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Abstract
Objective. Motor neural interface systems (NIS) aim to convert neural signals into motor
prosthetic or assistive device control, allowing people with paralysis to regain movement or
control over their immediate environment. Effector or prosthetic control can degrade if the
relationship between recorded neural signals and intended motor behavior changes. Therefore,
characterizing both biological and technological sources of signal variability is important for a
reliable NIS. Approach. To address the frequency and causes of neural signal variability in a
spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential
amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three
people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results. 84% of the recorded
units showed a statistically significant change in apparent firing rate (3.8 ± 8.71 Hz or 49% of
the mean rate) across several-minute epochs of tasks performed on a single session, and 74%
of the units showed a significant change in spike amplitude (3.7 ± 6.5 μV or 5.5% of mean
spike amplitude). 40% of the recording sessions showed a significant correlation in the
occurrence of amplitude changes across electrodes, suggesting array micro-movement.
Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate
changes originated from recording artifacts such as spike amplitude change or electrical noise,
while 85% of the rate changes most likely emerged from physiological mechanisms. Computer
simulations confirmed that systematic rate changes of individual neurons could produce a
directional ‘bias’ in the decoded neural cursor movements. Instability in apparent neuronal
spike rates indeed yielded a directional bias in 56% of all performance assessments in
participant cursor control (n = 2 participants, 108 and 20 assessments over two years),
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resulting in suboptimal performance in these sessions. Significance. We anticipate that signal
acquisition and decoding methods that can adapt to the reported instabilities will further
improve the performance of intracortically-based NISs.

S Online supplementary data available from stacks.iop.org/JNE/10/036004/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Intracortically-based neural interface systems (NISs) may
offer a powerful approach to restore mobility and
independence to people with paralysis. Prior studies have
demonstrated that information about movement intention can
be detected in human motor cortex even after years of paralysis
due to stroke, spinal cord injury or ALS (Hochberg et al 2006,
Kim et al 2008, Chadwick et al 2011, Simeral et al 2011a).
In turn, extracted movement intention can provide a command
signal sufficiently reliable to control a computer cursor on
a screen in intact macaques (Ganguly and Carmena 2009,
Carmena et al 2003, Taylor et al 2002, Lebedev et al 2005,
Serruya et al 2002), in people with tetraplegia (Chadwick
et al 2011, Kim et al 2008, Simeral et al 2011a, Hochberg
et al 2006), or to perform actions with a robotic limb in
macaques (Velliste et al 2008) or humans (Hochberg et al
2012, Collinger et al 2012). Longer term goals include the
development of useful, stable, and reliable neurally-controlled
assistive devices, such as dexterous robotic assistive devices,
communication interfaces, or the restoration of movement
of paralyzed limbs by functional electrical stimulation of
paralyzed muscles (Donoghue et al 2007, Pohlmeyer et al
2009, Cornwell and Kirsch 2010, Chadwick et al 2011). To
become clinically viable, especially if they require surgical
implantation of sensors, these applications must perform
reliably over an extended period of time—preferably for a
decade or longer.

Technical stability of the recorded neural signals
is a desirable design parameter for neuroprosthetic
performance. Encouragingly, intracortical recordings using
silicon microelectrode platforms demonstrated spiking signals
and maintained signal quality over 500 days in monkeys (Suner
et al 2005), point and click cursor control over 1000 days in a
person using the same type of sensor (Simeral et al 2011a), and
useful signals for multi-dimensional device control more than
five years after implantation in one person (Hochberg et al
2012). Nevertheless, commonly observed signal instabilities
could have arisen from array movement, tissue reaction, array
material degradation inside the body, or connector issues
externally. Consistent with the contribution of these physical
factors, electrode impedance and the number of recorded
action potentials have been observed to decrease over months
(Parker et al 2011, Prasad and Sanchez 2012), and spike
amplitudes and root-mean-squared noise show day-to-day and
within day changes and an overall signal amplitude decrease
on average by ∼2–4%/month (Chestek et al 2011, Linderman
et al 2006, Santhanam et al 2007). Whatever the cause, and
whether amplitudes increase or decrease, signal changes can

be substantial, as 60% of the waveforms recorded with silicon
platform arrays in monkey have been reported to change across
a 15 day interval (Dickey et al 2009).

An additional concern for NIS performance is biological
stability, i.e. the coding function that relates neuronal activity
to behavior. Preferred direction (Stevenson et al 2011)
and its contribution to the decoding model appears to be
relatively stable in area M1 (Chestek et al 2007), as well as
decoding performance (Serruya et al 2003), while somewhat
inconsistently, tuning curves (mean rate, preferred direction
and modulation depth) in different studies report that coding
functions may be unstable, both in familiar and novel motor
tasks (Rokni et al 2007, Taylor et al 2002). Although
demonstrations of adaptive filters attempting to mitigate these
instabilities exist (Wu and Hatsopoulos 2008, Eden et al
2004), the efficacy of these approaches in neuroprosthesis
applications has not been established. When designing such
an adaptive filter, a principled first step is to understand the
source and magnitude of signal variance.

To evaluate the nature and extent of instability in spiking
populations recorded in the context of an ongoing pilot
clinical trial of people with tetraplegia, we analyzed within-
day changes in spike rates, spike amplitudes and their impact
upon decoded output, i.e. neural cursor control. We found
that systematic rate changes occur commonly; these can cause
estimation errors in the decoded kinematic parameters leading
to degraded performance that presents itself as a directional
bias. These rate changes originated from a combination of
recording instabilities (amplitude and noise change) and what
appear to be physiological changes. In addition, the majority
of the spike amplitude changes we observed were consistent
with localized changes at individual electrodes (or recording
channels) rather than global motion of the recording array. The
present study investigates sources of variance in the recorded
neural activity which, if accounted for in real-time neural
decoding, would further improve long term neuroprosthetic
reliability and performance.

2. Methods

2.1. Participants

We analyzed data from three participants (S3, A1 and T1) in
an ongoing pilot clinical trial. S3 (female, age: 56 years) was
diagnosed with extensive pontine infraction due to thrombosis
of the basilar artery 9 years prior to trial recruitment. A1 and T1
(male and female, ages 37 and 54, respectively) had advanced
amyotrophic lateral sclerosis. All participants had tetraplegia
and anarthria, A1 and T1 were dependent upon mechanical
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ventilation. The usual form of communication was through eye
movements. This research was conducted with Institutional
Review Board (IRB) approval and an FDA IDE. The pilot
clinical trial is registered at clinicaltrials.gov/NCT00912041.
A detailed description of the BrainGate NIS is presented
elsewhere (Simeral et al 2011a).

2.2. Signal acquisition

Motor cortical activity was recorded with a 10 × 10 array of
100 platinum-tipped silicon microelectrodes (1.5 mm length
in S3, 1.0 mm in A1 and T1, 400 μm spacing, Blackrock
Microsystems) chronically implanted into the motor cortex
(M1) arm area (Hochberg et al 2006, Kim et al 2008).
Recorded electrical signals were passed externally through
a titanium percutaneous connector that was secured to the
skull. Cabling (94 cm long) attached to the connector and
equipped with a unity-gain isolation stage routed signals to an
amplifier clamped to the back of the wheelchair, where signals
were analogue filtered (0.3–7500 Hz), digitized at 30 kHz
sampling rate and optically transferred to a series of computers
for further processing. Sorted spikes were aggregated into
100 ms time bins and decoded into cursor velocity (Kim
et al 2008) thus controlling the motion of a computer cursor
(‘neural cursor’) that the participant viewed on a computer
monitor.

2.3. Online spike sorting

Units (single or multi) were manually discriminated by a
trained technician at the beginning of each recording session by
placing a manually adjusted detection threshold for recorded
signals for each of 96 possible recordings channels. Events
when the analogue voltage signal crossed this threshold
triggered the storage of a 1.6 ms long spike waveform. Then
one or more manually set time–amplitude windows (window
discriminators) were used to detect and sort neural spiking;
these events were recorded as a time series of spike counts.
Units below 1.5 Hz average firing rate were discarded from
further analysis. In addition to these manually, on-line, rapidly
discriminated units, the broadband recordings of the signal
(0.3–7500 Hz) were also saved for subsequent offline analysis.

2.4. Offline spike sorting

During offline data processing, we obtained each recorded
unit’s isolation quality—i.e. its spike waveform signal-to-noise
ratio, (SNR) (Suner et al 2005). Well isolated units above
SNR value of 4.5 (n = 297 in all sessions and participants)
were manually resorted using Offline Sorter (Plexon, Dallas)
by manually selecting clusters of the waveforms projected
onto a display of their first two principal components (PC).
Specifically, the unit’s spike waveforms in 2D PC space
formed a separate cluster from noise waveforms, the interspike
interval distribution exhibited the presence of a clear refractory
period (2 ms), and the waveform shapes and peak-to-peak
amplitudes showed a characteristic difference when compared
with other neuronal waveforms and multiunit activity on the
same electrode. The selected units’ mean isolation distance

(ID) (Harris et al 2001) was 64. We did not attempt to verify if
the same neurons were present each day, thus part of the total
unit count likely corresponded to repeated measurement of the
same neurons.

2.5. Significance criterion for spike rate change and
amplitude change

The neural activity during a daily research session was
commonly recorded in a series of short epochs lasting
2–6 min during which the subjects performed one of a variety
of behavioral tasks (see section 2.9), interleaved by resting
periods when no activity was recorded. We used a two-
sample Kolmogorov–Smirnov goodness-of-fit hypothesis test
(p < 0.05) to evaluate whether the firing rates of a unit in
a given epoch using 1 s bins were significantly different
from the rest of the overall mean firing rate (i.e. the rest of
the epochs). Correction for multiple testing was employed to
control the number of falsely rejected null hypotheses. We used
the Benjamini–Hochberg procedure (Benjamini and Hochberg
1995) with a correction for dependent statistics (Benjamini and
Yekutieli 2001) to set the false discovery rate within a session
at the level of 5% for all tests. A neuronal response from a
single channel was deemed significant if there was at least
one epoch for which the mean firing rate (or amplitude) was
significantly different from the rest of the epochs after the
correction for multiple testing was made. The same procedure
was applied in establishing significance for changes in mean
spike amplitude across epochs.

2.6. Significance criterion for synchronous amplitude change
across electrodes

As an indication of potential array movement, we addressed
whether spike amplitudes on different electrodes change
simultaneously. First we calculated mean spike amplitudes
within single epochs of 23 sessions (arrays A1, T1 and S3
within the first two months). We included only manually
resorted units above 1.5 Hz spike rate and SNR �4.5 (Suner
et al 2005). Manual resorting was necessary to ensure that
the amplitude change was real, and not due to nonstationary
electrical noise, change in firing rate of two adjacent units
with slightly different spike amplitudes, or other recording
artifacts. For each unit, the epoch-to-epoch mean amplitudes
were z-scored (i.e. the mean amplitude across all epochs was
subtracted from each epoch’s mean and normalized to the
epoch-to-epoch variance), then the absolute values of these z-
scored amplitude fluctuations were averaged across electrodes.
Extreme values (see next paragraph) in this overall epoch-to-
epoch amplitude change indicated that a substantial fraction
of the units had changed synchronously.

Second, a nonparametric bootstrap procedure established
the significance criterion by estimating the sampling
distribution of the overall amplitude change. In particular,
normalized absolute amplitude changes were randomly
reshuffled along the session and averaged across electrodes
and the most extreme value was stored. This process was
repeated 1000 times to generate a bootstrap distribution, to
which values of the overall epoch-to-epoch amplitude change
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was compared. Synchronous change from epoch to epoch was
concluded statistically significant if the most extreme value
of the overall amplitude change was larger than 99% of the
values in the bootstrap distribution (p < 0.01).

2.7. Decoder calibration and closed loop control

The first task of each research session was designed to find a
linear mapping between volitional neural activity and cursor
movements. Specifically, the participant watched a computer-
generated sequence of cursor movements (training cursor)
while attempting arm motions that would produce such a
cursor motion. In this calibration stage the participant received
no feedback of how effective his/her movement imagery
would have been in controlling the cursor. Neural firing rates
recorded during this intended arm/hand movement together
with the cursor kinematics (position and velocity) were used
to calibrate the Kalman filter’s decoding model (Wu et al 2006,
Malik et al 2011). Once established, this mapping converted
subsequently observed neural firing patterns to cursor motion
in two dimensions. A second mapping between imagined hand
squeeze and the overall firing rate of the same neural cluster
was used to create a ‘click’ signal (Kim et al 2008, Simeral
et al 2011a, Kim et al 2011).

2.8. Cursor control assessment

Voluntary control over the neural cursor was regularly tested by
a radial-4 or radial-8 center-out-back target acquisition task.
The goal of this task was to move the neural cursor to one
of four (or eight) circularly arranged peripheral targets that
were discs on a screen. The cursor was centered on the screen
to begin a trial (i.e. cursor movement to a new target), and
the participant was asked to direct the cursor to the target
(indicated by color change), click on it, then direct the cursor
back to the center and click on it to initiate a new trial. Cursor
control was assessed by the per cent of successfully acquired
targets (both peripheral and central) and by testing cursor
trajectories for a directional bias, i.e. a systematic tendency
to move in a direction other than toward the target.

To measure the direction of a bias during cursor control,
for each trial we calculated the cursor’s average orthogonal
deviation from the straight path between center and target.
Note that a jittery cursor with no systematic bias tends to
deviate on either side of the straight path, therefore the
deviations tend to cancel out. Bias direction was obtained
from the vector average of the orthogonal mean deviations
over all trials to all targets. Target directions across all epochs
were roughly evenly distributed with 12 ± 9 trials/epochs.
Occasionally, some of the trials were not executed due to
limited cursor control. However, our bias measurement did
not require balanced number of target presentations.

Bias significance was estimated by a bootstrap procedure.
The sign and length of the orthogonal deviations were
randomly reassigned among the trials, i.e. the orthogonal
deviation vectors were rotated to be orthogonal to a randomly
selected other trial direction, averaged, and the resulting bias
vector length was stored. Five thousand repetitions of this
shuffling generated a smooth distribution of vector lengths

to which the original bias vector length was compared. The
assessment was considered significantly biased if the original
bias vector length was larger than 99% of the shuffled vector
lengths (p < 0.01).

In addition to the target acquisition task above, a variety
of other tasks were also performed during each clinical trial
session and presented elsewhere. These tasks included ‘mFitts’
a sequential tracking paradigm (Simeral et al 2011a), multi-
dimensional control of a robotic or prosthetic arm (Hochberg
et al 2012), the effect of movement imageries on neural
responses, or comparisons of decoder types on cursor control.
The behavioral results of these tasks fall outside of the scope
of this paper.

2.9. Closed-loop simulation

To explore how directional bias could arise from an underlying
neuronal spike rate change, we simulated closed-loop cursor
control with a virtual subject whose intention was to always
move in the direction of the target (figure 1). The subject’s
intention drove direction specific responses of a population
of N = 8 neurons with tuning curves f (φ) = ( f 1(φ),
f2(φ), . . . fN(φ)) describing the mean spike count of
each neuron as a function of the movement direction φ.
Furthermore, these neurons tiled the space of all directions
uniformly and had unimodal tuning curves following a cosine
function. The response for neuron i for movement direction φ

was defined as

fi(φ) = A + m cos(φ−φi) + ν (1)

where A is the baseline firing rate, m (or modulation depth)
controls the amplitude of the tuning function, φi is the neuron’s
preferred direction and ν is zero-mean Gaussian noise.

Decoding the simulated firing rates and generating the
cursor trajectories was similar to a typical closed-loop session.
First, we generated firing rates based on a training cursor
moving toward four cardinal targets, used these rates to
calibrate the parameters of the Kalman filter (Malik et al
2011), and then performed a center out assessment in closed-
loop. We simulated closed-loop visual feedback by using the
current cursor and target positions to recalculate the intended
movement direction (i.e. toward the target) in each successive
time step. Firing rates and the subsequent cursor positions were
generated iteratively every 100 ms. Realistic cursor trajectories
were obtained using A = 20 Hz, m = 10 Hz and ν’s standard
deviation = 10 Hz. Cursor trajectories were stored and are
reported in section 3.

3. Results

We analyzed motor cortical neuronal spiking activity recorded
from three trial participants during the first two months after
electrode implantation (4, 7 and 11 experimental sessions,
8–22 epochs/session, with 352, 668 and 718 manually sorted
units for A1, S3 and T1 respectively). We also monitored
neural cursor control and the underlying neural activity in
center-out-back target acquisition assessments (108 and 20
assessments over 65 and 8 sessions with 32 ± 15 and 88 ±

4



J. Neural Eng. 10 (2013) 036004 J A Perge et al

Cosine tuned
neurons

Direction dependent 
spike rates

Intent:
move toward target

Decoding 

Kalman
filter

Cursor movement

target

current cursor position

Figure 1. Computer simulation modeling the effect of neural signal changes on closed-loop neural cursor control.

9 sorted units/assessment for S3 and A1 respectively; see
section 2 and table 2). Since cursor control assessments with
S3 were recorded in a later part of the trial (days 785–1576),
her performance data with the corresponding neural data is
labeled as ‘S3b’. Participant T1 with advanced ALS did not
achieve sufficient 2D cursor control with our decoding and
signal selection approach at that time, thus her intra-session
performance was not presentable. Below, we describe the
signal instabilities, followed by the simulated effect that these
could have on actual decoding performance, followed by the
cursor control results observed in participant S3b and A1.

3.1. Within-day firing rate changes at the group level

To survey the frequency and magnitude of apparent firing
rate changes at the group level, we analyzed data from three
participants (A1, T1, S3) during the first two months post-
implantation and during a two-year assessment period in
S3 (‘S3b’). For each unit in each session, we defined rate
change as the largest deviation of an epoch’s mean rate from
the mean rate over all epochs. The average daily firing rate
change was 3.8 ± 8.71 Hz or 49% of the mean rate, with a
similar magnitude across the three arrays (3.7 ± 4.5, 2.8 ±
5.2, 5.3 ± 6.2 and 3.7 ± 11 Hz for A1, T1, S3 and S3b
respectively; see figure 2(A). 84% of these changes across
epochs within a session were statistically significant (p < 0.05
with correction for false discovery rate, see section 2), 5%
of the unit recordings showed changes larger than 8.4 Hz (or
113% of the overall mean), and 50% of the significant rate
changes were below 1.2 Hz (27% of mean rate).

The generally low apparent firing rates and the relatively
small rate changes were both statistically significant and
meaningful. The reported mean rates result in part from the
inclusion of portions of trials where no intended movement is
expected (i.e. rest), and from the largely balanced task where
instructed movements in a unit’s preferred direction were as
common as instructed movements in the opposite (or anti-
preferred) direction. The effect (or lack of such effect) that
statistically significant group-level mean rate changes might
have on closed-loop decoding is not obvious a priori; the actual
effect is described below.

One source of apparent rate change would occur if units
were not well isolated and hence more or less contaminated
with mixtures of spikes. To examine how isolation level

influenced rate change, we used the signal-to-noise ratio of the
spike waveforms (SNR) (Suner et al 2005) as an established
measure of isolation quality, where low SNR values (0–3)
appear to correspond to multi units, and values above ∼4.5
roughly correspond to single units with increased waveform
similarity and decreased background noise (figure 2(C),
insets). Units along the SNR spectrum showed comparable
rate change (3.2–3.8 Hz), except multi unit channels with the
lowest level of isolation (SNR: 0–2) which had average rate
changes nearly two-fold higher (6.1 Hz, figure 2(C)) than cells
with >2 SNR. This striking difference likely originated from
the fact that amplitude detection thresholds in this lowest SNR
group were inevitably close to the background noise, making
spike detection more sensitive to subtle changes in recording
conditions. In these units, recording instability (discussed
below) could play an important role in spike rate instability
and ultimately to impaired NIS performance, although these
units represented only 8.6% of the significantly changing units
(n = 257) and 12% of the total rate changes.

3.2. Spike amplitude changes and their possible causes

To survey the extent of within-day spike amplitude changes in
the population, we averaged spike valley amplitudes (largest
negative excursion of the recorded potential from zero) within
each epoch, and then monitored the relative change of the
mean amplitudes between subsequent epochs. 74% of the
amplitude changes were statistically significant (p < 0.01,
bootstrapping, see section 2). Significant amplitude changes
had a slow, meandering time course (1.0 ± 3.4 μV min−1),
with similar frequency and magnitude across all three electrode
arrays (figure 2(B)). The average maximal daily amplitude
change was 3.7 ± 6.5 μV or 5.5 ± 6.25% of the mean
valley amplitude (4.6 ± 6.7, 4.4 ± 6.8, 6 ± 9.4 and 2.3 ±
4.7 μV for A1, T1, S3 and S3b respectively); 5% of the
units exhibited a change larger than 8.8 μV, or 13% of the
mean amplitude, and in 50% of the units amplitude change
was below 1 μV (3%). These instabilities were comparable
to within-day amplitude changes observed in monkey motor
cortex (Chestek et al 2011).

Spike amplitude fluctuations on a time scale of minutes
to hours might arise if system parameters (such as electrode
impedance, cross-talk between electrodes, or other unknown
recording conditions) change. Such instabilities would affect
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Figure 2. Spike rate and amplitude instability at the group level. (A) Rate changes show comparable magnitudes across three participants
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Figure 3. Independent spike amplitude dynamics in two units
recorded by the same electrode contradict explanations for simple
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individual spikes at the most negative deflection. Clusters of spikes
correspond to experimental epochs (with different tasks and
instructions) where larger circles and thick line indicate the mean
spike amplitude within an epoch. Gaps between spike clusters
indicate breaks between epochs, when data collection was paused.
Inset: due to their characteristic shapes and different amplitudes,
spikes could be well discriminated into two classes. Over the
duration of the experiment, spike amplitudes changed in both units,
but with different dynamics. Alterations in electrode impedance,
cross-talk, or other system parameters cannot explain these changes,
as they would impact both units similarly. Thin gray lines: mean
spike amplitude of units on other electrodes show no systematic
amplitude change across the array. For clarity, only ten randomly
selected amplitude traces are shown. Numbers indicate electrode
and unit label.

each recorded spike on a given electrode even if the spikes
originate from two or more adjacent neurons. An example
is useful in highlighting amplitude instabilities in two well-
discriminated units recorded simultaneously on the same
electrode (figure 3). In the first half of the research session

(from 0–35 min), the two units’ amplitudes changed in
opposite directions, while in the second half (from 45–75 min)
the amplitudes changed in a similar fashion. These different
temporal dynamics argue against more global changes in
recording system parameters such as impedance changes or
cross-talk (device effects), although micro motion affecting the
recording distance between neurons and electrode tip (motion
effects) could still explain the different dynamics depending
on the geometric arrangement of the units surrounding the
electrode tip (Gold et al 2006, Csicsvari et al 2003).

Global array movement, because it is a rigid monolithic
structure, would be expected to influence spike amplitudes
on multiple electrodes at the same time. Depending on the
units’ location relative to the electrode tip, array movement
could cause a simultaneous amplitude increase and decrease
on different electrodes. In support of this explanation, we
found significant synchrony of spike amplitude changes across
electrodes and between epochs in 9 out of 23 sessions (39%,
p < 0.01, see section 2). Following these events firing rate
changes doubled; (3.42 ± 4.47 Hz) compared to rate changes
during randomly selected non-synchronous epoch transitions
(1.7 ± 2.5 Hz), or between filter calibration and cursor control
assessment epochs (1.85 ± 3 Hz). Hence, whenever present,
micro movements of the array, inferred from synchronous
changes in firing rate across the array, could account for up
to 50% of the overall rate change in the population. Array
movement might cause rate change by physical irritation,
although the exact mechanism remains unclear.

However, in the remaining 61% of the sessions (n =
23), simultaneous recordings showed uncorrelated changes in
temporal dynamics (figure 3. gray lines), or the amplitude
changes were localized to an individual or a few electrodes
without any spatial pattern across electrodes. Local changes in
tissue geometry (e.g. microvasculature dilatation), hydrostatic
changes, relative changes in the regional extracellular milieu
or other local change in recording conditions or physiology
could account for this observation. In summary, both array
movement and local changes in tissue geometry could play
a role in amplitude instabilities, although the exact causes
remain unexplained.
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online experiment. Inset: average spike waveforms during selected
time periods indicated by elongated rectangles. (B) Spike rates as
determined by online (within window, black) and retrospectively
discriminated spikes (resorted, gray). Apparent decline in the online
firing rate results from failure of the smaller waveforms to satisfy
the discriminator parameters.

3.3. Spike amplitude instability can affect apparent
firing rates

If spike amplitudes change, spikes may fail to fit the
discriminator criteria, thus spike detection would suffer. In
the example unit presented in figure 4(A), spike amplitudes
decreased by 44% over 1.5 h (from 235 to 130 μV within 1.5 h).
As a result, by the end of the session the majority of spikes for
this unit failed to reach the requisite amplitude range required
by the time amplitude window discriminator (figure 4(A), gray
area), and thus remained undetected. Comparing the average
firing rates between the first and last half of the session, this
problem resulted in a 50% decrease in firing rate observed
online, even though the actual firing rate as determined
by offline resorting showed a modest increase (from 2.15
to 2.8 Hz) probably due to the participant’s compensatory
behavior. In this example, spike detection error occurred
by losing/gaining spikes in the time amplitude window
discriminator, however similar spike detection error could
occur in units with small spike amplitudes by losing/gaining
spikes whose amplitude crossed the spike detection threshold.

To estimate the extent to which amplitude change (or
recording instability) contributed to apparent firing rate change
at the group level we manually resorted a subset of the units

(>4.5 SNR, n = 297 units, SNR = 6.36 ± 2.2, section 2).
If spike amplitude or background noise instabilities changed
the detected spike count, this error would be corrected offline
by recovering undetected spikes (false negatives) or removing
noisy waveforms (false positives). Thus, a reduction in rate
change after resorting indicated the amount of change that
originated from recording instability (resulting in part from
the method of online spike discrimination), while rate change
unaffected by resorting was interpreted to reflect intrinsic
changes in spike rate due to physiological or unknown factors.

Manual offline resorting reduced firing rate fluctuations
by 15% (from 4 to 3.4 Hz; across arrays: 30%, 5.6%, 16% and
10% reduction for A1, T1, S3, S3b respectively), suggesting
that the contribution of recording instabilities to apparent rate
change was small compared to physiological or unknown
reasons. Firing rate changes within different groups of isolation
quality closely matched the rate change in the resorted neural
group, indicating a similar contribution of recording instability
to apparent rate change (figure 2(C)). Rate change showed
a weak but significant correlation with amplitude change in
the lowest isolation group (SNR 0–2, cc = 0.11, p = 0.05)
and in the highest isolation group (SNR 8–17, cc = 0.18,
p = 0.049). We found no significant correlation between rate
change and change in baseline noise (i.e. the standard deviation
of the first four samples of each spike waveform). In summary,
generalizing the sorting results to the entire population, our
estimated contribution of intra-day recording instability to rate
change at the group level was ∼15%, while the remaining 85%
of the changes were likely originating from intrinsic changes
in spike generation or other unknown factors.

Spike detection error associated rate change was
independent of the type of performed task. To this point, we
compared mean rates between epochs of different instructions
(see section 2), thus mean firing rates could be modulated
in a context dependent manner. However, we also compared
rate changes between filter calibration and cursor control
assessment, which were expected to be more similar in terms
of movement imagery. Comparing similar imagery epochs
showed a smaller average rate change (1.85 ± 3 Hz), yet
resorting a subset of units (n = 128 from S3b, SNR = 6.3 ±
2) within these epochs also eliminated 14% of the rate changes.
Thus while neural activity changed, as expected, during
different tasks, the number of spikes lost due to recording
instabilities was a constant fraction of the total number of
spikes.

3.4. Apparent spike rate changes introduce decoding errors
in computer simulation

To investigate the effect of apparent firing rate changes on the
decoded neural cursor movements, we performed a computer
simulation of a closed-loop cursor control epoch and calculated
cursor trajectories. In short, we generated firing rates of eight
simulated neurons with evenly distributed preferred directions,
cosine-shaped tuning curves and Gaussian noise (see section
2). Each neuron’s response was modulated by the movement
intention of a ‘virtual’ participant who always attempted to
move toward the target in a radial-8 center-out-back target
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Figure 5. Computer simulation demonstrates the impact of neural signal perturbations on decoded cursor kinematics. (A) Simulated
closed-loop neural cursor trajectories in a radial-8 center out and back assessment with no perturbation. (B) and (C) Rate change leads to
directional bias, i.e. cursor drift in a constant direction, when using a decoder calibrated with neural data in (A). (D) Change in preferred
direction leads to centrifugal distortion of cursor movements. (E) Random insertion of spiking events results in jittery trajectories.
(F) Removing task related modulation of one or more units increases jitter of cursor movements. See text for details.

acquisition task (section 2). Based on the generated firing rates
we calculated the velocity vector of the neural cursor with a
Kalman filter identical to the one used in actual participant
experiments.

Cursor trajectories in closed-loop simulation closely
resembled those in a balanced center-out assessment
performed by clinical trial participants when a good neural
decoder had been calibrated (figure 5(A)). However, departure
of a single neuron’s firing rate from its expected range
could disrupt Kalman-filter based neural control. For instance,
increasing the mean firing rate of one unit tuned to right
movement from 20 to 30 Hz (50% rate change, i.e. the
average proportional rate change in the population) resulted
in mild but statistically significant rightward directional
bias (p < 0.05, Methods). Larger rate changes resulted in
increasing magnitudes of rightward directional bias (45 Hz:
figure 5(B)) to the point where bias magnitude overwhelmed
the user’s adaptive response, and cursor control failed (extreme
example: 60 Hz, figure 5(C)). Changing rates of multiple units
also resulted in a directional bias, where the direction and
magnitude of the bias was a weighted average of individual
unit’s rate change, preferred direction and contribution to
decoding. As we show below, these simulations faithfully
recreated directional bias similar to actual participant research
sessions.

Closed-loop simulation also enabled us to explore
characteristic changes in the Kalman filter-decoded

cursor kinematics caused by three additional signal
perturbations: preferred direction change, noise change
or change in modulation depth. Change in a unit’s
preferred direction introduced a rotational bias, with a
centrifugal distortion of cursor trajectories resembling a
pinwheel (figure 5(D), see supplementary material (available
at stacks.iop.org/JNE/10/036004/mmedia) for additional
explanation). In this case, despite of the constant angular error,
the simulated visual feedback helped to direct the cursor to the
target. The remarkable similarity of this result to actual motor
performance in the presence of a curl force field (Li et al 2001)
is consistent with the effect of constant angular error on actual
movement trajectories. Although we observed no indication
of such a global pinwheel pattern in cursor trajectories during
closed-loop participant control, the participant had the ongoing
ability to adjust strategy and adapt to small tuning changes.
Unless the magnitude of rate change and the decoded velocity
overwhelms the user’s adaptive response, this bias could be
undetectable. Increasing the noise component (see section 2,
equation (1)) in one or more simulated units resulted in jittery
cursor trajectories in all movement directions (figure 5(E),
also frequently observed in cursor control assessments), while
reducing modulation depth of two units to zero (i.e. setting
firing rate to the mean rate) introduced no systematic distortion,
but a slight increase in jittery cursor movements (figure 5(F)).

8
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Figure 6. Examples of accurate neural cursor control (A) and cursor control with directional bias (B) during two sessions of a radial-8 center
out assessment. The participant was asked to direct the neural cursor (paths shown as black dots) from the center of the screen (white or
black dashed circle) to one of eight peripheral targets (gray discs), click and then return to the center. Black discs: click locations of
successfully acquired targets. Large rectangles indicate monitor boundaries. Cursor trajectories are relatively straight and mark out the eight
principal target directions with 100% successful target acquisition rate (B). Poor control with 15% correctly acquired targets. Cursor
trajectories show frequent direction change and a strong tendency to move towards the bottom right corner of the screen.

3.5. Effect of rate change on neuroprosthetic control:
participant S3 research sessions

The quality of intra-day neural cursor control with participant
S3 was frequently affected by a directional bias, revealed
as an apparent drift of the neural cursor in a constant
direction (figure 6(B)). During assessments of accurate
control (figure 6(A)), neural cursor trajectories appeared
relatively straight, with any deviations from the axis of target
direction remaining small. For example, during the assessment
presented in figure 6(A), the cursor reached the target in
7.14 ± 3.44 s (n = 47 trials) with high positional accuracy
(within 2.7 cm from the center of the target) and acquired
100% of the targets within the allotted trial interval (25 s). In
contrast, 56% and 15% of the assessments (n = 108 and n = 20
for S3 and A1 respectively) showed a statistically significant
directional bias in cursor movements (p < 0.01, bootstrap
procedure, see section 2, figure 6(B)). This bias interfered with
the ongoing motion of the cursor towards the target with mild
to major effects, occasionally resulting in complete inability to
control the cursor. The direction of the bias generally remained
stable within a day and appeared to change randomly from day
to day, however in one data session we observed a change in
bias direction within a single day.

An example session with significant firing rate changes
and the resulting directional bias is presented in figure 7. This
session started with accurate cursor control (i.e. relatively
straight trajectories with 100% success in reaching the
instructed target, figure 7(A), upper left inset). About 30 min
into this session the cursor repeatedly drifted towards the lower
left corner of the screen as the participant attempted to reach
any target. Due to this strong directional bias, target acquisition
rate diminished to chance level (i.e. no control), but 80 min
and ∼50 trials later the control gradually returned to near
perfect performance without any investigator initiated change

in the experimental setup, filter parameters or task instruction
(figure 7(A)).

In parallel with this performance degradation, one of the
units with significant firing rate change (unit 3, p < 0.01,
n = 26 units contributing to the decoder) showed a 75%
reduction in mean firing rate as its spike amplitudes gradually
blended into background electrical noise. The rate change of
this unit correlated significantly with decaying cursor control
(Pearson’s cc: 0.87 p � 0.01) and consistent with its role in
creating bias, the preferred direction of the unit matched the
axis of directional bias (see section 2 for bias measurement).
When the firing rate of this unit returned to the original level,
cursor control was also restored. Although two other units
also showed significant rate changes (unit 21 and 24), their
contribution to decoding were small, thus their changing firing
rate appeared to have negligible effect on bias direction.

To confirm that the directional bias observed during cursor
control assessments indeed originated from changes in firing
rate, rather than from other possibilities such as a change in the
unit’s preferred direction or a latent technical/programming
error, we calculated bias direction from the observed rate
changes and compared this calculation to the actual bias
direction observed in cursor trajectories. Specifically, instead
of decoding cursor velocity iteratively from firing rates within
short time windows (typically 100 ms) we decoded the net
cursor velocity (i.e. bias) from the mean firing rates over
the entire assessment using the same Kalman filter that
we trained prior the analysis. Predicted and measured bias
direction correlated significantly (Pearson’s cc = 0.86; p =
7.24 × 10−19, n = 61 assessments) in center-out assessments
with significant directional bias, and the angular error between
predicted and observed bias was within 90◦ in 70% of the
assessments, confirming the role of firing rate change in
directional bias.
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Figure 7. Mean firing rate change of a highly modulated unit
correlates with control instability. (A) In a series of radial-8
center-out-and-back assessments, performance decreased from
100% correctly acquired targets to zero per cent, but after another
40 min control recovered spontaneously and reached full
performance. This decrease in performance was correlated with a
change in one unit’s mean firing rate (B). Top insets: cursor
trajectories over the session. Arrow indicates bias direction. (B)
Mean firing rates of 26 units used in decoding. Unit 3 (thick black
line) decreased its firing rate by 75% over the first ∼70 min. The rate
change of this unit correlated strongly with decreased performance
(Pearson’s cc: 0.87, p � 0.01), and its preferred direction aligned
with the axis of directional bias. The reason for these rate changes
was unknown. Thicker lines: three units with significant rate change
(p < 0.01). Insets: direction tuning curves of the three units.

Table 1. Significant rate change and directional bias during
performance assessments (S3b).

No. of sessions Bias occurred Bias did not occur Total

Any unit with significant
rate change

61 46 107

No unit with significant
rate change

0 1 1

61 47 108

If firing rate changes cause directional bias, one might
expect more frequent or larger rate changes in biased
assessments than in those assessments where cursor control
was good, however we did not observe such dichotomy.
Significant rate changes were common (figure 2), with both
biased and unbiased assessments showing significant rate
changes. Only one assessment (∼1%, n = 108 assessments,
S3b) showed no significant change in the mean rate of any
unit (unbiased assessment, table 1). These indicate that the
absolute amount of rate change in the recorded units had little
predictive power for forecasting directional bias.

Small amplitude units in the SNR group 0–2 showed larger
apparent rate changes than well isolated units (figure 2(C)).

To address if they were also more likely contributing to
directional bias, we analyzed all center-out assessments with
significant bias (n = 61 assessments, see section 2) and
from each assessment, we selected five units (∼10–20%
of all units/assessment) with the strongest contribution to
directional bias. We defined a unit’s contribution to directional
bias as the unit’s rate change (between filter calibration and
center out assessment) multiplied by the weight of the unit
in decoding (Wu et al 2006). The SNR of these units was
slightly higher than the population mean (3.07 ± 1.2 n =
310 compared to 2.78 ± 1.08, n = 3240), thus units which
adversely affected decoding performance were not restricted
to the low SNR cohort.

Finally, we investigated time-dependent changes in cursor
control during a session. To do so, we analyzed performance
metrics of neural cursor control in sessions when cursor control
was assessed repeatedly between two to five times (n =
28 and n = 10 sessions for S3b and A1 respectively) and
∼5–180 min apart. In both participants, the average
performance metrics during the first assessment of the sessions
were similar to the following assessments (table 2). In
summary, despite of temporal variation in performance, none
of the cursor control metrics showed any systematic tendency
to increase or decrease within a session. Further analysis on
cursor control assessment using data from A1 and S3 were
presented previously (Kim et al 2008, Simeral et al 2011a).

4. Discussion

Our study is the first extensive analysis of apparent firing
rate instabilities in a human intracortical neural interface
system. As one of the advantages of intracortical recording
systems is the ability to harness the information transmitted via
modulation in action potential firing rates, characterizing the
instabilities is a first step toward reducing them or accounting
for them through advances in neural engineering and/or
computational approaches.

We showed that firing rate instabilities, if unmodeled, can
lead to a directional bias in the decoded kinematic variables
and thus to degraded performance. Recording instabilities and
subsequent spike detection errors accounted for 15% of the
firing rate variability while the majority of rate changes (85%)
originated from intrinsic variations in spike generation which
may be attributed to actual physiological changes such as task
related modulation, attentional changes or plasticity. Whatever
the cause, the prevalence of these effects demonstrates that
mitigating the contribution of both technical and intrinsic
factors is important for optimal system performance and
reliability—a key requirement for successful and long-term
neuronal ensemble control of assistive devices.

The relatively small contribution of recording instability
to neuroprosthetic performance on a short duration (hours)
confirms Chestek et al (2011) who also found variability in
amplitude and spike rates on short time scales in monkeys,
even though did not see substantial changes in performance
due to these fluctuations. However, this level of stability
presumably does not generalize over a longer time scale (from
days to years), where maintaining a consistent ensemble of

10



J. Neural Eng. 10 (2013) 036004 J A Perge et al

Table 2. Summary of cursor control performance metrics for participants S3b and A1. PC: per cent correct, MT: movement time, ODC:
orthogonal directional change, MDC: movement direction change, MV: movement variability, ME: movement error, MO: movement offset,
PBE: per cent biased epochs.

PC (%) MT (sec) ODC MDC MV (mm) ME (mm) MO (mm)

Epoch no n (assessment) Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD PBE (%)

Participant S3b, n = 108 assessments over 65 sessions, trial days 785–1576
1 65 61.8 33.8 5.3 6 3.7 2.4 4.9 2.5 19.3 9.3 27.7 15.8 24.8 15.5 56.9
2 26 59.3 30.1 6.2 4.9 4.4 2.1 5.6 2.2 21.7 8.9 31.3 17 28.2 17.5 57.7
3 11 59.5 36.5 4.7 3.5 3.6 1.8 5 1.7 17.8 7 27.5 19.2 24.5 20.3 63.6
4 4 70.4 20.5 4.6 1 4.5 2.7 5.9 2.9 15.4 0.8 21.5 2.4 19.7 3.6 50
5 2 67.8 10.2 4.8 0.1 4 1 5.8 1.6 15.7 2.7 23.7 3.4 22.1 2.2 100

Participant A1, n = 20 assessments over 8 sessions, trial days 106–225

1 8 69.3 19 3.4 0.8 6 6.6 7.2 6.8 11.4 4.6 20.9 8 19.6 8 25
2 5 60.5 16.8 3.6 0.6 4.1 4.3 4.6 4.2 12.3 4.8 18.4 7.5 15.9 8.2 0
3 5 69.2 18.8 3 0.3 5 4.6 5.9 4.3 15.5 5.6 24 10.1 21 10.3 17
4 1 70 3.2 5.6 9.4 7.2 9.9 8.4 0
5 1 83.3 3.4 7 8 11.5 15.6 13.4 0

neurons appears to remain a challenge. From day to day,
neural waveforms change (Dickey et al 2009), over months
electrode impedance can decrease (Parker et al 2011, Simeral
et al 2011b), amplitudes steadily decline (Chestek et al 2011)
and the number of detected action potentials change, leading
to real or apparent spike rate decrease (Chestek et al 2011,
Parker et al 2011, Suner et al 2005). Although we have
recently demonstrated that an intracortical array can provide
useful signals for more than five years (Hochberg et al 2012),
both basic neuroscience and neuroprosthetics will benefit from
improvements in recording systems toward providing more
consistent and high quality recordings.

Spike amplitude instabilities might originate from a
relative motion of the electrode to the recorded neuron
by distances <50 μm (Gold et al 2006) or due to larger
movements and a shifting population of neurons (Suner et
al 2005). Electrode/tissue movements caused by vascular
pulsations or changes in global intracerebral pressure linked to
ventilation are unlikely explanations of the observed amplitude
changes due to the short (∼s) time course of these repeated
physiologic events. Fast head movements or acceleration-
induced shifts (Santhanam et al 2007) could also be excluded
since, due to tetraplegia, the participants had no or small
and comparatively low angular velocity head movements.
Coughing or sneezing could change intracranial pressure and
possibly induce array micromotion. While we investigated
examples of synchronous amplitude shifts as indicators of
array movement, more than half of the sessions showed
no sign of coordinated spike amplitude changes, thus the
instabilities might reflect local changes in tissue geometry
driven by changes in local vessel diameter or by other unknown
mechanisms.

Spike amplitude changes might partially originate from
intrinsic cellular mechanisms. Bursting related amplitude
decrease due to prolonged Na+ channel inactivation (Harris
et al 2001) operates on a short (∼20 s) timescale and
therefore fails to explain our observed amplitude changes
on the time course of minutes to hours. However, changes
of afferent activity affecting intrinsic membrane properties
might operate on a similar time scale. Physiological states

such as sleep/wake cycles (Jackson and Fetz 2007) or activity
dependent attenuations driven by experience can also influence
spike amplitude (Quirk et al 2001).

The majority of the observed rate changes (85%) lacked
an immediately apparent technology-related explanation,
suggesting a possible biological origin. Part of these changes
could be related to changes in experimental task differentially
modulating the neural population. However, we observed
significant changes in firing rate between epochs of similar
instructions, indicating mechanisms that are not directly
related to the task. Indeed, the functional connection between
M1 neuronal activity and muscle activity, as measured
by spike-triggered averaging can show dramatic variability
(Rokni et al 2007, Davidson et al 2007), and the correlation
between firing rate and decoded movement parameters might
change with context (Carmena et al 2005, Jarosiewicz et al
2013). Cortical waves (Rubino et al 2006), circadian rhythms
(Barnes et al 1977), and cognitive (such as motivation or
attention) or behavioral changes could also strongly influence
population activity. Considering that the brain is a complex
dynamic system, stationarity would, in fact, be unexpected.

Neuroprosthetic feedback and decoding error might
also induce a shift in population activity. For instance, we
occasionally observed in neural cursor control that directional
bias introduced a compensation strategy by the participant. The
underlying shift in population activity might thus be similar
to network changes associated with adaptation to an external
force field (Li et al 2001). Adaptation to the decoder could
‘confuse’ the user when using a newly calibrated decoder,
thus we might expect to see alternating or decaying session-
to-session performance. Instead, participant S3 demonstrated
a consistently high performance using a newly calibrated
decoder on five consecutive days (Simeral et al 2011a)—
(figure 1). Signal instability and the subsequent perturbation
in the mapping between motor intention and the executed
movement might also introduce compensatory mechanisms
that could lead to escalating endpoint errors (Mazzoni and
Krakauer 2006, Taylor and Ivry 2011). Such a counter-
productive error driven adaptive process would manifest in
a systematic decay in cursor control within a session, however
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we found no evidence for such decay (table 2). In summary,
developing a new control strategy might require multi-day
training (Ganguly and Carmena 2009) rather than a single
session.

A possible strategy to improve robustness of
neuroprosthetic control might be to minimize signal
changes. Improvements in electrode arrays and/or recording
technologies (i.e. engineering modifications) may result in the
recording of large amplitude spikes consistently over extended
periods of time (preferably measured in decades). Increasing
the number of electrodes and recorded units would reduce
the relative impact of individual instabilities (Carmena et al
2005). For instance, doubling the number of units in our
closed loop simulation diminished bias magnitude and made
cursor trajectories smoother by averaging out stochastic neural
responses. Furthermore, a different spike detection strategy,
such as adaptive spike sorting (Watkins et al 2004, Linderman
et al 2006) or signal amplitude thresholding alone (Chestek
et al 2011, Fraser et al 2009, Hochberg et al 2012) as opposed
to thresholding combined with window discriminators could
make the decoder less vulnerable to amplitude instabilities
(Chestek et al 2011, Gilja et al 2011). The feature extraction
algorithm could also use complementary signals such as
multiunit activity, local field potentials, or surface field
potentials that might be more stable over time (Andersen et al
2004, Bradberry et al 2010, Stark and Abeles 2007, Slutzky
et al 2011, Flint et al 2012a, Flint et al 2012b).

If neural recordings are relatively stable, the decoding
parameters can be optimized by repeated calibration or with
an adaptive decoder, and then subsequently fixed using the
same units and decoding parameters. Thus signal variability
may be compensated for by the user when using a static
decoder (Flint et al 2012c, Gilja et al 2012, Nuyujukian et al
2012). This way, learning can take part in consolidating cortical
dynamics, leading to a potentially more stable representation
and neuroprosthetic performance (Ganguly and Carmena
2009).

Even if signal variability cannot be fully eliminated,
decoding approaches might be able to compensate for its
effect. First, the decoding algorithm could identify stable
units and use these exclusively for real-time control of the
device (Dickey et al 2009, Wahnoun et al 2004). Second,
an adaptive decoder could monitor changes in the statistical
properties of the input signal or environmental noise and
adjust the decoding parameters accordingly (Homer et al
2011, Wu and Hatsopoulos 2008). Third, recalibration of
the model parameters during (Jarosiewicz et al 2013) and
between use could not only compensate for nonstationarities,
but further improve the mapping between neural activity and
motor parameters. Finally, as this mapping might be task
specific, context dependent or inherently variant over time, an
improved decoder might operate by switching between several
distinct mappings. Thus modeling the observed (Truccolo
et al 2005, Wu and Hatsopoulos 2008) or hidden sources of
variability (Stevenson et al 2010, Lawhern et al 2010, Wood
et al 2005, Kulkarni and Paninski 2007) could provide further
improvement in decoding performance.
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