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a Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, ON M5S 3G8, Canada
b Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building E40, Cambridge, MA 02139, United States
a r t i c l e i n f o

Article history:
Received 23 May 2012
Accepted 3 June 2013
Available online 11 June 2013

Keywords:
OR in health services
Intensity-modulated radiation therapy
Adaptive radiation therapy
Robust optimization
Linear programming
a b s t r a c t

A previous approach to robust intensity-modulated radiation therapy (IMRT) treatment planning for
moving tumors in the lung involves solving a single planning problem before the start of treatment
and using the resulting solution in all of the subsequent treatment sessions. In this paper, we develop
an adaptive robust optimization approach to IMRT treatment planning for lung cancer, where informa-
tion gathered in prior treatment sessions is used to update the uncertainty set and guide the reoptimiza-
tion of the treatment for the next session. Such an approach allows for the estimate of the uncertain effect
to improve as the treatment goes on and represents a generalization of existing robust optimization and
adaptive radiation therapy methodologies. Our method is computationally tractable, as it involves solv-
ing a sequence of linear optimization problems. We present computational results for a lung cancer
patient case and show that using our adaptive robust method, it is possible to attain an improvement
over the traditional robust approach in both tumor coverage and organ sparing simultaneously. We also
prove that under certain conditions our adaptive robust method is asymptotically optimal, which pro-
vides insight into the performance observed in our computational study. The essence of our method –
solving a sequence of single-stage robust optimization problems, with the uncertainty set updated each
time – can potentially be applied to other problems that involve multi-stage decisions to be made under
uncertainty.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Lung cancer is the leading cause of death due to cancer in North
America, killing an estimated 180,000 people in 2010 (American
Cancer Society, 2010; Canadian Cancer Society’s Steering Commit-
tee, 2010) and accounting for over 25% of all cancer deaths. Lung
cancer is often treated using radiation therapy (Toschi, Cappuzzo,
& Janne, 2007). Of the different types of radiation therapy, one of
the most commonly used in practice for treating cancer in general
is intensity-modulated radiation therapy (IMRT) (Mell, Mehrotra, &
Mundt, 2005). In an IMRT treatment, the patient is irradiated from
multiple beams, each of which is decomposed into a large number
of small beamlets. The beamlet intensities can be controlled
through the use of a multileaf collimator (MLC) that moves metal
leaves in and out of the beam field in order to block certain parts
of the beam. By appropriately setting the beamlet intensities, the
volume that is irradiated can be made to closely conform to the
shape of the target. The basic problem in planning an IMRT treat-
ment is to determine how the beamlet intensities or weights
should be set so that the target receives an adequate dose while
the healthy tissue receives a minimal dose. This is known as the
beamlet weight optimization problem or the fluence map optimi-
zation problem. Since the inception of IMRT, much research has fo-
cused on modeling and solving this problem as a mathematical
program (see Romeijn & Dempsey, 2008 for a comprehensive
overview).

In practice, the beamlet weight optimization problem is compli-
cated by the presence of uncertainties, such as those arising from
errors in beam positioning and patient placement, internal organ
motion during treatment, and changes in organ position between
treatment sessions. All of these factors affect the relative position
of the tumor with respect to the beams, which in turn affects
how much dose is deposited in the tumor and the healthy tissue.
For tumors in the lung, the most significant uncertainty arises from
breathing motion. During treatment, the patient is constantly
breathing, and the tumor moves with the expansion and contrac-
tion of the patient’s lungs. Furthermore, the patient’s breathing
pattern during treatment is not known exactly beforehand and
can vary from day to day. If a treatment is planned with a specific
breathing pattern in mind but a different pattern is realized during
treatment, the tumor may end up being underdosed and the qual-
ity of the treatment may thus be greatly compromised (Lujan, Balt-
er, & Ten Haken, 2003; Sheng et al., 2006). At the same time, if the
treatment is designed to deliver the prescription dose to the tumor
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under any breathing pattern, regardless of how unlikely some of
those patterns may be, then an unnecessarily high amount of dam-
age will be done to the healthy tissue. There exist approaches that
aim to mitigate the effect of uncertainty by only activating the
beam when the patient is in a certain phase of the breathing cycle
(Ohara et al., 1989), but these approaches have the disadvantage of
prolonging the treatment time, leading to reduced throughput in
the treatment center.

One methodology that allows for tumor coverage under uncer-
tainty to be balanced with healthy tissue sparing, without extend-
ing the treatment time, is robust optimization. There are many
robust optimization approaches to IMRT treatment planning. In
this paper, we build on the method developed in Bortfeld, Chan,
Trofimov, and Tsitsiklis (2008) and Chan, Bortfeld, and Tsitsiklis
(2006), which is specifically designed to manage the instantaneous
breathing motion uncertainty that may be realized during treat-
ment sessions. Although robust optimization has been shown to
be a valuable methodology for managing uncertainty due to
breathing motion, it can be further improved by leveraging the fact
that treatments are typically fractionated. Fractionation refers to
the practice of dividing up the prescription dose and delivering
small amounts in daily treatment sessions over multiple weeks,
in order to exploit the more capable repair mechanism that healthy
tissue has over cancerous tissue (Thames & Hendry, 1987).

To date, the typical approach to fractionated treatment plan-
ning and delivery has been to determine what the beamlet inten-
sities should be to deliver a certain prescription dose, scale them
by 1/n where n is the number of fractions, and use the resulting
intensities in every treatment fraction. This, however, does not
take advantage of the dynamics that fractionation injects into IMRT
treatment planning and the underlying uncertainty. For example, it
may be the case that the pre-treatment estimates of the patient’s
breathing pattern are erroneous, and the breathing patterns that
are planned for differ from those realized over the treatment. In
this case, the wrong beamlet intensities would be used for every
fraction, without the possibility of correcting them. On the other
hand, the beamlet intensities may be optimized in such a way that
the prescription dose is delivered under a very large range of
breathing patterns, when in actuality the patient’s breathing pat-
tern does not vary significantly from fraction to fraction. In this
case, there would be no way to correct the conservatism of the
treatment, and the patient’s healthy tissue will incur more damage
than necessary. Another example comes from the possibility that
the patient’s breathing pattern may change over the course of
treatment as the patient becomes more comfortable in the treat-
ment room or as the evolution of the underlying disease affects
the patient’s respiratory ability. As a result, latter treatment ses-
sions may deliver insufficient dose to the tumor and more dose
than anticipated to healthy tissue. These issues motivate the incor-
poration of adaptive re-optimization into robust optimization
models.

To deal with fractionation in more general IMRT treatment
planning contexts, much research has been conducted in the med-
ical physics community in what is known as off-line adaptive radi-
ation therapy (ART). In off-line ART, after the current fraction is
delivered, new information, typically obtained from imaging de-
vices, is fed back into the planning process to design the beamlet
intensities of the next fraction (Yan, Vicini, Wong, & Martinez,
1997a). To date, off-line ART and robust optimization have largely
been considered independently of each other.

In this paper, we propose a novel method that generalizes the
framework of off-line adaptive radiation therapy and the robust
optimization methodology of Bortfeld et al. (2008) and Chan
et al. (2006) to treat lung cancer in the presence of breathing mo-
tion uncertainty. Our method is based on adaptively updating an
uncertainty set that models the breathing motion uncertainty
and then solving a robust optimization problem with the new
uncertainty set prior to each fraction. As a result, our method is
able to combat both the instantaneous uncertainty realized in each
fraction as well as changes in this uncertainty that occur from day
to day. The clinical value of this method is that it has the potential
to improve upon the non-adaptive robust optimization method in
both tumor coverage and healthy tissue sparing. This is significant
because patient survival rates have been shown to improve when
the tumor dose is increased (see Perez, Bauer, Edelstein, Gillespie,
& Birch, 1986). Unfortunately, dose escalation to the tumor is lim-
ited by the radiation tolerance of healthy tissue, particularly the
lungs (Cox et al., 1990). If it is possible to increase tumor dose
and reduce healthy tissue dose from the levels achieved by non-
adaptive robust optimization, further dose escalation will become
viable, and improvements in patient survival rate may be realized.

Our specific contributions in this paper are as follows:

1. We develop a method that combines robust optimization with
adaptive radiation therapy and suitably generalizes both frame-
works. This method has modest computational requirements
and can be easily generalized to other types of cancer and other
types of uncertainty.

2. Using real patient data, we demonstrate computationally that
this method generates treatments that improve upon treat-
ments obtained by non-adaptive robust methods in both tumor
coverage and lung dose. We show that the quality of the final
treatment does not vary significantly with the choice of initial
uncertainty set. We also show that the achieved performance
is comparable to that of two ‘‘prescient’’ solutions, which cor-
rectly anticipate the patient’s breathing over the entire
treatment.

3. We prove an asymptotic optimality result: if the patient breath-
ing pattern converges over the treatment course, then the dose
distribution produced by our adaptive robust method converges
to an ‘‘ideal’’ set of dose distributions that exhibit no tumor
underdose or overdose and low healthy tissue dose. We use this
result to explain multiple phenomena observed in our compu-
tational study.

The rest of the paper is organized as follows. In Section 2, we
briefly review some of the relevant literature in robust optimiza-
tion and off-line ART. In Section 3, we provide an overview of the
non-adaptive robust optimization method on which this paper
builds. In Section 4, we provide a detailed description of the pro-
posed adaptive robust method. In Section 5, we provide results
from our computational study with clinical lung cancer patient
data. In Section 6, we conduct a theoretical analysis of the adaptive
robust method. Finally, in Section 7, we provide some conclusions
and directions for future work.
2. Literature review

Robust optimization has been extensively developed in the OR
community (see Ben-Tal, El Ghaoui, & Nemirovski, 2009 and Bertsi-
mas, Brown, & Caramanis, 2011), and has received increasing focus
in the last decade as a methodology for IMRT treatment planning
under uncertainty. In Chu, Zinchenko, Henderson, and Sharpe
(2005), tumor position uncertainty due to interfraction motion (or-
gan position changes that occur between treatment sessions) and
setup error was modeled using an ellipsoidal uncertainty set and
the authors showed that the resulting robust solution achieves
the same level of tumor coverage as a clinical margin solution
but with less healthy tissue dose. In Ólafsson and Wright (2006),
the uncertainty due to dose calculation error and interfraction or-
gan motion was also modeled using an ellipsoidal uncertainty set,
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and the authors showed for a nasopharyngeal case that a robust
solution achieves better tumor coverage than the nominal solution
(one which assumes a dose matrix known with certainty) and
leads to better organ sparing than the clinically prescribed margin
solution. In Chan et al. (2006) and Bortfeld et al. (2008), uncer-
tainty due to intrafraction breathing motion was modeled using
a polyhedral uncertainty set, and it was shown that the robust
solution provides improved tumor coverage over the nominal solu-
tion, while providing tumor coverage comparable to the margin
solution at reduced healthy tissue dose. All of the robust IMRT opti-
mization methods described above are non-adaptive.

With regard to off-line ART, a variety of procedures have been
proposed for how to treat a patient based on information obtained
in the most recent fraction. Many studies have proposed using dai-
ly computed tomography (CT) images as a form of feedback. For
example, Mohan et al. (2005), Lu et al. (2006), Wu, Liang, and
Yan (2006) and Wu et al. (2008) all studied schemes where daily
CT images are used to periodically assess the treatment plan for er-
rors in dose delivery due to organ deformation and intrafraction
motion (organ motion that occurs during a treatment session),
and to aid either the re-adjustment or complete re-optimization
of the treatment for subsequent fractions. Other imaging methods
have also been proposed for off-line ART. For instance, de la Zerda,
Armbruster, and Xing (2007) proposed algorithms for generating
new treatment plans from fraction to fraction in response to
changes in the patient geometry detected from cone beam CT
(CBCT) images, as well as to the cumulative delivered dose. An-
other example is Yan et al. (1998), who tested an ART method
where the daily setup error is measured using portal imaging
and is used to correct the treatment if the error becomes suffi-
ciently large.

Some ART studies have also incorporated probabilistic models
of uncertainty into their proposed planning methods. Yan et al.
(1997a) studied an ART method where the daily treatment target
and beam placement variation are measured and used to modify
the treatment dose and field margin in each fraction under the
assumption that the error is normally distributed. Löf, Lind, and
Brahme (1998) studied an ART scheme where the daily setup posi-
tion is measured in every fraction, but assumed that the probabilis-
tic dynamics of the internal organ motion are known beforehand.
Rehbinder, Forsgren, and Löf (2004) applied linear quadratic con-
trol to ART planning and showed that using this form of adaptation
removes the need for a margin, allowing for safer dose escalation.
The problem of ART can also be seen as a problem of sequential
decision making under uncertainty and as such, several studies
have considered dynamic programming techniques. For example,
Sir, Epelman, and Pollock (2012) showed that an adaptive open-
loop feedback control (OLFC) policy achieves better performance
than a non-adaptive OLFC policy. Ferris and Voelker (2004) and
Deng and Ferris (2008) applied neuro-dynamic programming
(NDP) to ART and similarly showed that their NDP policy offers
an improvement over a constant, non-adaptive policy.

The limitation of the majority of algorithms for off-line ART is in
how they have approached uncertainty. Many studies have not
explicitly included uncertain effects into their treatment planning
process. Of the studies that have, most have assumed that realiza-
tions of the uncertain effect from fraction to fraction are indepen-
dent and identically distributed – although this may be
appropriate for setup error and patient positioning, it may not be
suitable for other types of uncertainty. The most significant
assumption present in studies that have incorporated probabilistic
models of uncertainty is that the underlying probability distribu-
tion of the uncertain effect is known precisely before the start of
the treatment. In actuality, the distribution which underlies an
uncertain effect for a particular patient in a particular treatment
is never known precisely, and as already discussed, the quality of
a treatment designed with a specific probability distribution in
mind can deteriorate significantly if a different distribution is
realized.

The fundamental difference between the approach proposed in
this paper and the majority of prior ART work lies in the assump-
tions that are made about the uncertainty. In our approach, we
do not assume that the nature of the uncertainty is known pre-
cisely a priori nor that it needs to stay constant from fraction to
fraction. There has been some prior research into using previous
measurements of uncertainty to update an estimate of the uncer-
tain effect, using such methods as Kalman filtering (Yan et al.,
1997b; Keller, Ritter, & Mackie, 2003) and Bayesian updating
(Lam, Haken, Litzenberg, Balter, & Pollock, 2005; Sir, 2007). Very
few studies have considered these methods with treatment re-
planning (Yan et al., 1997b & Sir, 2007 are exceptions) and these
studies assume that the uncertain effect follows a particular distri-
bution. No studies have combined such estimation methods with
the kind of robust optimization approach we consider.
3. Static robust IMRT optimization

In this section, we review the robust optimization approach of
Chan et al. (2006) and Bortfeld et al. (2008). In their approach,
the planner decides on an uncertainty set before treatment and
solves the robust optimization problem corresponding to that
uncertainty set. The optimal solution of the robust problem is a
vector that specifies the intensity of each beamlet in the ensemble
of beams to be used for treatment. These optimized beamlet inten-
sities are robust to the uncertain effect whenever it takes on values
from the uncertainty set: whenever the uncertain effect realizes a
value inside the uncertainty set while the patient is being irradi-
ated according to the optimized intensities, the dose to every part
of the tumor will be within the prescribed bounds. We will refer to
this approach as the static robust optimization approach, as the
beamlet intensity vector is fixed and does not change over the
course of the treatment (in each fraction, 1/nth of the intensity vec-
tor is delivered, where n is the number of fractions). The patient’s
breathing motion is modeled using a probability mass function
(PMF). The breathing motion PMF for a patient in a particular frac-
tion specifies the proportion of time the patient spends in each of a
finite number of breathing motion states during that fraction. Each
breathing motion state corresponds to a particular displacement or
snapshot of the patient geometry during the patient’s respiratory
cycle. The uncertainty set is then a set of breathing motion PMFs
that could be realized during treatment. We note here that in the
method of Bortfeld et al. (2008), the set of breathing motion states
is determined from pre-treatment breathing-correlated 4D com-
puted tomography (4D-CT) images. This assumes that the ampli-
tude of the tumor motion observed in these pre-treatment
images represents the full extent of the tumor motion, and that
the amplitude of the motion that will be observed during the ensu-
ing treatment sessions will not exceed these limits. This potential
issue can be circumvented by having the patient take deep breaths
during the pre-treatment 4D-CT imaging session, allowing the
treatment planner to more accurately construct the set of breath-
ing motion states.

We now define the static robust IMRT optimization problem.
Let B be the set of beamlets and let wb denote the intensity of
beamlet b 2 B; the wb variables are the decision variables of the ro-
bust optimization problem. The patient geometry (the healthy or-
gans and tumor tissue) is divided into three dimensional voxels, or
volume elements. Let V denote the set of all voxels and T denote
the set of tumor voxels. Let X denote the finite set of breathing mo-
tion states. Each breathing motion state is associated with a partic-
ular displacement of the patient geometry (the voxels), so to each
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beamlet b 2 B, breathing motion state x 2 X and voxel v 2 V, we
associate a dose deposition coefficient Dv,x,b. This coefficient spec-
ifies the amount of dose deposited in voxel v when the patient is in
breathing motion state x and the beamlet b is at unit intensity. Let
p(x) be the probability of the patient being in motion state x at any
given time during a treatment session. The dose that is delivered to
voxel v is then given byX
x2X

X
b2B

Dv;x;bpðxÞwb;

which is the sum of the doses to voxel v that would be delivered un-
der each breathing motion state weighted by the corresponding
proportions of time spent in those states. Due to the use of beamlet
intensities, this model does not account for the interplay effect be-
tween the motion of the MLC leaves and the tumor motion (see, for
example, Yu, Jaffray, & Wong (1998) and Bortfeld, Jokivarsi, Goitein,
Kung, & Jiang (2002)); the impact of such an effect, however, is
small in practice (Bortfeld, Jiang, & Rietzel, 2004). For each tumor
voxel v 2 T , let hv be the prescribed minimum dose and let chv be
the prescribed maximum dose, where c P 1.

Let P be the set of all PMFs on the finite set X, defined as

P ¼ p 2 RjXj For each x 2 X; pðxÞP 0;
X
x2X

pðxÞ ¼ 1

�����
( )

:

The set P defines the (jXj � 1)-dimensional unit simplex. Let P #P

be the uncertainty set, which is a bounded polyhedron defined by
a lower bound vector ‘ and an upper bound vector u:

P ¼ p 2 P j For each x 2 X; ‘ðxÞ 6 pðxÞ 6 uðxÞf g:

With these definitions, the static robust problem from Bortfeld
et al. (2008) is

minimize
X
v2V

X
x2X

X
b2B

Dv;x;b�pðxÞwb

subject to
X
x2X

X
b2B

Dv;x;bpðxÞwb P hv ; 8v 2 T ; p 2 P;

X
x2X

X
b2B

Dv;x;bpðxÞwb 6 chv ; 8v 2 T ; p 2 P;

wb P 0; 8b 2 B;

ð1Þ

where �p is some nominal PMF chosen by the treatment planner be-
fore the start of treatment as approximately representative of the
patient’s overall breathing pattern. The optimal solution of (1) is a
beamlet intensity vector w⁄ that meets minimum and maximum
tumor dose requirements no matter which breathing motion PMF
p 2 P is realized, while ensuring the lowest possible total dose to
the patient under the nominal PMF. In the case that p R P, it was
shown empirically in Bortfeld et al. (2008) that w⁄ remains feasible
with high probability. Due to the linearity of this model and the use
of polyhedral uncertainty sets, this model is capable of accommo-
dating robust versions of many other types of clinically relevant
constraints, such as partial volume constraints based on condi-
tional-value-at-risk (see Romeijn, Ahuja, Dempsey, & Kumar,
2006) or constraints involving aEUD (Thieke, Bortfeld, & Küfer,
2002), which is a linear approximation to the popular equivalent
uniform dose (EUD) metric. Our goal in this paper is to elucidate
the potential benefits of a framework that combines adaptation
and robustness, not to design clinic-ready solutions. We therefore
consider the stylized model above, which only enforces lower and
upper dose bounds on the tumor.

There are two special cases of (1) that will be referred to later.
The first is the case when P consists of a single PMF. The resulting
problem is called the nominal problem; when P = {p}, we refer to
problem (1) as the nominal problem with respect to p. The solution
of the nominal problem is the least conservative treatment we can
deliver, as we are assuming that the PMF that will be realized dur-
ing treatment will be the exact PMF that we are guarding against.
The second is the case when P consists of all possible PMFs on X,
that is, P ¼ P; this problem is called the margin problem. The solu-
tion of the margin problem is the most conservative treatment that
we can deliver, because we assume that any PMF is possible. These
two types of formulations represent two extremes of a continuum
of robustness (Chan et al., 2006), with the nominal problem being
the least robust and the margin problem being the most robust.
The robust problem with a general uncertainty set (which is nei-
ther a singleton nor P) is somewhere in between. With increasing
levels of robustness, characterized by larger uncertainty sets, the
level of tumor coverage increases, but at the cost of increased dose
to healthy tissue.

4. Adaptive robust IMRT optimization

In the adaptive robust approach that we propose, we allow the
beamlet intensities to be re-optimized from fraction to fraction in
the following way. On a given day, the patient is irradiated with a
beamlet intensity vector obtained by solving (1) with the current
uncertainty set as input. During or immediately after the fraction
is delivered, the patient’s breathing motion PMF is measured. This
measurement, together with the current uncertainty set, is used to
generate a new uncertainty set. The robust problem is then solved
with this new uncertainty set, leading to a new beamlet intensity
vector to be used on the next day. This process is repeated for each
fraction until the end of the treatment. This procedure is presented
as Algorithm 1.

Although in theory one could measure the patient’s PMF before
the delivery of a fraction and plan the fraction using the resulting
PMF, this approach would constrain the amount of time that would
be available for treatment planning and quality assurance, as the
patient would have to wait between measurement and fraction
delivery. By measuring the patient’s PMF during or after the deliv-
ery of the fraction, this temporal constraint can be avoided by hav-
ing treatment planning and quality assurance done offline between
treatment fractions, which would be more desirable from an oper-
ational point of view. Furthermore, we will show in Section 6 that
these two methods have the same asymptotic performance.

Algorithm 1. Adaptive robust optimization method
Require: Total number of fractions n, initial uncertainty set P1

1: Initialize i = 1
2: Solve problem (1) with P = P1 to obtain a beamlet intensity

vector w1

3: Deliver w1/n to the patient
4: while i 6 n � 1 do
5: Measure the patient’s breathing motion and construct the

PMF pi

6: Generate the new uncertainty set Pi+1 from Pi, pi

7: Solve problem (1) with P = Pi+1 to obtain a new beamlet
intensity vector wi+1

8: Deliver wi+1/n to the patient
9: Set i = i + 1
10: end while
4.1. Update algorithms

One major step in the adaptive robust approach specified as
Algorithm 1 is the generation of the new uncertainty set from
the old uncertainty set and the most recent measurement of the
patient’s breathing motion PMF. We refer to any procedure that
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can be used to perform this step as an uncertainty set update algo-
rithm. In our computational study we consider two such update
algorithms, exponential smoothing and running average, though
our theoretical analysis generalizes to a larger class of update
algorithms.

Recall that we define an uncertainty set P in terms of a lower
bound vector ‘ and an upper bound vector u. Therefore, the uncer-
tainty set for fraction i, denoted Pi, is defined by lower and upper
bound vectors ‘i and ui, respectively. The update algorithms we
present will determine lower and upper bound vectors ‘i+1, ui+1

from the most recent vectors ‘i, ui and the most recent PMF pi.
The exponential smoothing update algorithm generates a new

uncertainty set by taking a convex combination of the most recent
lower and upper bound vectors with the most recent PMF. Specif-
ically, given ‘i, ui and pi for day i, ‘i+1 and ui+1 are defined as

‘iþ1ðxÞ ¼ ð1� aÞ‘iðxÞ þ apiðxÞ; ð2Þ
uiþ1ðxÞ ¼ ð1� aÞuiðxÞ þ apiðxÞ; ð3Þ

for each x 2 X, where a 2 [0,1].
The running average update algorithm generates a new uncer-

tainty set by averaging the PMFs that have been observed so far, to-
gether with the very first lower and upper bound vectors.
Specifically, given ‘1, u1 and p1, . . . , pi on day i, ‘i+1 and ui+1 are de-
fined as

‘iþ1ðxÞ ¼ 1
iþ 1

‘1ðxÞ þ
Xi

j¼1

pjðxÞ
 !

;

uiþ1ðxÞ ¼ 1
iþ 1

u1ðxÞ þ
Xi

j¼1

pjðxÞ
 !

:

for each x 2 X. These expressions can be rewritten as functions of
only ‘i(x), ui(x) and pi(x):

‘iþ1ðxÞ ¼ i
iþ 1

‘iðxÞ þ 1
iþ 1

piðxÞ; ð4Þ

uiþ1ðxÞ ¼ i
iþ 1

uiðxÞ þ 1
iþ 1

piðxÞ: ð5Þ
4.2. Prescient solutions

Because the update algorithms are myopic and are not guaran-
teed to correctly anticipate the patient’s breathing motion PMF in
every fraction, it is important to be able to measure the loss of opti-
mality with respect to a ‘‘prescient’’ solution – one that would be
generated if we knew p1, . . . , pn ahead of time.

We consider two kinds of prescient solutions. The first type of
prescient solution that we define is the daily prescient solution. This
solution is obtained by setting each wi to the solution of problem
(1) with P = Pi = {pi}. It is clear that using this solution, the dose
to each tumor voxel v is between hv/n and chv/n in each fraction,
which ensures that the cumulative dose to every tumor voxel v
is within the prescribed bounds hv and chv. Furthermore, because
each wi is obtained from a nominal problem, the overall dose deliv-
ered to the patient should be low compared to other treatments
that also deliver the minimum required dose to every tumor voxel.

The second type of prescient solution that we define is the aver-
age prescient solution. This solution is obtained by solving the nom-
inal problem with P = {pavg}, where pavg ¼ 1=n �

Pn
i¼1pi and setting

each wi to the corresponding optimal solution w of this problem.
It can be easily verified that under this solution, the final dose to
every tumor voxel is within the prescribed bounds for that voxel.
Furthermore, because the intensity vector of every fraction is ob-
tained from a nominal problem, the overall dose delivered to the
patient should be low compared to other treatments that also de-
liver the minimum required dose to every tumor voxel. While each
tumor voxel v 2 T is not guaranteed to receive hv/n in each frac-
tion, the fact that wi = wj for any two fractions i and j ensures that
the dose delivered by this solution in any fraction cannot be too
low.
5. Computational study

5.1. Background

In order to compare our results with previous static robust opti-
mization results, the patient geometry and beam geometry used in
this paper were exactly the same as in Bortfeld et al. (2008). The
patient geometry consisted of 110,275 voxels, of which 5495 were
tumor voxels, and each voxel was of size 2.93 � 2.5 � 2.93 mm.
The set of tumor voxels for this patient case corresponded to the
clinical target volume (CTV). The robust problem solved in each
fraction of the adaptive method had 122,515 variables and
65,940 constraints. The parameter c was set to 1.1, while the min-
imum dose hv was set to 72 gray for every tumor voxel v. The set X
consisted of five motion states. The nominal PMF used in the objec-
tive function was the same nominal PMF used previously. The
adaptive robust and the static robust methods were tested using
two different PMF sequences derived from clinical lung cancer pa-
tient data obtained at Massachusetts General Hospital; details on
these PMF sequences can be found in Section A of the Online
Supplement.

The two PMF sequences consisted of the first 30 PMFs from the
two experiments, respectively, used in Bortfeld et al. (2008). This
number of PMFs was chosen to simulate a realistic 6-week, Mon-
day-to-Friday treatment course. In the discussion that follows,
we will focus on the first PMF sequence, as the results obtained
from the second PMF sequence were qualitatively very similar;
for completeness, results for the second PMF sequence are pro-
vided in Section B of the Online Supplement. For the adaptive ro-
bust method, we tested the exponential smoothing update
algorithm with a equal to 0.1, 0.5, 0.9 and 1, and the running aver-
age update algorithm. The specific values of a for the exponential
smoothing method were chosen to demonstrate the performance
of the approach at varying speeds of adaptation (as a increases,
the uncertainty set is adjusted more rapidly to follow the realized
PMFs). Three different initial uncertainty sets were used for the
adaptive and static robust methods. The first type of uncertainty
set was a nominal uncertainty set, with ‘ and u both equal to the
nominal PMF. The second uncertainty set was the margin uncer-
tainty set (P ¼ P, the entire unit simplex)–for this patient case,
the margin uncertainty set treatment corresponds to treating the
internal target volume (ITV), which is the volume obtained by tak-
ing the union of the tumor volume at all of the different phases of
the breathing cycle. The third uncertainty set was a robust (inter-
mediately-sized) uncertainty set, which was neither a singleton
nor the whole space of PMFs P; for each PMF sequence we used
the corresponding robust uncertainty set from Bortfeld et al.
(2008). In addition to the adaptive and static robust methods, both
prescient solutions were calculated for each of the two PMF
sequences.

The experiments were performed on a Dell workstation with a
quad-core Intel Xeon 2.67 gigahertz processor and 6 gigabytes of
memory. All of the steps of the adaptive robust method – with
the exception of the step where the robust problem is solved to ob-
tain wi+1 – were implemented in MATLAB (The MathWorks, Inc.,
Natick, Massachusetts). The robust problem in each fraction was
solved using CPLEX 12.1 (IBM Corp., Armonk, NY) via AMPL (AMPL
Optimization LLC, Albuquerque, NM) and took no more than
20 minutes to solve in the majority of cases using CPLEX 12.1’s bar-
rier method.
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After the adaptive and static robust methods were executed
with each of the PMF sequences described above, the resulting
treatments were evaluated by calculating the final dose distribu-
tion. The final dose distribution is a vector d 2 RjVj of doses deliv-
ered to the voxels in the patient geometry, defined component-
wise as

dv ¼
Xn

i¼1

X
x2X

X
b2B

Dv ;x;bpiðxÞw
i
b

n
:

From the final dose distribution, we calculated three key statistics:
the minimum tumor dose, dmin

T ¼minv2T dv ; the mean left lung
dose, dmean

L ¼
P

v2Ldv=jLj, where L is the set of voxels belonging
to the left lung; and the mean normal tissue dose,
dmean
N ¼

P
v2N dv=jN j, where N is the set of normal tissue (non-tu-

mor) voxels. In addition to these statistics, we also compute two
other metrics. The mean left lung dose-scaled (MLLD-scaled) tumor
dose of a treatment is the minimum dose to the tumor when the
dose to the patient is scaled so that the mean left lung dose of the
treatment matches the mean left lung dose of the static margin
treatment. Similarly, the left lung V20-scaled (LLV20-scaled) tumor
dose of a treatment is the minimum dose to the tumor when the
dose to the patient is scaled so that the lung V20 value (the volume
of the lung receiving 20 gray or more) of the treatment matches the
lung V20 value of the static margin treatment.

5.2. Results

Table 1 displays dose statistics for the first PMF sequence. In
Figs. 1 and 2, we plot the minimum tumor dose as a percentage
of 72 gray versus the mean left lung dose as a percentage of the
static margin solution for each method applied to the first PMF se-
quence. Fig. 1 shows all of the treatments, while Fig. 2 zooms in on
the adaptive and prescient treatments. On these plots, points ob-
tained by the same method (static, exponential smoothing with
parameter a or running average) from different initial uncertainty
sets are joined together by straight lines to illustrate the approxi-
mate Pareto frontiers generated by the corresponding method.

In Fig. 3, we also provide dose volume histograms (DVHs) for
two treatments obtained from the first patient sequence–the expo-
nential smoothing algorithm with smoothing factor 0.5 and robust
uncertainty set (implementation (ES (0.5),R)) and the static meth-
od with the same uncertainty set (implementation (S,R)). A DVH is
a plot for a particular structure which indicates, for a given level of
dose, what volume of the structure receives at least that dose. Ide-
ally, the healthy organ DVHs would be step functions from 100% to
0% at 0 gray (i.e., no dose is delivered to the healthy organs), and
the tumor DVH would be a step function from 100% to 0% at
72 gray (i.e., the whole tumor volume receives exactly 72 gray).

5.3. Discussion

The computational results generate three important insights.
First, the adaptive robust method generally dominates the static
robust method, generating solutions that can simultaneously im-
prove on tumor coverage and healthy tissue dose. As an example
of this, compare the dose statistics of the static and the exponential
smoothing with a = 0.5 methods for the first PMF sequence in Ta-
ble 1. For the margin (M) uncertainty set, moving from the static
(implementation (S,M)) to the exponential smoothing with
a = 0.5 (implementation (ES (0.5),M)) treatment results in a reduc-
tion in the mean left lung dose of 12.73% of the static margin dose,
with virtually no change in tumor coverage. For the robust (R)
uncertainty set, moving from the static (implementation (S,R)) to
the exponential smoothing with a = 0.5 (implementation (ES
(0.5),R)) treatment results in an increase in minimum tumor dose
of 0.85% of the prescribed dose, and a decrease in the mean left
lung dose of 2.65% of the static margin dose – both objectives are
improved. For the nominal (N) uncertainty set, moving from the
static (implementation (S,N)) to the exponential smoothing with
a = 0.5 (implementation (ES (0.5),N)) treatment results in a signif-
icant increase in the minimum tumor dose of 6.23% of the prescrip-
tion dose with only a marginal increase in mean left lung dose of
0.91% of the static margin dose. Clinically, the marginal increase
in lung dose (0.18 gray) would be acceptable given the increase
in minimum tumor dose (4.49 gray). The dominance of the adap-
tive robust method over the static robust method is also evident
in Figs. 1 and 2. On these plots, we can see that the frontiers of
all of the adaptive methods are generally below and to the left of
the static frontier. The DVHs in Fig. 3 further support this insight.
From Fig. 3, we can see that the left lung, esophagus and heart
curves for the adaptive treatment are mostly to the left of the cor-
responding curves for the static treatment, indicating an overall
reduction of dose in these structures. The maximum spinal cord
dose is slightly higher in the adaptive treatment, but is still clini-
cally acceptable. The homogeneity of the tumor dose is slightly
better in the static treatment, as can be seen in the sharper decline
of the static treatment tumor dose-volume curve. However, the
adaptive treatment has less tumor underdose and still satisfies
the maximum tumor dose constraint. Again, Fig. 3 supports the
observation that the adaptive robust method generally leads to
simultaneous improvement in tumor coverage and healthy tissue
sparing.

Alternatively, we can analyze these simultaneous improve-
ments from an isodose perspective, where the dose delivered to
the patient under each treatment is normalized to match the static
margin treatment in certain lung dose metrics and the resulting
(scaled) tumor doses are then compared. From this perspective,
our results show that adaptation allows for significant dose escala-
tion beyond the existing static robust approach. For example, if the
prescription dose for the static robust treatment (implementation
(S,R)) for the first PMF sequence is scaled up so that the mean left
lung dose matches that of the static margin treatment (implemen-
tation (S,M)), the resulting minimum tumor dose (the MLLD-scaled
tumor dose in Table 1) is 80.01 gray. Doing the same for the expo-
nential smoothing treatment with a = 0.5 and the robust uncer-
tainty set (implementation (ES (0.5),R)) for the first PMF
sequence, the MLLD-scaled tumor dose is 83.18 gray – an increase
of 3.17 gray (’4% of the original prescription dose of 72 gray) from
the static robust value. Using the estimated relationship between
the 5-year local tumor control rate and tumor dose from Kong
et al. (2005) for non-small cell lung cancer (NSCLC), this difference
of 3.17 gray translates to a 4% increase in local tumor control. In
addition to the mean lung dose, dose can also be escalated accord-
ing to the commonly used lung V20 metric, which is defined as the
volume of the lung tissue that receives a dose of 20 gray or higher;
the minimum tumor dose that results from this type of escalation
is given under the column labeled ‘‘LLV20-scaled tumor dose’’ in
Table 1. If the prescription dose is escalated so that the (ES
(0.5),R) and (S,R) treatments for the first PMF sequence have the
same left lung V20 as the (S,M) treatment, then the adaptive ro-
bust solution leads to an additional minimum tumor dose escala-
tion of 6.40 gray (’9% of the original prescription dose of
72 gray) beyond that of the static robust approach. Using the rela-
tionship from Kong et al. (2005), this difference of 6.40 gray trans-
lates approximately to an 8% increase in 5-year local tumor control.
Given that the 5-year control rates for tumor doses in the 63–
69 gray and 74–84 gray ranges are on the order of 12% and 35%
respectively (Kong et al., 2005), the tumor dose escalation and
the associated gains in local control rate using both the mean left
lung dose and left lung V20 methods that we have described have
the potential to be significant.



Table 1
Dose statistics for the first PMF sequence.

Implementationa Min. tumor dose Mean lung dose Mean n. tissue dose MLLD-scaled tumor dose LLV20-scaled tumor dose

Gy %b Gy %c Gy %d Gy %e Gy %f

(S,N) 67.25 93.40 17.39 85.26 9.04 88.99 78.87 109.48 82.14 114.02
(ES (0.1),N) 70.79 98.32 17.50 85.85 9.05 89.11 82.46 114.46 88.42 122.73
(ES (0.5),N) 71.74 99.63 17.57 86.16 9.06 89.13 83.26 115.57 90.45 125.55
(ES (0.9),N) 71.83 99.77 17.57 86.17 9.06 89.13 83.36 115.71 90.71 125.92
(ES (1),N) 71.84 99.77 17.57 86.16 9.06 89.13 83.38 115.74 90.78 126.01
(RA,N) 71.47 99.26 17.52 85.91 9.06 89.12 83.19 115.47 90.10 125.06

(S,R) 71.37 99.13 18.19 89.20 9.44 92.93 80.01 111.06 83.88 116.43
(ES (0.1),R) 71.80 99.72 17.83 87.43 9.19 90.46 82.12 113.98 87.55 121.53
(ES (0.5),R) 71.99 99.98 17.65 86.55 9.09 89.50 83.18 115.46 90.28 125.32
(ES (0.9),R) 71.98 99.97 17.60 86.33 9.07 89.28 83.38 115.73 90.73 125.95
(ES (1),R) 71.97 99.95 17.59 86.29 9.07 89.26 83.40 115.77 90.80 126.03
(RA,R) 71.88 99.84 17.66 86.61 9.12 89.71 82.99 115.20 89.63 124.41

(S,M) 72.04 100.06 20.39 100.00 10.16 100.00 72.04 100.00 72.04 100.00
(ES (0.1),M) 72.05 100.07 18.31 89.78 9.44 92.91 80.25 111.40 82.45 114.45
(ES (0.5),M) 72.03 100.04 17.80 87.27 9.16 90.10 82.53 114.56 88.86 123.35
(ES (0.9),M) 72.02 100.02 17.71 86.87 9.11 89.67 82.90 115.07 89.87 124.75
(ES (1),M) 71.99 99.98 17.67 86.65 9.09 89.49 83.08 115.32 90.32 125.37
(RA,M) 72.03 100.04 17.94 87.97 9.23 90.86 81.88 113.66 86.36 119.88

(DLYP) 72.00 100.00 17.57 86.18 9.06 89.13 83.55 115.97 91.16 126.54

(AVGP) 72.00 100.00 17.54 86.02 9.06 89.13 83.70 116.19 91.59 127.13

a Under ‘‘Implementation’’, the first term indicates the type of method: static (S), exponential smoothing with parameter a (ES (a)), running average (RA), daily prescient
(DLYP) and average prescient (AVGP). For the non-prescient methods, the second term indicates which of the uncertainty sets described in Section 5.1 was used as the initial
uncertainty set: nominal (N), robust (R) and margin (M).

b The percentage under ‘‘Min. tumor dose’’ is the minimum tumor dose as a percentage of the prescription dose (72 gray).
c The percentage under ‘‘Mean lung dose’’ is the mean left lung dose as a percentage of the mean left lung dose delivered in the static margin treatment, indicated as

implementation (S,M).
d The percentage under ‘‘Mean n. tissue dose’’ is defined analogously to the percentage under ‘‘Mean lung dose’’.
e The percentage under ‘‘MLLD-scaled tumor dose’’ is the minimum tumor dose as a percentage of the static margin minimum tumor dose when the treatment in question

is scaled to have the same mean left lung dose as the static margin treatment.
f The percentage under ‘‘LLV20-scaled tumor dose’’ is the minimum tumor dose as a percentage of the static margin minimum tumor dose when the treatment in question

is scaled to have the same left lung V20 as the static margin treatment.
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Fig. 1. Plot of minimum tumor dose versus mean left lung dose for the different implementations applied to the first PMF sequence (full). The points in the bottom left part of
the plot are the adaptive robust and prescient treatments. Point labels follow the notation of Table 1.

T.C.Y. Chan, V.V. Mišić / European Journal of Operational Research 231 (2013) 745–756 751
The second insight that can be drawn is that even though the
adaptive robust method is myopic and does not know what PMFs
will be realized in future fractions, its performance for this patient
case comes close to the performance of solutions that correctly
anticipate future PMFs. This is evident in the fact that the treat-
ments obtained from the adaptive robust method are very close
in tumor coverage and healthy tissue dose to the two types of pre-
scient solutions. For example, for the first PMF sequence, when the
robust (R) uncertainty set is chosen and exponential smoothing
with a = 0.9 is applied (implementation (ES (0.9),R) in Table 1),
the minimum tumor dose as a percentage is 99.97% and the mean
left lung dose as a percentage is 86.33%. For both the daily and
average prescient treatments, the minimum tumor dose as a per-
centage is 100%; for the daily prescient treatment, the mean left
lung dose as a percentage is 86.18%, whereas for the average pre-
scient treatment, the mean left lung dose as a percentage is
86.02%. Even at slower rates of adaptation, the adaptive robust
treatments perform similarly to the prescient solutions. For in-
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stance, using exponential smoothing with a = 0.1 and starting with
the robust (R) uncertainty set (implementation (ES (0.1),R)), the
minimum tumor dose as a percentage of 72 gray is within 0.5%
of the prescient solutions in minimum tumor dose and within
1.5% of the prescient solutions in mean left lung dose. Although
our present computational results provide a specific example of
this phenomenon, and our analysis in Section 6 provides theoreti-
cal justification for this phenomenon under quite general circum-
stances, further testing on other patient cases is needed to verify
the degree to which this insight holds more broadly in practice.

The third insight is that the final dose distribution from any of
the adaptive robust methods is far less sensitive to the choice of
initial uncertainty set compared to the static method. For instance,
for the first PMF sequence, consider the treatments that use expo-
nential smoothing with a = 0.9 (implementations (ES (0.9),N), (ES
(0.9),R) and (ES (0.9),M)). For the nominal (N), robust (R) and mar-
gin (M) uncertainty sets, the minimum tumor doses achieved using
exponential smoothing with a = 0.9 are 71.83, 71.98 and
72.02 gray respectively, while the mean left lung doses are 17.57,
17.60 and 17.71 gray respectively. Visually, this insight is evident
in the fact that the adaptive method frontiers are much smaller
than the static frontier on both Figs. 1. This insight is significant be-
cause it indicates that the success of this method is not contingent
on having accurate knowledge of what the PMFs will be before the
treatment begins. From a clinical standpoint, this eliminates an
important barrier to clinical implementation, as the treatment
planner may not have enough detailed knowledge of a particular
patient’s breathing patterns before the start of treatment to create
a single uncertainty set suitable for the entire treatment course.
Moreover, the method proposed in Bortfeld et al. (2008) for the de-
sign of uncertainty sets requires historical breathing data from
prior patients that is similar to the breathing data of the current
patient, which may not always be available.

Given the third insight, it may seem that adding adaptation
diminishes the value of robust optimization, as the adaptive treat-
ments that begin with a nominal uncertainty set have similar per-
formance to the adaptive treatments that begin with the other two
larger uncertainty sets. Furthermore, the treatments from expo-
nential smoothing with a = 1 ((ES (1),N), (ES (1),R) and (ES
(1),M)), for which the uncertainty set from fraction 2 on is always
a singleton, perform almost as well as the prescient solutions with
respect to the final dose distribution. Although this may be true for
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the PMF sequences that we study here, it may not be true in gen-
eral, as the PMF sequences that we have used here are well-be-
haved and relatively stable. For instance, sequences that exhibit
more variability may cause poor performance if there is too much
adaptation and too little robustness (i.e., a is set close to one and
the initial uncertainty set is small); we explore such a sequence
in Section C of the Online Supplement. Similarly, sequences that
exhibit transient behavior and drift outside of the initial uncer-
tainty set towards a new value could also necessitate the use of a
large uncertainty set early on while the lower and upper bound
vectors are still ‘‘homing in’’ on the PMFs. The value of the method-
ology that we have described in this paper is that it allows the
treatment planner to balance robustness, which provides protec-
tion during the early fractions of the treatment, and adaptation,
which provides protection in the later fractions of the treatment.
Thus, this methodology is flexible enough to be applied to settings
where the patient’s breathing will be very stable over the course of
the treatment (such as the PMF sequences that we study here) and
settings where the patient’s breathing could be highly variable
early in the treatment or even throughout the entire treatment
(such as the PMF sequence studied in Section C of the Online Sup-
plement). Lastly, our computational results correspond to a stan-
dard treatment schedule of 30 fractions. When the number of
fractions is reduced, as in hypofractionated treatments, a larger
proportion of the total prescription dose needs to be delivered in
each fraction. In such treatments, the consequences of selecting
an inappropriate uncertainty set in each fraction therefore become
more severe. Furthermore, the errors in delivered dose made in the
early fractions can no longer be ‘‘averaged out’’ due to a large num-
ber of fractions. We expect that in such hypofractionated treat-
ments, the quality of the treaments resulting from our method
will be more strongly tied to the choice of initial uncertainty set.
Thus, the performance of the adaptive robust method (using a
non-singleton uncertainty set) will be further differentiated in a
positive way from the performance of a nominal (no robustness)
adaptive method.
6. Asymptotic optimality of the adaptive robust method

In Section 5.3, we observed that the adaptive robust treatments
are (a) generally better than the static robust treatments in both
lung dose and tumor coverage, (b) very close in quality to both pre-
scient solutions, and (c) relatively insensitive to the choice of initial
uncertainty set. In this section, we describe our core theoretical re-
sult, which we use to explain these observations. Our result is as
follows: if the sequence of breathing motion PMFs ðpiÞ1i¼1 converges
to p⁄ and the uncertainty set update algorithm belongs to a special
class of update algorithms, then as the number of fractions n tends
to infinity, the dose distribution eventually enters the epsilon
neighborhood of a set D of ‘‘ideal’’ dose distributions. The set D is
the set of dose distributions obtained when any optimal solution
to the nominal problem with respect to p⁄ is delivered while the
patient is actually breathing according to p⁄. The proof of this state-
ment, along with the assumptions and the auxiliary results leading
to it, is given in Section D of the Online Supplement.

We define the epsilon neighborhood U(V,�) of a subset V # Rn as

UðV ; �Þ ¼
[
x2V

Bðx; �Þ;

where B(x,�) is the open ball of radius � about
x ðBðx; �Þ ¼ fx0 2 Rnj kx� x0k < �gÞ. The norm k � k is the 1-norm on
the appropriate finite dimensional real vector space, although tech-
nically any p-norm can be used.

We say that an uncertainty set update algorithm is a convex-
convergent update algorithm if it satisfies two conditions:
1. For every i 2 Zþ (the set of positive integers), ‘i+1 and ui+1 can be
written as convex combinations of pi with ‘i and ui respectively;
that is, there exists an ai 2 [0,1] such that
‘iþ1 ¼ ð1� aiÞ‘i þ aipi;

uiþ1 ¼ ð1� aiÞui þ aipi:
2. If pi ? p⁄ as i ?1, then ‘i ? p⁄ and ui ? p⁄ as i ?1.

It can be easily verified that both the exponential smoothing
and running average update algorithms are convex-convergent.

Let w⁄(‘,u) denote the set of optimal solutions for the robust
problem (1) with its uncertainty set P defined by lower and upper
bound vectors ‘ and u. Let w⁄(p⁄) denote the set of optimal solu-
tions for the nominal problem with respect to p⁄.

Define the set D, the set of dose distributions when p⁄ is realized
while w 2w⁄(p⁄) is being delivered, as

D ¼ fd 2 RjVjjd ¼ Dp�w for some w 2 w�ðp�Þg

where the product Dpw is defined as

Dpw ¼
X
x2X

X
b2B

Dv ;x;bpðxÞwb

" #
v2V

:

For an n fraction treatment during which the intensity vectors were
w1, . . . , wn and the realized PMFs were p1, . . . , pn, the final dose dis-
tribution is given by 1=n �

Pn
i¼1Dpiwi. Our core result can be stated

as Theorem 1.

Theorem 1. (Adaptive robust dose convergence) Let ðpiÞ1i¼1 be a
sequence of PMFs that converges to p⁄. Let ð‘iÞ1i¼1 and ðuiÞ1i¼1 be lower
and upper bound sequences generated from ðpiÞ1i¼1 by a convex-
convergent update algorithm. For each i 2 Zþ, let wi 2w⁄(‘i,ui). Then
for every � > 0, there exists an N 2 Zþ such that for all n > N,
1
n

Xn

i¼1

Dpiwi 2 UðD; �Þ:

The theorem states that the dose distribution obtained via any
convex-convergent update algorithm approaches a set of optimal
dose distributions D. The intuition behind this result is that as
i ?1, wi is increasingly similar to some solution in w⁄(p⁄), and
pi is increasingly similar to p⁄. Therefore, as n tends to infinity, each
term in the tail of the sum

Pn
i¼1Dpiwi becomes increasingly similar

to some d 2 D.

This set D of optimal dose distributions is the same set that is
approached by both the daily prescient and average prescient dose
distributions.

Theorem 2. Let ðpiÞ1i¼1 be a sequence of PMFs that converges to p⁄.
(a) (Daily prescient dose convergence.) For each i 2 Zþ, let wi 2
w⁄(pi,pi). Then for every � > 0, there exists an N 2 Zþ such that
for all n > N,
1
n

Xn

i¼1

Dpiwi 2 UðD; �Þ:
(b) (Average prescient dose convergence.) For each n 2 Zþ, let
wn 2 w� 1=n �

Pn
i¼1pi;1=n �

Pn
i¼1pi

� �
. Then for every � > 0, there

exists an N 2 Zþ such that for all n > N,
1
n

Xn

i¼1

Dpiwn 2 UðD; �Þ:
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When the nominal problem with respect to p⁄ has a unique
optimal solution, the difference between the adaptive robust and
either prescient dose distribution tends to zero.

Corollary 1. Let ðpiÞ1i¼1 be a sequence of PMFs that converges to p⁄.
For each i 2 Zþ, let wAR

i 2w⁄(‘i,ui) (the adaptive robust intensity
vector for fraction i), where ð‘iÞ1i¼1 and ðuiÞ1i¼1 are obtained by a
convex-convergent update algorithm, and let wDP

i 2w⁄(pi,pi) (the
daily prescient intensity vector for fraction i). For each n 2 Zþ, let
wn

AP 2 w� 1=n �
Pn

i¼1pi;1=n �
Pn

i¼1pi
� �

(the average prescient intensity
vector for fraction i). If the nominal problem with respect to p⁄ has a
unique optimal solution (i.e., w⁄(p⁄) is a singleton), then

lim
n!1

1
n

Xn

i¼1

Dpiwi
AR�

1
n

Xn

i¼1

Dpiwi
DP

�����
�����¼ lim

n!1

1
n

Xn

i¼1

Dpiwi
AR�

1
n

Xn

i¼1

Dpiwn
AP

�����
�����

¼0:
6.1. Three theoretical insights

These results directly relate to the three insights of Section 5.3.
With regard to the first insight – that adaptive robust treatments
generally dominate static robust treatments – suppose that w is
a solution of the robust problem with uncertainty set P. The static
robust dose distribution after n fractions is given by

1
n

Xn

i¼1

Dpiw ¼ D
Xn

i¼1

pi

n
w:

If ðpiÞ1i¼1 converges to p⁄, then this dose distribution converges to
Dp⁄w. Whether or not this dose distribution is satisfactory depends
on whether or not p⁄ is in P. If p⁄ 2 P, then every tumor voxel will
receive sufficient dose in the limiting dose distribution. However,
if p⁄ R P, then there is no guarantee that every tumor voxel will suf-
ficient dose. In contrast to the static method, the adaptive robust
method always leads to sufficient tumor dose in the limit. The rea-
son for this is that every dose distribution d in D has the property
that all tumor voxels receive the minimum prescription dose. This
property is a consequence of the fact that d = Dp⁄w for some inten-
sity vector w corresponding to the singleton uncertainty set {p⁄}; by
the definition of problem (1), it is straightforward to see that the
dose to tumor voxel v satisfies

dv ¼
X
x2X

X
b2B

Dv;x;bp�ðxÞwb P hv :

Furthermore, observe that every beamlet intensity vector in
w⁄(p⁄) is an optimal solution of the nominal problem with respect
to p⁄. As we discussed earlier, solutions to nominal problems are
ones that generally result in the lowest level of normal tissue dam-
age. Therefore, not only do the dose distributions in D meet the tu-
mor dose requirements, but they are also likely to lead to low
levels of healthy tissue dose. In contrast, a static robust treatment
will generally not possess both of these qualities simultaneously. If
the treatment planner selects P to be a singleton (i.e. w is the solu-
tion of the nominal problem with a specific PMF), then the treat-
ment is likely to result in low healthy tissue dose, but the
treatment planner is taking a major risk by assuming what p⁄ will
be. If the treatment planner selects a larger P, then there is a better
chance that p⁄ will be contained in P, but at the cost of increased
healthy tissue dose.

With regard to the second insight – that the adaptive robust and
prescient treatments become very similar – we know that both the
average and daily prescient dose distributions also approach D.
When the nominal problem with respect to p⁄ has a unique opti-
mal solution, the difference between the adaptive robust dose dis-
tribution and either prescient dose distribution must tend to zero
by Corollary 1. In the case that there are multiple optimal solutions
to the nominal problem with respect to p⁄, it seems reasonable to
expect that the dose distributions that are achieved when these
solutions are delivered and the patient breathes according to p⁄

should not differ significantly. Therefore, the difference between
either prescient dose distribution and the adaptive robust dose dis-
tribution should also become small in the limit.

With regard to the third insight – that the adaptive robust
method is relatively insensitive to the choice of initial uncertainty
set – we can see that in the proof of Theorem 1, the choice of ‘1 and
u1 is not important: the dose distribution always approaches the
set D, no matter what ‘1 and u1 are. Again, if D is a singleton, then
any two dose distributions that are obtained using the same adap-
tive method but different ‘1 and u1 vectors will converge to the
single distribution in D. Since the two dose distributions converge
to the same limiting dose distribution, the difference between
those dose distributions must tend to zero. In practice, we will still
see some dependence on the initial uncertainty set due to the finite
number of fractions, but with a large number of fractions, the effect
of the initial uncertainty set will become diminished.

We note that although the theoretical results we have devel-
oped are helpful in understanding the performance of our meth-
ods, it is unlikely that a patient PMF sequence in real life will
converge to a single limiting PMF. A more plausible scenario may
be that after a transient period, during which the patient is being
acclimated to the treatment, the PMF sequence converges to a
set of PMFs, and on each day the patient’s PMF varies within this
set, without converging to a single limiting PMF. Our results cannot
directly answer this question without modifications. However, our
core theoretical result (Theorem 1) relies on the fact that for every
�, which represents the error between the set of ideal dose distri-
butions D corresponding to a limiting p⁄ and the realized dose dis-
tribution 1=n �

Pn
i¼1Dpiwi, we are able to get pi within a suitable

distance of p⁄. In the case that we can only say that pi gets arbi-
trarily close to a set of limiting PMFs, we expect that Theorem 1
can be modified to hold for �P �0, where �0 > 0 depends on the
size of the set of limiting PMFs, as opposed to any arbitrary � > 0.
We expect that as the size of the limiting set of PMFs decreases,
the error between the realized dose distribution and an ideal set
of distributions (obtained by applying the daily prescient method
to the sequence) will also decrease; Theorem 1 would then present
an extreme case where the limiting set of PMFs is a singleton. The
real patient PMF sequences used in Section 5 are relatively stable,
which is why our present theoretical results agree with our com-
putational insights. We also expect that when the PMFs converge
only to a set, the performance may be more sensitive to the choice
of the update algorithm, and how the convergence to a set is pre-
served (or not preserved) for the sequence of lower and upper
bound vectors generated by the update algorithm. In Section C of
the Online Supplement, we provide an example of such a PMF se-
quence that does not stabilize. For this sequence, we indeed find
that the performance gap between the exponential smoothing
and prescient solutions is generally quite large; however, the run-
ning average algorithm is still able to achieve good performance.
7. Conclusions

In this study, we developed an optimization method for frac-
tionated IMRT treatment planning that combats breathing motion
uncertainty by generalizing the methodologies of adaptive radia-
tion therapy and robust optimization. We studied the effectiveness
of our method on two PMF sequences obtained from clinical lung
cancer patients and showed that our adaptive robust optimization
method improves upon the static method in both tumor coverage
and healthy tissue sparing simultaneously. We also studied the
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effectiveness of our method from a theoretical standpoint and
proved that the adaptive robust dose distribution approaches a
limiting set of optimal dose distributions. Even though this adap-
tive approach is myopic, it performs well when the PMF sequence
converges, and for some uncertainty set update algorithms, per-
forms well even when the PMF sequence does not converge. Also,
as we have shown empirically and theoretically, our method does
not require perfectly accurate information to be available before
the start of treatment. Overall, the clinical value of this method
is that it allows for the tumor dose to be safely escalated without
leading to additional healthy tissue toxicity, which may ultimately
improve the rate of patient survival.

Future work should consider what results can be obtained when
the convergence assumption is relaxed and the PMFs are instead
drawn from a distribution on the probability simplex. The adaptive
robust method we have studied can also be modified by changing
the right hand side of problem (1) after each fraction, in order for
the treatment to account for the dose delivered in prior fractions
and to compensate for daily underdosages and overdosages in
prior fractions. With such a method, we hypothesize that the daily
dose delivered to the tumor will become increasingly inhomoge-
neous as the treatment progresses, with some parts of the tumor
receiving significantly less than the daily prescribed amount. This
seems to be the case in some preliminary computational tests
and is the subject of ongoing work.

Finally, we note that although we have specifically studied frac-
tionated IMRT planning under breathing motion uncertainty, the
methodology and analysis we have presented here is of value to
other practical problems outside of the domain of healthcare. Spe-
cifically, this method can be applied to problems involving sequen-
tial decision making under uncertainty, when new measurements
of the uncertain effect are obtained over the planning horizon. This
approach may be particularly attractive when it is computationally
inexpensive to solve the robust optimization problem with the up-
dated uncertainty set at each stage. Overall, the empirical perfor-
mance and theoretical properties we have shown in this paper
suggest that this type of adaptive robust optimization method
could be a viable approach for other multi-stage decision making
problems under uncertainty.
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