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(57) ABSTRACT

Computationally efficient procedure for estimating modula-
tion depth from multivariate data. Neural interface system
utilizing such procedure to rank neural signals and select
optimal channel subset for inclusion in the neural decoding
algorithm. The proposed system offers several orders of
magnitude lower complexity and data-processing time but
virtually identical decoding performance compared to
greedy search and other selection schemes and is applicable
to wide variety of problems involving multisensor signal
modeling and estimation in biomedical engineering systems.
The use of the system to the modulation depth of human
motor cortical function shows that single-unit signals are
characterized by the generalized Pareto distribution.
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REDUCE DIMENSIONALITY OF ENSEMBLE OF MULTIPLE
SIGNAL CHANNELS, WITHOUT THE USE OF PROJECTION- 710
BASED TECHNIQUE, TO SELECT SUBSET OF CHANNELS

PERFORM VARIABLE RANKING OF MULTIPLE //?'“E a4
SIGNAL CHANNELS IN SPACE IN WHICH “1
PHYSIOLOGICAL MEANING OF CHANNELS I8
DEFINED

DETERMINE INFORMATION CONTENT FOR
S o
EACH OF MULTIPLE SIGNAL CHANNELS //-;1@5

DETERMINED MODULATION DEPTH
OF EACH OF CHANNELS

TRANSFORM SIGNALS ACQUIRED THROUGH MULTIPLE 720
CHANNELS TO FORM PREPROCESSED BIGNALS 4

DECCDE PREPROCESSED SIGNALS CORRESPONDING ONLY 730
TOSUBSET OF CHANNELS TO FORM DESIRED QUTPUT /

TRANSMIT DESIRED QUTPUT TO ENDEFFECTOR 740
TO GOVERN ITS OPERATION //_

FIG. 7
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BIOMEDICAL SYSTEM VARIABLY
CONFIGURED BASED ON ESTIMATION OF
INFORMATION CONTENT OF INPUT
SIGNALS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present international application claims prior-
ity from U.S. Provisional Patent Applications Nos. 61/982,
121 filed on Apr. 21, 2014, and 62/065,940 filed on Oct. 20,
2014. The disclosure of each of the above-referenced patent
applications is incorporated herein by reference.

TECHNICAL FIELD

[0002] The present invention relates in general to biomedi-
cal systems that include interfaces with a biological tissue
and, in particular, to neural systems in which neural channels
are selected based on the information content of signals
acquired through the channels from the tissue.

BACKGROUND

[0003] Rapid developments in technology of biomedical
systems and, in particular, in neural interface technology are
making it possible to record increasingly large signal sets of
neural activity. Various factors such as asymmetrical infor-
mation distribution and across-channel redundancy may,
however, limit the benefit of high-dimensional signal sets
representing a space of large biomedical parameters, and the
increased computational complexity may not yield corre-
sponding improvement in system performance.

[0004] Such is the case, for example, with a popular
approach used to reduce the dimensionality of signals
acquired by neural interfaces, the so-called “variable selec-
tion” methodology. According to this methodology, the
subsets of signals acquired with a neural interface are
identified and ranked based on signal-to-noise ratio (SNR),
or information content of the channels, or another charac-
teristic that is important from the viewpoint of estimation
and detection of the signal. Projection techniques used for
variable selection of neural information channels—such as
principal component analysis (PCA), or independent com-
ponent analysis (ICA), or factor analysis—involve a trans-
formation to an optimal bases and produce abstract features
that are inevitably disconnected from their underlying neu-
rophysiological meaning, making intuitive interpretation of
the results of processing of neural information (the very goal
of an interface system) difficult. Furthermore, since input
channels of an interface system are used to compute the
projections by combinations (in one example—linear com-
binations), data from each and every one of the channel must
be recorded and preprocessed. Moreover, since projection
techniques such as the PCA do not take the behavioral
correlate into account, the largest principal components or
channels identified by such techniques are recognized to be
often simply unrelated to the task conditions.

[0005] It is appreciated, therefore, that the preferred
method for selecting the optimal neural information chan-
nels from the plethora of channels available for collecting
the neurological information should be devoid of such
transformations, and should operate instead in the original
space of physical channels, providing data that can be
clearly and intuitively correlated with neurophysiological
processes taking place.
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SUMMARY

[0006] Embodiments of the invention provide a biomedi-
cal system for transforming activity signals acquired from a
biological tissue. Such system includes an input interface
unit, preprocessing electronic circuitry, an estimator unit,
and a channel subset selector. The input interface unit is
configured to simultaneously receive a multiplicity of raw
signals from the array of signal channels; a preprocessing
electronic circuitry transforms said raw signals to refined
signals (by at least amplifying the raw signals, filtering said
raw signals to reduce noise, and detecting a predetermined
feature in the raw signals). The estimator unit is structured
to determine information content of each of the signal
channels from the array. The channel subset selector in
operable communication with the estimator unit received
values representing the information content from the esti-
mator unit, based on these values that have been ordered,
generates a marker representing a limit on a number of the
signal channels to be used in the system. In one embodiment,
the activity signals include neural activity signals and raw
signals include electrical signals. In a specific embodiment,
information content includes a modulation depth of each of
the signal channels and, in addition, the channel subset
selector is configured to receive, in operation, values of
modulation depths of each of the signal channels from the
array to generate the marker when a first sum of these values
exceeds a predefined threshold. Alternatively or in addition,
the channel selector identifies numbers of channels by
adding successive values of the ordered (in a descending
order) modulation depth values until the cumulative sum
exceeds a predetermined threshold. In a case when the
estimator unit contains electronic circuitry programmed to
determine a modulation depth of a channel, such modulation
depth is defined as a ratio of i) a response of said chosen
signal channel to a behavioral variable to ii) a spontaneous
activity of said chosen signal channel and noise. The behav-
ioral variable includes a pre-determined input provided to
the biological tissue and, depending on the implementation,
such input may contain any of an optical stimulus, an
auditory stimulus, a tactile stimulus, a gustatory stimulus,
and an olfactory stimulus. In a related embodiment, the
biomedical system further includes a decoder unit, in elec-
trical communication with the channel subset selector and
the preprocessing electronic circuitry, and an endeffector
operably connected to the decoder unit. The decoder unit is
configured to acquire first refined signals corresponding only
to signal channels from a subset of the array identified by the
marker, and to decode said first refined signals in a fashion
that is suitable to generate a required response from the
endeffector subjected to decoded refined signals. In a spe-
cific case when the endeffector includes a tissue (and not a
purely prosthetic device), the decoder unit decodes the
chosen refined signals to generate such a physiological
response from the tissue of the endeffector that mimics a
pre-determined input that has been provided to the biologi-
cal tissue, and based on which the information content of a
channel from the array is determined by the estimator unit.
[0007] Embodiments further provide a method for oper-
ating a biomedical system, which method includes a) reduc-
ing a dimensionality of an ensemble of multiple signal
channels (through which activity signals are acquired from
a biological tissue that has been subjected to an input) by
selecting a signal channel subset without employing a pro-
jection-based technique; and b) decoding a subset of the



US 2018/0039328 Al

activity signals acquired through the signal channel subset to
obtain a first output that differs in a predetermined fashion
from to a second output. In one embodiment, the first output
represents a decoding correlation obtained as a result of
decoding said subset of said activity signals and the second
output includes a decoding correlation obtained as a result of
decoding all activity signals. The first output, depending on
the particular embodiment, includes at least one of optical,
electrical, magnetic, mechanical, and acoustic actions and/or
signals. In a specific case of such embodiment, a difference
between the first and second outputs does not exceed 0.1.
The second output is defined as a result of decoding of
activity signals acquired through the entire ensemble of
multiple signal channels.

[0008] In a specific case, the first output includes a decod-
ing correlation obtained as a result of decoding said subset
of the activity signals, and the second output includes a
decoding correlation obtained as a result of decoding all
activity signals. In one embodiment, the step of reducing
dimensionality includes performing variable ranking of the
multiple signal channels in an original signal space in which
a physiological meaning of the multiple signal channels is
defined. Alternatively or in addition, the step of reducing
dimensionality may include determining information con-
tent for each of the multiple signal channels and, in a specific
implementation, such step includes a determination of
modulation depths of the multiple signal channels and
ranking these multiple signal channels based on determined
modulation depths, transforming raw signals acquired
through the ensemble to refined signals by at least ampli-
fying said raw signals, filtering said raw signals to reduce
noise contained therein, and detecting a predetermined fea-
ture in said raw signals; and decoding only those refined
signals that correspond to multiple signal channels identified
by said numbers, said decoding effectuated in a fashion that
is suitable to generate a required response from an endef-
fector subjected to decoded refined signals. In one embodi-
ment, decoding is effectuated in a fashion suitable to gen-
erate a required response from the endeffector. Alternatively
or in addition, the method includes a step of subjecting the
biological tissue to a pre-determined input that includes at
least one of an optical stimulus, an auditory stimulus, a
tactile stimulus, a gustatory stimulus, and an olfactory
stimulus. When the endeffector contains tissue, the decoding
may be specifically effectuated to generate a physiological
response from such tissue, which physiological response
mimics the pre-determined input to the biological tissue.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The disclosure presented in the Detailed Descrip-
tion section of this application will be better understood in
conjunction with the following generally not-to-scale Draw-
ings, of which:

[0010] FIGS. 1A and 1B provide a schematic representa-
tion of a variable-selection scheme and behavioral task
design for neural recordings. FIG. 1A: The decoder in a
neural interface with optimal variable subset selection based
on modulation depth ranking. FIG. 1B: Open-loop center-
out-back task for recording neural activity under motor
imagery, with four peripheral targets and a computer-con-
trolled cursor. Bounding rectangle represents the computer
screen and scale bar is in units of visual angle.

[0011] FIGS. 2A and 2B illustrate modulation depth of
human motor cortical single-unit spike-rates. FIG. 2A: Dis-
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tribution of modulation depth (radial length) and preferred
direction (angle) of 39 individual channels (single-units)
recorded in one research session. FIG. 2B: Cumulative
modulation depth as a function of optimal subset size.
Different dashed lines represent numbers of channels
required to achieve at least 50%, 90% and 95% of total
modulation depth, respectively.

[0012] FIGS. 3A and 3B illustrate decoding with the use
of the optimal channel subset. FIG. 3A: Open-loop center-
out-back task with rightward peripheral target (gray circle).
Straight horizontal line: computer cursor trajectory from
home position outward to target and back; Curved line:
cursor trajectory estimated by decoding neural activity of the
m best channels ranked by modulation depth; black rect-
angle: computer screen location and dimensions; scale bar in
units of visual angle. FIG. 3B: Decoding of the system’s
hidden state (imagined cursor velocity) from neural activity
using m best channels. The trials, each of 12 s duration, start
with target onset at time “zero”. Arrow: direction of selected
target relative to home position.

[0013] FIGS. 4A, 4B, 4C provide illustration to the effect
of neural-channel modulation depth on decoding perfor-
mance. FIG. 4A: Relation of modulation depth to open-loop
decoding correlation of true computer cursor velocity with
velocity estimate obtained by decoding each neural channel
individually. Shaded region: 95% CI of chance-level decod-
ing correlation. FIG. 4B: Improvement in decoding corre-
lation with increasing channel subset size chosen using the
specified scheme. FIG. 4C: Normalized Bayesian informa-
tion criterion (BIC) as a function of channel subset size
chosen by modulation depth. Red circle: optimal subset size
with lowest BIC.

[0014] FIGS. 5A, 5B, and 5C and 5B illustrate the effect
of excluding some of the highest modulated channels from
consideration on decoding performance. FIG. 5A: Decrease
in total modulation depth; FIG. 5B: open-loop decoding
correlation between true and estimated cursor velocity (bot-
tom) when the specified number of the best channels are
removed from the neural decoder. Shaded region: 95% CI of
chance-level decoding correlation. FIG. 5C: Open-loop cen-
ter-out-back cursor trajectories decoded from m channels
with the lowest modulation depth. Straight lines 530: com-
puter cursor trajectory; Curved lines 534: imagined velocity
decoded from neural channel subset; black rectangle: com-
puter screen.

[0015] FIGS. 6A, 6B, 6C provide statistical characteriza-
tion of the single-unit modulation depth. FIG. 6A: Distri-
bution of modulation depth of various channels in each of 5
research sessions. Line 610: median; box: interquartile range
[9;,95]; whiskers: extreme points that are not outliers and lie
within the range q;+1.5 (q5—q,); circles: outliers. FIG. 6B:
A histogram of modulation depth data from 5 research
sessions, along with the scaled best-fit generalized Pareto
probability density function. FIG. 6C: Cumulative distribu-
tion function of modulation depth data and best-fit general-
ized Pareto distribution.

[0016] FIG. 7 is a flow-chart of an embodiment of the
method of the invention.

DETAILED DESCRIPTION

[0017] The present invention pertains to a process for
selection of neural signals with the purpose of eliminating
low-information channels to improve the computational
efficiency and generalization capability of a biomedical
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system and the corresponding biomedical interface system.
The problem of identifying the most preferred signal chan-
nels (chosen, in one non-limiting example, from the avail-
able plethora of channels transmitting neural activity to a
neural interface system) and finding the optimal tradeoff
between model complexity and performance of the neural
interface system is solved by ranking and selecting the
channels according to the information content of signals
transmitted through these channels (in one specific
example—the depth of modulation of such signals).
Embodiments of the invention offer a biomedical system
characterized by several orders of magnitude lower com-
plexity but virtually identical decoding performance as
compared to the systems utilizing the now popular greedy
search or stepwise regression, which includes forward selec-
tion (C. Vargas-Irwin et al., J. Neurosci., vol 30, no. 29, pp.
9659-9669, July 2010; J. Zhuang et al., IEEE Trans.
Biomed. Eng., vol. 57, no. 7, pp. 1774-1784, July 2010),
backward elimination (J. Wessberg et al., Nature, vol. 408,
no. 6810, pp. 361-365, November 2000), or selective neuron
dropping (J. C. Sanchez et al., IEEE Trans. Biomed. Eng.,
vol. 51, no. 6, pp. 943-953, June 2004). As a result of
removal from the consideration by the neural interface
system the channels characterized by low modulation depth,
the embodiments of the invention increased SNR.

[0018] In one specific example, which is used to illustrate
the principle of the invention, the biomedical system
includes a neural interface. Neural interfaces, also referred
to as brain-machine interfaces (BMI) or brain-computer
interfaces (BCI), offer the promise of motor function resto-
ration and neurorehabilitation in individuals with limb loss
or tetraplegia due to stroke, spinal cord injury, limb ampu-
tation, ALS or other motor disorders. A neural interface
system infers motor-intent from neural signals, which may
include a single-unit actions potential (or spike), multiunit
activity (MUA), a local field potential (LFP), an electrocor-
ticogram (ECoG), or an electroencephalogram (EEG), for
example. The interpreted by the interface movement inten-
tion is then converted into action by means of restorative
technology (such as functional electrical stimulation) or
assistive technology such as a computer cursor, robotic arm,
wheelchair controller, or exoskeleton). Recent clinical stud-
ies (such as L. R. Hochberg et al., Nature, vol. 442, no. 7099,
pp. 164-171, July 2006, for example) have also demon-
strated the potential of chronically implanted intracortical
neural interface systems for clinical rehabilitation of tet-
raplegia.

[0019] The term channel may refer to a single-unit or an
electrode on a microelectrode array, for example. Recent
advances in neural interface technology made is possible to
simultaneously record neural activity from hundreds of
channels, which has a downside because the features, or
variables, derived from the recorded neural signals may
form a vary large space of data. For example, each variable
representing an LFP may include power data received from
one of several frequency bands in the signal recorded at each
electrode. This problem of an often-overwhelming amount
of data is further compounded because typical neural decod-
ing algorithms (such as a cascade Weiner filter or a point-
process filter, for example) use multiple parameters per input
variable. A large parameter space can severely affect the
generalizability of the model due to overfitting, while model
calibration and real-time decoding can simply become com-
putationally prohibitive and impracticable. The need for a

Feb. §, 2018

computationally efficient variable selection scheme has been
recognized to become even more pronounced when a neural
interface employs frequent filter recalibration to combat
neural signal nonstationarity. Several methodologies have
been developed to date to address the reduction of the signal
dimensionality.

[0020] One of such methodologies, referred to as variable
selection (or feature selection or signal subset selection)
involves ranking and identifying the optimal subset of neural
signals on the basis of their characteristic(s) important from
an estimation and detection viewpoint (I. Guyon et al., Am.
J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003). Variable
selection modality that utilizes the popular linear transfor-
mation to an optimal basis suffers from disconnect between
the resulting abstract features from underlying neurophysi-
ological meaning, and the need to record and preprocess data
acquired along each and every channel (resulting in a very
complex and exhaustive search method). An example of a
variable selection algorithm that does not involve linear
transformation and operate, instead, in the original space of
data representing actual physical channels is provided by a
so-called greedy search or stepwise regression.

Apparatus.

[0021] The idea of the present invention stems from the
realization that a highly-efficient variable selection scheme
results from estimation of information content of a channel.
(In a specific case when the modulation depth of the channel
is used as metric of its information content, such modulation
depth is defined as the ratio of its task-dependent response
of the channel to its spontaneous activity and noise; for
example, within Gaussian linear dynamical framework). As
such, the information content of the channel is employed not
only as a measure of each variable’s relative importance to
the process of decoding in a neural interface system, but also
to identify the optimal variable subset.

[0022] FIG. 1A provides a generalized schematic diagram
of an embodiment 100 of the biomedical system of the
invention employing electronic circuitry wired to variably
select signal channels according to an idea of the invention.
The system 100 includes a biomedical interface (in a specific
example—a neurophysiological interface unit) 110 contain-
ing electronic circuitry configured to acquire activity signals
(in a nonOlimiting example—neural signals) through the
predetermined large number of channels 112 (such as an
array of microelectrodes, in one example) and produce
output signals (for example, electrical signals) representing
raw activity. The unit 110 is operably cooperated with a
signal preprocessor 120, which is programmed at least to
amplify raw signals, filter the signals to remove noise, and
perform detection of predetermined features (such as spikes
in the signals, in one embodiment). (In an example of
recording the neural activity in the brain, the array of neural
channels and the corresponding data-acquisition system may
be represented by a Cerebus™ system from Blackrock
Microsystems. While the following disclosure provide
examples of brain signals and a corresponding brain-ma-
chine interface systems, it is appreciated that the uses of the
disclosed concepts with respect to other types of biological
activity/signals/channels include magnetic channels, optical
channels, auditory channels, tactile and/or gustatory and/or
olfactory channels. For example, the magnetic channel
implementation maybe realized in a situation when a mag-
netic encephalogram is being recorded; the purely electrical
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channels would be appropriate when measuring the EEG
outside the head of the subject; the recordation of neuronal
activity optically may be used in a situation employing
fluorescent  microscopy/two-photon  microscopy, for
example). The estimator 130 receives the preprocessed data
output from the preprocessor 120 and transforms this output
to not only determine the information content of each of the
neural channels but also to order the neural channels accord-
ing to the corresponding modulation depths (whether in
ascending or descending order). Based on such order, the
electronic circuitry of the signal subset selector 140 defines
a channel filter the operational passband of which includes
only a predetermined number of the ordered channels having
the information content value higher than a threshold value.
The so-defined filtering function is further used by the
decoder 150 as a mask, according to which the only pre-
processed signals (that are received by the decoder 150 from
the preprocessor 120 and that are being further decoded as
signals used to control the endeffector 160) are those con-
tained within the passband of the operational filter of the
selector 140. The endeffector 160 includes, in one imple-
mentation, a prosthetic device, in a related embodiment, the
endeffector 160 includes a biological tissue.

Embodiments

[0023] In the following example, the biomedical system
includes the neural interface system model which, according
to embodiments of the invention, was used to perform a
two-dimensional motor imagery task of a prosthetic device
(such as a prosthetic arm, in one example), while the
intended movement kinematics were estimated from the
neural activity during the performance of such two-dimen-
sional task with the used of a state-space model and esti-
mation of information content of a channel (the metric for
which, in this example, was a modulation depth of the
channel). Mathematical modeling and methods used for
data-processing are described below in Section Methodol-
ogy.

[0024] This clinical study was conducted under an Inves-
tigational Device Exemption and Massachusetts General
Hospital IRB approval. Neural data were recorded with the
neural interface 110 from a subject who had tetraplegia and
anarthria (resulting from a brainstem stroke that occurred
nine years prior to her enrollment in the trial) with the use
of a 96-channel microelectode array disposed in the motor
cortex of the subject, in the area of arm representation. The
data were recorded in separate research sessions conducted
on five consecutive days, from Day (n) to Day (n+4). The
task that the subject was performing was formulated as a
“center, out, and back” motor task, in which the subject
observed and imagined controlling a computer cursor mov-
ing on a 2-D screen towards four pre-determined radial
targets, schematically shown in FIG. 1B. In doing so, a
single pseudo-randomly selected target was highlighted, and
the computer-controlled cursor moved toward the target and
then back to the home position with a Gaussian velocity
profile. This constituted one trial, and this process was
repeated 36 times within 4 blocks for a total of about 6 min
in each session. This motor imagery task was performed
under the open-loop condition, when the participant was not
given control over cursor movement during the epoch. The
cursor position and wideband neural activity were recorded
throughout the task duration. The neural data were band-
pass filtered (between about 500 Hz and about 5 kHz), and
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spike-sorted to identify putative single-units (in one case—
neurons). For decoding analysis, these data were used to
calibrate a steady-state Kalman filter (W. Q. Malik et al.,
IEEE Trans. Neural Sys. Rehab. Eng., vol. 19, no. 1, pp.
25-34, February 2011) and estimate the imagined movement
velocity of the cursor using leave-one-out cross-validation.

[0025] The intended velocity of movement of the pros-
thetic device was represented generally by the n-dimen-
sional latent variable, x(t), which in the case of a two-
dimensional motor imagery task was chosen to be a two-
dimensional vector, the dimensionalities of which included
the horizontal and vertical components of movement of the
computer cursor at discrete times t. The vector time-series of
observations (for example, single-unit binned spike-rates) at
time t are denoted with m-dimensional vector y(t), where m
is the number of channels (in one case—single units). In
practice, the single-unit spikes (action potentials) were col-
lected through non-overlapping time-bins or time-windows
of duration At=50 ms to obtain binned spike-rates, y(t),
which were centered at zero by mean subtraction. This
system exhibited short-term stability and convergence (ac-
cording to Malik et al., 2011), the state-space system matri-
ces {®,1,Q R} were assumed to be time-invariant. Using
the Neural Spike Train Analysis Toolbox (nSTAT) (1. Caji-
gas et al., J. Neurosci Methods, vol. 211, no. 2, pp. 245-264,
November 2012), the maximum-likelihood estimates of the
system parameters were obtained as part of filter calibration
with training data. The expectation-maximization (EM)
algorithm was used for state-space parameter estimation,
which was initialized with ordinary least squares (OLS)
parameter estimates obtained using the procedure described
in (Malik, 2011) As a result of OLS-based parameter ini-
tialization, the EM algorithm consistently converged in
under 5 iterations. The steady-state SNR matrix S, and the
modulation depth s=[S], , for channels i=1, . . ., m, were
estimated with the use of Eq. (18) below. To prevent
numerical errors, S was constrained to be no smaller than
Zero.

[0026] The modulation depth characteristics of an
ensemble of single-units were investigated as discussed
below. Unless otherwise specified, the discussed represen-
tative results are from the session conducted on day (n+4).
The neural data from the session included the spiking
activity of m=39 putative single-units isolated by spike-
sorting. As shown in FIG. 2A, the magnitude of the modu-
lation depth, determined for each of the 39 channels, was
found to be highly asymmetrical across the channels. The
modulation depth of the best (that is, the most strongly
modulated) channel (s=3.8) was nearly twice as high as that
of the next best channel (s=2.0). The skewness of the
modulation depth distribution was estimated to be 3.5 (unbi-
ased estimate, bootstrap).

[0027] The preferred direction of the i” channel in the 2-D
Cartesian space was defined as Qﬁan"l(hi,z, h, ;). The
preferred directions of the individual channels appeared to
be distributed approximately uniformly in the (0° to 360°)
range when the modulation depths (corresponding to the
radial lengths of the vectors 204 in FIG. 2A) were disre-
garded. Modulation depth, however, is instrumental in indi-
cating that only a small number of channels are principally
relevant for decoding, and the preferred-direction spread of
those high modulation depth channels is of key importance.
The preferred directions of the three best channels were
estimated as 330°, 290°, and 100°, respectively. Although



US 2018/0039328 Al

the preferred directions of the most strongly modulated
channels did not form an orthogonal basis in 2-D Cartesian
space, these preferred directions were not clustered together.
The obtained result suggested that for this two-dimensional
motor imagery task a small number of channels—with large
modulation depths and substantial spread in preferred direc-
tion—is adequate for representing movement kinematics in
the 2-D space.

[0028] In addition, the increase in total modulation depth
with increasing ensemble size was determined by analyzing
the cumulative modulation depth curve 220 shown in FIG.
2B. The curve 220 represents a result of adding successive
values of modulation depth sorted in the descending order.
As the modulation depth distribution is highly nonuniform,
the increase in ensemble size follows the law of diminishing
returns. It was found that 2, 12 and 18 channels yielded 50%,
90% and 95%, respectively, of the total modulation depth
obtained with all m=39 channels.

[0029] In order to address the problem of subset selection
that is optimal for decoding in a neural interface system 100,
the effect of ensemble size on decoding performance was
studied. The results are shown in FIG. 3A for different
number of channels (in comparison with the line 310 rep-
resenting the computer-cursor trajectory from the home-
position outward to target and back). When only the most
strongly modulated channel was used for decoding (m=1),
the decoded trajectory 312 was restricted to a one-dimen-
sional axis. This 150°-330° axis was defined by the preferred
direction of the corresponding channel. When the two best
channels (m=2) were used for decoding, the trajectory
estimate 314 spanned both spatial dimensions. The trajec-
tory estimates 316 improved with more channels (m=3, 4, 5,
6, 7, 15, and 39) but the improvement associated with an
increase in selected subset size rapidly saturated. Quite
unexpectedly, the empirical results (of FIG. 3A) established
that the trajectory estimate obtained by decoding open-loop
motor imagery data according to an embodiment utilizing
the modulation-depth approach of the invention, the neural
activity remarkably follows and reflects the sequence of
phases of the actual motor task (that is, the outward move-
ment, the reversal of direction, and the inward movement)
along the correct axis even in the absence of feedback
control.

[0030] FIG. 3B provides plots comparing the estimates of
movement velocity obtained with a single (most strongly
modulated) channel, 5 of the most strongly modulated
channels, and all 39 channels. In trials where the cursor
movement axis was closer to the preferred direction of the
strongest channel, the single-channel decoder provided rea-
sonable velocity estimates (Trials 1 and 4 in FIG. 3B). Such
result is explained by the fact that the horizontal projection
of the encoding vector of that channel (shown in FIG. 2A)
provided significant movement information (and was,
accordingly, the dominant component of the encoding vec-
tor). At the same time, the performance of the single-channel
decoder was unsatisfactory in trials with movement along
the vertical axis (Trials 2 and 3 of FIG. 3B), which was
orthogonal to the dominant component of the encoding
vector for that channel, as expected. However, with m=5
channels, the decoded velocity was already qualitatively
indistinguishable from that obtained with the entire
ensemble.

[0031] The relation between the modulation depth and
decoding performance of a given channel was characterized
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quantitatively. To this end, the vector-field correlation was
analyzed between “true” (computer-controlled) and decoded
2-D velocity of the cursor. In doing so, each channel was
used individually to calibrate the filter and decode under
cross-validation. The computed correlation is shown in FIG.
4A. To obtain chance-level correlation, the surrogate data
was generated by bootstrapped phase randomization. The
most strongly modulated channels provided significantly
larger decoding correlation than weakly modulated chan-
nels. The single-channel correlation appeared to follow an
exponential relationship with modulation depth for a few
channels in the high-modulation depth regime, but did not
have a significant relationship in the low-modulation depth
regime.

[0032] To study the implications of channel ranks on
decoding performance, we compared the true and decoded
state correlation obtained with a subset of channels that have
been selected on the basis of i) modulation depth and ii)
individual channel correlation (FIG. 4B). As illustrated in
Table I, the strongest modulated channel alone provided a
correlation of over 0.5, and the correlation exceeded 90% of
its limiting value of 0.7 with the use of m=5 highest
modulation depth channels. The term decoding correlation
refers to the correlation coefficient between the estimated
output and a reference (or “ground truth”) value of the
output.

TABLE 1

Comparison of execution time and decoding correlation
(using selected 5 of the available 39 channels) of various
selection schemes on a standard personal computer.

Selection Scheme Execution Time, mean = s.e. (sec) Correlation

Greedy search 1.8x 10372 0.69
Decoding correlation 1.2 x 10% + 3.8 x 107! 0.67
Modulation depth 47 x107% + 1.4x 107 0.65
Random selection 58x107%£94x 10°° 0.35

[0033] Inreference to FIG. 4B, additionally evaluated was
the decoding correlation achieved with greedy selection,
410, and random selection, 420, methodologies, in order to
obtain upper and lower bounds, respectively, on the perfor-
mance of the embodiment of the present invention. The
decoding performance of channel subsets chosen by corre-
lation 414 and modulation depth ranking 418 (i.e., according
to an idea of the invention) performed almost identically.
The decoding performance of these two schemes was nearly
as good as that of greedy selection 410, but substantially
better than random selection 420. Notably, the difference
between the results achieved with random selection 420 and
the embodiment of the invention 418 reduced as the selected
subset size increased. (It is understood than when informa-
tion acquired by a lot of or all of the channels is used, the
effect of intelligently selecting channels is not present).

[0034] Further, and in reference to FIG. 4C, the optimal
number of channels to be included in the system—in terms
of the tradeoff between decoding accuracy and model com-
plexity—was investigated with the use of a fitness metric,
which in this case included the Bayesian information crite-
rion (BIC). According to Eq. (2) discussed in Methodology,
the addition of each extra channel contributed 3 parameters
to the 2-D velocity decoding model and, specifically, namely
a row to the matrix H and a main diagonal element to the
matrix R. Based on the BIC, the optimal subset size was
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determined to be 12 channels (circled as 430 in FIG. 4C),
which remarkably matches the number of channels that
contribute 90% of the total modulation depth (pointed to as
230 in FIG. 2B). The non-smooth and non-monotonic BIC
curve reflects the fact that the relative improvement in
decoding performance as a function of increasing the neural
channel subset size is highly irregular when the subset size
is small; increasing the subset from 1 to 2 channels does not
reduce the estimation error as much as it increases the
parameter space.

[0035] This situation when the most informative channels
are “lost” are quite practical—it may occur due to relative
micromovements of the recording array in relation to the
subject and single-units. The empirical investigation of such
phenomenon, as well as sensitivity of the decoder 150 to
such loss demonstrated as expected that decoding perfor-
mance deteriorates progressively as the highest modulation
depth channels are removed from the decoder 150. The loss
of the “best” channel, as can be seen from FIG. 5C, does not
affect the results significantly. The results, illustrated in
FIGS. 5A, 5B, show that although a small number (for
example, m=5) of the highest modulated channels are suf-
ficient to obtain accurate decoding (see FIG. 3A), the system
is fairly resilient to the loss of highly modulated channels
and suffers only a small loss in decoding performance,
which loss could be easily compensated under feedback
control.

[0036] The methodology of the estimation of modulation
depth, discussed below, has substantially lower algorithmic
complexity than conventionally used ranking based on
decoding correlation, greedy search, or exhaustive search
approaches, all of which involve multiple iterations of
decoding analysis with the entire data set. As a practical
measure of complexity, the time taken to perform a channel-
subset selection using various schemes on the chosen com-
puting platform (Desktop PC with 2xQuadCore Intel Xeon
3.2 GHz processor, 24 GB RAM, Windows 8.1 operating
system, running Matlab software) was measured. The
“exhaustive search” algorithm was not considered in this
analysis to its prohibitive complexity, so “greedy search”
was the most complex scheme in our analysis and served as
the performance benchmark. As evidenced by Table I, the
decoding-correlation-based selection had an order of mag-
nitude lower complexity than greedy search, while modu-
lation-depth-based channel selection of the present inven-
tion was 7 orders of magnitude lower. The complexity of the
modulation depth scheme was within 2 orders of magnitude
of that of random selection, which is the simplest available
approach available. Therefore, the neural interface system
configured to implement the modulation depth selection of
neural channels offers the computational complexity that is
vastly reduced in comparison with other schemes with only
a small—if any—cost in performance, and thus offers a
practically-superior channel selection mechanism.

[0037] Practical Confirmation of General Applicability.

[0038] In order to verify that the embodiment of the
invention is applicable across sessions (i.e., that the analysis
of modulation depth characteristics was generalizable across
sessions (each of which corresponded to a day of informa-
tion acquisition from the same subject), the modulation
depth distribution was analyzed in each of the five sessions.
As illustrated in FIG. 6A, the observation of a long-tailed
distribution was consistent across sessions. Here, line 610
denotes the median, while box 614 represents the interqua-
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tile range. A small number of outliers (i.e. channels with
modulation depth several times higher than the median
modulation depth) were observed in each session. The
statistical properties of the modulation depth were charac-
terized by estimating the best-fit distribution. For this analy-
sis, the modulation depth data from all five sessions were
pooled together and the probability distribution was esti-
mated from the normalized histogram (FIG. 6B). Since the
modulation depth distribution was highly asymmetric, the
Doane’s formula was used to compute the optimal number
of histogram bins. A number of candidate probability dis-
tributions was investigated to obtain accurate statistical
description of the data, and the maximum-likelihood param-
eter estimates for each candidate distribution were obtained;
then the Anderson-Darling test was performed with the null
hypothesis that the data were sampled from the estimated
distribution. It was found that, of the distributions that
passed the test with the null hypothesis at the 5% signifi-
cance level, the generalized Pareto distribution provided the
best fit (p=0.714), followed by the Weibull distribution
(p=0.074). The alternative hypothesis was found to be true
for the log normal, exponential, extreme value, Gaussian
and several other distributions (p<1075). Based on these
results, it is concluded that the generalized Pareto distribu-
tion provides the most accurate statistical characterization of
modulation depth with maximum likelihood estimates of
shape parameter k=0.93 and scale parameter 0=0.06 [0.04,
0.08] (mean and 95% confidence intervals). This is illus-
trated by the close agreement of the generalized Pareto
probability density with the data (FIG. 6C). The Pareto
distribution, originally formulated to describe unequal dis-
tribution of wealth among individuals, is widely used for
modeling asymmetric, peaky data in many applications. In
our analysis, the significant positive value of parameter k
reflects heavy-tailed behavior, i.e. the presence of a small
number of highly modulated channels.

[0039] The modulation depth statistics were also analyzed
for each session individually and found the generalized
Pareto distribution to provide the best fit to the data in each
of the five sessions, followed by the Weibull distribution,
further confirming earlier-discussed observations.

[0040] Embodiments of the present invention provide a
biomedical system in which a signal subset selector unit
extracts a subset of the available signal channels in corre-
spondence with a threshold imposed on information content
of the channels, and in which an operation of the decoder
unit is governed by limiting the decoding operation to
preprocessed signals received only from the channels in
such subset. As a result of such selective decoding of the
signal channels that the biomedical system employs from the
overall number of available channels, the amount of data
decoded by the system is drastically reduced, which is
accompanied by the substantial reduction in dimensionality
and complexity of the system as a whole. (For example, as
seen in FIG. 4C, with the choice of the 12 best or optimal
channels from the set of 39 channels the reduction coeffi-
cient is at least 27/39; the reduction coefficient grows as a
function of the initial number of all available channels in the
system: with the choice of 12 best channels out of the initial
200 channels, for example, the reduction coeflicient is at
least 188/200). The SNR of the multivariate neural interface
system of the invention is dimensionless and is consistent
across sensory motor tasks, behavioral state variables, neural
signals, and sample rates, due to which it can be used for
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comparative analysis of a variety of system configurations
and experimental conditions. The use of embodiments of the
invention demonstrates that the metric of the modulation
depth, used as a metric to rank the information content of the
channels and select the optimal subset in a neural interface
system produces a system, can be used to analyze and
compare the information content and decoding potential of
multiple neural signal modalities, such as binned spike-rates
and LFP, and also signals recorded from different areas in
the brain. The total modulation depth summed across the
ensemble could be used in conjunction with a pre-specified
threshold to determine whether the information quality is
poor and filter recalibration should be initiated.

[0041] In one embodiment, most of the computational
procedures required to estimate modulation depth are per-
formed as part of the standard Kalman filter calibration
process and therefore incur little additional computational
cost. The only additional computation required to obtain the
SNR matrix, S, includes relatively simple matrix operations,
such as matrix multiplications involving the measurement
noise covariance matrix that usually has a diagonal struc-
ture. Compared to alternative approaches for computing
channel modulation measures and ranks (such as those
involving neural decoding with correlation-based greedy
subset selection), the embodiments of the invention have
substantially lower computational complexity. (As evi-
denced by the experimental data from Table I, for example,
the time required for the otherwise equal data-processor to
perform the required computations was reduced by about six
orders of magnitude for the embodiment of the invention as
compared with the conventional greedy search, and, as was
already alluded to above in a specific example of choosing
the 12 best channels out of the set of 39 channels, the
complexity of the system was reduced by at least 27/39.
Accordingly, not only the embodiment of the invention ties
the mathematical operation(s) to the processor’s ability to
process digital and/or analog data, but it improves the
functioning of the processor itself by causing it to use less
storage memory than required for performing the same tasks
by the systems of related art, results in faster computation
time (i.e., uses less computing power) without sacrificing the
quality of the resulting operation of an endeffector (such as,
in a non-limiting ex ample, a prosthetic device), and pro-
duces a simplified neural interface system.) It is therefore
highly suited to real-time neural decoding and high-through-
put offline analyses with high-dimensional state or observa-
tion vectors or large number of temporal samples. (For the
purposes of this disclosure and accompanying claims, a
real-time performance of a system is understood as perfor-
mance which is subject to operational deadlines from a
given event to a system’s response to that event.) Indeed, in
stark contradistinction with the commonly used greedy
search algorithm, which requires hours for optimal channel
identification based on pre-recorded data, the embodiment
of the present invention perform the required assessment
during the actual operation of the biomedical system,
thereby enabling the selector 140 and the decoder 150 to
govern the endeffector in a matter of seconds at most.

[0042] The low computational cost makes repeated esti-
mation of modulation depth possible as may be required
during online real-time decoding for performance monitor-
ing or closed-loop recalibration. In a nonstationary setting,
the time-varying form of the system SNR and modulation
depth can provide an instantaneous measure of the signal
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quality and the importance of a particular channel. The
nonstationary setting may be defined by a situation when the
statistics of neural signals is changing in time, and/or when
the mapping of neural signals to behavioral variables—such
as the velocity of cursor in the experiments discussed
above—is changing in time (additional insight is provided
by the discussion of Eq. (12) in the Methodology section,
below).

Methodology.

[0043] Using the two-dimensional motor imagery task of
a prosthetic device (such as a prosthetic arm) as an example,
the intended movement kinematics is estimated from the
neural activity during the performance of such two-dimen-
sional task with the used of a state-space model. The vector
time-series of observations (for example, single-unit binned
spike-rates) at time t are denoted with m-dimensional vector
y(t), where m is the number of channels (for example,
single-units). The intended movement velocity is repre-
sented by the n-dimensional latent variable, x(t), for
example with the use of a velocity encoding model for
primary motor cortical neurons (D. W. Moran et al., J.
Neurophysiol., vo. 82, no. 5, pp. 2676-2792, November
1999). This latent variable is to be estimated from spike-
rates y(t) using a state-space paradigm. The intended veloc-
ity may be considered in the two-dimensional Cartesian
coordinate system (n=2 in this case), while m represents the
neuronal ensemble size. The modulation depth of each of the
m neural channels is determined as described below.

[0044]

[0045] The proposed methodology considers a continu-
ous-time linear time-invariant (LTI) Gaussian dynamical
system model consisting of a latent multivariate random
process, x(t), with Markovian dynamics, related to multi-
variate observations, y(t). Such state-space model is
expressed as:

Dynamical System Model

X(O=Fx(t)+0(f) (6]

YO=Hx(@)+v(2) @

[0046] where teR™, x(t) is the n-dimensional state vector,
y(t) is the m-dimensional observation vector, w(t) is the
n-dimensional process noise vector, v(t) is the m-dimen-
sional measurement noise vector, and F(t) and H(t) are the
nxn system matrix and nxm observation matrix, respec-
tively. The noise processes have mean zero, i.e., E{o(t)
}=E{v()}=0. The noise covariances are E{w(t)w'(t)}=Q.d
(t=1), E{v()v'(t)}=R d(t—T), and E{w(t)v'(t)}=0. Here, 8(*)
is the Dirac delta function and ( )' denotes matrix transpose.
Q. is assumed to be a symmetric positive semidefinite matrix
and R is assumed to be a symmetric positive definite matrix.
The observations are also assumed to have zero-mean, i.e.,
E {y(n}=0.

[0047] Modulation Depth

[0048] In Eq. (2), Hx(t) is defined as the signal and v(t) is
defined as the noise. The modulation depth (MD) of a
channel is further defined as the signal-to-noise ratio (SNR)
of the channel, that is the ratio of the signal and noise
covariances. For the purposes of the multivariate state-space
model, the mxm signal and noise covariance matrices are
denoted as A, (t) and A, (t), respectively. Then, the mxm
time-varying SNR matrix of observations y(t) can be
expressed as:
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5@ = As(A' (0 = ETHIHMOT} = [Ep@v@ )] = &)

= HP(DH' R

where the nxn matrix P_(t) is defined by x(t)~N(u(t),P_(1)).
[0049] The Eq.(3) defines the SNR of a continuous-time
multiple-input multiple-output state-space model. The (i,j)th
and (j,i)th elements of the symmetric matrix A (t) represent
the signal covariance between ith and jth channels at time t.
Similarly, the (i,j)th and (j,i)th elements of A, (t) represent
the noise covariance between channels i and j. If channels i
and j have uncorrelated noise, then R is a diagonal matrix.
Then the (i,j)th element of S(t) represents the signal cova-
riance of channels i and j relative to the noise covariance of
channel j, whereas the (j,i)th element represents the signal
covariance of channels i and j relative to the noise covari-
ance of channel i. It is appreciated that regardless of the
structures of A (1) and A, (1), the ith diagonal element of S(t)
represents the SNR of the ith channel at time t.

[0050] For the homogeneous L'TT differential equation

X (1)=Fx(t), the fundamental solution matrix is ®(t) such

that X (1)=4:1)()x(0), where the state-transition matrix ®(t,
T)=®(t)® ' (t) represents the system’s transition to the state
at time t from the state at time T and ®(t,0)=®(t). For the
dynamical system in Eq. (1), the state transition matrix
®(t,t)=e"“™ depends only on the time difference (t-t). The
solution to the nonhomogeneous differential Eq. (1) is

x(1) = D1, 10)x(1p) + fr(D(t, T)w(T)dT (€3]
10
= exp{F(r — 10)}x(t0) + fexp{F(t - D}w(r)dr )
0
[0051] The covariance matrix of x(t) in Eq. (4) is given by
P()=0(t10)P ()P t.20)H,, W t0) QP )T Q)
[0052] Model Discretization.
[0053] The system model in Eq. (5) can be discretized by
sampling at t,=kAt=t, ,+At for k=1, . . . , K, so that

x(5) = () + fk P D w(r)dr. M

k-1

[0054] The state-transition matrix ®=e"*’ is defined, so

the equivalent discrete-time system can be represented by

x[k+11=Ox[k]+w/[k] (®)

y{ij=Hx[k]+v[k] ©
[0055] where keZ™, E{w[k]}=E{v[k]}=0, E{w[k]w'[l]
1=QAlkIl, E{vIKIVI}-R A[k,I], and 8[+¢] is the Kro-
necker delta function. The state x[k] is a Gaussian random
variable initialized with x[0]~N(u,[0],P [O]).
[0056] From the power series expansion for a matrix
exponential,

D=e" M=+ FAt+O(AP)=I+FAt. (10).

[0057] According to (J. M. Mendel, in Lessons in Estima-
tion Theory for Signal Processing, Communications, and

Feb. §, 2018

Control, 2d Ed., Prentice-Hall, 1995), the covariance of
x[k+1] in Eq.(8) can be written as

P[k+1]=®P ;/k]D+Q ;. (11)

[0058] The equivalent discrete-time SNR is determined by
discretizing Eq. (3) and substituting the discrete-time cova-
riances, so that

1 . (12)
STk = 1 HPalkIH' Ry

[0059] Notably, for the above continuous-time and dis-
crete-time system models to be equivalent, the approxima-
tions Q_~Q_At and R_~R /At have to be used, neglecting
O(At?) terms. When these conditions are observed, the
continuous- and discrete-time covariance matrices are equal,
ie. P()=PJK].
[0060] In the following, certain classes of linear dynami-
cal systems are considered that occur frequently in practice
and that admit special forms for modulation depth estima-
tion, such as a steady-state system and a time-variant sys-
tem.
[0061] Steady-State Systems.
[0062] On differentiating Eq. (6) and using the relation
D O(t,t,)=FP(L,t, ), the solution produces

P (t-FP+P0F +Qc. (13)

[0063] For a stable LTI continuous-time system at steady-
state, the Eq. (13) can be re-written as lim,_,, P~(t)=0. Thus,
the steady-state covariance, P ~lim,_, P A1), is given by the
continuous-time algebraic Lyapunov equation

FP AP F'+Q~0 14

[0064] If A(F)+\(F)=0 Vije{l, . . ., n}, where A(F)
denotes an eigenvalue of F, the solution P to the above
equation is given by

P c= fmeFcheF/rdT. )

0

[0065] Similarly, let us consider the discrete-time covari-
ance. The system is stable if |A,(®)I<1Vie{1, ..., n}, where
A,(D) denotes an eigenvalue of ®. For a stable LTI system,
the steady-state covariance,

lim Psk1 =P,

k—oo

can be obtained from Laubach et al. (Nature, vol. 405, no.
6786, pp. 567-571, June 2000) and expressed in terms of the
discrete-time algebraic Lyapunov equation or Stein equation

OP 0P 40,0 (16)
[0066] IfA(D)A,(DP)=1Vije{l,...,n}, the solution to the
above equation is given by

= an
P,= D 0@
k=0
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[0067] Egs. (15) and (17) can be solved numerically using,
for example, the Schur method (A. J. Laub, IEEE Automatic
Control, vol. 24, no. 6, pp. 913-921, December 1979). The
steady-state SNR,

§ = lim S[],

k—oo

can therefore be expressed in terms of discrete-time system
parameters as

1 18
g = EHPdH’Rgl. 18

[0068] Time-Variant Systems

[0069] The expression in Eq. (12) allows to assess the
instantaneous SNR of the neural signal observations at the
k” time-step (i.e., time equal to k). This expression can also
be used to estimate the SNR of a time-varying or non-
stationary system. Expressing the state transition matrix as
®D[k+1.k], the observation matrix as H[k], and the process
noise covariance matrix as Q,k], the propagation of the
time-varying state covariance of a state-space system can be
written as

Pofkr11-0 [t LIJP ok [+ 1 K] d+ QK] (19)
[0070]
property

By recursive expansion of Eq. (19) and using the

®[k] = O[k, 0] = ITL, B, i — 1]

one can write

Pfk]=®[K]PO10 /2" W [ k-i] Ol h=i~1]0
[kk=if (20)
[0071] If the process noise is wide-sense stationary, then
QIk]=Q, and the above equation simplifies to

Pll]=®[K]POIPA]+Z,_ g™ O LR I~1] 0D [k J-i] eay)

[0072] The above expressions provide an estimate of the
state covariance at time k in terms of the initial state
covariance and the process noise covariance.

[0073] Estimation of the Trajectory of SNR.

[0074] Estimation So far we have considered SNR esti-
mation for two classes of linear dynamical systems: the
instantaneous SNR S[k]| for a time-varying system, and the
steady-state SNR™S for a time-invariant and stable system.
These quantities provide measures of instantaneous infor-
mation flow between the two multivariate stochastic pro-
cesses under consideration, namely x[k] and y[k]. Following
the nomenclature used in recent work on mutual information
estimation for point process data (see S. A. Pasha and V.
Solo. In Proc. IEEE Eng. Med. Biol. Conf., 2012, pp.
4603-4606), this measure is referred to as the marginal SNR.
Now is considered the alternate problem of information flow
between the entire trajectories of the random processes (as
opposed to the instantaneous or marginal measure). To
rephrase, the trajectory SNR is a measure of the SNR
conditioned on the entire set of observations for k=1, . . .,
K. This formulation is useful for SNR estimation by offline,
batch processing of data for a time-varying system.
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[0075] Given the time-varying observation matrix H[K]
and state-transition matrix ®[k], and assuming the noise
processes w[k| and v[k] are zero-mean and stationary with
covariance matrices Q, and R, respectively, we can obtain
the mxm trajectory SNR matrix as

S-H P, H g (22)
[0076] where H =[H[1], . . ., H[K]] is an mxnK block
matrix and

P41, 1] Py[1, K] 23)

P,y = : :

P4lK, 1] P4[K, K]
[0077] is a nKxnK block matrix. Here P,[i.j] denotes the
covariance between x[i] and x[j] for ije{1, . . ., K}, i=,
defined as
P[®[f; i] for i< f 24)
Pyli, j ={ Pyli] fori= j
@fi; jIP4[j] for i > j

[0078]
[0079] Now discussed is the case in which the multivariate
measurement noise v[k] in the state-space model of the
present invention is a colored noise process (i.e. the one
correlated with itself over time). Assume that v[k] is zero-
mean and stationary. According to Wold’s decomposition
theorem, v[k]| can be represented as an m-dimensional vector
autoregressive process of order p, i.e. VAR(p), given by

Colored Measurement Noise.

P (25)
vk = 3 gtk = i)+ £TK),

i=1

[0080] where C[Kk] is an m-dimensional zero-mean white
noise process with covariance E{T[1]C[{]}=WJ[i,j], and 1, is
an mxm VAR coefficient matrix. The above VAR(p) process
can be expressed in VAR(1) companion form as

Vik]=wV(k-11+Z[k] 26)
[0081] where V[K] is the mpx1 vector

VIK]=(K].['(K]V' k=11, . . . v [k=p+1]] @7
[0082] Z[k] is the mpx1 whitened noise vector

Zikj=[C'[k],0, ... 0] (28)

with covariance E{Z[i]Z' [j]}=diag{WJ[i,j],0}, W is the
mpxmp VAR(p) coeflicient matrix

Ui Ya o Yp Yy (29)
L, 0 .. 0 0

¥={0 1, ... 0 01|
0 0 .. I, O

and 1,, denotes the mxm identity matrix.
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[0083] With this formulation, one can augment the state-
space with [k] so that the augmented state vector has
dimensions (n+m)x1 and is given by X[k|=[x"k]], V'[Kk].
The SNR estimation methodology described earlier can then
be applied directly. It should be noted that when using this
state augmentation approach for noise whitening, the param-
eter space can increase substantially if the measurement
noise is modeled as a high-order VAR process, which may
result in over-fitting. The optimal VAR model order, p, can
be estimated using standard statistical methods based on the
Akaike Information Criterion or Bayesian Information Cri-
terion.
[0084] Uncorrelated State Vector.
[0085] We now consider the special case that the n states,
represented by the random n-dimensional vector x[k| at
discrete time k, are mutually uncorrelated. Practically, this
situation may occur in neural interface systems when, for
example, the decoder’s state vector has three components
representing intended movement velocity in three-dimen-
sional Cartesian space. Then one has
[0086] D=diag{®, ., ..., q,,} and Q~diag{q, ,, ...,
...} The steady-state covariance of the state, given by Eq.
(17), simplifies to

P=0,l-00)™! (30)
[0087] where we have used the formula for the Neumann
series expansion for a convergent geometric series, and the

fact that A, (DPD")=h(D)A,(D), and therefore |1 (DPP")I<1, so
that ®P' to is stable. Eq. (30) can be re-written as

B g1, Grn BD
P;= dlag{ -5 _1[;%71 s T ¢ﬁ,n}
[0088] The diagonal elements in P, then correspond to the

covariances of a set of n mutually independent first-order
autoregressive processes each with autoregression coeffi-
cient ¢, , and white noise variance q, , fori=1, . . ., n. For this
asymptotically stable system with a diagonal state-transition
matrix, the steady-state SNR in Eq. 918) can be obtained as

g = iHQd(I -0 H' RS G2

[0089] When R, is also diagonal, the SNR of the ith
channel is given by the ith diagonal element of ~S for i=1,
.., m,ie.

(33).

[0090] Note that if the state vector includes, for example,
position, velocity and acceleration in Cartesian space, the
condition of independence is violated due to coupling
between the states, which is reflected in the non-zero off-
diagonal entries of ®.

[0091] The SNR expressions of Egs. (12) and (32) include
the sampling interval, At, since the quantities on the right-
hand side correspond to the discrete-time system represen-
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tation. We now show that if the SNR estimate is converted
to the original continuous-time representation, At factors out
of the SNR equation. To demonstrate this, the discrete-time
variables in Eq. (32) can be transformed into the correspond-
ing continuous-time variables by substituting ®=I[+FAt,
Q,~Q_At, and R ~R /At, and neglecting higher order terms
O(At?), so that

S—HQ [F+F HR (34

[0092] The variables in the above expression correspond
to the continuous-time system model.

[0093] The above expression shows that the SNR is con-
sistent when derived using equivalence relations for con-
tinuous- and discrete-time systems.

[0094] It is understood, therefore, that the idea of the
present invention has been implemented to define a channel
content of a neural interface system based on estimation of
the modulation depth (of observation signals acquired by the
system through such channels) with the use of a multivariate
state-space model. This modulation depth estimator is
closely related to the Kalman filtering paradigm and is
suitable for channel ranking in a multichannel neural sys-
tem. In contrast with greedy selection and information
theoretic measures used by the related art, the proposed
methodology state-space modulation depth estimation
scheme has high computationally efficiency and thus pro-
vides a method for real-time variable subset selection useful
for closed-loop decoder operation. Due to these character-
istics, the use of the modulation depth estimation and
channel-ranking scheme according to an embodiment of the
invention is highly suitable for both offline neuroscience
analyses and online real-time decoding in neural interfaces.
This approach enables optimal signal subset selection and
real-time performance monitoring in future neural interfaces
with large signal spaces.

[0095] FIG. 7 presents a schematic flow-chart of an
embodiment of a method of the invention, which includes
step 710, at which a dimensionality of the ensemble of
multiple signal channels of the biomedical system is reduced
without the use of a projection-based technique. As a results
of such reduction, a subset of the overall number of channels
is defined. The reduction of dimensionality is carried out by
ranking the channels, as step 710A, in the original space in
which their physiological meaning is defined, and by deter-
mining information content of each of the channels at step
710B (the latter can include, in one implementation, the
determination of modulation depth of the channels). The
signals acquired through all the channels are preprocessed
according to the defined criteria, at step 730, and the
preprocessed signals carried only by the channels selected to
form the subset of channels is further decoded, at step 740,
to generate a desired output. This output is further trans-
ferred or transmitted to an endeffector at step 750 to cause
the endeffector to perform its function.

[0096] Overall, this disclosure discussed a generalized
modulation depth measure using the state-space framework
that quantifies the tuning of a neural signal channel to
relevant behavioral covariates. For a dynamical system,
computationally efficient procedures for estimating modu-
lation depth from multivariate data were developed. It was
shown that the chosen metric can be used to rank neural
signals and select an optimal channel subset for inclusion in
the neural decoding algorithm. A scheme for choosing the
optimal subset based on model order selection criteria was
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applied to neuronal ensemble spike-rate decoding in neural
interfaces, using our framework to relate motor cortical
activity with intended movement kinematics. With offline
analysis of intracortical motor imagery data obtained from
individuals with tetraplegia using the BrainGate neural
interface, it was demonstrate that the proposed variable
selection scheme is useful for identifying and ranking the
most information-rich neural signals. The proposed
approach offers several orders of magnitude lower complex-
ity but virtually identical decoding performance compared to
greedy search and other selection schemes. The discussed
statistical analysis showed that the modulation depth of
human motor cortical single-unit signals is well character-
ized by the generalized Pareto distribution. The proposed
channel-selection scheme has wide applicability in problems
involving multisensor signal modeling and estimation in
biomedical engineering systems.

[0097] It will be readily apparent to those skilled in this art
that various changes and modifications of an obvious nature
may be made, and all such changes and modifications are
considered to fall within the scope of the present invention.
[0098] For example, the determination of the modulation
depth may be useful in a wide range of systems neuroscience
applications beyond movement-related neural interfaces. It
is widely applicable to analyses of neural systems involving
a set of behavioral correlates and multichannel recordings.
[0099] In a related embodiment, for example, the dis-
cussed methodology can be applied directly to the measure-
ment of sensory response of a primary visual cortex neuron
to a visual stimulus. Here, the method of the invention is
used to neuroscience analysis of the neural encoding of a
given sensory input. For example, a simple, known sensory
stimulus, such as a visual input or an image (for example, in
the simplest case, a contrast grating such as a series of thick
black and white lines) which is varied in a known way (e.g.
the orientation of the grating changes over time). The animal
is made to observe this known image, and the brain activity
(in a visual area of the brain, such as the primary visual
cortex) generated in response to this image is recorded. The
recording is effectuated with a set of channels (multiple
electrodes on a microelectrode array implanted into the
cortex), each with an electrical voltage time-series contain-
ing spikes from individual neurons, or as a set of two-photon
image pixels, as described above. As a result, multi-channel
data are generated in response to the stimulus, from which
the channels that are the most responsive to the applied
stimulus (i.e. have the highest stimulus-related information
or greatest modulation depth) are then identified. The
method as described above can be used for this purpose
directly (that is, without any modification).

[0100] The example of two-photon imaging to micron-
resolution functional imaging is described in detail in U.S.
Pat. No. 8,903,192 which is incorporated by reference
herein. Briefly, a part of cortical tissue is labeled with a
fluorescent protein that indicates calcium activity, and a
two-photon microscope is used to measure the fluorescence.
Calcium dynamics are a measure of neural activity in the
brain. This imaging methodology is now being used a lot for
micron-resolution functional imaging (i.e. observing
response to some input, as opposed to just the static struc-
ture) of brain tissue.

[0101] In the above setting, the measure of the modulation
depth of the acquired signals is used to quantify the response
evoked in that neuron by the applied stimulus, and results in
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a tuning curve estimate for that neuron. Repeating such
analysis across a neuronal ensemble can help in comparative
analysis of neuronal tuning properties. Alternatively or in
addition, the proposed methodology can be applied to any
neuroscience experiment in which the underlying system
can be expressed in the form of a state-space model that
involves any of the intracortical (spike-rate, multiunit
threshold crossing rate, analog multiunit activity, or local
field potential), epicortical (elecrtrocorticogram), or epicra-
nial (electroencephalogram or functional magnetic reso-
nance imaging) neural signals.

[0102] In a related embodiment, the proposed methodol-
ogy can be modified to incorporate a temporal lead or lag
between the latent state and the neural activity. As the related
art demonstrated (L. Paninski et al., J. Neurophysiol., vol.
91, no. 1, pp. 515-532, January 2004), motor cortical single-
unit spike signals typically lead movement by about 100 ms
in able-bodied monkeys and are more variable in humans
with paralysis (W. Truccolo et al., J. Neurosci., vol. 28, no.
5, pp- 1163-1178, January 2008), and similarly LFP beta
rhythm leads movement due to its encoding of movement
onset information (J. P. Donoghue, Neuron, vil. 60, no. 3, pp.
511-521, November 2008). The analysis of all such temporal
effects can be carried out through the covariance structure of
model residuals or the likelihood function, and the optimal
lags can be included in the observation equation on a
per-channel basis, after which modulation depth can be
estimated as disclosed in this application.

[0103] Inanother related embodiment, including the fMRI
data analysis, the above-described method is used for this
problem of pixel selection in an fMRI image. Specifically, a
linear regression model relating the input and output (similar
to Egs. 2 or 9 above) can be defined for each pixel (or signal
channel). The identification of which pixel(s)/channel(s)
contain meaningful information (i.e. are responsive to a
stimulus) and should be analyzed is now performed based on
the values and significance of the regression coefficients (for
example, by using standard statistical hypothesis testing
procedures). In a specific case, the same method is employed
for identifying neurons from a two-photon calcium image of
the brain, for example. Furthermore, in contrast with regres-
sion-based methods which require the system (for example,
a brain) to be time-invariant, the method of the present
invention is rooted in a dynamical system approach (of
which the static or time-invariant system is a subclass) and,
therefore, the selection of fMRI pixel(s)/channel(s) with the
use of an embodiment of the invention is successful and/or
operational even under time-varying situations.

[0104] In another related embodiment, the information
content of each of the available channels is being determined
as discussed above, and the channels are ranked based on the
determined information content. Then, the first X channels
(having the highest levels of information content) are chosen
or determined according to a criterion that is not connected
with the determination or presence of the information con-
tent of the signal channels according to the idea of the
invention. Such situation may arise, for example, in a
specific case when it is known a priori that only X signal
channels can be kept because of the limitations of the
electronic circuitry of the system of the invention (such as,
for example, physical width of a hardware data-bus)
[0105] Embodiments of the biomedical system of the
invention have been described as including a processor
controlled by instructions stored in a memory. The memory
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may be random access memory (RAM), read-only memory
(ROM), flash memory or any other memory, or combination
thereof, suitable for storing control software or other instruc-
tions and data. Some of the functions performed by the
discussed embodiments have been described with reference
to flowcharts and/or block diagrams. Those skilled in the art
should readily appreciate that functions, operations, deci-
sions, etc. of all or a portion of each block, or a combination
of blocks, of the flowcharts or block diagrams may be
implemented as computer program instructions, software,
hardware, firmware or combinations thereof. Those skilled
in the art should also readily appreciate that instructions or
programs defining the functions of the present invention
may be delivered to a processor in many forms, including,
but not limited to, information permanently stored on non-
writable storage media (e.g. read-only memory devices
within a computer, such as ROM, or devices readable by a
computer /O attachment, such as CD-ROM or DVD disks),
information alterably stored on writable storage media (e.g.
floppy disks, removable flash memory and hard drives) or
information conveyed to a computer through communica-
tion media, including wired or wireless computer networks.
In addition, while the invention may be embodied in soft-
ware, the functions necessary to implement the invention
may optionally or alternatively be embodied in part or in
whole using firmware and/or hardware components, such as
combinatorial logic, Application Specific Integrated Circuits
(ASICs), Field-Programmable Gate Arrays (FPGAs) or
other hardware or some combination of hardware, software
and/or firmware components.

[0106] References throughout this specification to “one
embodiment,” “an embodiment,” “a related embodiment,”
or similar language mean that a particular feature, structure,
or characteristic described in connection with the referred to
“embodiment” is included in at least one embodiment of the
present invention. Thus, appearances of the phrases “in one
embodiment,” “in an embodiment,” and similar language
throughout this specification may, but do not necessarily, all
refer to the same embodiment. It is to be understood that no
portion of disclosure, taken on its own and in possible
connection with a figure, is intended to provide a complete
description of all features of the invention.

[0107] In addition, it is to be understood that no single
drawing is intended to support a complete description of all
features of the invention. In other words, a given drawing is
generally descriptive of only some, and generally not all,
features of the invention. A given drawing and an associated
portion of the disclosure containing a description referenc-
ing such drawing do not, generally, contain all elements of
a particular view or all features that can be presented is this
view, for purposes of simplifying the given drawing and
discussion, and to direct the discussion to particular ele-
ments that are featured in this drawing. A skilled artisan will
recognize that the invention may possibly be practiced
without one or more of the specific features, elements,
components, structures, details, or characteristics, or with
the use of other methods, components, materials, and so
forth. Therefore, although a particular detail of an embodi-
ment of the invention may not be necessarily shown in each
and every drawing describing such embodiment, the pres-
ence of this detail in the drawing may be implied unless the
context of the description requires otherwise. In other
instances, well known structures, details, materials, or
operations may be not shown in a given drawing or
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described in detail to avoid obscuring aspects of an embodi-
ment of the invention that are being discussed. Furthermore,
the described single features, structures, or characteristics of
the invention may be combined in any suitable manner in
one or more further embodiments.

1. A biomedical system for transforming activity signals
acquired from a biological tissue, the system comprising:
an input interface unit simultaneously receiving a multi-
plicity of raw signals from the array of signal channels;
a preprocessing electronic circuitry configured to trans-
form said raw signals to refined signals by at least
amplifying said raw signals, filtering said raw signals to
reduce noise contained therein, and detecting a prede-
termined feature in said raw signals;
a estimator unit configured to determine information
content of each of the signal channels from said array;
and
a channel subset selector in operable communication with
the estimator unit to receive values representing said
information content of the signal channels and, based
on said valued that have been ordered, generate a
marker representing a limit on a number of said signal
channels to be used in the system.
2. Abiomedical system according to claim 1, wherein said
activity signals include neural activity signals and wherein
said raw signals include electrical signals.
3. Abiomedical system according to claim 1, wherein said
information content includes a modulation depth of each of
the signal channels.
4. A biomedical system according to claim 3, wherein said
channel subset selector, in operation, receives values of
modulation depths of each of said signal channels from the
array and generates said marker when a cumulative sum of
these values, that have been ordered in a descending order,
exceeds a predefined threshold.
5. A biomedical system according to claim 1, wherein said
predetermined feature includes a spike in a raw signal.
6. A biomedical system according to claim 1,
wherein the signal subset selector is configured to
form a first sequence containing said values in a
descending order,

form a second sequence containing numbers of chan-
nels respectively corresponding to values in the first
sequence, and

identify numbers of channels from the first sequence
according to a criterion representing a physical factor
unrelated to the determination of the information
content of the signal channels,

and

wherein said marker includes a number of channels
identified by the signal subset selector from the array of
signal channels.

7. A biomedical system according to claim 1, wherein the
estimator unit contains electronic circuitry programmed to
determine a modulation depth, of a chosen signal channel
from the array, as a ratio of i) a response of said chosen
signal channel to a behavioral variable to ii) a spontaneous
activity of said chosen signal channel and noise.

8. A biomedical system according to claim 6, wherein said
behavioural variable include a pre-determined input pro-
vided to the biological tissue.

9. A biomedical interface system according to claim 7,
wherein said pre-determined input includes at least one of an
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optical stimulus, an auditory stimulus, a tactile stimulus, a
gustatory stimulus, and an olfactory stimulus.
10. A biomedical system according to claim 1, further
comprising
a decoder unit, in electrical communication with the
channel subset selector and the preprocessing elec-
tronic circuitry, and
an endeffector operably connected to the decoder unit,

said decoder unit being configured to acquire first refined
signals corresponding only to signal channels from a
subset of the array identified by the marker, and to
decode said first refined signals in a fashion that is
suitable to generate a required response from the end-
effector subjected to decoded refined signals.

11. A biomedical system according to claim 10, wherein
said endeffector includes a tissue.

12. A biomedical interface system according to claim 10,
wherein the decoder unit decodes said refined signals to
generate such a physiological response from said tissue
which mimics a pre-determined input that has been provided
to the biological tissue, and based on which the information
content of a channel from the array is determined by the
estimator unit.

13. A biomedical system according to claim 10, wherein,
in operation, a duration of time between first time and
second time is real time, the first time corresponding to a
moment of receiving the multiplicity of raw signals by the
input interface unit, the second time corresponding to a
moment of decoding of all of said first refined signals.

14. A method for operating a biomedical system, the
method comprising:

reducing a dimensionality of an ensemble of multiple
signal channels, through which activity signals are
acquired from a biological tissue that has been sub-
jected to an input, by selecting a signal channel subset,
from said ensemble, without employing a projection-
based technique; and

decoding a subset of said activity signals acquired through
said signal channel subset to obtain a first output that
differs in a predetermined fashion from to a second
output, the second output being a result of decoding of
activity signals acquired through the entire ensemble of
multiple signal channels.

15. A method according to claim 14, wherein the first
output includes at least one of an optical signal, an electrical
signal, a magnetic signal, a mechanical signal, and a audio
signal.

16. A method according to claim 14, wherein said first
output includes a decoding correlation obtained as a result of
decoding said subset of said activity signals, wherein said
second output includes a decoding correlation obtained as a
result of decoding all activity signals.

17. A method according to claim 14, further comprising
determining an optimal number of channels in said signal
channel subset based on a Bayesian information criterion.

18. A method according to claim 14, wherein said reduc-
ing dimensionality includes performing variable ranking of
the multiple signal channels in an original signal space, in
which a physiological meaning of said multiple signal
channels is defined, and is devoid of transforming said
multiple signal channels into a space that does not represent
the physiological meaning.
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19. A method according to claim 14, wherein said reduc-
ing dimensionality include determining information content
for each of said multiple signal channels.

20. A method according to claim 19, further comprising

forming a first sequence containing values of modulation

depth for all of the multiple signal channels from the
ensemble in a descending order,

forming a second sequence containing numbers of said

multiple signal channels respectively corresponding to
said values in the first sequence, and

identifying numbers of said multiple signal channels from

the first sequence that correspond to those values, from
the first sequence, a first sum of which exceeds the
predefined threshold, the first sum obtained by adding
successive values of modulation depth from the first
sequence.

21. A method according to claim 14, wherein said reduc-
ing dimensionality includes determining modulation depths
of the multiple signal channels and ranking said multiple
signal channels based on determined modulation depths.

22. A method according to claim 21, wherein said deter-
mining modulation depths includes determining a modula-
tion depth of a chosen signal channel as a ratio of i) a
response of said chosen signal channel to a pre-determined
input provided to the behavioral variable, to ii) a spontane-
ous activity of said chosen signal channel and noise.

23. A method according to claim 22, further comprising

transforming raw signals acquired through the ensemble

to refined signals by at least amplifying said raw
signals, filtering said raw signals to reduce noise con-
tained therein, and detecting a predetermined feature in
said raw signals; and

decoding only those refined signals that correspond to

multiple signal channels identified by said numbers,
said decoding effectuated in a fashion that is suitable to
generate a required response from an endeffector sub-
jected to decoded refined signals.

24. A method according to claim 23, wherein said decod-
ing includes decoding effectuated in a fashion suitable to
generate a required response from the endeffector that
includes a tissue, and further comprising subjecting the
biological tissue to a pre-determined input that includes at
least one of an optical stimulus, an auditory stimulus, a
tactile stimulus, a gustatory stimulus, and an olfactory
stimulus.

25. A method according to claim 24, wherein said decod-
ing includes decoding effectuated to generate a physiologi-
cal response from said tissue, which physiological response
mimics the pre-determined input to the biological tissue.

26. A method according to claim 14,

wherein the signal subset selector is configured to

form a first sequence containing said values in a
descending order,

form a second sequence containing numbers of chan-
nels respectively corresponding to values in the first
sequence, and

identify numbers of channels from the first sequence
according to a criterion representing a physical factor
unrelated to the determination of the information
content of the signal channels,

and
wherein said marker includes a number of channels identi-
fied by the signal subset selector from the array of signal
channels
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27. A method according to claim 14,

wherein the reducing a dimensionality of an ensemble of
multiple signal channels includes reducing a number of
pixels of an image of the biological tissue based on
information content of each of said pixels, and

wherein the decoding a subset of the activity signals
acquired through the signal channel subset includes
decoding information contained in a subset of the
pixels of the image.
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