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We examine the implications of portfolio theory for the cross-sectional behavior of equity
trading volume. Two-fund separation theorems suggest a natural definition for trading
activity: share turnover. If two-fund separation holds, share turnover must be identical
for all securities. If (K + 1)-fund separation holds, we show that turnover satisfies an
approximately linear K-factor structure. These implications are examined empirically
using individual weekly turnover data for NYSE and AMEX securities from 1962 to
1996. We find strong evidence against two-fund separation, and a principal-components
decomposition suggests that turnover is well approximated by a two-factor linear model.

If price and quantity are the fundamental building blocks of any theory of
market interactions, the importance of trading volume in modeling asset
markets is clear. Although most models of asset markets have focused on
the behavior of returns—predictability, variability, and information content—
their implications for trading volume have received far less attention.

In this article we derive the implications of various asset-market models
for volume and quantify their importance using recently available volume
data for individual securities from the Center for Research in Security Prices
(CRSP). Although the volume literature is voluminous,1 we hope to add to
this literature in two ways.

First, we develop the volume implications of popular asset-market mod-
els rather than construct more specialized and often “stylized” models to
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explain volume behavior. Given the far-reaching impact of mutual-fund sep-
aration theorems, the capital asset pricing model (CAPM), and the intertem-
poral CAPM (ICAPM), the volume implications of these paradigms may
have important consequences. In contrast to much of the existing volume
literature’s focus on the time-series behavior of volume—price/volume and
volatility/volume relations, for example—in this article we focus instead on
the cross-sectional variation in volume. How does trading activity vary from
stock to stock, and why? The fact that popular asset-market models have
strong implications for the cross section of expected returns suggests that
they may also have implications for the cross section of volume. By turn-
ing our attention to a new set of testable implications for these well-worn
models, we hope to gain new insights into some old unresolved issues.

Second, we empirically estimate the volume relations suggested by these
asset-market models using both cross-section and time-series data for indi-
vidual securities, examining both the behavior of aggregate and individual
volume over the sample period from 1962 to 1996 and across thousands of
securities. Until recently, individual volume data for a broad cross section
of securities was not readily available. In much the same way that models
such as the CAPM and ICAPM have guided empirical investigations of the
time-series and cross-sectional properties of asset returns, we show that the
volume implications of these models provide similar guidelines for investi-
gating the behavior of volume.

We begin in Section 1 with the basic definitions and notational conventions
of our volume investigation—not a trivial task given the variety of volume
measures used in the extant literature, for example, shares traded, dollars
traded, number of transactions, etc. We argue that turnover—shares traded
divided by shares outstanding—is a natural measure of trading activity when
viewed in the context of standard portfolio theory. In particular, in Section 2
we show that a two-fund separation theorem implies that turnover is identical
across all assets, and a (K+1)-fund separation theorem implies that turnover
has an approximate linear K-factor structure.

Using weekly turnover data for individual securities on the New York and
American Stock Exchanges from 1962 to 1996—recently made available by
the CRSP—we document in Section 3 the time-series and cross-sectional
properties of turnover indexes, individual turnover, and portfolio turnover.
Turnover indexes exhibit a clear time trend from 1962 to 1996, beginning at
less than 0.5% in 1962, reaching a high of 4% in October 1987, and dropping
to just over 1% at the end of our sample in 1996.

The cross section of turnover also varies through time, fairly concentrated
in the early 1960s, much wider in the late 1960s, narrow again in the mid
1970s, and wide again after that. There is some persistence in turnover deciles
from week to week—the largest- and smallest-turnover stocks in 1 week are
often the largest- and smallest-turnover stocks, respectively, the next week—
however, there is considerable diffusion of stocks across the intermediate
turnover-deciles from one week to the next.
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To investigate the cross-sectional variation of turnover in more detail, in
Section 4 we perform cross-sectional regressions of average turnover on sev-
eral regressors related to expected return, market capitalization, and trading
costs. With R2’s ranging from 29.6% to 44.7%, these regressions show that
stock-specific characteristics do explain a significant portion of the cross-
sectional variation in turnover. This suggests the possibility of a parsimonious
linear-factor representation of the turnover cross section.

To investigate this possibility and the implications of standard portfolio
theory, that is, (K + 1)-fund separation, we perform a principal-components
decomposition of the covariance matrix of the turnover of 10 portfolios,
where the portfolios are constructed by sorting on turnover betas. Across
5-year subperiods, we find that a one-factor model for turnover is a reason-
able approximation, at least in the case of turnover-beta-sorted portfolios, and
that a two-factor model captures well over 90% of the time-series variation
in turnover.

We conclude in Section 5 with some suggestions for future research
directions.

1. Definitions and Notation

The literature on trading activity in financial markets is extensive and a num-
ber of measures of volume have been proposed and studied.2 Some studies
of aggregate trading activity use the total number of shares traded on the
NYSE as a measure of volume [see Ying (1966), Epps and Epps (1976),
Gallant, Rossi, and Tauchen (1992), and Hiemstra and Jones (1994)]. Other
studies use aggregate turnover—the total number of shares traded divided by
the total number of shares outstanding—as a measure of volume [see Smidt
(1990), LeBaron (1992), Campbell, Grossman, and Wang (1993), and the
1996 NYSE Fact Book]. Individual share volume is often used in the analysis
of price/volume and volatility/volume relations [see Epps and Epps (1976),
Lamoureux and Lastrapes (1990, 1994) and Andersen (1996)]. Studies focus-
ing on the impact of information events on trading activity use individual
turnover as a measure of volume [see Morse (1980), Bamber (1986, 1987),
Lakonishok and Smidt (1986), Richardson, Sefcik, and Thompson (1986),
Stickel and Verrecchia (1994)]. Alternatively, Tkac (1996) considers indi-
vidual dollar volume normalized by aggregate market dollar volume. And
even the total number of trades [Conrad, Hameed, and Niden (1994)] and
the number of trading days per year [James and Edmister (1983)] have been
used as measures of trading activity. Table 1 provides a summary of the vari-
ous measures used in a representative sample of the recent volume literature.
These differences suggest that different applications call for different volume
measures.

2 See Karpoff (1987) for an excellent introduction to and survey of this burgeoning literature.
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Table 1
Selected volume studies grouped according to the volume measure used

Volume measure Study

Aggregate share volume Gallant, Rossi, and Tauchen (1992), Hiemstra and Jones (1994),
Ying (1966)

Individual share volume Andersen (1996), Epps and Epps (1976), James and Edmister
(1983), Lamoureux and Lastrapes (1990, 1994)

Aggregate dollar volume —
Individual dollar volume James and Edmister (1983), Lakonishok and Vermaelen (1986)
Relative individual dollar volume Tkac (1996)
Individual turnover Bamber (1986, 1987), Hu (1997),

Lakonishok and Smidt (1986), Morse (1980), Richardson,
Sefcik, Thompson (1986), Stickel and Verrechia (1994)

Aggregate turnover Campbell, Grossman, Wang (1993), LeBaron (1992),
Smidt (1990), NYSE Fact Book

Total number of trades Conrad, Hameed, and Niden (1994)
Trading days per year James and Edmister (1983)
Contracts traded Tauchen and Pitts (1983)

After developing some basic notation in Section 1.1, we review several
volume measures in Section 1.2 and provide some economic motivation for
turnover as a canonical measure of trading activity. Formal definitions of
turnover—for individual securities, portfolios, and in the presence of time
aggregation—are given in Sections 1.3 and 1.4.

1.1 Notation
Our analysis begins with I investors indexed by i = 1, . . . , I and J stocks
indexed by j = 1, . . . , J . We assume that all the stocks are risky and nonre-
dundant. For each stock j , let Njt be its total number of shares outstanding,
Djt be its dividend, and Pjt be its ex dividend price at date t . For nota-
tional convenience and without loss of generality, we assume throughout that
the total number of shares outstanding for each stock is constant over time,
that is, Njt = Nj , j = 1, . . . , J .

For each investor i, let Sijt denote the number of shares of stock j he
holds at date t . Let Pt ≡ [P1t · · ·PJt ]� and St ≡ [S1t · · · SJ t ]� denote the
vector of stock prices and shares held in a given portfolio, where A� denotes
the transpose of a vector or matrix A. Let the return on stock j at t be
Rjt ≡ (Pjt − Pjt−1 +Djt )/Pjt−1. Finally, denote by Xjt the total number
of shares of security j traded at time t , that is, share volume, hence

Xjt = 1

2

I∑
i=1

|Sijt − Sijt−1|, (1)

where the coefficient 1
2 corrects for the double counting when summing the

shares traded over all investors.
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1.2 Motivation
To motivate the definition of volume used in this article, we begin with a
simple numerical example drawn from portfolio theory.3 Consider a stock
market comprised of only two securities, A and B. For concreteness, assume
that security A has 10 shares outstanding and is priced at $100 per share,
yielding a market value of $1000, and security B has 30 shares outstanding
and is priced at $50 per share, yielding a market value of $1500, hence Nat =
10, Nbt = 30, Pat = 100, Pbt = 50. Suppose there are only two investors
in this market—call them investors 1 and 2—and let two-fund separation
hold so that both investors hold a combination of risk-free bonds and a
stock portfolio with A and B in the same relative proportion. Specifically,
let investor 1 hold 1 share of A and 3 shares of B, and let investor 2 hold
9 shares of A and 27 shares of B. In this way, all shares are held and both
investors hold the same market portfolio (40% A and 60% B).

Now suppose that investor 2 liquidates $750 of his portfolio—3 shares
of A and 9 shares of B—and assume that investor 1 is willing to purchase
exactly this amount from investor 2 at the prevailing market prices.4 After
completing the transaction, investor 1 owns 4 shares of A and 12 shares of B,
and investor 2 owns 6 shares of A and 18 shares of B. What kind of trading
activity does this transaction imply?

For individual stocks, we can construct the following measures of trading
activity:

• Number of trades per period
• Share volume, Xjt
• Dollar volume, PjtXjt
• Relative dollar volume, PjtXjt/

∑
j PjtXjt

• Share turnover,

τjt ≡ Xjt

Njt

• Dollar turnover,

νjt ≡ PjtXjt

PjtNjt
= τjt

where j = a, b.5 To measure aggregate trading activity, we can define similar
measures:

• Number of trades per period

3 A more formal motivation is provided later in Section 2, namely, mutual-fund separation theorems and the
cross-sectional properties of volume.

4 This last assumption entails no loss of generality but is made purely for notational simplicity. If investor 1 is
unwilling to purchase these shares at prevailing prices, prices will adjust so that both parties are willing to
consummate the transaction, leaving two-fund separation intact.

5 Although the definition of dollar turnover may seem redundant since it is equivalent to share turnover, it will
become more relevant in the portfolio case below (see Section 1.3).
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• Total number of shares traded, Xat +Xbt
• Dollar volume, PatXat + PbtXbt
• Share-weighted turnover,

τ SWt ≡ Xat +Xbt
Na +Nb = Na

Na +Nb τat +
Nb

Na +Nb τbt

• Equal-weighted turnover,

τEWt ≡ 1

2

(
Xat

Na
+ Xbt

Na

)
= 1

2
(τat + τbt )

• Value-weighted turnover,

τ VWt ≡ PatNa

PatNa + PbtNb
Xat

Na
+ PbtNb

PatNa + PbtNb
Xbt

Nb
= ωatτat + ωbtτbt .

Table 2 reports the values that these various measures of trading activity
take on for the hypothetical transaction between investors 1 and 2. Though
these values vary considerably—two trades, 12 shares traded, $750 traded—
one regularity does emerge: the turnover measures are all identical. This is
no coincidence, but is an implication of two-fund separation. If all investors
hold the same relative proportions of risky assets at all times, then it can
be shown that trading activity—as measured by turnover—must be identical
across all risky securities (see Section 2). Although the other measures of
volume do capture important aspects of trading activity, if the focus is on the
relation between volume and equilibrium models of asset markets (such as
the CAPM and ICAPM), turnover yields the sharpest empirical implications
and is the most natural measure. For this reason, we will focus on turnover
throughout this article.

1.3 Defining individual and portfolio turnover
For each individual stock j , let turnover be defined by:

Table 2
Volume measures for a two-asset, two-investor numerical example assuming that two-fund separation
holds

Volume measure A B Aggregate

Number of trades 1 1 2
Shares traded 3 9 12
Dollars traded $300 $450 $750
Share turnover 0.3 0.3 0.3
Dollar turnover 0.3 0.3 0.3
Relative dollar turnover 0.4 0.6 1.0
Share-weighted turnover — — 0.3
Equal-weighted turnover — — 0.3
Value-weighted turnover — — 0.3
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Definition 1. The turnover τjt of stock j at time t is

τjt ≡ Xjt

Nj
, (2)

where Xjt is the share volume of security j at time t and Nj is the total
number of shares outstanding of stock j .

Although we define the turnover ratio using the total number of shares traded,
it is obvious that using the total dollar volume normalized by the total market
value gives the same result.

Given that investors, particularly institutional investors, often trade port-
folios or baskets of stocks, a measure of portfolio trading activity would be
useful. But even after settling on turnover as the preferred measure of an
individual stock’s trading activity, there is still some ambiguity in extending
this definition to the portfolio case. In the absence of a theory for which port-
folios are traded, why they are traded, and how they are traded, there is no
natural definition of portfolio turnover.6 For the specific purpose of investi-
gating the implications of portfolio theory for trading activity (see Section 2),
we propose the following definition:

Definition 2. For any portfolio p defined by the vector of shares held Spt =
[Sp1t · · · SpJ t ]� with nonnegative holdings in all stocks, that is, Spjt ≥ 0 for all
j , and strictly positive market value, that is, Spt

�Pt > 0, let ωpjt ≡
S
p
jtPjt /(S

p
t
�Pt ) be the fraction invested in stock j , j = 1, . . . , J . Then

its turnover is defined to be

τ
p
t ≡

J∑
j=1

ω
p
jt τjt . (3)

Under this definition, the turnover of value-weighted and equal-weighted
indexes are well defined,

τ VWt ≡
J∑
j=1

ωVWjt τjt and τEWt ≡ 1

J

J∑
j=1

τjt , (4)

respectively, where ωVWjt ≡ NjPjt/(
∑
j NjPjt ), for j = 1, . . . , J .

Although Equation (3) seems to be a reasonable definition of portfolio
turnover, some care must be exercised in interpreting it. While τ VWt and τEWt
are relevant to the theoretical implications derived in Section 2, they should
be viewed only as particular weighted averages of individual turnover, not
necessarily as the turnover of any specific trading strategy.

6 Although it is common practice for institutional investors to trade baskets of securities, there are few regu-
larities in how such baskets are generated or how they are traded, that is, in piecemeal fashion and over time
or all at once through a principal bid. Such diversity in the trading of portfolios makes it difficult to define a
single measure of portfolio turnover.
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In particular, Definition 2 cannot be applied too broadly. Suppose, for
example, short sales are allowed so that some portfolio weights can be neg-
ative. In that case, Equation (3) can be quite misleading since the turnover
of short positions will offset the turnover of long positions. We can modify
Equation (3) to account for short positions by using the absolute values of
the portfolio weights

τ
p
t ≡

J∑
j=1

|ωpjt |∑
k |ωpkt |

τjt , (5)

but this can yield some anomalous results as well. For example, consider a
two-asset portfolio with weights ωat = 3 and ωbt = −2. If the turnover of
both stocks are identical and equal to τ , the portfolio turnover according to
Equation (5) is also τ , yet there is clearly a great deal more trading activity
than this implies. Without specifying why and how this portfolio is traded, a
sensible definition of portfolio turnover cannot be proposed.

Neither Equation (3) nor Equation (5) are completely satisfactory measures
of trading activities of a portfolio in general. Until we introduce a more
specific context in which trading activity is to be measured, we shall have
to satisfy ourselves with Definition 2 as a measure of trading activities of a
portfolio.

1.4 Time aggregation
Given our choice of turnover as a measure of volume for individual securi-
ties, the most natural method of handling time aggregation is to sum turnover
across dates to obtain time-aggregated turnover. Although there are several
other alternatives, for example, summing share volume and then dividing
by average shares outstanding, summing turnover offers several advantages.
Unlike a measure based on summed shares divided by average shares out-
standing, summed turnover is cumulative and linear, each component of the
sum corresponds to the actual measure of trading activity for that day, and
it is unaffected by “neutral” changes of units such as stock splits and stock
dividends.7 Therefore we shall adopt this measure of time aggregation in our
empirical analysis below.

Definition 3. If the turnover for stock j at time t is given by τjt , the turnover
between t − 1 to t + q, for any q ≥ 0 is given by

τjt (q) ≡ τjt + τjt+1 + · · · + τjt+q . (6)

7 This last property requires one minor qualification: a “neutral” change of units is, by definition, one where
trading activity is unaffected. However, stock splits can have nonneutral effects on trading activity such as
enhancing liquidity (this is often one of the motivations for splits), and in such cases turnover will be affected
(as it should be).
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2. Volume Implications of Portfolio Theory

The diversity in the portfolio holdings of individuals and institutions and in
their motives for trade suggest that the time-series and cross-sectional pat-
terns of trading activity can be quite complex. However, standard portfolio
theory provides an enormous simplification: under certain conditions, mutual
fund separation holds, that is, investors are indifferent between choosing
among the entire universe of securities and a small number of mutual funds
[see, e.g., Markowitz (1952), Tobin (1958), Cass and Stiglitz (1970), Merton
(1973), and Ross (1978)]. In this case, all investors trade only in these sepa-
rating funds and simpler cross-sectional patterns in trading activity emerge,
and in this section we derive such cross-sectional implications.

While several models can deliver mutual-fund separation, for example, the
CAPM and ICAPM, we do not specify any such model in this study, but
simply assert that mutual fund separation holds. In particular, since the focus
of this article is primarily the cross-sectional properties of volume, we assume
nothing about the behavior of asset prices, for example, a factor structure
for asset returns may or may not exist. As long as mutual fund separation
holds, the results in this section (in particular, Sections 2.1 and 2.2) must
apply.

The strong implications of mutual fund separation for volume that we
derive in this section suggest that the assumptions underlying the theory may
be quite restrictive and therefore implausible [see, e.g., Markowitz (1952),
Tobin (1958), Cass and Stiglitz (1970), and Ross (1978)]. For example,
mutual-fund separation is often derived in static settings in which the motives
for trade are not explicitly modeled. Also, most models of mutual-fund sepa-
ration use a partial equilibrium framework with exogenously specified return
distributions and strong restrictions on preferences. Furthermore, these mod-
els tend to focus on a rather narrow set of trading motives—changes in port-
folio holdings due to changes in return distributions or preferences—ignoring
other factors that may motivate individuals and institutions to adjust their
portfolios, for example, asymmetric information, idiosyncratic risk, transac-
tions costs, taxes, and other market imperfections. Finally, it has sometimes
been argued that recent levels of trading activity in financial markets are sim-
ply too high to be attributable to the portfolio rebalancing needs of rational
economic agents.

A detailed discussion of these concerns is beyond the scope of this article.
Moreover, we are not advocating any particular structural model of mutual
fund separation here, but merely investigating the implications for trading
volume when mutual fund separation holds. Nevertheless, before deriving
these implications in the following sections, it is important to consider how
some of the limitations of mutual fund separation may affect the interpreta-
tion of our analysis.
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First, many of the limitations of mutual fund separation theorems can
be overcome to some degree. For example, extending mutual fund separa-
tion results to dynamic settings is possible. As in the static case, restric-
tive assumptions on preferences and/or return processes are often required
to obtain mutual fund separation in a discrete-time setting. However, in a
continuous-time setting—which has its own set of restrictive assumptions—
Merton (1973) shows that mutual fund separation holds for quite general
preferences and return processes.

Also, it is possible to embed mutual fund separation in a general equi-
librium framework in which asset returns are determined endogenously. The
CAPM is a well-known example of mutual fund separation in a static equi-
librium setting. To obtain mutual fund separation in a dynamic equilibrium
setting, stronger assumptions are required—Lo and Wang (1998a) provide
such an example.8

Of course, from a theoretical standpoint, no existing model is rich enough
to capture the full spectrum of portfolio rebalancing needs of all market
participants, for example, risk-sharing, hedging, liquidity, and speculation.
Therefore it is difficult to argue that current levels of trading activity are too
high to be justified by rational portfolio rebalancing. Indeed, under the stan-
dard assumption of a diffusion information structure, volume is unbounded
in absence of transaction costs. Moreover, from an empirical standpoint, little
effort has been devoted to calibrating the level of trading volume within the
context of a realistic asset-market model.

Despite the simplistic nature of mutual-fund separation, we study its vol-
ume implications for several reasons. One compelling reason is the fact that
mutual-fund separation has become the workhorse of modern investment
management. Although the assumptions of models such as the CAPM and
ICAPM are known to be violated in practice, these models are viewed by
many as a useful approximation for quantifying the trade-off between risk and
expected return in financial markets. Thus it seems natural to begin with such
models in an investigation of trading activity in asset markets. Mutual fund
separation may seem inadequate—indeed, some might say irrelevant—for
modeling trading activity, nevertheless it may yield an adequate approxima-
tion for quantifying the cross-sectional properties of trading volume. If it does
not, then this suggests the possibility of important weaknesses in the theory,
weaknesses that may have implications that extend beyond trading activity,
for example, preference restrictions, risk-sharing characteristics, asymmetric
information, and liquidity. Of course, the virtue of such an approximation

8 Tkac (1996) also attempts to develop a dynamic equilibrium model—a multiasset extension of Dumas
(1990)—in which two-fund separation holds. However, her specification of the model is incomplete. Moreover,
if it is in the spirit of Dumas (1990) in which risky assets take the form of investments in linear production
technologies [as in Cox, Ingersoll and Ross (1985)], the model has no volume implications for the risky assets
since changes in investors’ asset holdings involve changes in their own investment in production technologies,
not in the trading of risky assets.
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can only be judged by its empirical performance, which we examine in this
article.

Another reason for focusing on mutual fund separation is that it can be
an important benchmark in developing a more complete model of trading
volume. The trading motives that mutual fund separation captures (such as
portfolio rebalancing) may be simple and incomplete, but they are important,
at least in the context of models such as the CAPM and ICAPM. Using
mutual fund separation as a benchmark allows us to gauge how important
other trading motives may be in understanding the different aspects of trading
volume. For example, in studying the market reaction to corporate announce-
ments and dividends, the factor model implied by mutual fund separation can
be used as a “market model” in defining the abnormal trading activity that is
associated with these events [Tkac (1996) discusses this in the special case
of two-fund separation].

Factors such as asymmetric information, idiosyncratic risks, transaction
costs, and other forms of market imperfections are also likely to be rele-
vant for determining the level and variability of trading activity. Each of
these issues has been the focus of recent research, but only in the context of
specialized models. To examine their importance in explaining volume, we
need a more general and unified framework that can capture these factors.
Unfortunately such a model has not yet been developed.

For all these reasons, we propose to examine the implications of mutual
fund separation for trading activity. The theoretical implications serve as
valuable guides for our data construction and empirical analysis, but it is
useful to keep their limitations in mind. We view this as the first step in
developing a more complete understanding of trading and pricing in asset
markets and we hope to explore these other issues in future research (see
Section 5).

In Section 2.1 we consider the case of two-fund separation in which one
fund is the riskless asset and the second fund is a portfolio of risky assets.
In Section 2.2 we investigate the general case of (K + 1)-fund separation,
one riskless fund and K risky funds. Mutual fund separation with a riskless
asset is often called monetary separation to distinguish it from the case
without a riskless asset. We assume the existence of a riskless asset mainly
to simplify the exposition, but for our purposes this assumption entails no
loss of generality.9 Thus, in what follows, we consider only cases of monetary
separation without further qualification.

2.1 Two-fund separation
Without loss of generality, we normalize the total number of shares outstand-
ing for each stock to one in this section, that is, Nj = 1, j = 1, . . . , J , and

9 For example, if two-fund separation holds but both funds contain risky assets [as in Black’s (1972) zero-beta
CAPM], this is covered by our analysis of (K + 1)-fund separation in Section 2.2 for K = 2 (since two of
the three funds are assumed to contain risky assets).
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we begin by assuming two-fund separation, that is, all investors invest in the
same two mutual funds: the riskless asset and a stock fund. Market clearing
requires that the stock fund is the “market” portfolio. Given our normaliza-
tion, the market portfolio SM—measured in shares outstanding—is simply a
vector of ones: SM = [1 · · · 1]�. Two-fund separation implies that the stock
holdings of any investor i at time t is given by

Sit = hitS
M = hit

 1
...

1

 , i = 1, . . . , I, (7)

where hit is the share of the market portfolio held by investor i (and
∑
i h
i
t =

1 for all t). His holding in stock j is then Sijt = hit , j = 1, . . . , J . Over
time, investor i may wish to adjust his portfolio. If he does, he does so by
trading only in the two funds (by the assumption of two-fund separation),
hence he purchases or sells stocks in very specific proportions, as fractions
of the market portfolio. His trading in stock j , normalized by shares out-
standing, is Sijt − Sijt−1 = hit − hit−1, i = 1, . . . , I . But this, in turn, implies
Sijt − Sijt−1 = Sij ′t − Sij ′t−1, j, j ′ = 1, . . . , J . Thus if two-fund separation
holds, investor i’s trading activity in each stock, normalized by shares out-
standing, is identical across all stocks. This has an important implication for
the turnover of stock j :

τjt = 1

2

I∑
i=1

∣∣Sijt − Sijt−1

∣∣ = 1

2

I∑
i=1

∣∣hit − hit−1

∣∣, j = 1, . . . , J, (8)

which is given by the following proposition:

Proposition 1. When two-fund separation holds, the turnover of all individ-
ual stocks are identical.

Proposition 1 has strong implications for the turnover of the market portfo-
lio. From the definition of Section 1.3, the turnover of the market portfolio is

τ VWt ≡
J∑
j=1

wVW

jt τjt = τjt , j = 1, . . . , J.

The turnover of individual stocks is identical to the turnover of the market
portfolio. This is not surprising given that individual stocks have identical val-
ues for turnover. Indeed, all portfolios of risky assets have the same turnover
as individual stocks. For reasons that become apparent in Section 4, we can
express the turnover of individual stocks as an exact linear one-factor model:

τjt = bj F̃t , j = 1, . . . , J, (9)

where F̃t = τ VWt and bj = 1.
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Proposition 1 also implies that under two-fund separation the share vol-
ume of individual stocks is proportional to the total number of shares out-
standing and dollar volume is proportional to market capitalization. Another
implication is that each security’s relative dollar volume is identical to its
relative market capitalization for all t : PjtXjt/(

∑
j PjtXjt ) = PjtNj/

(
∑
j PjtNj ). This relation is tested in Tkac (1996). Tkac (1996) derives this

result in the context of a continuous-time dynamic equilibrium model with a
special form of heterogeneity in preferences, but it holds more generally for
any model that implies two-fund separation.10

2.2 (K+ 1)-fund separation
We now consider the more general case where (K+1)-fund separation holds.
Let Skt = (Sk1t , . . . , S

k
J t )

�, k = 1, . . . , K , denote the K separating stock
funds, where the separating funds are expressed in terms of the number of
shares of their component stocks. The stock holdings of any investor i are
given by  Si1t

...

SiJ t

 =
K∑
k=1

hiktS
k
t , i = 1, . . . , I. (10)

In particular, his holding in stock j is Sijt = ∑K
k=1 h

i
ktS

k
jt . Therefore the

turnover of stock j at time t is

τjt = 1

2

I∑
i=1

∣∣Sijt − Sijt−1

∣∣
= 1

2

I∑
i=1

∣∣∣∣ K∑
k=1

(
hiktS

k
jt − hikt−1S

k
jt

) ∣∣∣∣, j = 1, . . . , J. (11)

To simplify notation, we define "hikt ≡ hikt −hikt−1 as the change in investor
i’s holding of fund k from t − 1 to t .

We now impose the following assumption on the separating stock funds:

Assumption 1. The separating stock funds, Skt , k = 1, . . . , K , are constant
over time.

Given that, in equilibrium,
∑I
i=1 Si, t = SM for all t, we have

K∑
k=1

(
I∑
i=1

hikt

)
Sk = SM.

Therefore, without loss of generality, we can assume that the market port-
folio SM is one of the separating stock funds, which we label as the first

10 To see this, substitute τtNj for Xjt in the numerator and denominator of the left side of the equation and
observe that τt is constant over j , hence it can be factored out of the summation and canceled.
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fund. Following Merton (1973), we call the remaining stock funds hedging
portfolios.11

In addition, we assume that the amount of trading in the hedging portfolios
is small for all investors:

Assumption 2. For k = 1, . . . , K , and i = 1, . . . , I , "hi1t = h̃i1t "h
i
kt =

λh̃ikt (k �= 1), where |h̃ikt | ≤ H <∞, 0 < λ� 1 and hi1t , h
i
2t , . . . , h

i
J t have

a continuous joint probability density.

We then have the following result (see the appendix for the proof):

Lemma 1. Under Assumptions 1 and 2, the turnover of stock j at time t can
be approximated by

τjt ≈ 1

2

I∑
i=1

∣∣"hi1t ∣∣
+ 1

2

K∑
k=2

[
I∑
i=1

sgn
(
"hi1t +"hikt

)
"hikt

]
Skj , j = 1, . . . , J, (12)

and the nth absolute moment of the approximation error is o(λn).

Now define the following “factors”:

F̃1t ≡ 1

2

I∑
i=1

∣∣∣∣"hi1t ∣∣∣∣
F̃kt ≡ 1

2

I∑
i=1

sgn
(
"hi1t +"hikt

)
"hikt , k = 2, . . . , K.

Then the turnover of each stock j can be represented by an approximate
K-factor model,

τjt = F̃1t +
K∑
k=2

Skj F̃kt + o(λ), j = 1, . . . , J. (13)

In summary, we have:

Proposition 2. Suppose that the riskless security, the market portfolio, and
K − 1 constant hedging portfolios are separating funds, and the amount of
trading in the hedging portfolios is small. Then the turnover of each stock
has an approximate K-factor structure.

11 In addition, we can assume that all the separating stock funds are mutually orthogonal, that is, Sk�Sk′ = 0,
k = 1, . . . , K , k′ = 1, . . . , K , k �= k′. In particular, SM�Sk = ∑J

j=1 S
k
j = 0, k = 2, . . . , K , hence the total

number of shares in each of the hedging portfolios sum to zero under our normalization. For this particular
choice of the separating funds, hikt has the simple interpretation that it is the projection coefficient of Sit on
Sk . Moreover,

∑I
i=1 h

i
1t = 1 and

∑I
i=1 h

i
kt = 0, k = 2, . . . , K .
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3. Exploratory Data Analysis

Having defined our measure of trading activity as turnover, we use the CRSP
Daily Master File to construct weekly turnover series for individual NYSE
and AMEX securities from July 1962 to December 1996 (1800 weeks) using
the time-aggregation method discussed in Section 1.4.12 We chose a weekly
horizon as the best compromise between maximizing sample size while min-
imizing the day-to-day volume and return fluctuations that have less direct
economic relevance. And since our focus is the implication of portfolio theory
for volume behavior, we confine our attention to ordinary common shares on
the NYSE and AMEX (CRSP sharecodes 10 and 11 only), omitting ADRs,
SBIs, REITs, closed-end funds, and other such exotica whose turnover may
be difficult to interpret in the usual sense.13 We also omit NASDAQ stocks
altogether since the differences between NASDAQ and the NYSE/AMEX
(market structure, market capitalization, etc.) have important implications for
the measurement and behavior of volume [see, e.g., Atkins and Dyl (1997)],
and this should be investigated separately.

Throughout our empirical analysis, we report turnover and returns in units
of percent per week—they are not annualized.

Finally, in addition to the exchange and sharecode selection criteria
imposed, we also discard 37 securities from our sample because of a partic-
ular type of data error in the CRSP volume entries.14

3.1 Secular trends
Although it is difficult to develop simple intuition for the behavior of the
entire time-series/cross-section volume dataset—a dataset containing between
1700 and 2200 individual securities per week over a sample period of 1800

12 To facilitate research on turnover and to allow others to easily replicate our analysis, we have produced
daily and weekly “MiniCRSP” dataset extracts comprised of returns, turnover, and other data items for
each individual stock in the CRSP Daily Master file, stored in a format that minimizes storage space
and access times. We have also prepared a set of access routines to read our extracted datasets via either
sequential and random access methods on almost any hardware platform, as well as a user’s guide to Mini-
CRSP (see Lim et al. (1998)). More detailed information about MiniCRSP can be found at the website
http://lfe.mit.edu/volume/.

13 The bulk of NYSE and AMEX securities are ordinary common shares, hence limiting our sample to secu-
rities with sharecodes 10 and 11 is not especially restrictive. For example, on January 2, 1980, the entire
NYSE/AMEX universe contained 2,307 securities with sharecode 10, 30 securities with sharecode 11, and
55 securities with sharecodes other than 10 and 11. Ordinary common shares also account for the bulk of the
market capitalization of the NYSE and AMEX (excluding ADRs of course).

14 Briefly, the NYSE and AMEX typically report volume in round lots of 100 shares—“45” represents 4500
shares—but on occasion volume is reported in shares and this is indicated by a “Z” flag attached to the
particular observation. This Z status is relatively infrequent, usually valid for at least a quarter, and may
change over the life of the security. In some instances, we have discovered daily share volume increasing by a
factor of 100, only to decrease by a factor of 100 at a later date. While such dramatic shifts in volume is not
altogether impossible, a more plausible explanation—one that we have verified by hand in a few cases—is
that the Z flag was inadvertently omitted when in fact the Z status was in force. See Lim et al. (1998) for
further details.
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weeks—some gross characteristics of volume can be observed from value-
weighted and equal-weighted turnover indexes.15 These characteristics are
presented in Figures 1–3, and in Tables 3 and 4.

Figure 1a shows that value-weighted turnover has increased dramatically
since the mid-1960s, growing from less than 0.20% to more than 1% per
week. The volatility of value-weighted turnover also increases over this per-
iod. However, equal-weighted turnover behaves somewhat differently: Fig-
ure 1b shows that it reaches a peak of nearly 2% in 1968, then declines
until the 1980s when it returns to a similar level (and goes well beyond
it during October 1987). These differences between the value- and equal-
weighted indexes suggest that smaller-capitalization companies can have high
turnover.

Since turnover is, by definition, an asymmetric measure of trading activ-
ity—it cannot be negative—its empirical distribution is naturally skewed. Tak-
ing natural logarithms may provide more (visual) information about its behav-
ior, and this is done in Figures 1c and 1d. Although a trend is still present,
there is more evidence for cyclical behavior in both indexes.

Table 3 reports various summary statistics for the two indexes over the
1962–1996 sample period as well as over 5-year subperiods. Over the entire
sample the average weekly turnover for the value-weighted and equal-
weighted indexes is 0.78% and 0.91%, respectively. The standard deviation
of weekly turnover for these two indexes is 0.48% and 0.37%, respectively,
yielding a coefficient of variation of 0.62 for the value-weighted turnover
index and 0.41 for the equal-weighted turnover index. In contrast, the coeffi-
cients of variation for the value-weighted and equal-weighted returns indexes
are 8.52 and 6.91, respectively. Turnover is not nearly so variable as returns,
relative to their means.

Table 3 also illustrates the nature of the secular trend in turnover through
the 5-year subperiod statistics. Average weekly value-weighted and equal-
weighted turnover is 0.25% and 0.57%, respectively, in the first subperiod
(1962–1966); they grow to 1.25% and 1.31%, respectively, by the last sub-
period (1992–1996). At the beginning of the sample, equal-weighted turnover
is three to four times more volatile than value-weighted turnover (0.21% ver-
sus 0.07% in 1962–1966, 0.32% versus 0.08% in 1967–1971), but by the
end of the sample their volatilities are comparable (0.22% versus 0.23% in
1992–1996).

The subperiod containing the October 1987 crash exhibits a few anoma-
lous properties: excess skewness and kurtosis for both returns and turnover,

15 These indexes are constructed from weekly individual security turnover, where the value-weighted index is
reweighted each week. Value-weighted and equal-weighted return indexes are also constructed in a similar
fashion. Note that these return indexes do not correspond exactly to the time-aggregated CRSP value-weighted
and equal-weighted return indexes because we have restricted our universe of securities to ordinary common
shares. However, some simple statistical comparisons show that our return indexes and the CRSP return
indexes have very similar time-series properties.
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Figure 2a
Raw and detrended weekly value-weighted turnover indexes, 1962–1996

average value-weighted turnover slightly higher than average equal-weighted
turnover, and slightly higher volatility for value-weighted turnover. These
anomalies are consistent with the extreme outliers associated with the 1987
crash (see Figures 1a,b).

3.2 Nonstationarity and detrending
Table 3 also reports the percentiles of the empirical distributions of turnover
and returns which document the skewness in turnover that Figure 1 hints
at, as well as the first 10 autocorrelations of turnover and returns and the
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Figure 2b
Raw and detrended weekly equal-weighted turnover indexes, 1962–1996

corresponding Box–Pierce Q-statistics. Unlike returns, turnover is highly
persistent, with autocorrelations that start at 91.25% and 86.73% for the
value-weighted and equal-weighted turnover indexes, respectively, decaying
very slowly to 84.63% and 68.59%, respectively, at lag 10. This slow decay
suggests some kind of nonstationarity in turnover—perhaps a stochastic trend
or unit root [see Hamilton (1994), for example]—and this is confirmed at the
usual significance levels by applying the Kwiatkowski et al. (1992) Lagrange
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Multiplier (LM) test of stationarity versus a unit root to the two turnover
indexes.16

For these reasons, many empirical studies of volume use some form of
detrending to induce stationarity. This usually involves either taking first
differences or estimating the trend and subtracting it from the raw data.
To gauge the impact of various methods of detrending on the time-series
properties of turnover, we report summary statistics of detrended turnover in
Table 4 where we detrend according to the following six methods:

τd1t = τt −
(
α̂1 + β̂1t

)
(14)

τd2t = log τt −
(
α̂2 + β̂2t

)
(15)

τd3t = τt − τt−1 (16)

τd4t =
τt

(τt−1 + τt−2 + τt−3 + τt−4)/4
(17)

τd5t = τt −
(
α̂4 + β̂3, 1t + β̂3, 2t

2

+ β̂3, 3DEC1t + β̂3, 4DEC2t + β̂3, 5DEC3t + β̂3, 6DEC4t

+ β̂3, 7JAN1t + β̂3, 8JAN2t + β̂3, 9JAN3t + β̂3, 10JAN4t

+ β̂3, 11MARt + β̂3, 12APRt + · · · + β̂3, 19NOVt

)
(18)

τd6t = τt − K̂(τt ) (19)

where Equation (14) denotes linear detrending, Equation (15) denotes log-
linear detrending, Equation (16) denotes first-differencing, Equation (17)
denotes a four-lag moving-average normalization, Equation (18) denotes
linear-quadratic detrending and deseasonalization [in the spirit of Gallant,
Rossi, and Tauchen (1994)],17 and Equation (19) denotes nonparametric
detrending via kernel regression (where the bandwidth is chosen optimally
via cross validation).

The summary statistics in Table 4 show that the detrending method can
have a substantial impact on the time-series properties of detrended turnover.

16 In particular, two LM tests were applied: a test of the level-stationary null, and a test of the trend-stationary
null, both against the alternative of difference stationarity. The test statistics are 17.41 (level) and 1.47 (trend)
for the value-weighted index and 9.88 (level) and 1.06 (trend) for the equal-weighted index. The 1% critical
values for these two tests are 0.739 and 0.216, respectively. See Hamilton (1994) and Kwiatkowski et al. (1992)
for further details concerning unit root tests, and Andersen (1996) and Gallant, Rossi, and Tauchen (1992) for
highly structured (but semiparametric) procedures for detrending individual and aggregate daily volume.

17 In particular, in Equation (18) the regressors DEC1t , . . . ,DEC4t and JAN1t , . . . , JAN4t denote weekly indi-
cator variables for the weeks in December and January, respectively, and MARt , . . . , NOVt denote monthly
indicator variables for the months of March through November (we have omitted February to avoid perfect
collinearity). This does not correspond exactly to the Gallant, Rossi, and Tauchen (1994) procedure—they
detrend and deseasonalize the volatility of volume as well.
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Table 3
Summary statistics for weekly value-weighted and equal-weighted turnover and return indexes of NYSE
and AMEX ordinary common shares (CRSP share codes 10 and 11, excluding 37 stocks containing Z-
errors in reported volume) for July 1962 to December 1996 (1800 weeks) and sub-periods

Statistic τVW τEW RVW REW

Mean 0.78 0.91 0.23 0.32
Std. dev. 0.48 0.37 1.96 2.21
Skewness 0.66 0.38 −0.41 −0.46
Kurtosis 0.21 −0.09 3.66 6.64

Percentiles:
Min 0.13 0.24 −15.64 −18.64
5% 0.22 0.37 −3.03 −3.44
10% 0.26 0.44 −2.14 −2.26
25% 0.37 0.59 −0.94 −0.80
50% 0.64 0.91 0.33 0.49
75% 1.19 1.20 1.44 1.53
90% 1.44 1.41 2.37 2.61
95% 1.57 1.55 3.31 3.42
Max 4.06 3.16 8.81 13.68

Autocorrelations:
ρ1 91.25 86.73 5.39 25.63
ρ2 88.59 81.89 −0.21 10.92
ρ3 87.62 79.30 3.27 9.34
ρ4 87.44 78.07 −2.03 4.94
ρ5 87.03 76.47 −2.18 1.11
ρ6 86.17 74.14 1.70 4.07
ρ7 87.22 74.16 5.13 1.69
ρ8 86.57 72.95 −7.15 −5.78
ρ9 85.92 71.06 2.22 2.54
ρ10 84.63 68.59 −2.34 −2.44

Box–Pierce Q10 13,723.0 10,525.0 23.0 175.1
(0.000) (0.000) (0.010) (0.000)

1962–1966 (234 weeks)
Mean 0.25 0.57 0.23 0.30
Std. dev. 0.07 0.21 1.29 1.54
Skewness 1.02 1.47 −0.35 −0.76
Kurtosis 0.80 2.04 1.02 2.50

1967–1971 (261 weeks)
Mean 0.40 0.93 0.18 0.32
Std. dev. 0.08 0.32 1.89 2.62
Skewness 0.17 0.57 0.42 0.40
Kurtosis −0.42 −0.26 1.52 2.19

1972–1976 (261 weeks)
Mean 0.37 0.52 0.10 0.19
Std. dev. 0.10 0.20 2.39 2.78
Skewness 0.93 1.44 −0.13 0.41
Kurtosis 1.57 2.59 0.35 1.12

1977–1981 (261 weeks)
Mean 0.62 0.77 0.21 0.44
Std. dev. 0.18 0.22 1.97 2.08
Skewness 0.29 0.62 −0.33 −1.01
Kurtosis −0.58 −0.05 0.31 1.72

1982–1986 (261 weeks)
Mean 1.20 1.11 0.37 0.39
Std. dev. 0.30 0.29 2.01 1.93
Skewness 0.28 0.45 0.42 0.32
Kurtosis 0.14 −0.28 1.33 1.19
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Table 3
(continued)

1987–1991 (261 weeks)
Mean 1.29 1.15 0.29 0.24
Std. dev. 0.35 0.27 2.43 2.62
Skewness 2.20 2.15 −1.51 −2.06
Kurtosis 14.88 12.81 7.85 16.44

1992–1996 (261 weeks)
Mean 1.25 1.31 0.27 0.37
Std. dev. 0.23 0.22 1.37 1.41
Skewness −0.06 −0.05 −0.38 −0.48
Kurtosis −0.21 −0.24 1.00 1.30

Turnover and returns are measured in percent per week and p-values for Box–Pierce statistics are reported in
parentheses.

For example, the skewness of detrended value-weighted turnover varies from
0.09 (log-linear) to 1.77 (kernel), and the kurtosis varies from −0.20 (log-
linear) to 29.38 (kernel). Linear, log-linear, and Gallant, Rossi, and Tauchen
(GRT) detrending seem to do little to eliminate the persistence in turnover,
yielding detrended series with large positive autocorrelation coefficients that
decay slowly from lags 1 to 10. However, first-differenced value-weighted
turnover has an autocorrelation coefficient of −34.94% at lag 1, which
becomes positive at lag 4, and then alternates sign from lags 6 through 10.
In contrast, kernel-detrended value-weighted turnover has an autocorrelation
of 23.11% at lag 1, which becomes negative at lag 3 and remains negative
through lag 10. Similar disparities are also observed for the various detrended
equal-weighted turnover series.

Despite the fact that the R2’s of the six detrending methods are comparable
for the value-weighted turnover index—ranging from 70.6% to 88.6%—the
basic time-series properties vary considerably from one detrending method
to the next.18 To visualize the impact that various detrending methods can
have on turnover, compare the various plots of detrended value-weighted
turnover in Figure 2a and detrended equal-weighted turnover in Figure 2b.19

Even linear and log-linear detrending yield differences that are visually easy
to detect: linear detrended turnover is smoother at the start of the sample
and more variable toward the end, whereas log-linearly detrended turnover is
equally variable but with lower-frequency fluctuations. The moving average

18 The R2 for each detrending method is defined by

R2
j ≡ 1 −

∑
t (τ

d
jt − τ dj )2

∑
t (τt − τ)2

.

Note that the R2’s for the detrended equal-weighted turnover series are comparable to those of the value-
weighted series except for linear, log-linear, and GRT detrending—evidently, the high turnover of small stocks
in the earlier years creates a “cycle” that is not as readily explained by linear, log-linear, and quadratic trends
(see Figure 1).

19 To improve legibility, only every 10th observation is plotted in each of the panels of Figure 2a and b.
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series looks like white noise, the log-linear series seems to possess a periodic
component, and the remaining series seem heteroskedastic.

For these reasons, we shall continue to use raw turnover rather than its
first difference or any other detrended turnover series in much of our empir-
ical analysis (the sole exception is the eigenvalue decomposition of the first
differences of turnover in Table 8). To address the problem of the apparent
time trend and other nonstationarities in raw turnover, the empirical analysis
of Section 4 is conducted within 5-year subperiods only (the exploratory data
analysis of this section contains entire-sample results primarily for complete-
ness).20 This is no doubt a controversial choice and therefore requires some
justification.

From a purely statistical point of view, a nonstationary time series is
nonstationary over any finite interval—shortening the sample period cannot
induce stationarity. Moreover, a shorter sample period increases the impact
of sampling errors and reduces the power of statistical tests against most
alternatives.

However, from an empirical point of view, confining our attention to 5-year
subperiods is perhaps the best compromise between letting the data “speak
for themselves” and imposing sufficient structure to perform meaningful sta-
tistical inference. We have very little confidence in our current understanding
of the trend component of turnover, yet a well-articulated model of the trend
is a prerequisite to detrending the data. Rather than filter our data through
a specific trend process that others might not find as convincing, we choose
instead to analyze the data with methods that require minimal structure, yield-
ing results that may be of broader interest than those of a more structured
analysis.21

Of course, some structure is necessary for conducting any kind of sta-
tistical inference. For example, we must assume that the mechanisms gov-
erning turnover are relatively stable over 5-year subperiods, otherwise even
the subperiod inferences may be misleading. Nevertheless, for our current
purposes—exploratory data analysis and tests of the implications of portfolio
theory—the benefits of focusing on subperiods are likely to outweigh the
costs of larger sampling errors.

3.3 The cross section of turnover
To develop a sense for cross-sectional differences in turnover over the sam-
ple period, we turn our attention from turnover indexes to the turnover of

20 However, we acknowledge the importance of stationarity in conducting formal statistical inferences—it is
difficult to interpret a t-statistic in the presence of a strong trend. Therefore the summary statistics provided
in this section are intended to provide readers with an intuitive feel for the behavior of volume in our sample,
not to be the basis of formal hypothesis tests.

21 See Andersen (1996) and Gallant, Rossi, and Tauchen (1992) for an opposing view—they propose highly struc-
tured detrending and deseasonalizing procedures for adjusting raw volume. Andersen (1996) uses two methods:
nonparametric kernel regression and an equally weighted moving average. Gallant, Rossi, and Tauchen (1992)
extract quadratic trends and seasonal indicators from both the mean and variance of log volume.
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individual securities. Figure 3a–d provides a graphical representation of the
cross section of turnover: Figure 3a plots the deciles for the turnover cross
section—nine points, representing the 10th percentile, the 20th percentile,
and so on—for each of the 1800 weeks in the sample period; Figure 3b sim-
plifies this by plotting the deciles of the cross section of average turnover,
averaged within each year; and Figures 3c and 3d plot the same data but on
a logarithmic scale.

Figure 3a,b show that while the median turnover (the horizontal bars with
vertical sides in Figure 3b) is relatively stable over time—fluctuating between
0.2% and just over 1% over the 1962–1996 sample period—there is consid-
erable variation in the cross-sectional dispersion over time. The range of
turnover is relatively narrow in the early 1960s, with 90% of the values
falling between 0% and 1.5%, but there is a dramatic increase in the late
1960s, with the 90th percentile approaching 3% at times. The cross-sectional
variation of turnover declines sharply in the mid-1970s and then begins a
steady increase until a peak in 1987, followed by a decline and then a grad-
ual increase until 1996.

The logarithmic plots in Figure 3c,d seem to suggest that the cross-sec-
tional distribution of log-turnover is similar over time up to a location param-
eter. This implies a potentially useful statistical or “reduced-form” descrip-
tion of the cross-sectional distribution of turnover: an identically distributed
random variable multiplied by a time-varying scale factor.

4. Cross-Sectional Analysis of Turnover

The implications of standard portfolio theory for turnover provide a natu-
ral direction for empirical analysis: look for linear factor structure in the
turnover cross section. If two-fund separation holds, turnover should be iden-
tical across all stocks, that is, a one-factor linear model where all stocks have
identical factor loadings. If (K + 1)-fund separation holds, turnover should
satisfy a K-factor linear model. We examine these hypotheses in Sections 4.1
and 4.4. Throughout this section we shall focus our attention on the sample
of CRSP weekly turnover and returns data from July 1962 to December 1996
described in Section 3.

4.1 Specification of cross-sectional regressions
It is clear from Section 3.3 and Figure 3 that turnover varies considerably
in the cross section, hence two-fund separation may be rejected out of hand.
However, the turnover implications of two-fund separation might be approx-
imately correct in the sense that the cross-sectional variation in turnover
may be “idiosyncratic” white noise, for example, cross-sectionally uncorre-
lated and without common factors. We shall test this, and the more general
(K + 1)-fund separation hypothesis, in Section 4.4, but before doing so we
first consider a less formal, more exploratory analysis of the cross-sectional
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variation in turnover. In particular, we wish to examine the explanatory power
of several economically motivated variables such as expected return, volatil-
ity, and trading costs in explaining the cross section of turnover.

To do this we estimate cross-sectional regressions over 5-year subperiods
where the dependent variable is the median turnover τ̃j of stock j and the
explanatory variables are the following stock-specific characteristics:22

α̂r, j : Intercept coefficient from the time-series regression of stock j ’s
return on the value-weighted market return.

β̂r, j : Slope coefficient from the time-series regression of stock j ’s return
on the value-weighted market return.

σ̂ε, r, j : Residual standard deviation of the time-series regression of stock
j ’s return on the value-weighted market return.

vj : Average of natural logarithm of stock j ’s market capitalization.

pj : Average of natural logarithm of stock j ’s price.

dj : Average of dividend yield of stock j , where dividend yield in week
t is defined by

djt = max
[
0, log

(
(1 + Rjt )Vjt−1/Vjt

)]
and Vjt is j ’s market capitalization in week t .

SP500j Indicator variable for membership in the S&P 500 Index.

γ̂r, j (1) First-order autocovariance of returns.

The inclusion of these regressors in our cross-sectional analysis is loosely
motivated by various intuitive “theories” that have appeared in the volume
literature.

The motivation for the first three regressors comes partly from linear asset-
pricing models such as the CAPM and APT; they capture excess expected
return (α̂r, j ), systematic risk (β̂r, j ), and residual risk (σ̂ε, r, j ), respectively. To
the extent that expected excess return (α̂r, j ) may contain a premium associated
with liquidity [see, e.g., Amihud and Mendelson (1986a,b) and Hu (1997)] and
heterogeneous information [see, e.g., Wang (1994) and He and Wang (1995)],
it should also give rise to cross-sectional differences in turnover. Although a
higher premium from lower liquidity should be inversely related to turnover,
a higher premium from heterogeneous information can lead to either higher
or lower turnover, depending on the nature of information heterogeneity. The
two risk measures of an asset, β̂r, j and σ̂ε, r, j , also measure the volatility in its
returns that is associated with systematic risk and residual risk, respectively.
Given that realized returns often generate portfolio rebalancing needs, the
volatility of returns should be positively related to turnover.

22 We use median turnover instead of mean turnover to minimize the influence of outliers (which can be sub-
stantial in this dataset). Also, within each 5-year period we exclude all stocks that are missing turnover data
for more than two-thirds of the subsample.
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The motivation for log market capitalization (vj ) and log price (pt ) is
twofold. On the theoretical side, the role of market capitalization in explain-
ing volume is related to Merton’s (1987) model of capital market equilibrium
in which investors hold only the assets they are familiar with. This implies
that larger-capitalization companies tend to have more diverse ownership,
which can lead to more active trading. The motivation for log price is related
to trading costs. Given that part of trading costs comes from the bid-ask
spread, which takes on discrete values in dollar terms, the actual costs in
percentage terms are inversely related to price levels. This suggests that vol-
ume should be positively related to prices.

On the empirical side, there is an extensive literature documenting the
significance of log market capitalization and log price in explaining the
cross-sectional variation of expected returns, for example, Black (1976), Banz
(1981), Marsh and Merton (1987), Reinganum (1992) and Brown, Van Har-
low, and Tinic (1993). If size and price are genuine factors driving expected
returns, they should drive turnover as well [see Lo and Wang (1998a) for a
more formal derivation and empirical analysis of this intuition].

Dividend yield (dj ) is motivated by its (empirical) ties to expected returns,
but also by dividend-capture trades—the practice of purchasing stock just
before its ex-dividend date and then selling it shortly thereafter.23 Often
induced by differential taxation of dividends versus capital gains, divi-
dend-capture trading has been linked to short-term increases in trading activ-
ity, for example, Lakonishok and Smidt (1986), Lakonishok and Vermae-
len (1986), Karpoff and Walking (1988, 1990), Michaely (1991), Stickel
(1991), Michaely and Murgia (1995), Michaely and Vila (1995, 1996), and
Lynch-Koski (1996). Stocks with higher dividend yields should induce more
dividend-capture trading activity, and this may be reflected in higher median
turnover.

The effects of membership in the S&P 500 have been documented in many
studies, for example, Goetzmann and Garry (1986), Harris and Gurel (1986),
Shleifer (1986), Woolridge and Ghosh (1986), Jain (1987), Lamoureux and
Wansley (1987), Jacques (1988), Pruitt and Wei (1989), Dhillon and Johnson
(1991), and Tkac (1996). In particular, Harris and Gurel (1986) document
increases in volume just after inclusion in the S&P 500, and Tkac (1996)
uses an S&P 500 indicator variable to explain the cross-sectional dispersion
of relative turnover (relative dollar volume divided by relative market capital-
ization). The obvious motivation for this variable is the growth of indexation
by institutional investors, and by the related practice of index arbitrage, in
which disparities between the index futures price and the spot prices of the
component securities are exploited by taking the appropriate positions in the

23 Our definition of dj is meant to capture net corporate distributions or outflows (recall that returns Rjt are
inclusive of all dividends and other distributions). The purpose of the nonnegativity restriction is to ensure
that inflows, for example, new equity issues, are not treated as negative dividends.
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futures and spot markets. For these reasons, stocks in the S&P 500 index
should have higher turnover than others. Indexation began its rise in popular-
ity with the advent of the mutual fund industry in the early 1980s, and index
arbitrage first became feasible in 1982 with the introduction of the Chicago
Mercantile Exchange’s S&P 500 futures contracts. Therefore the effects of
S&P 500 membership on turnover should be more dramatic in the later sub-
periods. Another motivation for S&P 500 membership is its effect on the
publicity of member companies, which leads to more diverse ownership and
more trading activity in the context of Merton (1987).

The last variable, the first-order return autocovariance (γ̂r, j (1)), serves as
a proxy for trading costs, as in Roll’s (1984) model of the “effective” bid/ask
spread. In that model, Roll shows that in the absence of information-based
trades, prices bouncing between bid and ask prices implies the following
approximate relation between the spread and the first-order return autoco-
variance:

s2
r, j

4
≈ −cov[Rjt , Rjt−1] ≡ −γr, j (1), (20)

where sr, j ≡ sj /
√
PajPbj is the percentage effective bid/ask spread of stock

j as a percentage of the geometric average of the bid and ask prices Pbj and
Paj , respectively, and sj is the dollar bid/ask spread.

Rather than solve for sr, j , we choose instead to include γ̂r, j (1) as a regres-
sor to sidestep the problem of a positive sample first-order autocovariance,
which yields a complex number for the effective bid/ask spread. Of course,
using γ̂r, j (1) does not eliminate this problem, which is a symptom of a spec-
ification error, but rather is a convenient heuristic that allows us to estimate
the regression equation (complex observations for even one regressor can
yield complex parameter estimates for all the other regressors as well!). This
heuristic is not unlike Roll’s method for dealing with positive autocovari-
ances, however, it is more direct.24

Under the trading cost interpretation for γ̂r, j (1), we should expect a positive
coefficient in our cross-sectional turnover regression—a large negative value
for γ̂r, j (1) implies a large bid/ask spread, which should be associated with
lower turnover. Alternatively, Roll (1984) interprets a positive value for γ̂r, j (1)
as a negative bid/ask spread, hence turnover should be higher for such stocks.

These eight regressors yield the following regression equation to be
estimated:

τ̃j = γ0 + γ1α̂r, j + γ2β̂r, j + γ3σ̂ε, r, j + γ4vj + γ5pj + γ6dj +
γ7SP500j + γ8γ̂r, j (1)+ εj . (21)

24 In a parenthetical statement in footnote a of Table 1, Roll (1984) writes, “The sign of the covariance was
preserved after taking the square root.”
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4.2 Summary statistics for regressors
Table 5 reports summary statistics for these regressors, as well as for three

other variables relevant to Section 4.4:

α̂τ, j : Intercept coefficient from the time-series regression of stock j ’s
turnover on the value-weighted market turnover.

β̂τ, j : Slope coefficient from the time-series regression of stock j ’s turn-
over on the value-weighted market turnover.

Table 5
Summary statistics of variables for cross-sectional analysis of weekly turnover of NYSE and AMEX
ordinary common shares (CRSP share codes 10 and 11, excluding 37 stocks containing Z-errors in
reported volume) for subperiods of the sample period from July 1962 to December 1996

Statistics τ j τ̃j α̂τ, j β̂τ, j σ̂ε, τ, j α̂r, j β̂r, j σ̂ε, r, j vj pj dj SP500j γ̂r, j (1)

1962–1966 (234 weeks)
Mean 0.576 0.374 0.009 2.230 0.646 0.080 1.046 4.562 17.404 1.249 0.059 0.175 −2.706
Median 0.397 0.272 0.092 0.725 0.391 0.064 1.002 3.893 17.263 1.445 0.058 0.000 −0.851
Std. dev. 0.641 0.372 1.065 5.062 0.889 0.339 0.529 2.406 1.737 0.965 0.081 0.380 8.463

1967–1971 (261 weeks)
Mean 0.900 0.610 −0.361 3.134 0.910 0.086 1.272 5.367 17.930 1.442 0.049 0.178 −1.538
Median 0.641 0.446 −0.128 1.948 0.612 0.081 1.225 5.104 17.791 1.522 0.042 0.000 −0.623
Std. dev. 0.827 0.547 0.954 3.559 0.940 0.383 0.537 1.991 1.566 0.685 0.046 0.382 4.472

1972–1976 (261 weeks)
Mean 0.521 0.359 −0.025 1.472 0.535 0.085 0.986 6.252 17.574 0.823 0.072 0.162 −3.084
Median 0.420 0.291 0.005 1.040 0.403 0.086 0.955 5.825 17.346 0.883 0.063 0.000 −1.007
Std. dev. 0.408 0.292 0.432 1.595 0.473 0.319 0.429 2.619 1.784 0.890 0.067 0.369 8.262

1977–1981 (261 weeks)
Mean 0.780 0.553 0.043 1.199 0.749 0.254 0.950 5.081 18.155 1.074 0.099 0.176 −1.748
Median 0.629 0.449 0.052 0.818 0.566 0.215 0.936 4.737 18.094 1.212 0.086 0.000 −0.622
Std. dev. 0.561 0.405 0.638 1.348 0.643 0.356 0.428 2.097 1.769 0.805 0.097 0.381 5.100

1982–1986 (261 weeks)
Mean 1.160 0.833 0.005 0.957 1.135 0.113 0.873 5.419 18.63 1.143 0.090 0.181 −1.627
Median 0.998 0.704 0.031 0.713 0.902 0.146 0.863 4.813 18.51 1.293 0.063 0.000 −0.573
Std. dev. 0.788 0.605 0.880 1.018 0.871 0.455 0.437 2.581 1.76 0.873 0.126 0.385 8.405

1987–1991 (261 weeks)
Mean 1.255 0.888 0.333 0.715 1.256 −0.007 0.977 6.450 18.847 0.908 0.095 0.191 −5.096
Median 0.995 0.708 0.171 0.505 0.899 0.014 0.998 5.174 18.778 1.108 0.062 0.000 −0.386
Std. dev. 1.039 0.773 1.393 1.229 1.272 0.543 0.414 5.417 2.013 1.097 0.134 0.393 44.246

1992–1996 (261 weeks)
Mean 1.419 1.032 0.379 0.833 1.378 0.147 0.851 5.722 19.407 1.081 0.063 0.182 −3.600
Median 1.114 0.834 0.239 0.511 0.997 0.113 0.831 4.674 19.450 1.297 0.042 0.000 −1.136
Std. dev. 1.208 0.910 1.637 1.572 1.480 0.482 0.520 3.901 2.007 1.032 0.095 0.386 21.550

The variables are: τj (average turnover); τ̃j (median turnover); α̂τ, j , β̂τ, j , and σ̂ε, τ, j (the intercept, slope, and
residual, respectively, from the time-series regression of an individual security’s turnover on market turnover);
α̂r, j , β̂r, j , and σ̂ε, r, j (the intercept, slope, and residual, respectively, from the time-series regression of an
individual security’s return on the market return); vj (natural logarithm of market capitalization), pj (natural
logarithm of price); dj (dividend yield); SP500j (S&P 500 indicator variable); and γ̂r, j (1) (first-order return
autocovariance).
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σ̂ε, τ, j : Residual standard deviation of the time-series regression of stock
j ’s turnover on the value-weighted market turnover.

These three variables are loosely motivated by a one-factor linear model of
turnover, though as we saw in Section 2.1 the single-factor model for turnover
implied by two-fund separation is a degenerate one. However, we shall make
use of turnover betas in our empirical analysis of (K + 1)-fund separation in
Section 4.4, hence we summarize their empirical properties here.

Table 5 contains means, medians, and standard deviations for these vari-
ables over each of the seven subperiods. The entries show that return betas
are approximately 1.0 on average, with a cross-sectional standard deviation
of about 0.5. Observe that return betas have approximately the same mean
and median in all subperiods, indicating an absence of dramatic skewness
and outliers in their empirical distributions.

In contrast, turnover betas have considerably higher means, starting at 2.2
in the first subperiod (1962–1966) to an all-time high of 3.1 in the second
subperiod (1967–1971), and declining steadily thereafter to 0.7 (1987–1991)
and 0.8 (1992–1996). Also, the means and medians of turnover betas differ
dramatically, particularly in the earlier subperiods, for example, 2.2 mean ver-
sus 0.7 median (1962–1966) and 3.1 mean versus 1.9 median (1967–1971),
implying a skewed empirical distribution with some outliers in the right tail.
Turnover betas are also more variable than return betas, with cross-sectional
standard deviations that range from twice to 10 times those of return betas.

The summary statistics for the first-order return autocovariances show that
they are negative on average, which is consistent with the trading cost inter-
pretation, though there is considerable skewness in their distribution as well
given the differences between means and medians. The means and medians
vary from subperiod to subperiod in a manner also consistent with the trading
cost interpretation—the higher the median of median turnover τ̃j , the closer
to 0 is the median autocovariance.25 In particular, between the first and sec-
ond subperiods, median autocovariance decreases (in absolute value) from
−0.851 to −0.623, signaling lower trading costs, while median turnover
increases from 0.272 to 0.446. Between the second and third subperiods,
median autocovariance increases (in absolute value) from −0.623 to −1.007,
while median turnover decreases from 0.446 to 0.291, presumably due to the
oil shock of 1973–1974 and the subsequent recession. The 1977–1981 subpe-
riod is the first subperiod after the advent of negotiated commissions (May 1,
1975), and median turnover increases to 0.449, while median autocovariance
decreases (in absolute value) to −0.622. During the 1982–1986 subperiod
when S&P 500 index futures begin trading, median autocovariance declines
(in absolute value) to −0.573, while median turnover increases dramatically

25 Recall that τ̃j is the median turnover of stock j during the 5-year subperiod; the median of τ̃j is the median
across all stocks j in the 5-year subsample.
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to 0.704. And during the 1987–1991 subperiod which includes the October
1987 crash, median turnover is essentially unchanged (0.708 versus 0.704
from the previous subperiod), median autocovariance decreases (in absolute
value) from −0.573 in the previous subperiod to −0.386, but mean auto-
covariance increases (in absolute value) dramatically from −1.627 in the
previous subperiod to −5.096, indicating the presence of outliers with very
large trading costs.

We have also estimated correlations among the variables in Table 5, but to
conserve space we shall summarize the main features of those correlations
and refer readers to Lim et al. (1998) for further details. Median turnover is
highly correlated with both turnover beta and return beta, with correlations
that exceed 50% in most subperiods, hinting at the prospect of two or more
factors driving the cross-sectional variation in turnover. We shall address this
issue more formally in Section 4.4.

Median turnover is not particularly highly correlated with S&P 500 mem-
bership during the first four subperiods, with correlations ranging from
−10.6% (1967–1971) to 8.6% (1972–1976). However, with the advent of
S&P 500 futures and the growing popularity of indexation in the early 1980s,
median turnover becomes more highly correlated with S&P 500 membership,
jumping to 22.7% in 1982–1986, 25.4% in 1987–1991, and 15.9% in 1992–
1996.

Turnover betas and return betas are highly positively correlated, with cor-
relations ranging from 25.5% (1987–1991) to 55.4% (1967–1971). Not sur-
prisingly, log price pj is highly positively correlated with log market capital-
ization (vj ), with correlations exceeding 75% in every subperiod. Dividend
yield is positively correlated with both log price and log market capitaliza-
tion, though the correlation is not particularly large. This may seem coun-
terintuitive at first, but recall that these are cross-sectional correlations, not
time-series correlations, and the level of dividends per share varies cross-
sectionally as well as average log price.

4.3 Regression results
Table 6 contains the estimates of the cross-sectional regression model [Equa-
tion (21)]. We estimated three regression models for each subperiod: one with
all eight variables and a constant term included, one excluding log market
capitalization, and one excluding log price. Since the log price and log mar-
ket capitalization regressors are so highly correlated [see Lim et al. (1998)],
regressions with only one or the other included were estimated to gauge
the effects of multicollinearity. The exclusion of either variable does not
affect the qualitative features of the regression—no significant coefficients
changed sign other than the constant term—though the quantitative features
were affected to a small degree. For example, in the first subperiod vj has a
negative coefficient (−0.064) and pj has a positive coefficient (0.150), both
significant at the 5% level. When vj is omitted the coefficient of pj is still
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Table 6
Cross-sectional regressions of median weekly turnover of NYSE and AMEX ordinary common shares
(CRSP share codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume) for subpe-
riods of the sample period from July 1962 to December 1996

c α̂r, j β̂r, j σ̂ε, r, j vj pj dj SP500j γ̂r, j (1) R2 (%)

1962–1966 (234 weeks, 2073 stocks)
0.742 0.059 0.354 0.043 −0.064 0.150 0.071 0.048 0.004 41.8

(0.108) (0.019) (0.014) (0.006) (0.006) (0.014) (0.081) (0.018) (0.001)
−0.306 0.068 0.344 0.053 — 0.070 0.130 −0.006 0.006 38.8
(0.034) (0.020) (0.015) (0.006) (0.012) (0.083) (0.018) (0.001)
0.378 0.111 0.401 0.013 −0.028 — 0.119 0.048 0.005 38.7

(0.105) (0.019) (0.014) (0.005) (0.005) (0.083) (0.019) (0.001)

1967–1971 (261 weeks, 2292 stocks)
0.289 0.134 0.448 0.095 −0.062 0.249 0.027 0.028 0.006 44.7

(0.181) (0.024) (0.023) (0.009) (0.010) (0.023) (0.235) (0.025) (0.002)
−0.797 0.152 0.434 0.112 — 0.173 0.117 −0.026 0.007 43.7
(0.066) (0.024) (0.023) (0.009) (0.020) (0.237) (0.024) (0.002)
−0.172 0.209 0.507 0.057 −0.009 — −0.108 0.023 0.011 41.9
(0.180) (0.023) (0.023) (0.009) (0.009) (0.241) (0.026) (0.002)

1972–1976 (261 weeks, 2084 stocks)
0.437 0.102 0.345 0.027 −0.041 0.171 −0.031 0.031 0.001 38.0

(0.092) (0.015) (0.013) (0.003) (0.005) (0.012) (0.079) (0.015) (0.001)
−0.249 0.111 0.320 0.032 — 0.114 −0.058 −0.007 0.002 36.5
(0.027) (0.015) (0.013) (0.003) (0.009) (0.080) (0.014) (0.001)
−0.188 0.141 0.367 0.008 0.008 — −0.072 0.020 0.003 32.7
(0.085) (0.015) (0.014) (0.003) (0.004) (0.082) (0.015) (0.001)

1977–1981 (261 weeks, 2352 stocks)
−0.315 −0.059 0.508 0.057 −0.001 0.139 0.015 0.013 0.005 44.2
(0.127) (0.020) (0.018) (0.006) (0.007) (0.017) (0.069) (0.019) (0.002)
−0.344 −0.058 0.508 0.057 — 0.137 0.015 0.011 0.005 44.2
(0.035) (0.019) (0.017) (0.005) (0.013) (0.069) (0.018) (0.002)
−0.810 −0.008 0.534 0.040 0.037 — −0.001 −0.001 0.009 42.6
(0.114) (0.019) (0.018) (0.005) (0.006) (0.070) (0.020) (0.002)

1982–1986 (261 weeks, 2644 stocks)
−1.385 0.051 0.543 0.062 0.071 0.085 −0.223 0.091 0.006 31.6
(0.180) (0.025) (0.027) (0.007) (0.010) (0.023) (0.081) (0.031) (0.001)
−0.193 0.018 0.583 0.057 — 0.170 −0.182 0.187 0.005 30.4
(0.051) (0.024) (0.027) (0.007) (0.020) (0.081) (0.028) (0.001)
−1.602 0.080 0.562 0.048 0.091 — −0.217 0.085 0.006 31.3
(0.170) (0.023) (0.027) (0.005) (0.009) (0.081) (0.031) (0.001)

1987–1991 (261 weeks, 2471 stocks)
−1.662 0.155 0.791 0.038 0.078 0.066 −0.138 0.131 0.003 31.9
(0.223) (0.027) (0.034) (0.005) (0.013) (0.024) (0.097) (0.041) (0.001)
−0.313 0.153 0.831 0.035 — 0.158 −0.128 0.252 0.003 30.9
(0.052) (0.027) (0.033) (0.005) (0.019) (0.098) (0.036) (0.001)
−1.968 0.171 0.795 0.031 0.100 — −0.122 0.119 0.003 31.7
(0.195) (0.026) (0.034) (0.005) (0.010) (0.097) (0.041) (0.001)

1992–1996 (261 weeks, 2520 stocks)
−1.004 −0.087 0.689 0.077 0.040 0.262 −0.644 0.029 0.000 29.6
(0.278) (0.034) (0.033) (0.007) (0.016) (0.033) (0.164) (0.049) (0.001)
−0.310 −0.095 0.708 0.076 — 0.314 −0.641 0.087 −0.001 29.4
(0.061) (0.034) (0.032) (0.007) (0.026) (0.164) (0.043) (0.001)
−2.025 −0.025 0.711 0.046 0.115 — −0.590 −0.005 0.000 27.8
(0.249) (0.034) (0.033) (0.006) (0.012) (0.166) (0.049) (0.001)

The explanatory variables are α̂r, j , β̂r, j , and σ̂ε, r, j (the intercept, slope, and residual, respectively, from the
time-series regression of an individual security’s return on the market return); vj (natural logarithm of market
capitalization), pj (natural logarithm of price); dj (dividend yield); SP500j (S&P 500 indicator variable); and
γ̂r, j (1) (first-order return autocovariance).
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positive, but smaller (0.070), and when pj is omitted the coefficient of vj is
still negative and also smaller in absolute magnitude (−0.028), and in both
these cases the coefficients retain their significance.

The fact that size has a negative impact on turnover while price has a pos-
itive impact is an artifact of the earlier subperiods. This can be seen heuris-
tically in the time-series plots of Figure 1—compare the value-weighted
and equal-weighted turnover indexes during the first two or three subperi-
ods. Smaller-capitalization stocks seem to have higher turnover than larger-
capitalization stocks.

This begins to change in the 1977–1981 subperiod: the size coefficient is
negative but not significant, and when price is excluded, the size coefficient
changes sign and becomes significant. In the subperiods after 1977–1981,
both size and price enter positively. One explanation of this change is the
growth of the mutual fund industry and other large institutional investors in
the early 1980s. As portfolio managers manage larger asset bases, it becomes
more difficult to invest in smaller-capitalization companies because of liquid-
ity and corporate control issues. Therefore the natural economies of scale in
investment management coupled with the increasing concentration of invest-
ment capital make small stocks less actively traded than large stocks. Of
course, this effect should have implications for the equilibrium return of
small stocks versus large stocks, and we investigate such implications in Lo
and Wang (1998b).

The first-order return autocovariance has a positive coefficient in all sub-
periods except the second regression of the last subperiod (in which the
coefficient is negative but insignificant), and these coefficients are significant
at the 5% level in all subperiods except 1972–1976 and 1992–1996. This
is consistent with the trading cost interpretation of γ̂r, j (1): a large negative
return autocovariance implies a large effective bid/ask spread which, in turn,
should imply lower turnover.

Membership in the S&P 500 also has a positive impact on turnover in all
subperiods as expected, and the magnitude of the coefficient increases dra-
matically in the 1982–1986 subperiod—from 0.013 in the previous period
to 0.091—also as expected given the growing importance of indexation and
index arbitrage during this period, and the introduction of S&P 500 futures
contracts in April 1982. Surprisingly, in the 1992–1996 subperiod, the S&P
500 coefficient declines to 0.029, perhaps because of the interactions between
this indicator variable and size and price [all three variables are highly pos-
itively correlated with each other; see Lim et al. (1998) for further details].
When size is omitted, S&P 500 membership becomes more important, yet
when price is omitted, size becomes more important and S&P 500 member-
ship becomes irrelevant. These findings are roughly consistent with those in
Tkac (1996).26

26 In particular, she finds that S&P 500 membership becomes much less significant after controlling for the effects
of size and institutional ownership. Of course, her analysis is not directly comparable to ours because she
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Both systematic and idiosyncratic risk—β̂r, j and σ̂ε, r, j—have positive
and significant impact on turnover in all subperiods. However, the impact of
excess expected returns α̂r, j on turnover is erratic: negative and significant
in the 1977–1981 and 1992–1996 subperiods, and positive and significant in
the others.

The dividend yield regressor is insignificant in all subperiods but two:
1982–1986 and 1992–1996. In these two subperiods, the coefficient is nega-
tive, which contradicts the notion that dividend capture trading affects turn-
over.

In summary, the cross-sectional variation of turnover does seem related to
several stock-specific characteristics such as risk, size, price, trading costs,
and S&P 500 membership. The explanatory power of these cross-sectional
regressions—as measured by R2—range from 29.6% (1992–1996) to 44.7%
(1967–1971), rivaling the R2’s of typical cross-sectional return regressions.
With sample sizes ranging from 2073 (1962–1966) to 2644 (1982–1986)
stocks, these R2’s provide some measure of confidence that cross-sectional
variations in median turnover are not purely random but do bear some relation
to economic factors.

4.4 Tests of (K+ 1)-fund separation
Since two-fund and (K + 1)-fund separation imply an approximately linear
factor structure for turnover, we can investigate these two possibilities by
using principal components analysis to decompose the covariance matrix of
turnover [see Muirhead (1982) for an exposition of principal components
analysis]. If turnover is driven by a linear K-factor model, the first K princi-
pal components should explain most of the time-series variation in turnover.
More formally, if

τjt = αj + δ1F1t + · · · + δKFKt + εjt , (22)

where E[εjt εj ′t ] = 0 for any j �= j ′, then the covariance matrix 4 of the
vectorτt ≡ [τ1t · · · τJ t ]′ can be expressed as

var[τt ] ≡ 4 = QΘQ� (23)

Θ =


θ1 0 · · · 0
0 θ2 0
...

. . .
...

0 · · · 0 θN

 , (24)

whereΘ contains the eigenvalues of Σ along its diagonal and Q is the matrix
of corresponding eigenvectors. Since Σ is a covariance matrix, it is positive
semidefinite, hence all the eigenvalues are nonnegative. When normalized to

uses a different dependent variable (monthly relative dollar volume divided by relative market capitalization)
in her cross-sectional regressions, and considers only a small sample of the very largest NYSE/AMEX stocks
(809) over the 4-year period 1988–1991.
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sum to one, each eigenvalue can be interpreted as the fraction of the total
variance of turnover attributable to the corresponding principal component.
If Equation (22) holds, it can be shown that as the size N of the cross section
increases without bound, exactly K normalized eigenvalues of Σ approach
positive finite limits, and the remaining N −K eigenvalues approach 0 [see,
e.g., Chamberlain (1983) and Chamberlain and Rothschild (1983)]. Therefore
the plausibility of Equation (22), and the value of K , can be gauged by
examining the magnitudes of the eigenvalues of Σ.

The only obstacle is the fact that the covariance matrix Σ must be estimated,
hence we encounter the well-known problem that the standard estimator,

Σ̂ ≡ 1

T

T∑
t=1

(τt −τ̄)(τt −τ̄)�,

is singular if the number of securities J in the cross section is larger than
the number of time-series observations T .27 Since J is typically much larger
than T—for a 5-year subperiod T is generally 261 weeks, and J is typically
well over 2000—we must limit our attention to a smaller subset of stocks.
We do this by following the common practice of forming a small number of
portfolios [see Campbell, Lo, and MacKinlay (1997, Chapter 5)], sorted by
turnover beta to maximize the dispersion of turnover beta among the portfo-
lios.28 In particular, within each 5-year subperiod we form 10 turnover-beta-
sorted portfolios using betas estimated from the previous 5-year subperiod,
estimate the covariance matrix Σ̂ using 261 time-series observations, and
perform a principal-components decomposition on Σ̂. For purposes of com-
parison and interpretation, we perform a parallel analysis for returns, using
10 return-beta-sorted portfolios. The results are reported in Table 7.

Table 7 contains the principal components decomposition for portfolios
sorted on out-of-sample betas, where the betas are estimated in two ways: rel-
ative to value-weighted indexes (τ VW and RVW ) and equal-weighted indexes
(τEW and REW ).29 The first principal component typically explains between
70% and 85% of the variation in turnover, and the first two principal compo-
nents explain almost all of the variation. For example, the upper-left subpanel

27 Singularity by itself does not pose any problems for the computation of eigenvalues—this follows from the
singular-value decomposition theorem—but it does have implications for the statistical properties of estimated
eigenvalues. In some preliminary Monte Carlo experiments, we have found that the eigenvalues of a singular
estimator of a positive-definite covariance matrix can be severely biased. We thank Bob Korajczyk and Bruce
Lehmann for bringing some of these issues to our attention and plan to investigate them more thoroughly in
ongoing research.

28 Our desire to maximize the dispersion of turnover beta is motivated by the same logic used in Black, Jensen,
and Scholes (1972): a more dispersed sample provides a more powerful test of a cross-sectional relationship
driven by the sorting characteristic. This motivation should not be taken literally in our context because the
theoretical implications of Section 2 need not imply a prominent role for turnover beta (indeed, in the case
of two-fund separation, there is no cross-sectional variation in turnover betas!). However, given the factor
structure implied by (K + 1)-fund separation (see Section 2.2), sorting by turnover betas seems appropriate.

29 In particular, the portfolios in a given period are formed by ranking on betas estimated in the immediately
preceding subperiod, for example, the 1992–1996 portfolios were created by sorting on betas estimated in the
1987–1991 subperiod, hence the first subperiod in Table 7 begins in 1967, not 1962.
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of Table 7 shows that in the second 5-year subperiod (1967–1971), 85.1% of
the variation in the turnover of turnover-beta-sorted portfolios (using turnover
betas relative to the value-weighted turnover index) is captured by the first
principal component, and 93.6% is captured by the first two principal compo-
nents. Although using betas computed with value-weighted instead of equal-
weighted indexes generally yields smaller eigenvalues for the first principal
component (and therefore larger values for the remaining principal compo-
nents) for both turnover and returns, the differences are typically not large.

The importance of the second principal component grows steadily through
time for the value-weighted case, reaching a peak of 15.6% in the last sub-
period, and the first two principal components account for 87.3% of the
variation in turnover in the last subperiod. This is roughly comparable with
the return portfolios sorted on value-weighted return betas—the first principal
component is by far the most important, and the importance of the second
principal component is most pronounced in the last subperiod. However, the
lower left subpanel of Table 7 shows that for turnover portfolios sorted by
betas computed against equal-weighted indexes, the second principal compo-
nent explains approximately the same variation in turnover, varying between
6.0% and 10.4% across the six subperiods.

Of course, one possible explanation for the dominance of the first princi-
pal component is the existence of a time trend in turnover. Despite the fact
that we have limited our analysis to 5-year subperiods, within each subperiod
there is a certain drift in turnover; might this account for the first principal
component? To investigate this conjecture, we perform eigenvalue decompo-
sitions for the covariance matrices of the first differences of turnover for the
10 turnover portfolios.

These results are reported in Table 8 and are consistent with those in
Table 7: the first principal component is still the most important, explaining
between 60% and 88% of the variation in the first differences of turnover.
The second principal component is typically responsible for another 5 to
20%. And in one case—in-sample sorting on betas relative to the equal-
weighted index during 1987–1991—the third principal component accounts
for an additional 10%. These figures suggest that the trend in turnover is
unlikely to be the source of the dominant first principal component.

In summary, the results of Tables 7 and 8 indicate that a one-factor model
for turnover is a reasonable approximation, at least in the case of turnover-
beta-sorted portfolios, and that a two-factor model captures well over 90% of
the time-series variation in turnover. This lends some support to the practice
of estimating “abnormal” volume by using an event-study style “market
model”, for example, Morse (1980), Bamber (1986), Lakonishok and Smidt
(1986), Richardson, Sefcik, Thompson (1986), Jain and Joh (1988), Stickel
and Verrecchia (1994), and Tkac (1996).

As compelling as these empirical results are, several qualifications should
be kept in mind. First, we have provided little statistical inference for our
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principal components decomposition. In particular, the asymptotic standard
errors reported in Tables 7 and 8 were computed under the assumption of
IID Gaussian data, hardly appropriate for weekly U.S. stock returns and even
less convincing for turnover [see Muirhead (1982, Chapter 9) for further
details]. Perhaps nonparametric methods such as the moving-block bootstrap
can provide better indications of the statistical significance of our estimated
eigenvalues. Monte Carlo simulations should also be conducted to check the
finite-sample properties of our estimators.

More importantly, the economic interpretation of the first two principal
components or, alternatively, identifying the specific factors is a challeng-
ing issue that principal components cannot resolve. More structure must
be imposed on the data—in particular, a well-articulated dynamic economic
model of trading activity—to obtain a better understanding for the sources of
turnover variation, and we present such structure in Lo and Wang (1998a).

Table 8
Eigenvalues θ̂i, i= 1,. . . ,10 of the covariance matrix of the first-differences of the weekly turnover of
10 out-of-sample beta-sorted portfolios of NYSE and AMEX ordinary common shares (CRSP share
codes 10 and 11, excluding 37 stocks containing Z-errors in reported volume)—in percentages (where
the eigenvalues are normalized to sum to 100%)—for subperiods of the sample period from July 1962
to December 1996

Period θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 θ̂8 θ̂9 θ̂10

Out-of-sample turnover-beta-sorted turnover differences portfolios (τVW )
1967–1971 82.6 7.1 5.1 2.0 1.6 0.8 0.5 0.1 0.1 0.1

(7.2) (0.6) (0.5) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0)
1972–1976 81.2 6.8 4.7 2.8 2.0 1.0 0.9 0.4 0.2 0.1

(7.1) (0.6) (0.4) (0.2) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0)
1977–1981 85.2 4.5 2.9 2.6 1.6 1.2 0.8 0.5 0.5 0.2

(7.5) (0.4) (0.3) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0) (0.0)
1982–1986 81.3 5.1 3.5 2.7 2.2 1.7 1.3 0.9 0.7 0.6

(7.1) (0.4) (0.3) (0.2) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1)
1987–1991 73.1 10.9 4.1 3.0 2.2 1.7 1.6 1.4 1.1 0.9

(6.4) (1.0) (0.4) (0.3) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1)
1992–1996 78.4 8.6 4.0 2.8 2.1 1.2 1.0 0.9 0.6 0.4

(6.9) (0.8) (0.4) (0.2) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0)

Out-of-sample turnover-beta-sorted turnover differences portfolios (τEW )
1967–1971 82.2 8.0 4.5 2.3 1.4 0.7 0.4 0.3 0.1 0.0

(7.2) (0.7) (0.4) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0) (0.0)
1972–1976 79.3 7.5 4.8 4.0 1.9 1.3 0.6 0.4 0.2 0.1

(7.0) (0.7) (0.4) (0.4) (0.2) (0.1) (0.1) (0.0) (0.0) (0.0)
1977–1981 80.3 5.3 4.8 3.8 2.0 1.4 1.2 0.7 0.5 0.2

(7.0) (0.5) (0.4) (0.3) (0.2) (0.1) (0.1) (0.1) (0.0) (0.0)
1982–1986 82.6 5.0 3.0 2.6 2.0 1.7 1.1 0.9 0.7 0.4

(7.3) (0.4) (0.3) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1) (0.0)
1987–1991 77.2 5.5 4.3 2.7 2.5 2.3 1.8 1.6 1.2 1.0

(6.8) (0.5) (0.4) (0.2) (0.2) (0.2) (0.2) (0.1) (0.1) (0.1)
1992–1996 80.4 6.4 4.6 2.6 1.7 1.4 1.1 0.7 0.5 0.4

(7.1) (0.6) (0.4) (0.2) (0.1) (0.1) (0.1) (0.1) (0.0) (0.0)

Turnover betas are calculated in two ways: with respect to a value-weighted turnover index (τVW ) and an
equal-weighted turnover index (τEW ). Standard errors for the normalized eigenvalues are given in parentheses
and are calculated under the assumption of IID normality.
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5. Conclusion

Trading activity is fundamental to a deeper understanding of economic inter-
actions, and in this article we have provided definitions, data analysis, and
theoretical implications of portfolio theory for trading activity in financial
markets.

There are many issues that remain to be examined. Perhaps the most press-
ing is the time-series variation in volume and the relations between volume,
prices, and other economic quantities. We turn to these issues in Lo and Wang
(1998) by developing a formal dynamic equilibrium asset-market model in
which volume, prices, and other state variables evolve through time together
in an economically consistent way. By explicitly modeling the motives for
trade as a function of preferences, endowments, and economic conditions,
we obtain more likely explanations for the dynamic properties of volume
and returns. Using the volume dataset developed in this article, we examine
the empirical relevance of these explanations.

Given the complexity of the trading process in financial markets, some
insights may also be garnered from a more “reduced-form” analysis of trad-
ing patterns. In particular, in Lo and Wang (2000) we investigate the rele-
vance of heuristic models of trading activity, that is, informal explanations
of volume that may not be based on fully articulated economic models of
optimizing agents. Such heuristics include technical analysis, market psy-
chology, and trading folklore. While much of this literature is foreign in
spirit and syntax to the culture of economics, much of its focus is the same
as ours.

Through these three somewhat different lines of investigation, we hope to
develop a more complete understanding of trading behavior in asset markets.

Appendix: Proof of Lemma 1

For brevity we only consider the case of K = 2. Let x = h1t and y = h2t (the superscript
i is omitted for notational simplicity). From Assumption 2, x and y have joint probability
density f (x, y) such that (i) it is continuous and (ii) P (|y| < H) = 1. Let λ > 0 be a
parameter. Rewrite the random variable |x + λy| as

|x + λy| = |x| + λ sgn(x)y + 1D(x, λy)δ(x, λy), (A.1)

where the last term is defined by the functions D(z1, z2) = {z1z2 < 0, |z1| < |z2|} and δ is
defined by δ(z1, z2) = −2|z1| + 2|z2|. To assess the statistical error of the approximation

|x + λy| ≈ |x| + λsgn(x)y, (A.2)

we compute the expected approximation error using any loss function L(|.|) which is non-
negative, nondecreasing on R+, and of order α > 0, that is, limε→0 L(|ε|)/εα = A exists
and is finite. Loss functions satisfying these conditions include the mean absolute error
(L(z) = |z|, α = 1) and mean squared error (L(z) = z2, α = 2) loss functions. We then
have

E
[
L(|1D(x, λy)δ(x, λy)|)

] = P(D)E[L(|δ(x, λy)|)|D], (A.3)
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where P(D) = ∫ H
0

∫ λy
0 [f (−x, y) + f (x,−y)] dx dy. Because |δ(x, λy)| ≤ 2λ|y| < 2λH

on D and P(D) = O(λ) with limλ→0 P(D)/λ = ∫ H
−H yf (0, y) dy <∞, we have

E
[
L(|1D(x, λy)δ(x, λy)|)

]
< Aλα+1(2H)α

∫ H

−H
yf (0, y) dy + o(λα+1). (A.4)

Thus, even though the pointwise properties of the approximation are not satisfactory (since
supx, |y|<H |r(x, λy)| = λH ), the approximation error is small in a statistical sense for small
λ, that is, the expected loss decreases faster than λα+1.
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