. A technique called user
scheduling can be used to improve the system performance of
multiuser systems while preserving the advantages of MIMO
wireless systems. With the help of scheduling, the BS can
optimally connect to the best subset of users at each time
slot to maximize the sum capacity of the multiuser system.
Recently, some research has been undertaken on efficient
scheduling algorithms for multiuser systems. A scheduling
algorithm based on system utility functions using a genetic
algorithm (GA) was presented in [2] and a low complexity
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user selection algorithm with block diagonalization (BD)
was proposed in [3]. In this letter, we present a new low
complexity user selection algorithm based on the adaptive
Markov chain Monte Carlo (AMCMC) optimization technique
[12] to maximize the sum capacity. The simulation results
indicate that the proposed scheduling algorithm has a lower
complexity order than the alternative approaches. Moreover
the result lies within 99% of the optimal capacity obtained by
exhaustive search.

II. UPLINK MULTIUSER MIMO SYSTEM MODEL

In Fig. 1, we consider an uplink multiuser MIMO system
with a BS deploying NR receive antennas and K mobile users
with NT transmit antennas per user. The channel is assumed
to be quasi-static fading [4]. Then the received signal at the
base station is represented as [5]

y =
K∑

k=1

Hkxk + v (1)

where y ∈ CNR×1 is the received signal vector and xk ∈
CNT×1 is the transmitted signal vector for the kth mobile user
with Tr (Qk) ≤ Pk where Qk = E{xkxH

k}. Here, Tr (·) stands
for the matrix trace operation, Qk is the signal covariance ma-
trix, Pk is the average power constraint for mobile user k, E{·}
denotes the statistical expectation and (·)H represents the Her-
mitian operation. The vector v ∈ CNR×1 is the independently
identically distributed (i.i.d.) complex additive white Gaussian
noise vector with distribution CN (0, N0I). The channel is
described by an NR × NT complex random matrix, denoted
by Hk whose entries, [Hk](i,j)(i = 1 . . . NR; j = 1 . . .NT ),
represent the channel fading coefficient between the ith receive
antenna of BS and the jth transmit antenna of mobile user
k. For the uncorrelated channels, the entries of Hk follow
the i.i.d. complex Gaussian distribution CN (0, 1). Moreover,
it is assumed that perfect channel state information (CSI) is
available at the receiver (i.e. the BS or access point).

The optimal sum capacity for the MIMO multiple-access
channel is [5]

Csum(Hk) = max∑
K
i=1 Tr(Qk)≤Ps

log2

∣∣∣ INR +
1

N0

K∑
k=1

HkQkHH
k

∣∣∣ (2)

where N0 is the average noise power. Note that (2) is the gen-
eral capacity expression and not specialized to linear receivers.
When CSI is not available to the transmitter, a reasonable
transmission strategy is that the uniform power is distributed
among the antennas of a user, Qk = PkINT /NT . Moreover,
the total power constraint should be satisfied,

∑K
k=1 Pk = Ps,

where Ps is the total power of all mobile users.

1536-1276/08$25.00 c© 2008 IEEE
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Fig. 1. Block diagram of the uplink multiuser MIMO system.

We denote the number of selected mobile users by Ksel.
Considering a linear receiver, in order to detect all transmitted
data streams at the BS, we have (Ksel × NT ) ≤ NR or,
Ksel ≤ NR/NT . Moreover, for uplink multiuser MIMO
systems, a user selection module (USM) is centralized at the
base station and the information of selected user indices is
transmitted from base station to mobile users via an error-free
and low-delay feedback channel. We further denote the set of
all Q =

∑Ksel

j=1

(
K
j

)
mobile user subset as Ω = {ω1, · · · , ωQ}

and the indicator of the selected subset of users by

ωq = {Iα}K
α=1, Iα ∈ {0, 1} (3)

where α is the index of selected users and the indicator
function Iα indicates whether the αth user is selected or not.
For example, if the first, second, fifth and seventh users are
selected, then ωq = {1, 1, 0, 0, 1, 0, 1, · · · , IK}. According
to (2), the sum capacity associated with the selection is then
described as

Csum(Hωq ) = max
ωq∈Ω

log2

∣∣∣INR +
ρ

NT

K∑
k=1

H[ωq ]k

(
H[ωq ]k

)H ∣∣∣ (4)

where ρ = Pk/N0 is the average signal-to-noise ratio (SNR)
and [ωq]k denotes the kth dimension of ωq and implies
whether kth user is selected or not.

The most straightforward approach for solving (4) to obtain
the optimal user subset, ω∗, is by an exhaustive search
method, namely, finding all possible ωq out of Ω to obtain
the optimal selected user subset ω∗ which can yield the
maximum Csum(Hω∗). However, this method leads to a total
of
∑Ksel

j=1

(
K
j

)
possible combinations and becomes computa-

tionally expensive for the multiuser MIMO wireless systems
with large K .

We now model (4) as the following combinatorial optimiza-
tion problem

ω∗ = arg max
ωq∈Ω

Csum(Hωq
) (5)

where ω∗ denotes the optimal selected user subset of the
objective function, C(Hωq

). An iterative optimization algo-

rithm is proposed in the next section to solve the optimization
problem described by (5).

III. USER SELECTION ALGORITHM

The Markov Chain Monte Carlo (MCMC) algorithm origi-
nated from [6], is a stochastic simulation technique designed
to explore/sample a probability distribution of interest. It has
gained tremendous popularity in the last few decades in a wide
range of fields, such as engineering, statistics and biology [7].
It is computationally expensive, in general, to compare all
the solutions to identify the optimal solution. So stochastic
optimization/search methods have been developed with the
idea that, instead of searching the whole solution space
exhaustively, they just focus on exploring the ‘promising’ sub-
spaces. To this end, MCMC is a powerful tool for stochastic
optimization, given that one can appropriately represent the
subspace of interest by a probability distribution [8]. Then,
the samples {ω(n)

q }N
n=1 from an MCMC algorithm can also

be used to estimate the maximum of the reformed objective
function π(ωq) as follows

ω̂∗ = arg max
ω

(n)
q ;n=1,...,N

π(ω(n)
q ) (6)

where ω̂∗ denotes the estimation of ω∗ =
arg maxωq∈Ω π(ωq).

To appropriately represent the feasible solution space by
a probability distribution, one can use the Boltzmann dis-
tribution of the objective function Csum(Hωq) with a proper

chosen temperature τ : π(ωq) = exp
{

Csum(Hωq )

τ

}
/Γ, where

Γ =
∑

ωq∈Ω exp
{

Csum(Hωq )

τ

}
is a normalization constant,

which can be ignored in the MCMC algorithm. Thus, maxi-
mizing Csum(Hωq) is equivalent to maximizing π(ωq), i.e.,

ω∗ = arg max
ωq∈Ω

Csum(Hωq) = arg max
ωq∈Ω

π(ωq) (7)

so ω̂∗ from the MCMC algorithm is also the estimate of the
maximum of Csum(Hωq

).
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The MCMC algorithm can be therefore applied to explore
the distribution π(ωq). Here we take Metropolised indepen-
dence sampler (MIS) [7], a generic MCMC algorithm, as an
example. An initial value ω

(0)
q is chosen for the algorithm.

Given the current sample ω
(i)
q , a candidate sample ω

(new)
q

is drawn from the proposal distribution q(ωq; p). According

to the accepting probability (min{1,
π(ω(new)

q )

π(ω
(i)
q )

q(ω(i)
q )

q(ω
(new)
q )

}), the

new sample will be ω
(i+1)
q = ω

(new)
q if the ω

(new)
q is

accepted, and ω
(i+1)
q = ω

(i)
q otherwise. After N iterations,

we can obtain a set of samples {ω(0)
q , ω

(1)
q , ω

(2)
q , ...ω

(N)
q },

which is subjected to the distribution π(ωq).
In traditional MCMC algorithms, for example the one men-

tioned above, adjusting the associated parameters p of the pro-
posal density q(ωq; p) is crucial to achieve high convergence
rate, but this process is not straightforward. Recently adaptive
MCMC algorithms have been proposed to automatically adjust
these parameters during simulations, and therefore improve
the performance of MCMC in terms of both convergence
and efficiency [13]. The user scheduling algorithm in this
paper is based on the adaptive Markov Chain Monte Carlo
(AMCMC) method proposed in [12]. The adaption strategy
of the proposed AMCMC is described in the appendix, and
a theorem is presented to guarantee the convergence of the
proposed AMCMC algorithm. Here we give an analysis to
demonstrate why the proposed AMCMC has fast convergence
rate. For the sake of simplicity, we only focus on the MIS.

It is known that the performance of MIS is strongly de-
pendent on the selection of the proposal density function. Its
convergence rate is bounded by [7]∥∥Kn

p (ωq, ·) − π (·)∥∥ = sup
Z∈σ(Ω)

∣∣Kn
p (ωq, Z) − π (Z)

∣∣
≤ 2

(
1 − 1

W∗

)n

(8)

where Kn
p (ωq, ·) are the n-step transition probabilities with

initial state ωq (see (15) in the appendix and [7]), σ (Ω)
is the σ-field of the solution space Ω, Z is a subset in
σ (Ω), and W∗ ≡ supωq∈σ(Ω)

π(ωq)
q(ωq ;p) . Note that, in contrast

with other adaptive MCMC algorithms, the adaption strategy
in our AMCMC algorithm is to minimize the Kullback-
Leibler divergence [9] between the distribution π(ωq) and the
proposal distribution q(ωq; p)

D[π(ωq)‖q(ωq; p)] =
Q∑

q=1

π(ωq) × log
(

π(ωq)
q(ωq; p)

)
. (9)

Intuitively, as the adaption runs iteratively, D[π(ωq)‖q(ωq; p)]
becomes smaller, so does sup π(ωq)

q(ωq ;p) , and then the bound
of convergence rate becomes smaller. In an ideal case, the
adaption can make D[π(ωq)‖q(ωq; p)] → 0, and then the
bound of convergence rate will also approach 0 even with
a small value of n. This implies that starting with any initial
value ωq, the chain has the chance to jump into any space
Z ∈ σ (Ω) with probability π(Z) in a few steps. With the
careful design of π(ωq) described above, the neighborhood
of ω∗ has a large probability mass, so the proposed AMCMC
algorithm has a large chance to visit the neighborhood of ω∗

and therefore can find at least a close-to-optimal solution ω̂∗
in a reasonable duration.

Due to the advantage of Monte Carlo method that the
complexity of MCMC algorithm is dimension-independent
and only related to the sample size N , and the fast convergence
rate gained via AMCMC algorithm, we can get an efficient
stochastic optimization algorithm with low complexity order.
The AMCMC algorithm with MIS for user selection problem
for uplink multiuser systems is described as follows:

Step 1: Initialize ω
(0)
q randomly or deterministically, ω̂∗ =

ω
(0)
q , and set p(0) = {p(0)

j }K
j=1, p

(0)
j = 1

2 for
the proposal density function q(ωq, p(0)). Set the
iteration counter t := 1;

Step 2: Run the MIS, draw a small set of samples
{ω(n)

q }N
n=1 from the objective function π(ωq) using

the proposal q(ωq, p(t−1));
Step 3: Update the parameter p

(t)
j via

p
(t+1)
j = p

(t)
j + r(t+1)

(
1

N

N∑
n=1

[ω(n)
q ]j − p

(t)
j

)
(10)

where the probability entries, pj , j = 1, · · · , K ,
represent the probability of the jth user to be chosen,
r(t) is the sequence of decreasing step-sizes, and
[ω(n)

q ]j represent the jth dimension of ω
(n)
q . Further

details of (10) can be found in the appendix.
Step 4: If π(ω(n)

q ) > π(ω̂∗) for n = 1, · · · , N , then ω̂∗ =
ω

(n)
k .

Step 5: If the stopping criterion is satisfied, then stop;
otherwise set t := t+1 and go back to step 2. Here,
the stopping criterion is the predefined number of
iterations.

IV. SIMULATION RESULTS

Fig. 2 shows the average sum capacity averaged over
10, 000 channel realizations versus the number of users, K ,
for NT = 2, NR = 4 and Ksel = 2. It is seen that
the performance obtained by the proposed AMCMC selec-
tion algorithm is nearly the same as the results obtained
by exhaustive search. In fact, the simulation results indicate
that the performance difference between these two selection
schemes is within 1%. Moreover, we find that the sum capacity
increases as the number of users (K) increases when the
number of selected users (Ksel) is constant. The reason for
this gain is the multiuser diversity provided by the spatially
distributed multiuser structure.

The average sum capacity versus SNR can be seen in Fig.
3, from which we find that the AMCMC algorithm is not
sensitive to the SNR. The situation is different for norm-
based selection (NBS)1 algorithm whose performance is nearly
optimal in the low SNR (SNR ≤ 0dB) region but suboptimal at
high SNR. Fig. 4 illustrates the BER versus SNR under various
combination of (K, Ksel) using the AMCMC algorithm. A 16-
QAM modulated system with a multi-user minimum mean-
square error (MMSE) receiver is considered in this letter.
The results validate the observation that selection diversity

1NBS is based on the channel Frobenius norm and indicates the power of
the channel [3].
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in a multiuser system can not only improve the average sum
capacity, but also the BER. From Figs 2 and 3, we can draw a
conclusion that, for fixed SNR, the larger the total number of
users K , the higher is the average sum capacity. Meanwhile,
large K leads to low BER for fixed number of selected users,
Ksel, which can be observed from Fig. 4.

Table 1 shows the complexity comparisons in terms of the
number of function evaluations among different user selection
algorithms, such as the GA algorithm [2], the BD algorithm
[3], the AMCMC algorithm and an exhaustive search method.
From the results, we find that the AMCMC algorithm has
lower complexity and better performance than the GA al-
gorithm. Compared with the BD algorithm, the AMCMC
algorithm uses comparable complexity to obtain better results
which are within 99% of the optimal capacity, while the results
obtained by the BD algorithm are within 95% of the optimal
capacity. If we relax our performance constraint from 99%
to 95%, the complexity of the AMCMC algorithm will be
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Fig. 4. System BER performance of choosing Ksel out of K at NR = 4,
NT = 2 with AMCMC algorithm.

much lower than the BD algorithm. For example, in the case
of choosing Ksel = 4 out of K = 20 users, the number of
function evaluations of the AMCMC algorithm is 15, but 80
for the BD algorithm.

Finally, the tradeoff between the complexity and perfor-
mance of the AMCMC algorithm is addressed in Fig. 5.
Because the AMCMC algorithm is an iterative algorithm, its
complexity can be determined by the number of function
evaluations, namely, N × t, where N is the number of
samples drawn from π(ωq) for each iteration and t is the
number of iterations. Moreover we define the convergence
ratio, ϑ = CAMCMC/Coptimal, to describe the performance
of the AMCMC algorithm, where CAMCMC and Coptimal

denote the sum capacity obtained by AMCMC and an ex-
haustive search method, respectively. The relationship between
the convergence ratio and the number of samples has been
investigated in Fig. 5 for a fixed iteration number, t = 3 . In
general, for the AMCMC algorithm, the higher the complexity
(number of samples), the better the performance (convergence
ratio). The feature of ϑ → 1 with smaller number of samples
shows the efficiency of AMCMC algorithm.

V. CONCLUSION

In this letter, we have presented a novel user scheduling
algorithm, based on adaptive Markov Chain Monte Carlo
(AMCMC), to maximize the sum capacity of multiuser MIMO
uplink systems. With the proposed algorithm, we can achieve
results within 99% of the optimal capacity obtained by ex-
haustive search method. Moreover, we find that the proposed
scheduling algorithm is reliable under a variety of SNR
conditions. Finally, detailed complexity comparisons indicate
that our user scheduling algorithm has much lower complexity
and is more robust than other user scheduling algorithms. Thus
it can make practical low-complexity uplink multiuser MIMO
wireless communication systems easier to implement.
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TABLE I
PERFORMANCE AND COMPLEXITY COMPARISONS FOR VARIOUS USER SELECTION ALGORITHMS WITH NR = 4, NT = 2, ρ = 10 DB AND

ϑ = C/Coptimal , IS THE RATIO OF THE AVERAGE SUM CAPACITY, C , OBTAINED BY A GIVEN ALGORITHM TO THAT OF THE OPTIMAL USER SELECTION
ALGORITHM. NOTE THAT THE TWO AMCMC SCHEMES DESCRIBED BELOW ARE BASED ON THE SAME ALGORITHM BUT WITH DIFFERENT

PERFORMANCE CRITERIA(ϑ).

(K, Ksel) GA Algorithm [2] BD Algorithm [3] AMCMC Algorithm AMCMC Algorithm Exhaustive Search Method

(10, 2) 30 20 12 24 55
(10, 4) 50 40 15 30 385
(20, 2) 60 40 15 45 210
(20, 4) 100 80 15 60 6195

ϑ ≥ 90% ≥ 95% ≥ 95% ≥ 99% = 1

5 10 15 20 25
95% 

96% 

97% 

98% 

99% 

1    

Number of samples (N)

C
on

ve
rg

en
ce

 r
at

io
 (ϑ

)

K
sel

 = 2; K = 10

K
sel

 = 4; K = 10

K
sel

 = 2; K = 20

K
sel

 = 4; K = 20

Fig. 5. Convergence ratio versus number of samples with three iterations,
with NR = 4, NT = 2 and ρ = 10 dB, using AMCMC algorithm.

APPENDIX

DERIVATION: UPDATING RULE FOR ADAPTIVE MCMC
METHOD

In the AMCMC algorithm, the adaptive proposal distri-
bution is proportional to the product of Bernoulli distribu-

tions, q(ωq; p) =
∏K

i=1 p
[ωq ]i
i (1−pi)

1−[ωq ]i

Γ′ ∝ ∏K
i=1 p

[ωq ]i
i (1 −

pi)1−[ωq ]i , where ωq is the indicator of the selected subset
of users and p = (p1, · · · , pK) is the probability vector to
indicate the probability of the users to be chosen. Specifically,
pi denotes the probability of the ith user to be chosen, [ωq]i
represents the ith dimension of ωq and implies whether ith

user is selected or not, and Γ′ =
∑Q

q=1

∏K
i=1 p

[ωq ]i
i (1 −

pi)1−[ωq ]i is a normalization constant, which can be ignored
with no effect on the performance of the AMCMC algorithm.
Note that in the proposal distribution, we assume that each
[ωq]i is independent, which implies that the event that the ith

user is selected is independent of an event in which any other
user is selected. This is a reasonable assumption when the
samples [ωq]i in π(ωq) are not highly correlated.

The strategy is to adaptively tune the parameterized pro-
posal distribution q(ωq; p) to approximate the target dis-
tribution π(ωq) in the sense of minimizing the Kullback-
Leibler divergence [9] between the distribution π(ωq) and the

proposal distribution q(ωq; p)

D[π(ωq)‖q(ωq; p)] =
Q∑

q=1

π(ωq) × log
(

π(ωq)
q(ωq; p)

)
(11)

where Q is the number of all the feasible ωq . Since it is easy
to prove that D̃ = π(ωq)× log π(ωq)−D[π(ωq)‖q(ωq; p)] is
a convex function [10], then to minimize the Kullback-Leibler
divergence D[π(ωq)‖q(ωq; p)] w. r. t. p is equal to finding
the root of ∂D̃/∂p = 0. For each pj , j = 1, ..., K , we have

∂D̃
∂pj

=
∂

∂pj

Q∑
q=1

π(ωq) × log q(ωq; p)

∝ ∂

∂pj

Q∑
q=1

π(ωq) × log

(
K∏

i=1

p
ωq

i (1 − pi)1−ωq

)

=
Q∑

q=1

π([ωq]j) ×
(

[ωq]j
pj

− 1 − [ωq]j
1 − pj

)

=
1

pj(1 − pj)

Q∑
q=1

π([ωq]j)([ωq]j − pj). (12)

Generally π(ωq) or π([ωq]j) is unknown and it is inef-
ficient and unnecessary to exhaustively enumerate all ωq

to calculate ∂D̃/∂p. A feasible way is to calculate the
Monte Carlo estimate of ∂D̃/∂p and then use stochastic
approximation techniques to find the root of ∂D̃/∂p = 0
iteratively. Assume a set of samples {ω(n)

q }N
n=1 is drawn

from π(ωq), then the Monte Carlo estimate of ∂D̃/∂p
is 1

N

[
1

pj(1−pj)

∑N
n=1

∑Q
q=1([ω

(n)
q ]j − pj)

]
. Employing the

Robbins-Monro stochastic approximation algorithm [10], we
can obtain the recursive update equation to approach the root
of ∂D̃/∂p = 0:

p
(t+1)
j = p

(t)
j +

r(t+1)

pj(t)(1 − p
(t)
j )

(
1

N

N∑
n=1

[ω(n)
q ]j − p

(t)
j

)
(13)

where r(t) is a sequence of decreasing step-sizes, e.g. satisfy-
ing the conditions of

∑∞
t=0 r(t) = ∞ and

∑∞
t=0(r

(t))2 < ∞
[11]. Since pj(1 − pj) has no significant influence on the
convergence of (13), it can be simplified as

p
(t+1)
j = p

(t)
j + r(t+1)

(
1
N

N∑
n=1

[ω(n)
q ]j − p

(t)
j

)
. (14)

With the proposed adaptive strategy, the algorithm actually
runs a non-Markov chain because the proposal density is
changed based on history information, and the convergence of
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this kind of algorithm is a major research issue. The ergodicity
and convergence of a wide range of adaptive MCMC methods
have been proven recently in [13]. Here we present a theorem
to verify the ergodicity of an adaptive MCMC algorithm,
which is easy to use in practice.

Theorem We now provide the proof of the convergence for
our algorithm using the following adaptation of the theorem
presented in [13]. Consider an adaptive MCMC algorithm, on
a state space F = σ (Ω). The π (·) is a stationary distribution
for each transition kernel of MIS algorithm

Kp

(
ωq, ω

′
q

)
=

⎧⎪⎨⎪⎩
q(ω′

q;p)Wmin ifω′
q 	= ωq∑

ω(j)
q �=ωq

q(ω(j)
q ;p)Wmax

+q(ωq;p), otherwise.
(15)

where Wωq = π(ωq)/q(ωq; p) is defined as the importance

ratio, Wmin represents min
(

1,
Wω′

q

Wωq

)
and Wmax denotes

max
(

0, 1 −
W

ω
(j)
q

Wωq

)
. Assume that:

(a) [Simultaneous Uniform Ergodictiy]
For all ε > 0, there is T = T (ε) ∈ N such that∥∥KT

p (ωq, ·) − π (·)∥∥ ≤ ε for all ωq and p;
(b) [Diminishing Adaption]
limt→∝ supωq∈F

∥∥Kp(t+1) (ωq, ·) −Kp(t) (ωq, ·)
∥∥ = 0 in

probability.
Then the adaptive algorithm is ergodic, namely

lim
t→∝ sup

Z∈Ω

∣∣∣A(t) ((ωq, p) , Z) − π (Z)
∣∣∣

where A(t) ((ωq, p) , Z) = Pr[ω(t)
q ∈ Z|ω(0)

q = ωq, p(0) = p]
is the transition probability for ω

(t)
q for the adaptive algorithm,

given the initial conditions ω
(0)
q = ωq and p(0) = p.

To satisfy the simultaneous uniform ergodictiy condition,
we should restrict that p to be positive; to guarantee the
Diminishing Adaption condition, we need to ensure r(t) → 0
as t → ∞, which is consistent with the condition of r(t) in the
stochastic approximation algorithm. With careful design of the

AMCMC algorithm, these two conditions can be satisfied and
therefore the ergodicity of the algorithm holds, which implies
that starting with any initial value, the algorithm can visit
any space Z ∈ Ω with the probability π (Z) in a sufficiently
long duration. With careful design of π(ωq), the neighborhood
of global optimum ω∗ has a large probability mass, so the
algorithm has a good chance to visit the neighborhood of ω∗

and find at least a close-to-optimal solution in a reasonable
time, and thus the AMCMC can be used as a generalized
stochastic optimization tool.
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