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Efficient Decoding With Steady-State Kalman
Filter in Neural Interface Systems
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Abstract—The Kalman filter is commonly used in neural inter-
face systems to decode neural activity and estimate the desired
movement kinematics. We analyze a low-complexity Kalman filter
implementation in which the filter gain is approximated by its
steady-state form, computed offline before real-time decoding
commences. We evaluate its performance using human motor
cortical spike train data obtained from an intracortical recording
array as part of an ongoing pilot clinical trial. We demonstrate
that the standard Kalman filter gain converges to within 95% of
the steady-state filter gain in � � � � � ����	 � 
 �. The
difference in the intended movement velocity decoded by the two
filters vanishes within 5 s, with a correlation coefficient of 0.99
between the two decoded velocities over the session length. We
also find that the steady-state Kalman filter reduces the compu-
tational load (algorithm execution time) for decoding the firing
rates of �� 
 single units by a factor of � � � �. We expect
that the gain in computational efficiency will be much higher in
systems with larger neural ensembles. The steady-state filter can
thus provide substantial runtime efficiency at little cost in terms
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of estimation accuracy. This far more efficient neural decoding
approach will facilitate the practical implementation of future
large-dimensional, multisignal neural interface systems.

Index Terms—Brain–computer interfaces (BCI), brain–machine
interfaces (BMI), Kalman filter, motor cortex, neural decoding,
paralysis, spinal cord injury, state-space models, tetraplegia.

I. INTRODUCTION

N EURAL interfaces systems (NISs) have the potential to
restore communication and control abilities for people

with tetraplegia secondary to spinal cord injury, amyotrophic
lateral sclerosis (ALS), or brainstem stroke [1]–[11]. Intracor-
tical NISs use multielectrode arrays implanted in the cortex to
acquire relevant signals from neuronal ensembles. NISs require
accurate decoding models to decipher intended movements
from neuromotor activity and generate appropriate command
signals to control a computer cursor, prosthetic limb, functional
electrical stimulation device, or other assistive devices.

At the beginning of the BrainGate1 NIS pilot clinical trial, a
linear decoder was used to predict cursor position from neural
activity measured from a neuronal ensemble [6]. Subsequent
analysis showed that a Kalman filter (KF), which modeled the
movement kinematics as a random walk process, improved the
decoding accuracy [12]–[14]. A recursive Bayesian decoder
with guaranteed stability and robustness, the Kalman filter
provides optimal state estimates along with the associated
confidence regions for a linear Gaussian dynamical system
[15]–[17]. While other decoding strategies have been proposed
[18]–[23], the relative simplicity and good performance of the
KF have made it a popular choice for neural decoding in NISs
[10], [11], [24]–[29]. The KF used in these studies consisted of
the most common implementation in which the observation and
state-transition matrices and corresponding noise covariance
matrices are assumed to be constant and estimated from training
data, while the Kalman gain is adaptive and computed during
each filter recursion.

With rapid advances in NIS technology, we anticipate the po-
tential to harness large-dimensional signal sets, such as those as
will eventually be obtained from multiple intracortical recoding
arrays, as well as more complex signals with increased computa-
tional requirements, such as continuous-time multiunit activity
(MUA) [30], [31] and local field potentials (LFP) [6], [32]. The
KF may, however, be too computationally intensive for real-time

1The research is conducted under an Investigational Device Exemption and
approval from the local Institutional Review Board (Caution: Investigational
Device. Limited by Federal Law to Investigational Use).

1534-4320/$26.00 © 2010 IEEE



26 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 19, NO. 1, FEBRUARY 2011

TABLE I
THEORETICAL ALGORITHMIC COMPLEXITYOF A SINGLE RECURSION OF THE

KALMAN FILTER FOR DECODING �-DIMENSIONAL STATE VECTOR WITH

�-DIMENSIONAL OBSERVATION VECTOR

decoding of such complex neurophysiological signal sets. In-
creasing interest in embedded wireless NISs also motivates im-
proved algorithmic efficiency which would lower hardware re-
quirements and extend battery life [33], [34]. We are, therefore,
interested in determining whether we can exploit a decoding ap-
proach with lower complexity than the KF, bearing in mind that
in the decoding accuracy-efficiency tradeoff, we are generally
reluctant to sacrifice accuracy merely to decrease computational
load or time.

The optimal Kalman gain depends only on the system ma-
trices and initial conditions, and not on the incoming measure-
ments [15]. It is therefore possible to precompute the gain offline
and store it for subsequent decoding sessions to reduce real-time
decoding complexity. However, the large memory requirement
associated with the storage and processing of large Kalman gain
matrices to decode complex, multidimensional signal sets ren-
ders this approach impracticable.

Another alternative, with the potential to improve efficiency
with little loss in accuracy, is the steady-state KF (SSKF) [15],
[16]. In a time-invariant stochastic system, such as that assumed
by the standard KF implementation commonly used in neural
decoding [12], the optimal gain of the KF converges to a steady-
state value after only a few recursions [16], which motivates the
use of the SSKF. Equivalent to an infinite-length digital Wiener
filter, the SSKF approximates the optimal time-varying KF gain
with a precomputed constant matrix that represents the steady-
state value of the filter gain.

Given a state space model with states and observations,
the algorithmic complexity of optimal Kalman gain computa-
tion for a single decoding recursion is , as
described in Table I [35]. The state space of a KF-based NIS
decoder comprises the motion kinematics (usually position, ve-
locity, and acceleration) in accordance with the encoding prop-
erties of motor cortical neurons. A multielectrode array typically
spans 40–100 neuronal units . Since in this case, from
Table I the KF complexity is effectively , while the SSKF
complexity is only . The relative efficiency of the SSKF
therefore varies as the square of the ensemble size, which can
be consequential for a resource-constrained NIS with large-di-
mensional signal sets.

In this paper, we investigate the potential utility of SSKF
in unique data sets generated by our clinical trial participants.
We hypothesize that using neural spiking data, the filter gain
could be replaced by its steady-state estimate, reducing the run-
time complexity considerably with an acceptably small loss in

estimation accuracy during the initial recursions. We analyze
and compare the performance of KF and SSKF, investigating
whether the latter can simplify practical NIS implementation.

II. NEURAL DATA ACQUISITION

A. Clinical Trial

The neural data examined here are derived from two partic-
ipants in the BrainGate pilot clinical trials. These trials were
conducted with a U.S. Food and Drug Administration (FDA)
Investigational Device Exemption (IDE) and with Institutional
Review Board (IRB) approval from Rhode Island Hospital, New
England IRB, Spaulding Rehabilitation Hospital and Massachu-
setts General Hospital.

B. Trial Participants

1) Participant S1: A 24-year-old man with complete
tetraplegia due to C4 spinal cord injury from a knife wound
sustained three years prior to trial recruitment. The data ana-
lyzed here were recorded on two separate days three months
after array implantation.

2) Participant S3: A 55-year-old woman with tetraplegia and
anarthria secondary to brainstem stroke. She had thrombosis of
the basilar artery and extensive pontine infarction nine years
before trial recruitment. The data analyzed here were recorded
on two separate days 33 months after array implantation.

C. Surgical Procedures

The BrainGate microelectrode array was implanted using a
pneumatic technique in the precentral gyrus contralateral to the
dominant hand in the region of the arm representation of each
participant [6], [36]. The intracortical array consisted of 10 10
silicon microelectrodes that protruded 1 mm (S1) or 1.5 mm
(S3) from a 4 4 mm platform. Neural data were recorded from
this chronically implanted array.

D. Behavioral Tasks

We collected neural and motion kinematics data during 2-D
behavioral pursuit-tracking and center-out tasks [13], [23].

The filter-building data was recorded under open-loop motor
imagery, during which the participants observed a training
cursor moving on a -in screen. The training cursor was
controlled by a technician using a standard handheld mouse
(random pursuit-tracking for S1) or computer (four-target
center-out for S3). The participants imagined controlling the
training cursor movement with their own dominant hand.
In the pursuit-tracking task, the training cursor moved from
a starting location towards a target randomly placed on the
screen [Fig. 1(a)]. On acquisition, the target vanished from the
screen and the next target appeared simultaneously. The cursor
trajectory in this task spanned much of the screen area over the
course of each data-acquisition block. In the center-out task,
four peripheral targets (0 , 90 , 180 , and 270 ) and one center
target were displayed during the filter-building phase. One of
the targets, selected pseudorandomly, was highlighted and the
computer-controlled training cursor moved toward it with a
Gaussian velocity profile [Fig. 1(b)]. On reaching the target,
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Fig. 1. Behavioral tasks. (a) In the pursuit-tracking task, the training cursor
(blue circle) acquires the selected target (red circle) placed pseudorandomly
on the screen. Previous targets (gray circles) vanish from the screen upon ac-
quisition. The nominal cursor trajectory is also shown (dotted line) for clarity.
(b) In the center-out task, there are four (during training) or eight (during as-
sessment) radial targets and one center target in this center-out task (gray cir-
cles), one of which is selected for acquisition (red circle). The velocity of the
cursor (blue circle) is computer-controlled in the open-loop filter-building phase
and decoded from the participant’s neural activity in the closed-loop assessment
phase. (a) Pursuit-tracking. (b) Center-out.

the cursor remained stationary for 0.5 s before retracing its path
back to the center target.

During the subsequent closed-loop assessment phase for
S3, there were eight radial targets and one center target in our
center-out task. Successful target acquisition required reaching
the target with the neurally driven cursor and simulating a
click within the target area. The data recorded during the
filter-building period were used to train the filter that was used
for closed-loop assessment to drive a neural cursor volitionally
by estimating its velocity from the participant’s neural activity.
The closed-loop assessment for S1, the first participant in our
clinical trial, was performed before the implementation of
the KF in our decoding platform, and those data are thus not
analyzed here.

For the analysis in this paper, we organize the data recorded
from the two participants into six sessions, as summarized in
Table II. Of these, Sessions 1, 2, 3, and 5 consist of open-loop
motor imagery while Sessions 4 and 6 involve closed-loop
neural cursor control.

1) Session 1: Motor imagery data were collected from Partic-
ipant S1 under an open-loop pursuit-tracking task with random
target placement in four blocks of about 1 min length each. The
data were recorded on Day 86 after array implantation. The par-
ticipant observed a training cursor controlled by a technician

and imagined controlling the cursor movement with his own
hand. For our analysis, we divided this 4 min length of data
into trial runs lasting 10 s each, carefully taking into ac-
count the block discontinuities. Under an -fold cross-valida-
tion scheme, we decoded each of the trials sequentially by
training the filter on the rest of the trials.

2) Session 2: This data set is similar to Session 1 but the
research session occurred on Day 90.

3) Session 3: For filter building by participant S3, an open-
loop center-out task was used. She imagined moving a com-
puter-controlled cursor to four fixed-location radial targets. The
data contain four blocks of about 90 s each, of which two blocks
contain seven slow-speed trials of 12 s each and the other two
blocks contain 11 high-speed trials of 8 s each. Each trial con-
sists of the epoch culminating at target acquisition defined as
reaching the target location. The remaining session data length
consists of brief rest periods between consecutive trials. These
data were recorded on Day 1002 after implantation.

4) Session 4: These closed-loop data were collected from
Participant S3 also on Day 1002. The entire open-loop data set
of Session 3 was used to train the Kalman filter that decoded the
closed-loop neural activity during an 8-target center-out task in
a single 10 min block.

5) Session 5: This open-loop data set is similar to Session 3
but the research session was conducted on Day 1003.

6) Session 6: This closed-loop data set is similar to Session
4 but the research session was conducted on Day 1003.

E. Data Preprocessing

In each session, we recorded neural signals from the
96-channel array with digitization at 30 kHz (analog bandpass
0.3–7500 Hz; digital highpass with cutoff at 250 Hz) and
used real-time, amplitude-thresholding software for waveshape
discrimination [37]. Putative single neurons and apparent
multineuron activity with consistent waveforms were accepted
or rejected for inclusion in the study at the beginning of each
session based on visual inspection of the isolated waveforms.
Following the identification of single-unit spikes, the spike
times were recorded and the spikes were collected in nonover-
lapping 100 ms time-bins to obtain the firing rates. The 2-D
Cartesian coordinates of the cursor position were recorded
periodically and their first-order derivative was used to obtain
the cursor velocity used in our state space model. We used a
firing rate threshold of 1 Hz, and units firing at a rate lower
than this threshold were not used for decoding. In our data,
20–29 units were found to meet this criterion in each session, as
described in Table II. Using these data sets for offline analysis,
we first trained the KF and SSKF, and then decoded the cursor
velocity from which we obtained a reconstruction of the cursor
trajectory by integration.

III. NEURAL DECODING

A. State Space Model

The kinematic states and the associated firing rates of
spike-sorted units can be related in terms of a time-invariant
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TABLE II
EXPERIMENTAL CONFIGURATION

linear dynamical system [12]. We use the following discrete-
time stationary Gauss-Markov stochastic system model:

(1)

(2)

where and denote the constant state-transition matrix
and observation matrix, respectively. The vector

and vector denote the process and measurement
noise, respectively. With the states and observations rep-
resenting movement velocity and single-unit firing rates respec-
tively, this state space model implicitly assumes cosine tuning
of motor neurons to velocity [12]. The filter is initialized with
a multivariate Gaussian state estimate . We
choose and for the decoding problem in this
paper. Similar to [12] and [13], we assume that

(3)

where and denote transposition and expectation, re-
spectively. The firing rate of each unit is centered at zero, i.e.,

.

B. Kalman Filter Recursions

The time update equations provide the a priori state estimate
and its covariance at the th recursion

(4)

(5)

where with , and (5) is the
discrete-time algebraic Lyapunov equation. If we define

(6)

as the filter gain matrix, the a posteriori state estimate and
its covariance are given by the measurement update equations

(7)

(8)

where , , and is the
identity matrix.

C. Filter Training

The state and observation matrices, and , are estimated
from training data using the ordinary least squares procedure

(9)

(10)

where , ,
, , and is the

length of the training data. Then the minimum mean-square
error estimates of the time-invariant noise covariance matrices
are [12]

(11)

(12)

D. Kalman Filter Gain Convergence

From KF theory, if the eigenvalues of lie inside the unit
circle, then the eigenvalues of also lie within
the unit circle and the linear dynamic system is said to be
controllable and observable [16], [17]. Then, as

with a geometric order of convergence, where is
a unique constant symmetric matrix. Due to (6), the optimal
gain, , also converges exponentially to the steady-state gain,

, with rate . At the th filter recursion, the
distance between the KF and SSKF gains is bounded as [16]

(13)

where are the eigenvalues of ,
and are constants, and denotes matrix trace.

Let and denote the state estimates obtained with the KF
and SSKF, respectively. Then, from (13), is an asymptotially
optimal estimate of with exponential convergence, and the
Euclidean distance, , between the two estimates is bounded
as

(14)
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where denotes the -norm of a vector. From (13), we obtain
the upper bounds on the constants and as

(15)

(16)

E. Steady-State Gain Computation

We note from (6) that the expression for the KF gain, ,
does not involve the observed firing rates, , and depends only
on the constant system matrices , , , and , and the initial
state covariance matrix . It follows that can be computed
recursively a priori during the filter training phase and stored for
use later during decoding in order to reduce runtime complexity.
In the steady-state approach, can be obtained from these re-
cursions as . In this paper, however, we com-
pute with an efficient nonrecursive procedure based on the so-
lution of the discrete algebraic Riccati equation (DARE) using
the MacFarlane–Potter–Fath eigenstructure method [15]. The
steady-state value, , of the a priori estimate of the posterior
error covariance, , is the solution to the steady-state DARE,
given by

(17)

A stabilizing solution to (17) can be found in closed form by
constructing a basis for the stable invariant subspace of the

Hamiltonian matrix

(18)

which is a symplectic matrix. Let represent
the eigenvalues of such that . Each is also
an eigenvalue of with the same multiplicity as . Assuming

, there are eigenvalues inside the unit circle and
outside. We can express in its Jordan form as

(19)

where is a diagonal matrix containing the eigen-
values of , the th column of matrix contains the
eigenvector corresponding to , and such that

. We can partition conformably into four blocks,
, i.e.,

(20)

where and contain the eigenvectors corresponding to
the stable and unstable eigenvalues of , respectively. As
is nonsingular, the unique and stable solution to (17) is obtained
as the matrix fraction . Then from (6),

(21)

Fig. 2. Filter convergence. Distance, �� , between the Kalman and steady-
state Kalman filter gains, normalized to �� . The �� curves for Sessions
3 and 4 overlap since they use the same training data; the same is the case for
Sessions 5 and 6. The curves for Sessions 1, 2, 3, and 5 are obtained from mul-
tiple trials and show the ����� ��� across trials, but the sem’s are too small
to be discernible.

The constant gain, , can be used to calculate the SSKF-based
a posteriori state estimates from (7) without recomputing the
gain and covariance matrices at each recursion.

Note that if is singular or ill-conditioned, or has multiple
or nearly multiple eigenvalues, then other methods should be
used to obtain the solution to the DARE. For example, the gain
can be obtained from (17) via an iterative Newton–Raphson pro-
cedure (which may be prone to error accumulation) or a nonre-
cursive inverse-free generalized Schur method (which is a de-
flating subspace technique with good numerical integrity) [17],
[38]. However, the need to use these alternative approaches does
not usually arise if the structure of the dynamical system is mod-
eled correctly.

IV. EXPERIMENTAL RESULTS

We evaluated the decoding accuracy and complexity of the
SSKF algorithm and compared them to those of the standard
KF in [12] using data from our clinical trial participants.

A. Convergence of the Kalman Gain

We first analyzed the temporal evolution of the KF gain in
order to investigate its convergence properties. We observed that
the difference between the KF and SSKF gains, , van-
ishes rapidly in all trials for all of our session data (Fig. 2).
Throughout this analysis, we found the system matrices to be
well-conditioned and consequently the eigenstructure method
to be robust for SSKF gain computation. For our data, con-
verged to within 95% of in 0.7–2.1 s (see Table III) and to
within 99% in 3.3 s. We also confirmed that the convergence
of was exponential in . From (16), the regression line of

on gives us the convergence rate upper bound, .
The values of thus obtained ranged between 0.6 and 0.9,
as listed in Table III. We note that even the slowest observed
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TABLE III
SUMMARY OF RESULTS

Fig. 3. State estimate convergence. Euclidean distance, �� , between the
Kalman filter and steady-state Kalman filter state (velocity) estimates. Solid
lines and shaded regions show the ���� � ���, respectively, across trials.
The sem’s are not obtained for closed-loop Sessions 4 and 6 since they consist
of a single decoding trial each.

convergence rate of 0.9 translates into a 95% convergence time
of only about 2 s. Since in a decoding setting the filter gain is
not reset during a session, the initial transient duration of 2 s is
insignificant in comparison to that of a typical decoding session
that typically lasts several minutes (such as Sessions 4 and 6).

B. State Estimation Accuracy

We examined the effect of the steady-state gain approxima-
tion on the accuracy of state estimation. We decoded neuronal
firing rate data with both KF and SSKF, and evaluated the Eu-
clidean distance, , between the velocity estimates provided
by the two filters at each time-step. From (14), we expect
to decay asymptotically to zero with rate which is slower
than the convergence rate, , of . Our results in Fig. 3 con-
firm the expected exponential decay, with falling below

within 5 s under both open-loop and closed-loop condi-
tions. Note that for all sessions since we initialize the
filters with . Averaged over the first 7 s,

, and is typically afterwards.
For Sessions 1 and 2, has a sharp peak reaching

(Session 2) at 0.5 s, followed by rapid decay, while for Sessions
3–6, generally does not exceed . The data in Sessions
1 and 2 consisted of multiple target-acquisition epochs with dif-
ferent durations, but we divided these data into 10 s trials for
our offline decoding analysis. We initialized the decoder with

Fig. 4. A posteriori estimates of the system states (neural cursor velocity) ob-
tained with KF and SSKF for Session 6 (closed loop). State vector components,
horizontal �� � and vertical �� � velocity, are shown in units of visual angle
per unit time for the first 10 s out of the 10 min session duration. For each di-
mension, the KF and SSKF estimates of both the mean state estimates and their
95% confidence intervals (not shown) converge within 5 s.

in accordance with our general scheme, instead of the
actual nonzero velocity. The KF and SSKF treat this initial-
ization error differently due to large difference in their gains
at small , resulting in considerable different state estimates
during the first few recursions. Even though the incorrect initial-
ization renders relatively large initially, the distance never-
theless decays as rapidly as in the other sessions. Thus the SSKF
approach is robust to inaccurate state initialization and leads to
the same estimates as the KF after a short period irrespective of
the initial state estimates provided.

The comparison of KF and SSKF state estimates, obtained of-
fline for the closed-loop data from Session 6, confirms the con-
vergence of the state component estimates within 5 s (Fig. 4).
We also note that the KF posterior error covariance estimates
converge to the SSKF covariance estimate within the same du-
ration. Our results show that once the estimates have converged,
they remain identical for the remaining 10 min decoding ses-
sion. As a result, the states decoded by the KF and SSKF in a ses-
sion have an average correlation coefficient of 0.99 (Table III).
This also can be observed in terms of the corresponding cursor
trajectory reconstruction over 2-D space, obtained from the state
(velocity) estimates by numerical integration, shown in Fig. 5
for the entire 10 min duration of the closed-loop center-out task
in Session 6. The filters perform identically except for a minor
over-excursion by the SSKF in reaching the very first target at



MALIK et al.: EFFICIENT DECODING WITH STEADY-STATE KALMAN FILTER IN NEURAL INTERFACE SYSTEMS 31

Fig. 5. Reconstructed 2-D neural cursor trajectory estimation for Session 6 (closed loop) obtained from the decoded velocities for the entire 10 min duration. The
radial targets in this center-out task are shown as gray circles. The only salient difference among the trajectories is an overshoot in (b) toward the bottom target
when using the SSKF, which reflects the fact that the first excursion of the neural cursor was from the center to the bottom target. (a) Kalman filter. (b) Steady-state
Kalman filter.

the bottom-center of the screen. On the basis of these observa-
tions, we conclude that the SSKF state estimation accuracy is
essentially identical to that of the KF.

C. Gain in Computational Efficiency

Having verified the decoding accuracy of the SSKF, we next
evaluated the advantage in computational efficiency achieved
with the SSKF. To extend the above theoretical discussion on al-
gorithmic complexity, we conducted runtime performance tests
based on the time taken for actual program execution. Our com-
putational platform for this purpose consisted of a laptop com-
puter with an Intel Core 2 Duo CPU with T7700 chipset and
2.4-GHz clock running Matlab 2010a on 32-bit Windows 7 op-
erating system. The exact runtimes will depend on the com-
puting hardware and software, but we expect the runtime reduc-
tion factor to remain approximately constant across platforms.
For each of the sessions, we performed the decoding 25 times
to obtain a reliable estimate of the execution time.

We found that the average execution time per recursion to de-
code the neural data in Session 6 is 0.13 ms for the KF and 0.015
ms for the SSKF; the former is almost an order of magnitude
larger. From Fig. 6, we observe that the time to decode each ses-
sion’s neural data with the KF is several times larger than that of
the SSKF. For instance, the KF and SSKF mean decoding times
for Session 6 are 0.84 and 0.10 s, respectively. Comparing the
times in Fig. 6 against session details in Table II, we find that the
execution time is proportional to the length of the decoding ses-
sion. The reason is that the complexity for recursions of the
decoder is times the complexity for a single recursion. This
is the basis of the execution time difference between Sessions
3 and 4, as these two sessions differ in the decoded data length
and thus the number of filter recursions.

To assess the reduction in complexity per recursion, we de-
fine the runtime efficiency factor as the ratio of the KF and SSKF
execution times to decode the session data. This quantity is in-
dependent of the number of filter recursions in a decoding ses-
sion, since the execution time is linearly related to the number
of recursions which is identical for both filters. The efficiency
factors, listed in Table III, range from 5.8 to 8.3 for our data. We
see that the efficiency due to SSKF has a clear relation with the

Fig. 6. Program execution time for neural decoding using the KF and SSKF
filters on a standard computing platform ����������. These execution times
are for offline decoding of the entire length of a session’s firing rate signals with
100 ms time-bins, e.g., 0.21 s to decode 240 s of session 1-s firing rate data with
the KF, etc.

number of units selected for decoding, and is higher in sessions
with more units. This empirical observation confirms the earlier
theoretical discussion (Table I) according to which the SSKF ef-
ficiency improvement increases as the square of the observation
vector dimension, . Therefore we can expect that when neural
data from just 50 units is decoded, the relative efficiency of the
SSKF will approach an order of magnitude, and will be even
larger for larger ensembles.

On the basis of the above discussion, if we use 50 ms time-
bins to calculate the firing rates for our data, the number of
filter recursions will increase, and so will the execution times
of both filters. The difference in the KF and SSKF execution
times would then be even larger. To confirm the effect of higher
sample rate signals, we conducted the execution time analysis
with Session 6 data using 50 ms time-bins. In this case, the de-
coding times for this session with KF and SSKF were found to
be 1.52 and 0.19 s, respectively, and the efficiency factor was
8.2. Although the total execution times were longer than those
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obtained with 100 ms bins due to a greater number of recursions,
the efficiency factor was consistent.

V. DISCUSSION

Our analysis of the motor cortical activity decoded from two
pilot clinical trial participants with tetraplegia demonstrates that
the SSKF could be used for efficient decoding in neural interface
systems. This finding has implications not just for our current
relatively small data sets but also for larger and more complex
data obtained with neural interface systems.

A. Implications for Large-Dimensional Systems

The gain in computational efficiency from using SSKF would
be massive when the neuronal ensemble used for decoding is
large, as may be considered for some future clinical NISs (see
Table I). It is not uncommon for an intracortical microelectrode
array to record neural data simultaneously from a population of
over 100 units. In that case, with larger , as might also occur
with more than one array, we would expect the SSKF to exhibit
increased relative efficiency. For a dual-state Kalman filter and
a 100-neuron population, state estimation at each recursion will
involve over floating point operations with the KF, but only
204 operations with the SSKF.

B. Decoding Complex Signal Sets

The execution time for decoding neural data from a session
is directly related to the session length, due to which the SSKF
becomes increasingly advantageous as more time-samples are
processed. This has important implications for decoding with
neural signals besides a firing rate signal with 10 Hz sampling.
For the same duration, a neural signal with a higher sampling
rate will involve a larger number of recursions, and so the rel-
ative computational cost of the SSKF will be correspondingly
lower. One example of such a neural signal is multiunit activity
(MUA) sampled at 500 Hz [30]. Decoding the MUA signal for
a given length of time will therefore involve 50 times as many
recursions as the firing rate signal sampled at 10 Hz, and the
comparative reduction in execution time with the SSKF will be
more pronounced.

A fundamental requirement for real-time decoding is that the
computations involved in one decoder recursion must complete
before the next data sample becomes available for processing.
Thus for the MUA signal sampled at 500 Hz, we are constrained
to complete a single recursion within 2 ms. Decoding such high-
rate signals becomes particularly challenging for a large-dimen-
sional system with, say, 100 MUA channels. In such scenarios,
the SSKF is especially useful in enabling real-time implemen-
tation.

C. Using Precomputed Optimal Kalman Gain

One possibility for avoiding real-time KF gain computation
in each recursion is to precompute and store the time-series of
adaptive KF gain matrices, , before decoding
commences, as discussed in Section III-E. For a NIS decoding 9
kinematic states (3-D position, velocity, and acceleration) from
100 MUA channels, the time-samples of the Kalman
gain matrix for one 24-h decoding session on a 64-bit computer

would consume 300 GB of storage space. Storing, transmitting
and processing such large volumes of data would challenge the
capabilities of current hardware, software and communications
architectures used in practical NIS computing platforms. This
simple example demonstrates the impracticability of using pre-
computed adaptive Kalman gain matrices for high-rate neural
signals and confirms that the SSKF approach is critical for both
online and offline neural decoding in such a setting.

D. Effect of Signal Non-Stationarity

The training paradigms of KF and SSKF are identical, in
which the open-loop training data are used to compute the con-
stant matrices , , , and that are then used for closed-loop
decoding. This training approach is based on the assumption
of neural signal stationarity within a session. It is worth em-
phasizing that the SSKF does not impose any stationarity con-
ditions beyond those assumed by the KF. Considerable tem-
poral variability in motor cortical neural signals has, however,
been reported [39], [40]. This variability may arise from rou-
tine anatomical and physiological processes in the brain as well
as electromechanical imperfections in the interface system. The
impact of this nonstationarity on decoding accuracy has been
addressed and strategies to cope with it have been proposed [10],
[26]. Most of these approaches assume pseudo-stationarity over
short periods and use a block estimation paradigm with peri-
odic filter updates. Within that period, the state and observa-
tion matrices and noise covariances are assumed to remain con-
stant, as is the case with the standard KF [12] and SSKF, so
the underlying state space model and filter structure are essen-
tially the same. The SSKF can be easily incorporated into the
block-estimation adaptive framework, since the calculation of
the steady-state Kalman gain (see Section III-E) is computation-
ally inexpensive and can be repeated along with filter training as
often as needed.

E. Performance Under Feedback

In our offline analysis, we have found that the SSKF estimates
differ from the KF estimates during the initial recursions, which
leads to a slight error in cursor trajectory estimation during that
period (Fig. 5). In an online closed-loop task with visual feed-
back, however, the participant is able to compensate for such
effects by altering the neural activity accordingly. Thus, if the
SSKF is used in closed-loop, we expect that the participant
would compensate for the initial difference and prevent the over-
shoot observed in Fig. 5. Therefore, we expect that in a practical
decoding setting with closed-loop control, the SSKF and KF ac-
curacy levels would have no perceptible difference.

VI. CONCLUSION

Our analysis establishes the utility of the steady-state Kalman
filter for neural decoding. The steady-state Kalman filter sig-
nificantly increases the computational efficiency for even rela-
tively simple neural spiking data sets from a human NIS. From
our analysis, the SSKF converges to within 95% of the KF in
about 2 s. Once convergence is attained, the estimates from
the two filters are identical. The decoding complexity is re-
duced dramatically by the SSKF, resulting in approximately
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seven-fold reduction in the execution time for decoding a typ-
ical neuronal firing rate signal. This improved efficiency is im-
portant for online neuroprosthetic control applications and of-
fline performance analyses. We anticipate that the accurate and
low-complexity decoding performance obtained with SSKF will
make this approach useful for practical implementation of fu-
ture neural interface systems, including fully embedded systems
exploiting complex signal sets, where computational efficiency
will be particularly beneficial.
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