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Computationally Efficient Algorithms for Sparse,
Dynamic Solutions to the EEG Source

Localization Problem
Elvira Pirondini , Behtash Babadi , Gabriel Obregon-Henao, Camilo Lamus, Wasim Q. Malik,

Matti S. Hämäläinen, and Patrick L. Purdon

Abstract—Objective: Electroencephalography (EEG) and
magnetoencephalography noninvasively record scalp elec-
tromagnetic fields generated by cerebral currents, revealing
millisecond-level brain dynamics useful for neuroscience
and clinical applications. Estimating the currents that
generate these fields, i.e., source localization, is an ill-
conditioned inverse problem. Solutions to this problem
have focused on spatial continuity constraints, dynamic
modeling, or sparsity constraints. The combination of these
key ideas could offer significant performance improve-
ments, but substantial computational costs pose a chal-
lenge for practical application of such approaches. Here,
we propose a new method for EEG source localization
that combines: 1) covariance estimation for both source
and measurement noises; 2) linear state-space dynamics;
and 3) sparsity constraints, using 4) novel computation-
ally efficient estimation algorithms. Methods: For source
covariance estimation, we use a locally smooth basis along-
side sparsity enforcing priors. For EEG measurement noise
covariance estimation, we use an inverse Wishart prior
density. We estimate these model parameters using an
expectation–maximization algorithm that employs steady-
state filtering and smoothing to expedite computations. Re-
sults: We characterized the performance of our method by
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analyzing simulated data and experimental recordings of
eyes-closed alpha oscillations. Our sparsity enforcing pri-
ors significantly improved estimation of both the spatial
distribution and time course of simulated data, while im-
proving computational time by more than 12-fold over pre-
vious dynamic methods. Conclusion: We developed and
demonstrated a novel method for improved EEG source
localization employing spatial covariance estimation, dy-
namics, and sparsity. Significance: Our approach provides
substantial performance improvements over existing meth-
ods using computationally efficient algorithms that will
facilitate practical applications in both neuroscience and
medicine.

Index Terms—EEG, source localization problem, sparse
prior models, observation noise.

I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) and magne-
toencephalography (MEG) record scalp electromagnetic

fields that are generated by currents in the cerebral cortex. EEG
and MEG make it possible to non-invasively record millisecond-
level brain dynamics, and have been applied extensively in
neuroscience to characterize sensory perception, cognition, lan-
guage, and in clinical applications to characterize neurological
disorders such as epilepsy. In these applications, it is crucial
to determine, to the extent possible, where and when neuro-
physiological activity is occurring. Source localization methods
seek to do just this, estimating both the spatial distribution and
the time course of brain current sources from scalp EEG/MEG
measurements. However, the source localization problem is ill-
conditioned, meaning that the problem does not have a unique
solution in the absence of additional constraints beyond the basic
biophysics of EEG/MEG.

The earliest approaches to source localization used regular-
ized least squares [1]–[5] under an assumption of temporal in-
dependence, to constrain solutions. More recently, Bayesian
methods have been applied in a similar fashion to specify spatial
constraints to solutions [6]–[10]. From a Bayesian perspective,
many inverse algorithms can be viewed as a specific choice for
the structure of the sources’ prior probability density; in the
Gaussian case this equates to specifying the prior source co-
variance [10]. From this collective work we learn that although
regularizing constraints can produce unique solutions, the algo-
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rithms perform significantly better when the prior covariance
structure can be refined and estimated from data [6], [10]–[12].
If the spatial covariance structure is important, so too is the tem-
poral structure. As such, a number of methods have improved
source estimates by modeling dynamics or temporal continu-
ity in the underlying sources, using spatio-temporal priors [11],
[13]–[20], linear state-space models [21]–[24], and neural mass
models [25]. Most recently, there has been intense interest in de-
veloping sparse solutions to the EEG/MEG source localization
problem [3], [26]–[31], justified in part by the concept that, in
many cases, source generators for EEG/MEG are sparse com-
pared to the large number of potential sources. In summary,
three concepts–spatial source covariance estimation, dynamics,
and sparsity–have emerged as key focus areas for developing
improved EEG/MEG source localization algorithms.

New methods that combine these key ideas could offer signifi-
cant performance improvements. However, practical application
of these ideas and their combinations poses a number of chal-
lenges. Spatial source covariance estimation methods [6] and
dynamic source localization algorithms [23] are computation-
ally demanding, even more so when the spatial covariance is
estimated within a dynamic model [12], [24]. Existing sparse
algorithms are appropriate when the underlying neurophysiol-
ogy supports highly focal sources [31]. However, sources can
also be both sparse and spatially-distributed; methods to choose
the spatial scale over which sparsity might apply remains an
area of investigation [11], [32]–[35]. In EEG source localiza-
tion, there is also the added complication that the covariance
structure of the measurement noise must be specified. In MEG,
the measurement noise covariance can be estimated from empty
room recordings [36], but for EEG this is not possible since the
measurement noise is observed primarily when subjects are be-
ing recorded. For evoked potential recordings, the measurement
noise could be estimated from the pre-stimulus baseline signal
[37], but this is not possible for spontaneous brain oscillations
that do not have a well-defined baseline period.

In this paper, we describe a new method for EEG source lo-
calization that overcomes these issues, combining 1) covariance
estimation for both source and measurement noise components,
2) linear state-space dynamics, and 3) sparsity constraints, us-
ing 4) novel estimation algorithms that are significantly faster
than previous dynamic methods. A preliminary version of this
work has been reported in [38]. For source covariance estima-
tion, we use a locally-smooth basis representation similar to
[11], but we identify the relevant covariance components using
sparsity enforcing priors. We propose a novel method to esti-
mate the EEG measurement noise covariance, using an inverse
Wishart prior density [39] whose scale matrix is estimated using
high-frequency components of the EEG signal that are typically
dominated by noise. We estimate these model components us-
ing an expectation-maximization (EM) algorithm that employs
steady-state filtering and smoothing for the E-step, which re-
duces computational time by an order of magnitude over pre-
vious similar algorithms. We evaluate the performance of our
method using simulated data and experimental recordings of
resting state alpha oscillations. We show that our dynamic state-
space model with spatial sparse priors performs better, in terms

of source estimation and computational efficiency, compared to
previous dynamic methods.

II. MATERIALS AND METHODS

A. State Space Model

We describe the state space model for EEG signals; the same
model applies to MEG and combined EEG/MEG recordings.
We denote the electric potentials recorded by the EEG sensor
i at time t by yi,t for all i = 1, 2, . . . , Ny and t = 1, 2, . . . , T .
Let yt := [y1,t , y2,t , . . . , yNy ,t ]

′
be the Ny × 1 vector of obser-

vations at time instant t, where Ny denotes the number of EEG
sensors. Let xi,t denote the source amplitude of the current
dipole i at time t, and let xt := [x1,t , x2,t , . . . , xNx ,t ]

′
be the

Nx × 1 vector of dipole sources distributed on the cortex, rep-
resenting cortical currents at time t. Nx denotes the number of
dipole sources. We assume that the current dipoles are oriented
normal to the cortical surface [37]. A typical value of Ny is in
the range of 32–256, whereas Nx can vary from hundreds to
thousands depending on how the source space is configured.

The EEG observation model can be expressed as:

yt = Gxt + vt , (1)

where G is the Ny × Nx lead field gain matrix, denoting the
linear mapping between the cortical dipole activity and the sen-
sor measurements. The gain matrix G can be estimated using
a quasi-static approximate solution to the Maxwell’s equations
[36]. All components of uncertainty independent of xt , such
as the instrument noise at the sensors or environmental distur-
bances, are captured by the Ny × 1 vector vt at time t. The obser-
vation noise vt := [v1,t , v2,t , . . . , vNy ,t ]

′
vector can be modeled

as a Gaussian random vector with mean zero and covariance
matrix C that is independent and identically distributed across
time.

In a static model, the sources can be assumed to be generated
by a Gaussian process with covariance matrix Q. In a dynamic
(state-space) model, the spatiotemporal connections between
sources can be represented by a first order autoregressive model
with nearest-neighbor interactions [12]. The choice of a first or-
der autoregressive model is justified by evidence from previous
neurophysiology, neuroanatomy, and neuroimaging studies that
suggest that the cortical activation is a distributed spatiotempo-
ral dynamic process within small local neighborhood [12]. In
this model, the source amplitude of dipole i at time t is a linear
combination of its activity at time t − 1 as well as those of its
nearest neighbors, perturbed by a state noise variable wi,t that
accounts for components of uncertainty affecting the temporal
evolution of cortical currents:

xi,t = λ[aixi,t−1 + (1 − ai)
∑

j∈N1 (i)

di,j xj,t−1 ] + wi,t , (2)

where N1(i) is the set of nearest neighbors of dipole i, and di,j

denotes the normalized inverse distance between dipoles i and
j. The scalar parameter ai ∈ [0, 1] is a weighting factor, and λ

is a positive scalar sufficiently close to 1, ensuring the stability
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Fig. 1. Cortical surface reconstructed from MRI using Freesurfer [40],
where the upper portion is represented by its triangulated mesh of
dipoles. A zoomed-in segment of the triangulation is shown on the left
and it highlights the local topology of the source space. The brown vertex
is the central dipole, and the first and second neighbors are represented
by green and blue vertices, respectively. The local topology of the source
space is employed in the construction of matrices F and B (see (2)–(4)).

of the autoregressive model. We will explain our choices of λ

and ai in Section II-G.
Equation (2) can be expressed in the following compact form,

xt = Fxt−1 + wt, (3)

where the Nx × Nx matrix F , referred to as the transition ma-
trix, captures the spatial interactions in the autoregressive model
(See Fig. 1), and the state noise wt := [w1,t , w2,t , . . . , wNx ,t ]

′

represents inputs that drive the cortical currents. We model the
state noise vector wt as a Gaussian process with covariance ma-
trix Q, independent and identically distributed across time, and
independent of the measurement noise vt . The initial state vector
x0 is assumed to be a Gaussian random vector with mean zero
and covariance Q0 . Note that the static model can be regarded
as a special case of the dynamic model where F is set to zero.

In previous works, the source covariance Q has been modeled
with a diagonal structure [1], [6], [12]. However, this diagonal
structure treats the sources as independent across the cortex,
and fails to account for the spatial dependencies between the
sources and in the underlying state noise. We generalize the
structure of Q by specifying off-diagonal elements that can
capture spatial dependencies between the sources and in the
state noise process. To do this, we construct a basis for repre-
senting Q that is informed by the local topology of the source
space [11].

Let B be a Nx × Nx matrix with elements:

(B)i,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if i = j

δ1di,j if j ∈ N1(i)

δ2di,j if j ∈ N2(i)

0 otherwise

, (4)

where N1(i) and N2(i) denote the set of first and second nearest
neighbors of the dipole i, respectively, and δ1 and δ2 are two
positive scaling constants (See Fig. 1). Let {q1 , q2 , . . . , qNx

} be
the a set of orthonormal basis vectors spanning the range of B.
We restrict the structure of Q to the set of symmetric matrices
of the following form:

Q(θ) =
Nx∑

i=1

θiqiq
′
i . (5)

where θi are the expansion coefficients, and θ := [θ1 , θ2 ,
. . . , θNx

]′.

B. Priors on the State-Space Parameters

In theory all the parameters in our model have uncertainties.
However, some of them can be fixed a priori based on knowledge
of the system under investigation. For instance, the transition
matrix F is constructed as described above (see Section II-A)
and the lead field matrix G is computed using a boundary-
element model based on magnetic resonance images (MRI)
(see Section II-I).

The covariance matrices {Q,Q0 , C}, on the other hand, have
to be estimated from the data. As discussed in the introduction,
EEG/MEG source activity can be viewed as sparse compared
to the large number of potential sources, and this sparsity can
be represented in terms of a sparse prior source covariance. To
estimate a sparse covariance, we use sparsity-enforcing priors
on the coefficients θi that parameterize {Q} in (5). The sparse
priors can be formulated in a number of ways. We describe here
three forms of sparse priors on θi , namely, the Laplace prior,

p(θ) = γNx

Nx∏

i=1

exp(−γθi), (6)

the Jeffreys prior [41],

p(θ) =
Nx∏

i=1

1
|θi | , (7)

and log-sum approximation to the zero-norm log-prior [42],

p(θ) =
Nx∏

i=1

c0

(1 + γ|θi |)2 . (8)

The parameter γ in (6) and (8) can be tuned in order to maintain
the appropriate scaling of the expansion coefficients with the ob-
servation data (see Section II-G for details). The normalization
constant c0 in (8) does not need to be explicitly computed, since
it does not couple with the parameters θi in the log-likelihood
form. For brevity, we denote the prior given in (8) by the name
log-sum prior. In Section II-E will derive expressions for esti-
mating θi under each of these priors, and will compare source
localization performance using each prior (see Table I and Re-
sults).

As discussed in the Introduction, the characterization of the
observation noise is a crucial requirement for source localiza-
tion, and is particularly challenging in EEG recordings of spon-
taneous brain oscillations, because the observation noise cannot
be temporally separated from the overlying neurophysiological
signal. Therefore, in our approach we consider the observation
noise covariance as an unknown parameter. We use the inverse
Wishart distribution [39] as a prior density for the observation
noise covariance C:

p(C) =
|Ψ| ν

2

2
ν N y

2 ΓNy

(
ν
2

) |C|− ν + N y + 1
2 exp

(
−1

2
tr(ΨC−1)

)
,

(9)
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TABLE I
ABBREVIATIONS FOR THE DIFFERENT SOURCE LOCALIZATION ALGORITHMS EVALUATED IN THE RESULTS SECTION

where Ψ is a Ny × Ny positive definite matrix, and ν is an order
parameter. The inverse Wishart prior is commonly employed to
regularize covariance estimates in order to achieve robustness
[39]. We set the scale matrix Ψ and degrees of freedom ν based
on the observed data as described in Section II-G.

C. Parameter Estimation Using a Maximum a Posteriori
Expectation–Maximization Algorithm

Given the state space model as defined above, we can obtain
a solution to the source localization problem by estimating 1)
the source covariance matrix Q parameterized by the expansion
coefficients θi , 2) the observation noise matrix C, and 3) the
sequence of source amplitudes {xt}T

t=1 := [x1 , x2 , . . . , xNT
].

For the parameters θi and C we use a Maximum a Posteriori
(MAP) approach:

{
θ̂, Ĉ

}
MAP := argmax

θ,C
p

(
θ, C|{yt}T

t=1
)

(10)

where p
(
θ, C|{yt}T

t=1
)

is the posterior density of the parame-
ters

{
θ, C

}
conditioned on the set of measurements {yt}T

t=1 .
For the source amplitudes, the conditional mean of the state

vector at time t given the full set of measurements {yt}T
t=1 and

the MAP estimate
{
θ̂, Ĉ

}
MAP, i.e., the empirical Bayes estimate,

is denoted by:

xt|T := E
{

xt

∣∣∣{yt}T
t=1 ,

{
θ̂, Ĉ

}
MAP

}
, (11)

where the subscript notation xt|T denotes that the conditioning
at time t is over the full set of measurements from time 1 to T .

Once we obtain the MAP estimate of the parameters{
θ̂, Ĉ

}
MAP, the empirical Bayes estimate of the source am-

plitudes (11) can be readily obtained using the well-known
Kalman Filter (KF) [43] and Fixed Interval Smoother (FIS)
algorithms [44].

To obtain the MAP estimate of the parameters {θ, C}, we de-
rive an Expectation-Maximization (EM) algorithm, treating the
sequence of measurement {yt}T

t=1 and the state vector {xt}T
t=0

as the complete data and iterating the E-step followed by an
M-step until convergence is achieved [12].

In the rth iteration of the E-step, we compute the conditional
expectation of the complete data log-posterior, given the ob-
served data {yt}T

t=1 , the previous estimates of the parameters

{θ, C}(r−1) , and with an added term for the log-prior density:

U({θ, C} | {θ, C}(r−1)) =

− 1
2

{
c1 + log |Q(r−1)

0 | + tr
[
Q−1

0
(r−1)(P (r)

0|T + x
(r)
0|T x

(r)′

0|T )
]}

− 1
2

{
c1T + T log |Q| + tr

[
Q−1Ω(r)

]}

− 1
2

{
c2T + T log |C| + tr

[
C−1Σ(r)

]}

+ log p(θ) + log p(C), (12)

where c1 and c2 are constants not depending on {θ, C}, P
(r)
t|T =

Cov(xt |yk
T
k=1 , θ, C

r ) is the conditional covariance, and Ω(r)

and Σ(r) are given by [12]:

Ω(r) :=
T∑

t=1

{(
P

(r)
t|T + x

(r)
t|T x

(r)′

t|T
)

−
(
P

(r)
t|T (P−1 (r)

t|t−1)
′F (P (r)

t−1|t−1)
′ + x

(r)
t|T x

(r)′

t−1|T
)
F ′

− F
(
P

(r)
t−1|t−1F

′P−1 (r)
t|t−1P

′(r)
t|T + x

(r)
t−1|T x

(r)′

t|T
)

+ F
(
P

(r)
t−1|T + x

(r)
t−1|T x

(r)′

t−1|T
)
F ′

}
,

and

Σ(r) :=
T∑

t=1

{(
yt − Gx

(r)
t|T

)(
yt − Gx

(r)
t|T

)′

+ GP
(r)
t|T G

′
}

.

(13)
We use the Kalman Filter (KF) [43] to calculate the predicted(

P
(r)
t|t−1

)
and filtered

(
P

(r)
t|t

)
covariance matrices, and use the

Fixed Interval Smoother (FIS) [44] to calculate the smoothed
state estimates

(
x

(r)
t|T

)
and smoothed covariance matrix

(
P

(r)
t|T

)

(See the appendix and [12] for details). The estimated sequence
of source amplitudes {x̂t}T

t=1 correspond to the smoothed state
estimates.

D. Steady-State Versions of the Kalman Filter and
Fixed-Interval Smoother

The EM algorithm described above has a high computational
cost because each E-step requires estimation of filtered and
smoothed covariance matrices, as well as smoothed state esti-
mates. The covariance matrices are particularly costly to handle,
because at each time step, Nx × Nx matrices must be multiplied
and inverted, and then must be stored for use in the FIS. In order
to reduce the computational and storage costs of this algorithm,
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we introduce steady-state versions of the Kalman Filter (SS-
KF) and Fixed Interval Smoother (SS-FIS) [45], [46]. We use
the SS-KF and SS-FIS to replace the predicted, filtered, and
smoothed covariance matrices at each time point with steady-
state versions that are computed and stored only once per EM
iteration.

We denote the steady-state predicted state covariance, filtered
state covariance, and Kalman gain, respectively, as:

P−(r) := lim
t→∞P

(r)
t|t−1 ,

P (r) := lim
t→∞P

(r)
t|t ,

K(r) := lim
t→∞K

(r)
t . (20)

The steady state values P−(r) , P (r) , and K(r) can be computed
using an efficient nonrecursive procedure based on the solution
of the discrete algebraic Riccati equation (DARE) using the
MacFarlane-Potter-Fath eigenstructure method (See [45] and
[46] for details). By finding the solution to the Riccati equation,
we can compute the Kalman gain and the predicted covariance
as:

K(r) = P (r)G′(GP (r)G′ + C(r))−1 ,

P−(r) = (I − K(r)G)P (r) . (15)

The FIS gain given by J
(r)
t = P

(r)
t|t F ′P (r)−1

t+1|t and the

smoothed covariance given by Pt|T = P
(r)
t|t + J

(r)
t (P (r)

t+1|T −
P

(r)
t+1|t)J

′(r)
t are continuous functions of the predicted and fil-

tered state covariance matrices from the KF. Consequently,
steady-state values for these quantities can also be defined:

J (r) := lim
t→∞J

(r)
t = P (r)F ′P−(r)

P+(r) := lim
t→∞P

(r)
t|T = P (r) + J (r)(P (r) − P−(r))J ′(r) . (16)

Since the smoothed state estimates x
(r)
t|T only depend on the

smoother gain (See the appendix), we can calculate approximate
values denoted by x̃

(r)
t|T using the SS-FIS.

E. M-step

After each E-step, we update the unknown model parameters
in the subsequent M-step, which is achieved by maximizing
the function U({θ, C} | {θ, C}(r−1)) (12) with respect to the
parameters {θ, C}.

For each of the prior densities for the state covariance parameters
(6)–(8), the maxima are achieved at:

θ(r)
n =

√
T 2 + 8q′nΩ(r)qnγ − T

4γ
, for the Laplace prior, (17)

θ(r)
n =

q′nΩ(r)qn

T + 2
, for the Jeffreys prior, (18)

and in the expression in equation (19) at the bottom of the
page, for the log-sum prior for n = 1, 2, . . . , Nx . Similarly, the
observation noise covariance can be updated in the M-step using
the following expression:

C(r) =
Σ(r) + νΨ

T + ν + Ny + 1
. (20)

Equations (17)–(20) reveal the trade-offs between the empirical
estimates (i.e., Ω(r) and Σ(r)) and priors (i.e., γ, ν, and Ψ) on
the parameters: if the empirical estimates are reliable (i.e., high
SNR and no model mismatch) the contribution of the prior is
suppressed, whereas when the empirical estimates of Q and C
are ill-conditioned, the prior values dominate the estimates and
thereby result in estimation stability.

The EM algorithm iterates between the E-steps and M-steps
until the log posterior density of the parameters evaluated at{
θ(r) , C(r)

}
given by:

log p(θ(r) , C(r) |{yt}T
t=1) = log p

({yt}T
t=1 |

{
θ(r) , C(r)

})

+ log p(θ(r)) + log p(C(r)) − log p({yt}T
t=1) (21)

reaches an asymptote at some iteration r [12].

F. Source Space

Under a distributed source model, cortical currents can be
represented using a dense sampling of current dipoles, with as
many as 10,000 or more dipoles covering each cortical hemi-
sphere. However, the number of independent sources that can be
localized is in principle limited by the number of EEG sensors.
Moreover, the spatial resolution of EEG is limited by factors
such as the low conductivity of the skull and the distance of the
sources from the sensors [37]. If the source space is large, source
estimation, particularly using a dynamic model, can be compu-
tationally burdensome or infeasible. On the other hand, if the
number of dipoles in the source model is reduced significantly,
the resulting coarse spatial sampling may not appropriately cap-
ture the geometry of the gyri and sulci [47].

To achieve a balance between an accurate representation of
source geometry and manageable computational complexity,
we employed a reduced-dimension source space consisting of
densely-sampled homogeneous cortical patches [47]. We con-

θ(r)
n =

(q′nΩ(r)qnγ − T )/2 +
√(

q′nΩ(r)qnγ−T
)2

/4+ 2γ
(
2 + T

2

)
q′nΩ(r)qn

γ(4+T )
, (19)
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structed the source space using cortical patches of average di-
ameter 1.25 cm +/− 0.18 cm tiling the entire cortical mantle,
consistent with the presumed centimeter-level spatial resolu-
tion of EEG [37]. The resulting source space had 1284 cortical
patches. Each patch was composed of many densely sampled
dipoles, with a total of ∼300, 000 dipoles across all cortical
patches [31]. We treated the cortical currents within each patch
as having a constant value (i.e., single dipole), summing the
contributions across the densely sampled dipoles. Since the ori-
entation of the current generators of the electromagnetic field,
i.e., the apical dendrites of pyramidal cells, is perpendicular to
the cortical surface [37], we constrained the dipoles within each
patch to be oriented normal to the cortical surface. This allowed
us to represent the current in each patch using a single state
parameter.

G. Parameter Settings and Algorithm Initialization

We constructed the matrix B given in (4) using δ1 = 0.5 and
δ2 = 0.25, and the transition matrix F to incorporate nearest-
neighbor interaction between source patches. In both cases, the
distances between the centroids of patches were calculated using
the triangular tessellation of the cortical surface. We set the value
of ai to 0.5 to account for the balance between the past activation
in the central dipole and its neighbors, and λ to 0.95. For these
parameter choices, the modulus of the largest eigenvalue of F
is strictly less than 1, ensuring that the source model dynamics
are stable.

We based our estimate of the initial observation noise covari-
ance on the sample covariance of the EEG data after high-pass
filtering above 50 Hz, since in our experience, noise sources tend
to predominate at frequencies >50 Hz. The initial observation
noise covariance was therefore set to C0 = 2 ∗ COV (ŷi , ŷj ),
where ŷi and ŷj represent the EEG data high-pass filtered above
50 Hz, and where the factor of 2 accounts for noise occupy-
ing frequencies <50 Hz. We set the parameters of the inverse
Wishart distribution, Ψ and ν, to match the estimate of the ini-
tial observation noise covariance –i.e., Ψ was set equal to C0
and ν was set to the length of the signal. We chose the ini-
tial state noise covariance Q(θ(0)) to be Q(θ(0)) = 0.1Q0 , with
Q0 = σ2

xI , where

σ2
x := SNR

tr(C0)
tr(GG′)

, (22)

to approximate the power signal-to-noise ratio (SNR) of the
measurements.

Finally, we chose the parameter γ for the Laplace prior to be
the average of the Nx quantile estimates, given by:

γ =
−∑Nx

i=1 log(1 − (i − 1/2)/Nx)
tr(Q0)

. (23)

Note that for large values of Nx , γ ≈ 1
σ 2

x
. Similarly, for the log-

sum prior (with undefined mean), we choose γ to be inversely
proportional to the initial state variances:

γ =
Nx

tr(Q0)
. (24)

H. Summary of the Algorithms

Table I shows a summary of the key features of the algorithms
described here and in previous work, and provides nomenclature
that will be used in the remainder of the text.

For brevity, in the next sections, we refer to sMAP–EM and
dMAP–EM as sMAP and dMAP, respectively. All the algo-
rithms were implemented in Matlab (The MathWorks, Natick,
MA) running on a dual 6-core Linux workstation at 2.67 GHz
with 24 GB RAM.

I. Experimental Recordings

Following approval from the Massachusetts General Hospi-
tal Human Research Committee, the EEG data were recorded
using a 64-channel EEG cap (BrainAmp MRPlus, BrainProd-
ucts, GMBH) from three human subjects. The recordings were
acquired at a sampling frequency of 5 kHz. The data were re-
referenced to a common average reference, down-sampled to
200 Hz, and filtered above of 0.1 Hz off-line. The positions
of the EEG electrodes and fiduciary points (nasion and pe-
riauricular points) were digitized using the 3Space Isotrak II
System, and aligned to each subject’s structural MRI prior to
forward model construction. We computed the forward model
gain matrices G for each subject using the MNE software
(http://martinos.org/mne/), using a realistic 3-layer boundary
element method (BEM) model based on high-resolution struc-
tural MRI obtained for each subject (T1 mprage, 1.3 mm slice
thickness, 1.3 × 1-mm in-plane resolution, TR/TE = 2530/3.3
ms, 7◦ flip angle, Siemens Trio 3 Tesla MR scanner). The three
layers modeled were scalp, brain, and skull with conductivity
values of 0.3 S/m for scalp and brain, and 0.006 S/m for the skull
(i.e., default values proposed by MNE). Dipoles within 5 mm of
the inner-skull bounding surface were discarded from the com-
putation of the gain matrix G to avoid numerical inaccuracies
that could potentially affect the source activity estimates [31].

J. Design of Simulation Studies

We simulated 10 Hz sinusoidal oscillations, 1s in duration,
with a sampling frequency of 200 Hz, over a patch of cortical
activity located in the pre-frontal cortex of the left hemisphere,
using a density sampled cortical source space of ∼300, 000
dipoles. The patch of activity was composed of ∼3000 dipoles
(i.e., 12 cortical patches, see Section II-F) with spatially uniform
amplitudes (Fig. 4). To generate the simulated 64-channel EEG
recordings, we used the observation model given by (1) with the
measurement noise covariance estimated using the MNE soft-
ware from experimental EEG data and the gain matrix G from
one of the three subjects included in the study (see Section II-I).
In order to avoid the so-called “inverse-crime”, we used a dif-
ferent gain matrix for source localization than the one used
to generate the simulated data. Specifically, for the simulation,
we used a lead field matrix computed over a density sampled
cortical source space of ∼300, 000 dipoles. For source localiza-
tion, we used a gain matrix computed over a reduced-dimension
source space consisting of densely-sampled homogeneous cor-
tical patches (see Section II-F). Finally, we scaled the dipole
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TABLE II
COMPARISON OF KF AND FIS TO SS-KF AND SS-FIS, RESPECTIVELY (MEAN +/- STD. DEV. OVER 25 REALIZATIONS)

The standard and steady-state versions of these algorithms have very similar AUC, normalized RMSE inside and outside the active region,
and localized energy ratio values. However, the computation time for the steady-state algorithms is significantly lower.

amplitudes to achieve an SNR of 3 (typical for EEG recordings)
[36]. We also performed a number of additional simulations,
reported in the Supplementary Material Sections I–III, featur-
ing activity in different cortical areas, with multiple distant yet
spatially-correlated sources, and with lower SNR values, to as-
sess the robustness of our method.

K. Performance Measures

In previous studies, we found that sMAP and dMAP improved
source localization performance compared to the L2 Minimum
Norm Estimate [1] and the Fixed Interval Smoother (FIS), in
terms of spatial localization accuracy, temporal tracking, pos-
terior error covariance, and RMSE and ROC measures [12].
We therefore focus our performance analyses on comparisons
of our new sparse methods under static (sLAP, sJEFF, sLOG)
and dynamic models (dLAP, dJEFF, dLOG) with the previously
established sMAP and dMAP models.

In order to evaluate the performance of our proposed source
localization algorithms on the simulated data, we used three
performance measures: 1) the root mean square error (RMSE),
both inside and outside the active region, normalized by the root
mean square (RMS) of the entire simulated patch activity; 2)
the localized energy ratio; and; 3) the receiver operating charac-
teristic (ROC) curve. We describe these performance measures
in detail below.

The expression for the normalized RMSE is given by:

RMSEi :=

√
∑ T

t = 1

(
x̂i , t −x

( SIM)
i , t

)2

T√
∑

i∈I
∑ T

t = 1

(
x

( SIM)
i , t

)2

IT

(25)

where x̂i,t and x
(SIM)
i,t denote the estimated (i.e., the smoothed

state estimates) and the simulated values of the ith patch at time
t, and I denotes the set of indices corresponding to the patches
in the active region.

We define the localized energy ratio as the ratio of the energy
of the estimates in the actual active patches to that of the entire
source space [31]:

E =
∑

i∈I
∑T

t=1 |x̂i,t |2∑Nx

i=1
∑T

t=1 |x̂i,t |2
. (26)

Finally, we compute the ROC curve, representing the sensi-
tivity/specificity trade-off, by evaluating the detection probabil-
ity and the false alarm probability given a threshold, c, on the
amplitude of the estimates, accounting for the null hypothesis.
The null hypothesis (H0) is true when the ith dipole source at
time t equals zero (x(SIM )

i,t = 0) [12]. We estimate the detec-

tion probability as the fraction of events where an active source
was correctly detected, i.e, when the dipole source estimate was
considered active (|x̂i,t | > c), given the presence of an active

source (x(SIM )
i,t 
= 0), with respect to the total duration of T and

all sources Nx . Similarly, we estimate the false alarm probabil-
ity as the proportion of events where the source estimate was
deemed to be active but the underlying true source was inactive
(x(SIM )

i,t = 0), with respect to the total duration of T and all
sources Nx .

III. RESULTS

A. Characterization of Steady State Algorithms

To evaluate our proposed steady-state algorithms, we com-
pared the performance of the KF and FIS to their steady-state
counterparts, the SS-KF and SS-FIS (Table II). For brevity, we
present only the performance comparison for the dLAP algo-
rithm; the Jeffreys and log-sum algorithms showed very similar
performance. The simulation and estimation were repeated 25
times with different realizations of the observation noise. The
computation time was estimated as the average over all 25 real-
izations.

The performance differences between the KF/FIS and their
steady-state versions were small. The KF and FIS had a slightly
better RMSE outside the active region compared to the SS-KF
and SS-FIS. However, the SS-KF and SS-FIS reduced the com-
putational time by 12-fold compared to the standard versions of
the algorithm.

Fig. 2(a) shows the smoothed state estimates x̂t|T and x̃t|T
for KF and FIS and for SS-KF and SS-FIS, respectively, for two
exemplary patches inside and outside the active region follow-
ing the convergence of the EM algorithm. The two estimates
only deviate for the first approximately 10 ms, and are virtually
identical thereafter. To quantify the temporal performance in
greater detail, we computed the histogram of the time it takes
to have a normalized deviation of less than 5% between the KF
and FIS, and SS-KF and SS-FIS, over the entire source space
for one realization of the simulation (Fig. 2(b)):

(x̃i,t − x̂i,t)2

1
T

∑T
t=1 x̃2

i,t

. (27)

For more than half of the patches, the required time for the
SS-KF and SS-FIS to achieve a normalized deviation of at most
5% compared to KF and FIS was less than 10 ms. This level of
performance is similar to other recent applications of steady-
state Kalman filters [45].
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Fig. 2. Comparison between KF and FIS, and SS-KF and SS-FIS.
(a) The estimated activity from two patches, one inside (top panel) and
one outside (bottom panel) the active region, obtained using KF and FIS
(blue lines) and SS-KF and SS-FIS (red lines). The estimates of KF/FIS
and of their steady-state versions are nearly identical for the patch inside
the active region. For the patch outside the active region, the SS-KF and
SS-FIS estimate has a normalized deviation of more than 5% from the
KF/FIS estimate for only the first 10 ms of the data, and closely follows
the KF/FIS estimate afterwards. (b) Histogram of the time required for
the SS-KF and SS-FIS estimate to achieve a normalized deviation of
less than 5% from the KF/FIS estimate for all the patches in the source
space. For more than 50% of the patches, the deviation time is less than
10 ms.

Fig. 3. Estimated observation noise covariance matrices. The first
panel shows the observation noise covariance matrix used to gener-
ate the simulated data. The units of the color bar are μV2 . The second
panel shows the Ψ matrix. The third through fifth columns show the es-
timated observation noise covariance matrices for the sMAP, sLAP, and
dLAP algorithms, respectively. The estimated covariance matrices under
all three methods are consistent with the covariance of the data generat-
ing process. Note that due to regularization, a combination of the initial
estimate Ψ and the empirical estimate from the EM algorithm shapes
the structure of the final estimate of C , in both the simulated and exper-
imental data analysis results. We report here the estimates from three
methods for brevity. However, all the methods showed a similar ability to
recover the main structure of the original observation noise covariance.

For the remainder of the simulation studies, as well as the
analysis of experimental data, we used the SS-KF and SS-FIS
for all the dynamic methods.

B. Estimation of the Observation Noise

We next evaluated our algorithm for estimating both the scale
and the structure of the observation noise covariance. As illus-
trated in Fig. 3, we were able to appropriately capture the struc-
ture of the noise covariance using the inverse Wishart prior. Both
the static and dynamic models underestimated the total variance
in the observation noise matrix by about ∼36%. However, as
the following results reveal, the loss in the total variance of the
estimated observation noise covariance had a negligible effect
on the source localization performance.

C. Results: Simulation Studies

First, we characterized the performance of our method by
analyzing simulated data. The static models, particularly sMAP,

produced estimates that appeared to be more focal than the true
active region (Fig. 4), with amplitudes dramatically lower than
the actual simulated signals (Fig. 5). Moreover, these models
could produce strong activity outside the actual active region.
The dynamic models, on the other hand, produced estimates
with a spatial spread comparable to the actual activity, with
estimated time courses that more closely matched the simulated
signals, notably in the amplitude of the signal. In both static and
dynamic models, the use of a sparse empirically-tailored basis
led to improvements over the sMAP and the dMAP, respectively,
in terms of both the spatial spread and the estimation of the
amplitude.

Normalized RMSE and localized energy ratio values were
consistent with these observations (Fig. 6). Among the static
models, the sLAP was the one that provided the lowest RMSE
inside the simulated active region, with a value of 0.84, which
translates into an improvement of ∼9% compared to the sMAP
algorithm (Fig. 6(a)). The sMAP algorithm exhibited a better
RMSE performance outside the active region, with an improve-
ment of ∼16% over sLAP and sLOG, and ∼13% over sJEFF
(Fig. 6(b)). However, sMAP achieved the lowest value of lo-
calized energy ratio among the different algorithms (∼3 times
smaller than those of the sparse static models and ∼10 times
smaller than those of the dynamic models, Fig. 6(c)). In other
words, the sMAP algorithm tended to spread the source energy
over the entire cortical space, instead of localizing it over the
actual region of activity.

Dynamic models were significantly better at capturing the
activity inside the true area of activation compared to static
models. They achieved a localized energy ratio about ∼4 times
higher than those of their static counterparts (Fig. 6(c)). The
dLAP model showed the lowest RMSE inside the active region
with a value of 0.64, which represents an improvement of∼11%
compared to dMAP (Fig. 6(a)).

ROC measures showed similar performance trends (Fig. 7).
The static models exhibited the lowest initial slope as well as
AUC. In particular sMAP (magenta trace, top panel) had the
lowest detection rate as a function of false alarm probability
compared to all other methods. The use of an empirically-
tailored basis and sparse priors in static models made it possible
to achieve ROC performance similar to those of the dynamic
models (about 0.94). The highest value of AUC was achieved
using the sJEFF (about 0.95). The ROC curves show that the
dynamic models outperformed their static counterparts. Among
them, the dLAP (red line), dJEFF (dark green line), and dLOG
(blue line) achieved the highest AUC (about 0.98) as well as the
highest initial slope. The dynamic models with sparse priors and
an empirically-tailored basis (dLAP, dJEFF, and dLOG) were
similar in their localization accuracy and computational time
(see Table III).

In order to further evaluate the performance of our proposed
algorithms, we performed additional simulation studies: (1) a
patch of activity simulated over the somatosensory cortex; (2)
performance against varying SNR levels; and (3) performance
under the presence of a non-local second source whose activity
is related to the original source in a cross-regressive fashion. We
obtained results consistent with our simulation of the pre-frontal
activity (see Supplementary Material Section I– III).
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Fig. 4. Left: The top panel shows the extent of the simulated activity at a representative point in time. The bottom panel shows the topographical
map of the electrical potentials at the same time instant. Right: Results for the simulated data, shown in the upper row for the static models (sMAP(1st
column), sLAP (2nd column), sJEFF (3rd column), and sLOG (4th column)), and shown in the bottom row for the dynamic state-space models
(dMAP (1st column), dLAP (2nd column), dJEFF (3rd column), and dLOG (4th column)). The color-bar units for the cortical maps are pAm, whereas
for the topographical map of the EEG sensors are μ V. The color-bar maximum (bright yellow) and minimum (bright blue) for the cortical maps were
fixed at +/- twice the standard deviation of the distribution for the estimated currents (i.e., top 5% of the estimates) for both the static and dynamic
models. The estimated cortical currents were thresholded at +/- 1 standard deviation [12] and [31]. We found that the dynamic estimates had spatial
distributions that corresponded more closely to the true active region compared to static estimates, particularly when sparse prior models were
used.

Fig. 5. Time courses estimates for a representative patch inside the true active region. The patch is denoted by a blue dot in the left panel. The
static models are shown in the top panels (sMAP (magenta line), sLAP (red line), sJEFF (green line), and sLOG (blue line)), and the dynamic
models are shown in the bottom panels (dMAP(magenta line), dLAP (red line), dJEFF (green line), and dLOG (blue line)). The simulated signals
are shown in black. The dynamic models, particularly when sparse priors and an empirically-tailored basis are used (dLAP, dJEFF, dLOG), gave the
best tracking of the time course of the simulated activity.

D. Results: Experimental Data

To illustrate the performance of our proposed algorithms on
an experimental EEG data, we estimated the sources of spon-
taneous alpha oscillations (8–12 Hz) elicited during wakeful
eyes-closed relaxation. Alpha rhythms are thought to originate
in the occipital lobe and are visible when the subjects have
their eyes closed, but are not visible when the subjects have
their eyes open [48]. We report here source localization anal-
yses of one second in the eyes-open condition and one second
during the eyes-closed condition selected at random for three
human subjects (Figs. 8 and 9). Source localization of spon-
taneous brain oscillations represent a challenging and highly
appropriate testbed for our approach, since in this scenario,
the background noise and the neurophysiological signal occur
simultaneously, and cannot be estimated separately simply by
selecting non-overlapping time intervals.

For all three subjects, the dynamic models appeared to per-
form better than static models. Compared to static models, the
alpha waves localized by the dynamic models were more com-
pact spatially, and covered a larger area of the occipital pole.
The static models tended to have highly focal estimates, with

Fig. 6. (a) Average normalized RMSE inside and (b) outside the sim-
ulated active region for the different prior models (units pAm). Dynamic
state-space models with sparse priors and an empirically-tailored basis
(dLAP, dJEFF, dLOG) achieved the lowest value of average RMSE inside
the active region. (c) Localized energy ratio for the different prior mod-
els. Dynamic state-space models with sparse priors and an empirically-
tailored basis (dLAP, dJEFF, dLOG) achieved the highest value of
localized energy ratio.

source amplitudes that were 10-fold smaller than those obtained
using dynamic models, consistent with the signal loss observed
in the analysis of simulated data. Among the dynamic models,



1368 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 65, NO. 6, JUNE 2018

Fig. 7. ROC curves and area under the ROC curves for static models
(upper line, Panels A and B) and for dynamic models (bottom line, Panels
C and D). Panels B and D provide a zoomed-in view of the left corner
of the ROC with detection probability between 0.7-1 and false alarm
probability between 0-0.3. The algorithms with an empirically-tailored
basis and sparse priors outperformed sMAP and dMAP, detecting more
active patches with significantly fewer false alarms. Dynamic state-space
models had AUC values that were higher than those of the static models.
The use of an empirically-tailored basis and sparse priors in static models
made it possible to achieve AUC values similar to those obtained using
dynamic models.

TABLE III
COMPUTATIONAL TIME (MEAN +/- STD. DEV. OVER 25 REALIZATIONS) FOR

THE THREE DYNAMIC MODELS WITH SPARSE PRIORS AND AN
EMPIRICALLY-TAILORED BASIS (DLAP, DJEFF, DLOG)

The three methods had similar computational performance.

the dMAP estimates appeared to be more focal and spatially
irregular compared to the dynamic models utilizing sparse pri-
ors and an empirically-tailored basis (dLAP, dJEFF, dLOG).
For all the algorithms, the patches that were active during the
eyes-closed condition showed substantially lower source ampli-
tudes with eyes open, consistent with what is known about alpha
oscillations.

IV. DISCUSSION

EEG/MEG source localization methods express constraints
on the spatial distribution and/or temporal evolution of the
underlying source currents of interest [1]–[10]. When viewed
in a probabilistic sense, these constraints can be specified in
terms of prior distributions [11], [13]–[20], and in particular,
in terms of the spatial and/or temporal covariance structure of
the sources. In this paper we used a linear dynamical system
to specify spatio-temporal constraints for how sources could
evolve in time, and introduced novel procedures for sparse,

computationally-efficient estimation of the spatial covariance
structure of this dynamical system. In addition, we introduced a
method for estimating measurement noise within this dynamic
system, a component of the system that is both important, and
difficult to estimate in EEG studies.

We modeled the spatial covariance structure of the sources
using a set of local covariance elements encompassing first-
and second-order neighbors (Fig. 1). We then imposed sparse
prior models on these covariance components, and used an EM
algorithm to estimate them. We found that our new sparse meth-
ods improved estimation of the underlying source distributions
and time courses (Fig. 6) compared to algorithms that did not
employ spatial continuity nor sparsity [12]. We also found that
the improvement in performance did not depend upon the form
of the sparse prior, and occurred under both static and dynamic
models. Previous work by Friston et al. [11] described the use of
sparse covariance structures for EEG source localization, using
model selection procedures to identify the covariance compo-
nents to include in the model. Our work expresses a similar idea,
but formally specifies prior distributions on the covariance ele-
ments to promote sparsity. We developed analytical expressions
for EM algorithms for the maximum a posteriori estimates of
these covariance elements under three different prior distribu-
tions. In addition, we applied this sparse covariance structure
under both static and dynamic models.

Knowledge of the characteristics of the observation noise is a
crucial requirement for source localization algorithms. In MEG
recordings the observation noise can be estimated using empty
room recordings [36]. However, the situation is more challeng-
ing for EEG recordings, since the measurement noise is a func-
tion of the skin-electrode interface, necessitating a connection
with the subject or patient being studied. In addition, the obser-
vation noise in EEG can be interpreted differently depending on
the EEG experiment being conducted, e.g., recordings of resting
state or spontaneous oscillations, versus evoked-potentials stud-
ies. For evoked potential analysis the EEG observation noise can
be defined as the activity unrelated to the experiment and thus
can be estimated from the pre-stimulus baseline signal [37].
However, in the case of resting-state or spontaneous oscilla-
tions, the background observation noise cannot be temporally
separated from the overlying neurophysiological signal. In our
approach, we overcome this limitation using the EM algorithm
to simultaneously estimate the state and observation noise co-
variances. We employed a number of techniques to make this
procedure feasible. We used a multivariate inverse Wishart prior
[39] on the observation covariance matrix, and introduced a
practical procedure for obtaining initial estimates of the obser-
vation covariance using the high-frequency components of the
observed signals that would have relatively small physiological
signal power.

We also addressed one of the main drawbacks of spatio-
temporal dynamic algorithms: the high computational cost [31].
The Kalman Filter (KF) and Fixed-Interval Smoother (FIS) be-
come more computationally demanding as the dimension of the
state space increases. This is because, at each step in time, for
both the KF and FIS, the expressions for the state covariance
matrix, required for state estimation, involve multiplication and
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Fig. 8. Analysis of human EEG alpha rhythms for three healthy subjects for over one second in the eyes-open and eyes-closed conditions. The
color-bar units for the cortical maps are pAm. The color-bar maximum (bright yellow) and minimum (bright blue) for the cortical maps were fixed at
+/- twice the standard deviation of the distribution for the estimated currents for both the static and dynamic models (i.e., top 5% of the estimates)
[12] and [31]. The estimated cortical currents were thresholded at +/- 1 standard deviation. The maximum, minimum, and middle values were fixed
for each subject separately. The same maximum, minimum, and middle values were used for the eyes-open condition. The maps show the spatial
distribution of the estimated activity in the alpha band (8-12 Hz) at a time point corresponding to the maximum of the localized sources. For each
subject we also reported the scalp topography of the electric potential during the eyes-open and eyes-closed conditions. The color-bar units for the
topographic maps of the EEG sensors are μ V. The same maximum and minimum values were used for the eyes-open and eyes-closed conditions.
Dynamic models with sparse priors and an empirically-tailored basis (dLAP, dJEFF, dLOG) produced estimates of alpha activity in the eyes closed
condition that were more compact spatially, covering a larger area of the occipital pole than other methods.

Fig. 9. Time courses of source estimates from experimental data in one subject (the upper subject in Fig. 8). The estimated time series from
a representative patch in the right hemisphere (red dot in the left panel), shown in the eyes closed (first line for each method) and eyes open
conditions (second line for each method). The results for the different algorithms are organized as above, with the static models in the upper row
(sMAP (magenta lines), sLAP (red lines), sJEFF (green lines), and sLOG (blue lines)), and the dynamic models in the bottom row (dMAP (magenta
lines), dLAP (red lines), dJEFF (green lines), and dLOG (blue lines)). Note that the results for the static model are shown in units that are 10-fold
smaller than the dynamic models, reflecting the same significant reductions in signal amplitude under static models shown earlier in the analysis of
simulated data. All methods produced time series consistent with the physiology of alpha waves, showing higher-amplitude oscillations during the
eyes closed condition and smaller amplitudes with eyes open.

inversion of large matrices whose dimensions are governed by
the size of the state space. Moreover, these matrices must be
stored at each point in time. In the case of EEG/MEG source
localization under a distributed source model, the state space
can encompass 1000’s of sources. These complexities and costs
are compounded within the EM algorithm, which requires mul-
tiple iterations of the KF and FIS. In this paper, we introduced
steady-state versions of Kalman Filter (SS-KF) and Fixed Inter-
val Smoother (SS-FIS), replacing the state covariance compu-
tation at each time step with a steady state approximation that is

computed only once. In a state space model with Nx states and
Ny observations, where Nx > Ny , the complexity for a single
recursion of the KF is O(N 3

x ). For the steady state version, this
complexity is reduced to O(Nx) [45]. In practice, we found that
the SS-KF and SS-FIS reduced the computational time by more
than 12-fold compared to the full KF/FIS method, with negli-
gible loss of estimation accuracy (Fig. 2). This significant im-
provement in computational time would allow these algorithms
to be applied more widely in neuroscience or clinical applica-
tions, particularly when large amounts of data must be analyzed,
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as in studies of sleep, epilepsy, or resting state oscillations.
The computational cost is also dependent on the complexity of
the forward model. However, the computational requirements
for realistic boundary element method (BEM) models, which
achieve a practical compromise between accuracy of the solu-
tion and computational efficiency [49], are negligible compared
to those for the inverse solutions discussed in this paper.

We demonstrated the performance of our algorithm on both
simulated and experimental high-density EEG recordings. We
focused our analysis on spontaneous oscillations, which are
important in many neuroscience and clinical applications, in-
cluding studies of anesthesia [50]–[53], sleep [50], epilepsy
[54], and resting state functional networks [55]–[59]. Our
results were consistent across both scenarios (i.e., experimental
and simulated data). The dynamic models tended to recover dis-
tributed source activity better than the static models, most likely
due to the local interactions contained in the dynamic models.
Moreover, the static models tended to drastically under-estimate
the amplitude of source currents, by a factor of ∼10-fold. By
contrast, the dynamic models recovered significantly higher am-
plitude sources, closely matching the true source amplitudes in
the simulated data.

In this work, we focused on estimating the source and obser-
vation noise covariances. Other parameters, such as those that
govern the correlations between dipoles in the source covariance
matrix (i.e., δ1 , and δ2), and the interactions between dipoles in
the transition matrix F (i.e., , ai), were selected a priori as a
practical matter to limit the complexity of the algorithm. We per-
formed additional simulation studies using different choices for
these parameters (see Supplementary Material Section IV), and
found that the performance remained comparable, suggesting
that the method can perform well under a variety of circum-
stances.

The transition matrix F also plays a role in the tracking per-
formance of our algorithms. When using Bayesian filters (e.g.
the Kalman Filter), the key factor in determining the trackabil-
ity is the set of eigenvalues of the matrix (I − KG)F , where
K is the steady-state Kalman gain [60], [61]. Let λmax < 1 be
the maximum eigenvalue of this matrix. Then, it can be shown
that for an abrupt change of size δ, the filter tracks the change
exponentially fast with a rate of λmax but with an offset error
of the order of δ

1−λm a x
[60]. Thus, the filter will incur a delay

of the order 1
log( 1

λm a x ) samples in detecting abrupt changes. As

a result, when λmax is small, the filter has better trackability,
which comes with the cost of increasing the estimation vari-
ance [61]. In our approach, we construct the transition matrix
F to account for the temporal continuity of each patch at time t
with respect to the activity of its nearest neighbors at time t − 1.
Therefore, potentially by changing the structure of the matrix F ,
it is possible to control the value of λmax and thereby enhance
the tracking performance. In future work, the methods described
here could be extended to estimate the transition matrix F based
on the observed data. For instance, Cheung et al. [62] describe
methods for estimating linear autoregressive dynamics among
a small number of regions-of-interest using the EM algorithm;
such methods could be readily adapted to estimate the elements
of the transition matrix F . Doing so using formal estimation

procedures, such as the empirical Bayes method we have de-
scribed here or as in Cheung et al. [62], would make it possible
to tune the tracking performance based on the observed data, and
to estimate the dynamics within and between different sources.

Our work illustrates how spatially-distributed source activ-
ity can be estimated alongside an underlying sparse constraint.
Sparse, spatially-distributed activity is frequently encountered
in many neuroscience and clinical scenarios, including stimulus-
evoked and resting-state conditions. In future work, the meth-
ods described here could be developed further to include more
neurophysiologically-informed models that can account for pu-
tative patterns of structural or functional connectivity. Such
models could include long-range connections between sources,
informed by diffusion tensor imaging or functional MRI [63].
These long-range connections could take the form of prior
source covariances, as well as dynamic connections within the
state transition matrix, both of which could be estimated from
the data using methods such as those described by [62]. Ele-
ments of [62] and the present work could be readily combined
to characterize sparse dynamic cortical networks from EEG and
MEG data.

V. CONCLUSION

In this work we proposed a novel method for EEG source
localization that brings together 1) a linear state-space dynamic
modeling to specify spatio-temporal constraints for how sources
can evolve in time, 2) sparsity constraints in the spatial covari-
ance structure of this dynamical system, 3) a method for es-
timating measurement noise within this dynamic system, and
4) novel computationally-efficient estimation algorithms based
on steady-state versions of the Kalman Filter and Fixed Inter-
val Smoother. The results showed that our method outperforms
previous dynamic methods in terms of spatial localization ac-
curacy and temporal tracking, as demonstrated by RMSE and
ROC measures. Moreover, it improves computational time by
more than 12-fold over previous dynamic methods, facilitating
practical applications in both neuroscience and medicine.

APPENDIX

In this appendix we present the equations of the Kalman Filter
(KF) [43] and the Fixed Interval Smoother (FIS) [44] used in
the E-step. For each rth iteration of the E-step, we initialize the
states and the state covariance with x

(r)
0|0 = 0 and P

(r)
0|0 = Σ(r−1)

0 ,
respectively.

In the Kalman Filter, we compute, for t = 1, 2, . . . , T , the
predicted states and state covariance as:

x
(r)
t|t−1 = Fx

(r)
t−1|t−1 (28)

P
(r)
t|t−1 = FP

(r)
t−1|t−1F

′ + Q
(
θ(r−1)

)
(29)

and the filtered states and state covariance as:

x
(r)
t|t = x

(r)
t|t−1 + Kt

(
yt − Gx

(r)
t|t−1

)
(30)

P
(r)
t|t = (I − KtG)P (r)

t|t−1 (31)
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where Kt is the Kalman gain and it corresponds to Kt =

P
(r)
t|t−1G

′
(
GP

(r)
t|t−1G

′ + C(r)
)−1

.

In the case of the steady-state version of KF, we obtain
the steady-state predicted state covariance as the solution
of the discrete algebraic Riccati equation (DARE) using the
MacFarlane-Potter-Fath eigen-structure method (See [45] and
[46] for details). Then, from the steady-state predicted state
covariance, we compute steady-state filtered state covariance
and Kalman gain as indicated in Section II-D.

In the Fixed Interval Smoother, we compute, for t = T −
1, . . . , 0, the smoothed states and state covariance:

x
(r)
t|T = x

(r)
t|t + Jt

(
x

(r)
t+1|T − x

(r)
t+1|t

)
(32)

P
(r)
t|T = P

(r)
t|t + Jt

(
P

(r)
t+1|T − P

(r)
t+1|t

)
J ′

t (33)

where Jt = P
(r)
t|t F ′P (r)−1

t+1|t is the Smoother gain. We reported
the equations for the steady-state smoothed states and state co-
variance in Section II-D. We use the smoothed states obtained
on the last iteration of the EM-algorithm for source localization.
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