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Receive Antenna Selection for MIMO Systems over
Correlated Fading Channels
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Abstract—In this letter, we propose a novel receive antenna
selection algorithm based on cross entropy optimization to
maximize the capacity over spatially correlated channels in
multiple-input multiple-output (MIMO) wireless systems. The
performance of the proposed algorithm is investigated and
compared with the existing schemes. Simulation results show that
our low complexity algorithm can achieve near-optimal results
that converge to within 99% of the optimal results obtained by
exhaustive search. In addition, the proposed algorithm achieves
near-optimal results irrespective of the mutual relationship be-
tween the number of transmit and receive antennas, the statistical
properties of the channel and the operating signal-to-noise ratio.

Index Terms—Channel capacity, correlated channel, cross
entropy optimization (CEO), MIMO wireless systems, receive
antenna selection.

I. INTRODUCTION

MULTIPLE - INPUT MULTIPLE - OUTPUT (MIMO)
wireless systems can dramatically increase the chan-

nel capacity through the extra degrees of freedom provided
by multiple antenna arrays. In [1], it was demonstrated
that the capacity of MIMO systems increases linearly with
min(𝑁𝑇 , 𝑁𝑅), where 𝑁𝑇 and 𝑁𝑅 denote the number of trans-
mit and receive antennas. However, the higher performance of
MIMO systems comes at the expense of increased hardware
requirements and computational complexity due to multiple
radio frequency (RF) chains required. In order to reduce the
hardware cost and preserve the advantages of MIMO systems,
a promising technique referred to as antenna selection is
presented in [2]. With this method, the RF chains can be
optimally connected to the best subset of the transmitter (or
receiver) antennas. It has been demonstrated that the system
performance using antenna selection techniques is better than
the full-complexity systems with the same number of antennas
but without selection [2]. However, the superior performance
obtained by antenna selection is at the cost of additional
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computational complexity which grows linearly with
(
𝑀
𝐿

)
,

where 𝑀 and 𝐿 denote the total and selected number of
antennas, respectively [3], [4].

Recently, a number of algorithms have been developed for
selecting the optimal antenna subset in MIMO wireless sys-
tems. For example, in [5], Heath et al. derived a signal-to-noise
ratio (SNR) based antenna selection criterion to improve the
performance of MIMO systems with linear receivers. In [6],
Gore et al. presented antenna selection algorithms to minimize
the average probability of error (APE) and to maximize the
average throughput. However, an exhaustive search method
for antenna selection was used, which is computationally
prohibitive for a large array size1, and is not suitable for
implementation in practical systems. To address this problem,
some simplified antenna selection algorithms have also been
developed, such as norm-based selection (NBS), which can
be useful due to its low complexity [2], [7]. Sub-optimal
algorithms were presented at a low complexity for receive
antenna selection in [4]. Antenna selection approaches based
on the theory of optimization were derived in [8]. However,
the aforementioned studies have assumed that the MIMO
channels are independently fading, which is not strictly true
for real propagation environments. For example, in the case
of insufficient spacing between antennas or scattering with a
small angular spread, the channel capacity will be significantly
degraded due to spatial correlation [10]. Thus far, only a small
set of published literature investigates antenna selection for
correlated channels [11], [12].

In this letter, we formulate the antenna selection prob-
lem as a combinatorial optimization problem. Cross entropy
optimization (CEO) is used for antenna subset selection at
the receiver to maximize the channel capacity2. The CEO
method is so named due to its relation with the Kullback-
Leibler distance [13] which is also termed the cross entropy.
It is a principled adaptive importance sampling technique
devised by Rubinstein [14] to estimate the probabilities of rare
events in complex stochastic networks. It was then extended
to solve complicated combinatorial optimization problems by
considering an optimal event as a rare event, such as nonde-
terministic polynomial time (NP) hard problems [15]. While
most stochastic algorithms for combinatorial optimization are
based on local search, the CEO method is a global random
search procedure whose global convergence has been proven

1Choosing 𝐿 out of 𝑀 available antennas leads to a total of 𝑀!
𝐿!(𝑀−𝐿)!

possible combinations for antenna selection at the transmitter or receiver. For
example, if 𝐿 = 4 and 𝑀 = 16, 1820 combinations have to be examined to
obtain the optimal antenna selection subset.

2The proposed CEO method can be also used for the transmit antenna
selection with small revisions.
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Fig. 1. Block diagram of the MIMO system with receive antenna selection.

in [15]. The main contribution of this letter is to present a
novel receive antenna algorithm based on the CEO method
to maximize the capacity over spatially correlated channels.
Simulation results indicate that the near-optimal performance
of the proposed antenna selection algorithm is not sensitive
to the relationship between the number of transmit antennas
and the number of selected receive antennas, the statistical
properties of channels and the signal-to-noise ratio (SNR), as
has been the case with previous approaches.

Notation: The following notation is used in this letter.
Boldface uppercase and lowercase letters denote matrices and
vectors. Plain lowercase letters denote scalars. The super-
scripts (⋅)𝑇 and (⋅)H represent the transpose and Hermitian
operation. 𝔼[⋅] denotes the statistical expectation. Tr(⋅) and
∥ ⋅ ∥𝐹 denote the trace and Frobenius norm. I𝑚 is an 𝑚×𝑚
identity matrix. 𝒞𝑀×𝑁 refers to an 𝑀 × 𝑁 matrix with
complex entries and det(⋅) denotes the determinant operation.

II. SIGNAL MODEL

Consider a narrowband MIMO wireless system, shown in
Figure 1, with 𝑁𝑇 transmit and 𝑁𝑅 receive antennas. The
channel is assumed to be flat Rayleigh fading and slow varying
with additive white Gaussian noise (AWGN) at the receiver.
Then the corresponding received signal is given by [4]

y = Hs + v, (1)

which relates the received signal vector y = [𝑦1, . . . , 𝑦𝑁𝑅 ]
𝑇 ∈

𝒞𝑁𝑅×1 to the transmitted signal vector s = [𝑠1, . . . , 𝑠𝑁𝑇 ]
𝑇 ∈

𝒞𝑁𝑇×1 with covariance Q = 𝔼[ssH]. The vector v ∈ 𝒞𝑁𝑅×1

represents additive complex Gaussian noise with zero mean,
variance 𝑁0 and independently and identically distributed
(i.i.d.) entries. H denotes the 𝑁𝑅×𝑁𝑇 fading channel matrix
whose entries, ℎ𝑖𝑗 (𝑖 = 1 . . .𝑁𝑅; 𝑗 = 1 . . .𝑁𝑇 ), are the
complex fading coefficients between the 𝑖th receive and 𝑗 th

transmit antenna.
In order to evaluate the performance of the proposed

algorithm for correlated channels, the “one ring” model for
Rayleigh channels [10] is adopted in this letter. Specifically,
we assume that the correlation is present only at the receiver.
In other words, the rows of H are correlated while the columns
of H are independent. According to the Kronecker model, the
corresponding channel matrix can be written as

H = R
1
2
r G, (2)

where G ∈ 𝒞𝑁𝑅×𝑁𝑇 is the spatially white MIMO channel
matrix with zero-mean unit-variance i.i.d. complex Gaussian

entries. R
1
2
r is the Hermitian square root of Rr ∈ 𝒞𝑁𝑅×𝑁𝑅

which is defined by

Rr = 𝔼 [HHH]. (3)

According to the “one ring” model, the entries of the correla-
tion matrix, Rr(𝑖, 𝑗), represent the spatial correlation between
the 𝑖th and 𝑗 th receive antennas and can be approximated by
𝐽0(2𝜋 △∣ 𝑖− 𝑗 ∣ 𝑑/𝜆𝑐), where 𝐽0(⋅) is the zeroth-order Bessel
function of the first kind, 𝜆𝑐 is the carrier wavelength, △ is
the angular spread and 𝑑 is the antenna spacing.

We assume that perfect channel state information (CSI) is
available at the receiver but not at the transmitter, and thus
equal power allocation is used at the transmit array. Then, the
capacity of the MIMO channel is given by [1]

𝐶 = log2 det(I𝑁𝑅 +
𝜂

𝑁𝑇
HHH), (4)

where 𝜂 is the average SNR.

III. RECEIVE ANTENNA SELECTION

A. Problem Statement

Let us denote the number of total and selected receive
antennas by 𝑁𝑅 and 𝑁𝑟 respectively (𝑁𝑟 ≤ 𝑁𝑅), the set
of all ∣𝒜∣ = (

𝑁𝑅

𝑁𝑟

)
antenna subsets as Ω = {𝝎1, ⋅ ⋅ ⋅ ,𝝎∣𝒜∣}

and the indicators of the selected subset of receive antennas
by

𝝎𝑞 = {𝐼𝑖}𝑁𝑅

𝑖=1, {𝐼𝑖} ∈ {0, 1}, for 𝑞 = 1, 2, ⋅ ⋅ ⋅ , ∣𝒜∣, (5)

where 𝑖 is the index of the rows of H and the indicator function
𝐼𝑖 indicates that the 𝑖th row of H is selected, i.e., the 𝑖th receive
antenna is selected. The receive vector associated with the
selection can be written as

y𝝎𝑞
= H𝝎𝑞

s𝝎𝑞
+ v𝝎𝑞

= [R
1
2
r ]𝝎𝑞

G𝝎𝑞
s𝝎𝑞

+ v𝝎𝑞
, (6)

where y𝝎𝑞
∈ 𝒞𝑁𝑟×1, s𝝎𝑞

∈ 𝒞𝑁𝑇×1 and v𝝎𝑞
∈ 𝒞𝑁𝑟×1

denote the received signal, transmitted signal and noise vectors
associated with the selection, respectively. H𝝎𝑞

∈ 𝒞𝑁𝑟×𝑁𝑇 ,

G𝝎𝑞 ∈ 𝒞𝑁𝑟×𝑁𝑇 and [R
1
2
r ]𝝎𝑞 ∈ 𝒞𝑁𝑟×𝑁𝑟 denote the correlated

channel, the spatially white channel and the receive correlation
matrices after the selection, respectively.
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B. Selection Criteria

In order to estimate instantaneous channels correctly, the
coherence time of channels is assumed to be long enough that
the fading coefficients are constant over the entire block and
change independently from one block to the next according
to the “one ring” spatial correlation model. Therefore, the
optimal selected receive antenna index, 𝝎∗, is selected out of
Ω through the training sequence and changes from one block
to another [2].

1) Instantaneous CSI (ICSI) Selection Criterion: Assuming
that instantaneous CSI is only available at the receiver, the
capacity associated with antenna selection is

𝐶(𝝎𝑞) = log2 det(I𝑁𝑟 +
𝜂

𝑁𝑇
H𝝎𝑞

HH
𝝎𝑞
). (7)

Given the ICSI, we can define the performance function
as 𝑆𝐼𝐶𝑆𝐼(𝝎𝑞) = log2 det(I𝑁𝑟 + 𝜂

𝑁𝑇
H𝝎𝑞

HH
𝝎𝑞
). Therefore,

maximizing the capacity associated with the receive antenna
selection is equivalent to maximizing

𝒫1 : arg max
𝝎𝑞∈Ω

𝑆𝐼𝐶𝑆𝐼(𝝎𝑞). (8)

Since computing the ICSI selection criterion involves
singular value decomposition, its complexity is
𝒪(min{𝑁𝑟, 𝑁𝑇 }𝑁𝑟𝑁𝑇 ) [16].

2) Norm-based Selection (NBS) Criterion: At low SNR,
(7) can be approximated by

𝐶(𝝎𝑞) ≈ log2

(
1 +

𝜂

𝑁𝑇
Tr (H𝝎𝑞

HH
𝝎𝑞
)

)

= log2

(
1 +

𝜂

𝑁𝑇
∥ H𝝎𝑞

∥2𝐹
)
.

(9)

We define the performance function as 𝑆𝑁𝐵𝑆(𝝎𝑞) =∥
H𝝎𝑞

∥𝐹 . Therefore, maximizing the capacity associated with
the receive antenna selection is equivalent to maximizing

𝒫2 : arg max
𝝎𝑞∈Ω

𝑆𝑁𝐵𝑆(𝝎𝑞), (10)

where (∥ H𝝎𝑞 ∥𝐹 )1/2 indicates the power of the channel
matrix H𝝎𝑞

. Although the NBS criterion cannot guarantee an
optimal capacity performance, because of its low complexity
(𝒪(𝑁𝑟𝑁𝑇 )) [16], it is still a good candidate for antenna
selection [2], [5], [7].

3) Spatial Correlation Selection (SCS) Criterion: When the
channel is fast fading, channel estimation becomes a difficult
task [17]. Moreover, in such a situation, a large number of
training sequences have to be used to obtain the optimal
receive antenna index, 𝝎∗. These training sequences not only
degrade the spectral efficiency but also increase the hardware
complexity [18]. Compared with the ICSI, it is easier to
estimate and track the spatial correlation because of its slow
variation. This makes the SCS criterion desirable for practical
MIMO systems with antenna selection. Specifically, at high
SNR, (7) can be approximated as

𝐶(𝝎𝑞) ≈ log2 det

(
𝜂

𝑁𝑇
H𝝎𝑞

HH
𝝎𝑞

)
. (11)

Substituting (2) into (11) and using the eigenvalue decompo-
sition (EVD) of [Rr]𝝎𝑞

, we have [11]

𝐶(𝝎𝑞) ≈𝑁𝑇 log2(
𝜂

𝑁𝑇
) + log2 det

(
G𝝎𝑞

(G𝝎𝑞
)H
)

+ log2 det([Rr]𝝎𝑞
).

(12)

We define the performance function as 𝑆𝑆𝐶𝑆(𝝎𝑞) =
det([Rr]𝝎𝑞

). Therefore, when instantaneous CSI is not avail-
able, maximizing the capacity is equivalent to maximizing

𝒫3 : arg max
𝝎𝑞∈Ω

𝑆𝑆𝐶𝑆(𝝎𝑞). (13)

The computational complexity of the SCS criterion is 𝒪(𝑁2
𝑟 ).

C. The Cross Entropy Optimization (CEO) Method

The most straightforward approach to obtain the optimal
receive antenna subset, 𝝎∗, is by exhaustive search. However,
because of its high computational complexity, it becomes
prohibitive for MIMO systems with large arrays. In order
to reduce the complexity, we formulate the antenna selection
problem as a combinatorial optimization problem as follows:

𝝎∗ = arg max
𝝎𝑞∈Ω

𝑆(𝝎𝑞), (14)

where 𝝎∗ denotes the global optimum of the objective func-
tion, 𝑆(𝝎𝑞). Here, 𝑆(𝝎𝑞) represents the performance func-
tions of 𝑆𝐼𝐶𝑆𝐼(𝝎𝑞), 𝑆𝑁𝐵𝑆(𝝎𝑞) or 𝑆𝑆𝐶𝑆(𝝎𝑞).

After transforming (14) into a combinatorial optimization
problem, an iterative algorithm can be used to solve it. The
idea of the CEO method is to associate a stochastic estimation
problem with the optimization problem (14). Let us define a
collection of indicator functions {𝐼{𝑆(𝝎𝑞)≥𝑟}} in the solution
space Ω for various thresholds (or levels) 𝑟 ∈ {𝑆(𝝎𝑞) : 𝝎𝑞 ∈
Ω}, and a number of Bernoulli probability density functions
given by

𝑓(𝝎𝑞, p) =
𝑁𝑅∏
𝑖=1

𝑝
𝐼𝑖(𝝎𝑞)
𝑖 (1− 𝑝𝑖)

1−𝐼𝑖(𝝎𝑞), (15)

where 𝑝𝑖 indicates the probability of 𝑖th receive antenna to be
chosen. 𝐼𝑖(𝝎𝑞) is the indicator for the 𝑖th element of 𝝎𝑞 . For
a given probability distribution v, we associate (14) with the
following stochastic estimation

ℓ(𝑟) = ℙv(𝑆(𝝎𝑞) ≥ 𝑟) =
∑

𝝎𝑞∈Ω

𝐼{𝑆(𝝎𝑞)≥𝑟}𝑓(𝝎𝑞, v)

= 𝔼v[𝐼{𝑆(𝝎𝑞)≥𝑟}],
(16)

where ℓ(𝑟) is the probability 𝑆(𝝎𝑞) ≥ 𝑟 and 𝐼{𝑆(𝝎𝑞)≥𝑟} is
given by

𝐼{𝑆(𝝎𝑞)≥𝑟} =
{

1, if 𝑆(𝝎𝑞) ≥ 𝑟
0, otherwise.

(17)

A natural way to estimate ℓ in (16) is to use a crude Monte
Carlo (CMC) simulation by drawing a set of random samples
{𝝎(𝑛)

𝑞 }𝑁𝑛=1 from 𝑓(⋅, v), and then the unbiased estimator of ℓ
is

ℓ̂ =
1

𝑁

𝑁∑
𝑛=1

𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟}. (18)
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For a large value of 𝑟 (i.e. 𝑟 → 𝑟∗), the above problem
is a rare event simulation, where 𝑟∗ = max𝝎𝑞∈Ω 𝑆(𝝎𝑞).
In order to obtain the optimum, a large number of samples
(𝑁 → ∞) have to be drawn to obtain an accurate estimation,
because most of the samples are not effective in calculating
ℓ̂. Therefore, the CMC method is not suitable for practical
applications due to its high complexity.

An alternative way to estimate ℓ is through the importance
sampling (IS) technique, drawing a set of random samples
{𝝎(𝑛)

𝑞 }𝑁𝑛=1 from an importance distribution 𝑔(𝝎𝑞). Then the
unbiased estimator of ℓ is

ℓ̂ =
1

𝑁

𝑁∑
𝑛=1

𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟}

𝑓(𝝎
(𝑛)
𝑞 , v)

𝑔(𝝎
(𝑛)
𝑞 )

. (19)

It is well known that the optimal 𝑔∗(𝝎𝑞) is given by [15]

𝑔∗(𝝎𝑞) =
𝐼{𝑆(𝝎𝑞)≥𝑟}𝑓(𝝎𝑞, v)

ℓ
. (20)

It is convenient to choose 𝑔(𝝎𝑞) from the parameterized
family of densities {𝑓(⋅, p)}. The idea of CEO is to choose
the parameter p∗ such that the Kullback-Leibler divergence3,
which is also referred as the cross entropy, between 𝑔∗ and 𝑓
is minimal [15]. Minimizing the Kullback-Leibler divergence
is equivalent to solving the following maximization problem
[15]4

max
p

∫
Ω

𝑔∗(𝝎𝑞) ln 𝑓(𝝎𝑞; p)𝑑𝝎𝑞. (21)

Substituting (20) into (21), we have

max
p

∫
Ω

𝐼{𝑆(𝝎𝑞)≥𝑟}𝑓(𝝎𝑞, v)

ℓ
ln 𝑓(𝝎𝑞; p)𝑑𝝎𝑞, (22)

which is equivalent to

p∗ = argmax
p

𝔼v[𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟} ln 𝑓(𝝎𝑞; p)]. (23)

Generally it is intractable to obtain a closed-form solution
for the optimal parameter p∗, as (23) involves an integration
with respect to the density function 𝑓(𝝎𝑞, v). But p∗ can be
estimated by the following stochastic program [15]

𝑝∗ = argmax
p

1

𝑁

𝑁∑
𝑛=1

𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟} ln 𝑓(𝝎

(𝑛)
𝑞 ; p), (24)

where 𝝎(𝑛)
𝑞 are the samples drawn from 𝑓(𝝎𝑞; v). Let �̂�(p) =

1
𝑁

∑𝑁
𝑛=1 𝐼{𝑆(𝝎

(𝑛)
𝑞 )≥𝑟} ln 𝑓(𝝎

(𝑛)
𝑞 ; p)

and we have

max
p

�̂�(p) = 1

𝑁

𝑁∑
𝑛=1

𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟} ln(𝑓(𝝎

(𝑛)
𝑞 , p)). (25)

3The Kullback-Leibler divergence between two probability distributions
𝑔(𝑥) and 𝑓(𝑥) is defined as [13]

𝒟(𝑔, 𝑓) = 𝔼𝑔 [ln
𝑔(𝑥)

𝑓(𝑥)
] =

∫
𝑔(𝑥) ln 𝑔(𝑥)𝑑𝑥−

∫
𝑔(𝑥) ln 𝑓(𝑥)𝑑𝑥

4The integration with respect to 𝝎𝑞 ∈ Ω is a summation when 𝝎𝑞 is
discrete as in our case. But for generality, it is expressed in the form of
integration.

To find the maximum of �̂�(p), we set ∂�̂�(p)
∂p = 0. Conse-

quently, we have the update rule as follow:

𝑝𝑖 =

∑𝑁
𝑛=1 𝐼{𝑆(𝝎

(𝑛)
𝑞 )≥𝑟}𝐼𝑖(𝝎

(𝑛)
𝑞 )∑𝑁

𝑛=1 𝐼{𝑆(𝝎
(𝑛)
𝑞 )≥𝑟}

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑅.

(26)
The update equation (26) is iteratively used with the aim to
generate a sequence of increasing thresholds 𝑟(0), 𝑟(1), until
convergence to the global optimum 𝑟∗ (or to a value close to
it) is achieved. At the 𝑡th iteration, a new vector p(𝑡) is used to
draw a set of new samples, which provide better estimates of 𝑟.
The vector p(𝑡) is then updated by these samples. This process
stops when the stopping criterion is reached. A flowchart of
the proposed receive selection algorithm based on the CEO
method is described as follows:

Receive Antenna Selection Algorithm based on the CEO
Method

Step 1: Start with an initial value p(0) = {𝑝(0)𝑖 }𝑁𝑅

𝑖=1, 𝑝
(0)
𝑖 =

1
2

5. Set the iteration counter 𝑡 := 1;
Step 2: Randomly generate samples {𝝎(𝑛)

𝑞 }𝑁𝑛=1 from the
density function 𝑓(⋅, p(𝑡−1));

Step 3: Calculate the performance functions
{𝑆(𝝎(𝑛,𝑡)

𝑞 )}𝑁𝑛=1 and order them from largest
to smallest, 𝑆(1) ≥ ⋅ ⋅ ⋅ ≥ 𝑆(𝑁). Let 𝑟(𝑡) be the
(1 − 𝜌)th sample quantile of the performances:
𝑟(𝑡) = 𝑆(⌈(1−𝜌)𝑁⌉), where ⌈⋅⌉ is the ceiling
operation.

Step 4: Update the parameter p(𝑡) via

𝑝
(𝑡)
𝑖 =

∑𝑁
𝑛=1 𝐼{𝑆(𝝎

(𝑛,𝑡)
𝑞 )≥𝑟(𝑡)}𝐼𝑖(𝝎

(𝑛,𝑡)
𝑞 )∑𝑁

𝑛=1 𝐼{𝑆(𝝎
(𝑛,𝑡)
𝑞 )≥𝑟(𝑡)}

. (27)

Step 5: If the stopping criterion is satisfied6, then stop;
otherwise set 𝑡 := 𝑡+ 1 and go back to step 2.

Note: In order to prevent occurrences of 0s and 1s in the
parameter matrix p, we introduce a smoothing factor 𝜆 and
change the updating procedure to

p(𝑡) := 𝜆 ∗ p(𝑡) + (1− 𝜆) ∗ p(𝑡−1). (28)

Clearly, when 𝜆 = 1, we have the original updating formula-
tion. The convergence proof of the algorithm is shown in the
Appendix.

IV. SIMULATION RESULTS

In order to compare and validate the performance of the
proposed CEO algorithm, simulations were performed over
10, 000 channel realizations using algorithms based on the
ICSI, NBS and SCS criteria. For the “one ring” correlated
channel model, we assume that a broadside linear array is
used at the receiver [10], the antenna spacing (𝑑) is 𝜆/2 and
the directions of arrival (DOA) are uniformly distributed.

These three selection criteria offer a tradeoff between the
performance and complexity. The ICSI selection criterion has

5The algorithm converges without the constraint of the starting point, but
for simplicity we set 𝑝(0)𝑖 = 1

2
.

6The stopping criterion is ∣ 𝑟(𝑡) − 𝑟(𝑡−1) ∣≤ 𝛽 where 𝛽 is the stopping
threshold and set as 10−2 in this letter.
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(a) 10% outage capacity versus SNR with 𝑁𝑅 = 16 and 𝑁𝑟 = 𝑁𝑇 = 4
for various angle spreads (△).
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(b) 10% outage capacity versus 𝑁𝑟 with 𝑁𝑅 = 16, 𝑁𝑇 = 4 and SNR =
20 dB for various angle spreads (△).

Fig. 2. Performance comparison between three selection criteria by exhaus-
tive search.

the best performance but has the highest hardware and com-
putational complexity, while the NBS criterion has the lowest
complexity but this is achieved at the cost of performance. The
SCS criterion is a possible compromise, but its performance
should be close to the ICSI criterion if it is to be useful.

In order to investigate this, an exhaustive search is used to
find the optimal antenna subset (𝝎∗) using each of the three
criteria. Fig. 2 shows the 10% outage capacity as a function of
the SNR and the number of selected receive antennas (𝑁𝑟).
From Fig. 2(a), it can be seen that the performance of the
ICSI selection criterion nearly coincides with that of the SCS
criterion over a wide range of SNR at small angle spread
(△≤ 600) and diverges at large angle spread, for example,
△= 1200. Moreover, from Fig. 2(a), we find that the gap in
outage capacity between the ICSI and SCS criteria is roughly
fixed at various angle spread values for a wide range of SNR,
which indicates that the performance difference between ICSI
and SCS will be not significantly influenced by SNR. From
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Fig. 3. 10% outage capacity versus SNR with 𝑁𝑅 = 16 and 𝑁𝑟 = 𝑁𝑇 = 4
at △= 1200 based on the instantaneous CSI selection criterion (Solid Line)
and △= 600 based on the spatial correlation selection criterion (Dashed Line).

Fig. 2(b), it can also be seen that the gap in outage capacity
between ICSI and SCS decreases as 𝑁𝑟 increases regardless
of the values of angle spread.

As a result, the simulation results from Fig. 2 show that the
outage capacity performance of SCS is close to that of ICSI at
large 𝑁𝑟 or small angle spread. In this letter, we assume that
SCS can replace ICSI for receive antenna selection at 𝑁𝑟 ≥ 6
or △≤ 600 when 𝑁𝑅 = 16 and 𝑁𝑇 = 4.

Fig. 3 shows the 10% outage capacity versus SNR with
𝑁𝑅 = 16 and 𝑁𝑟 = 𝑁𝑇 = 4 at △= 1200 and △= 600.
Based on the analysis in Fig. 2, SCS can replace ICSI to
obtain near-optimal results at a small angle spread. Thus, SCS
is used when △= 600 while ICSI is used when △= 1200.
The results indicate that the outage capacity achieved by the
CEO algorithm is nearly the same as that by exhaustive search
(ES) for a wide range of SNR. The NBS algorithm has near-
optimal performance in the low SNR region (SNR ≤ 5dB).
However, when the value of SNR increases, the performance
of the NBS algorithm is no longer optimal and even worse than
the random selection algorithm (RSA) when SNR ≥ 10dB.
Hence, in the high SNR regime with spatial correlation, the
NBS algorithm is not suitable for antenna selection. Fig. 3 also
shows receive antenna selection by a low complexity selection
(LCS) method [11] and Gerschgorin circles (GC) method
[12] for comparison. From the figure, it can be seen that the
LCS method obtains near-optimal capacity performance for
the ICSI selection criterion but suffers a performance loss for
the SCS criterion. Compared with the CEO algorithm and LCS
method, the capacity performance obtained by the GC method
is inferior for both the ICSI selection and SCS criteria.

The 10% outage capacity versus 𝑁𝑟 with 𝑁𝑅 = 16 and
SNR = 20 dB at △= 1200 and △= 300 is shown in Fig. 4. It
can be seen that the CEO algorithm can obtain near-optimal
performance for both the ICSI and SCS and this performance
is independent of the selected receive antenna array size (𝑁𝑟).
The LCS method can also obtain near-optimal performance
for the ICSI but not for the SCS, especially when 𝑁𝑟 ≥ 6.
Compared with the LCS method, the GC method exhibits
superior performance for the SCS when 𝑁𝑟 ≤ 6 and becomes
inferior when 𝑁𝑟 ≥ 8. The results in Fig. 5 illustrate the
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TABLE I
COMPLEXITY COMPARISONS FOR VARIOUS ANTENNA SELECTION ALGORITHMS WITH 𝑁𝑅 = 16, 𝑁𝑇 = 4, 𝜂 = 20 DB

(𝑁𝑅, 𝑁𝑟) Number of samples (𝑁 ) Number of iterations (𝑡) CEO LCS [11] GC [12] ES

(16, 2) 15 5 75 133 15 120
(16, 4) 18 5 90 126 78 1820
(16, 6) 20 5 100 115 165 8008
(16, 8) 20 5 100 100 252 12870
(16, 10) 20 5 100 81 315 8008
(16, 12) 18 5 90 58 330 1820
(16, 14) 15 5 75 31 273 120
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Fig. 4. 10% outage capacity versus 𝑁𝑟 with 𝑁𝑅 = 16 and SNR = 20 dB at
△= 1200 based on the instantaneous CSI selection criterion (Solid Line) and
△= 300 based on the spatial correlation selection criterion (Dashed Line).

5 10 15 30 60 120 180
6

8

10

12

14

16

18

20

22

24

26

Angle Spread (Degrees)

10
%

 O
ut

ag
e 

C
ap

ac
ity

 (
bi

ts
/s

/H
z)

ES
CEO
LCS [11]
GC [12]
NBS
RSA

Solid Line: Spatial correlation selection criterion

Dashed Line: Instantaneous CSI selection criterion

Fig. 5. 10% outage capacity versus the angle spread (△) with 𝑁𝑅 = 16,
𝑁𝑟 = 2, 𝑁𝑇 = 4 based on the instantaneous CSI selection criterion (Dashed
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outage capacity versus the angle spread (△) with 𝑁𝑟 = 2
and 𝑁𝑟 = 8 at SNR = 20 dB. It can be seen that the CEO
algorithm achieves nearly the same outage capacity as ES
for both ICSI and SCS and this near-optimal performance is
independent of the angle spread. The LCS method obtains
near-optimal capacity for the ICSI but lower capacity for
the SCS. Compared with the CEO algorithm, the capacity
obtained by the GC method is considerably lower for both
ICSI and SCS. Detailed complexity comparisons among the
CEO, LCS, GC and ES methods are shown in Table I in terms
of the total number of functional evaluations, 𝑆(𝝎𝑞). It can be
seen that the CEO algorithm has much lower complexity than
ES in all situations. In addition, according to results in Fig.

3- 5 and Table I, we can conclude that the proposed CEO
algorithm can obtain better performance than the LCS [11]
and GC [12] methods with comparable complexity.

V. CONCLUSION

In this letter, we have presented a novel receive antenna se-
lection algorithm based on cross entropy optimization (CEO)
to maximize the channel capacity over spatially correlated
channels. Simulations demonstrate that the proposed algorithm
can obtain near-optimal results with rapid convergence. In
addition, we find that the proposed algorithm performs well
irrespective of the SNR, the angle spread, the selected receive
antenna array size and the mutual relationship between the
transmit and selected receive antenna array size.

APPENDIX

CONVERGENCE PROOF OF THE PROPOSED RECEIVE

ANTENNA SELECTION ALGORITHM

To begin, we define the Bernoulli p.d.f. for the 𝑡th iteration
of the 𝑖th antenna (in 𝝎) as

𝑓𝑖,𝑡 (𝝎, p) ≜ 𝑝
𝜔𝑖,𝑡

𝑖,𝑡 (1− 𝑝𝑖,𝑡)
1−𝜔𝑖,𝑡 , (29)

where 𝜔𝑖,𝑡 denotes the 𝑖th element of 𝝎 at the 𝑡th iteration.
Assume the following condition is satisfied

𝜆𝑡 ≥ 𝑡

𝑡+ 1
(30)

for some 𝑇 ≥ 0. Without lost of generality, let 𝑇 ≥ 1. Then,
according to (28) and 𝑡 ≥ 𝑇 , we have

𝑝𝑖,𝑡 ≥
𝑡−1∏
𝑚=0

𝜆𝑚 ⋅ 𝑝𝑖,0

≥
𝑇−1∏
𝑚=0

𝜆𝑚 ⋅
𝑡−1∏
𝑚=𝑇

𝑚

𝑚+ 1
⋅ 𝑝𝑖,0

=

𝑇−1∏
𝑚=0

𝜆𝑚 ⋅ 𝑝𝑖,0 ⋅ 𝑇
𝑡
= 𝜅 ⋅ 𝑝𝑖,0

𝑡
,

(31)

where 𝜅 is a constant and equal to
∏𝑇−1

𝑚=0 𝜆𝑚 ⋅𝑇 . Since 𝜅 ≥ 0,
we have 𝑝𝑖,𝑡 ≥ 𝑝𝑖,0

𝑡 , which further implies, with probability
one, that

𝑓𝑖,𝑡 (𝝎, p) ≥ 𝑓𝑖,0 (𝝎, p)
𝑡

, for 𝑡 = 1, 2, 3, . . . . (32)
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The probability of lack of convergence to the optimal point
𝝎∗ is therefore bounded by

Prob
(
𝝎(𝑡) ∕= 𝝎∗

)
=

∞∏
𝑡=1

𝑁𝑅∏
𝑖=1

(1− 𝑓𝑖,𝑡(𝝎
∗, p))

≤
∞∏
𝑡=1

𝑁𝑅∏
𝑖=1

(
1− 𝑓𝑖,0(𝝎

∗, p)
𝑡

)

≤
∞∏
𝑡=1

𝑁𝑅∏
𝑖=1

𝑒−
𝑓𝑖,0(𝝎∗,p)

𝑡

= 𝑒−
∑𝑁𝑅

𝑖=1 𝑓𝑖,0(𝝎
∗,p)

∑∞
𝑡=1

1
𝑡 .

(33)

When 𝑡 → ∞, we can obtain
∞∑
𝑡=1

1

𝑡
→ ∞. (34)

Therefore, we finally have

0 ≤ lim
𝑡→∞Prob

(
𝝎(𝑡) ∕= 𝝎∗

)

≤ lim
𝑡→∞ 𝑒−

∑𝑁𝑅
𝑖=1 𝑓𝑖,0(𝝎

∗,p)
∑∞

𝑡=1
1
𝑡 = 0,

(35)

which implies that lim𝑡→∞ Prob
(
𝝎(𝑡) = 𝝎∗) = 1. This

completes the proof.
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