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a b s t r a c t

The fluence map optimization (FMO) problem is a core problem in intensity modulated radiation

therapy (IMRT) treatment planning. Although it has been studied extensively for site-specific treatment

planning, few studies have examined efficient computational methods for solving it for intensity

modulated total marrow irradiation (IM-TMI) planning; few studies have also looked at exploiting prior

beamlet information to solve the FMO problem in a beam orientation optimization context. In this

study, we consider different types of line search strategies and different types of warm-start techniques

to improve the speed with which the FMO problem for IM-TMI is solved and the quality of the end

solution. We also consider a parallelism-enhanced algorithm to solve the FMO problem for IM-TMI

treatment planning with a large number of beams (36 equispaced beams at each of 11 isocenters, for a

total of 396 beams). We show that the backtracking line search strategy with step reduction exhibits

the best performance and that using either of the two types of warm-start techniques which we

consider leads to significant improvements in both solution time and quality. We also provide results

for the aforementioned 396-beam plan and show that 30-beam solutions obtained using beam

orientation optimization attain a comparable level of quality as this larger solution.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Bone marrow transplantation, or hematopoietic stem cell
transplantation, is one method of treatment for a number of
diseases of the blood and bone marrow. These include certain
forms of cancer (such as leukemia and lymphoma) as well as
other diseases (such as aplastic anemia and sickle cell disease). To
prepare a patient for a bone marrow transplant, the patient’s
existing diseased bone marrow must be completely eliminated.
This is typically done through a procedure known as total body
irradiation (TBI). In TBI, the patient’s entire body is irradiated
with a single, wide-angle beam to a single prescribed level of dose
(e.g., 12 Gy). This, however, leads to unnecessary irradiation of
healthy tissue, which can lead to many complications and severely
affect the patient’s quality of life post-treatment.

An alternative to TBI is total marrow irradiation (TMI), which
specifically targets the bone marrow of the patient and avoids
healthy tissue. In our previous work [1], we examined the use
of a high accuracy form of radiotherapy known as intensity
modulated radiotherapy (IMRT) to perform TMI. In order to use
ll rights reserved.

x: þ1 416 978 7753.
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IMRT for TMI, there are two basic problems that must be solved.
The first problem, known as the fluence map optimization (FMO)
problem, is concerned with how the beamlet intensities, or
fluences, should be set for a given ensemble of beams to deliver
a certain dose to the bone marrow while minimizing the dose
delivered to healthy tissue.

The second problem is the beam orientation optimization (BOO)
problem, which is concerned with determining how a set of
beams should be oriented for the dose to be delivered optimally.
The FMO problem plays a substantial role in our formulation of
the BOO problem, because the optimal objective function value
of the FMO problem for a set of beams quantifies the quality of
that set of beams—that is, how capable the beams are of deli-
vering the prescribed dose to the bone marrow while minimizing
the dose delivered to healthy tissue. We have already studied the
BOO problem for TMI previously in [1]; although we will not
directly be dealing with the BOO problem, part of this study is
concerned with fluence map optimization in the context of BOO.

The FMO problem is the primary problem we will be considering
in this study; in particular, we will be studying techniques for
improving both the speed with which the FMO problem is solved,
and improving the quality of the final beamlet intensities returned.
These objectives are motivated by clinical requirements, as there is
typically a limited time frame available for treatment plan optimiza-
tion. Projected gradient methods are commonly used to solve FMO
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problems (see, e.g., [1,2]) due to their speed and ease of implementa-
tion. We consider three different classes of computational enhance-
ments to improve both the effectiveness and speed of projected
gradient methods applied to FMO (and therefore BOO):
1.
 We consider different line search strategies—that is, different
methods of selecting the final step length in each iteration of
the projected gradient algorithm. We test the performance of
projected gradient with each of these line search strategies on
a set of randomly generated 30-beam solutions.
2.
 We consider different warm-start approaches for speeding
up the execution of projected gradient when it is used within
a neighborhood search algorithm for BOO (the Add/Drop
algorithm, previously studied for TMI in [1]). Each warm-start
method involves using bixels for the current set of beams as
the initial bixels of each of the neighboring sets of beams,
whose optimal FMO objective values are unknown and are to
be calculated. We test the performance of the Add/Drop
algorithm with each type of warm-start approach on a set of
randomly generated 30-beam solutions.
3.
 We consider a method for parallelizing FMO objective function
and gradient evaluation for large-scale treatments. We provide
computational results for the performance of projected gradient
with this type of enhancement on a very large set of beams.

With regard to parallel and distributed computing in the context
of IMRT, there have been few prior studies, and there has not yet
been any previous research into using parallel computation for FMO
for large-scale (in both the number of beams and the size of the
geometry) IMRT treatment planning. In [3], the authors describe an
implementation of projected gradient which uses graphics processing
units (GPU) for parallel computation; our work differs from this work
in that the dose calculation in our work is parallelized with respect to
the beams and not with respect to the voxels. This is an important
consideration because by splitting the calculations up into several
smaller calculations corresponding to subsets of the beams, commu-
nication overhead can be reduced. In [4], distributed computing is
used to simultaneously sample several potential beam sets for the
purpose of BOO. In this paper, parallelization is studied in Section 5,
where it is employed in the evaluation of the objective function of the
FMO problem and its gradient in order to increase the speed with
which the FMO problem is solved when the number of beams is large.
Parallelization is also used in the implementations of the warm-start
approaches in Section 4, where multiple FMO evaluations are
performed in parallel in the context of BOO; this form of paralleliza-
tion is not the same as the form used in Section 4 and is not the
primary focus of this class of computational enhancements.

In addition to the computational gains of parallel computing,
another motivation is to be able to solve the FMO problem with all
possible beam orientations. Such a treatment plan will allow us to
learn about the absolute quality of our solutions in [1]. Another
reason for considering the FMO problem with a large number of
beams is that the resulting beamlet intensities could be used as a
potential starting point for an algorithm to perform intensity
modulated arc therapy (IMAT) treatment planning, which may be
a more appropriate method of performing TMI than IMRT.

The rest of this paper is organized as follows. In Section 2, we
provide a brief overview of the BOO and FMO problems, and the
Add/Drop and projected gradient algorithms for solving them,
respectively. We describe the different types of line search methods
in Section 3, the different types of warm-start techniques in Section
4 and a single parallelism-enhanced algorithm for objective function
and gradient evaluation in the context of FMO in Section 5. In
Section 6 we provide computational and treatment quality results
for our methods. In Section 7, we provide some concluding remarks
and some possible directions for future work.
2. BOO and FMO background

We employ the BOO and FMO approaches presented by [1],
and provide a brief overview of each here. Although the BOO
problem is not the focus of this study and we do not explicitly
define any new algorithms to solve it, we will need to make
reference to some variables from BOO (and Add/Drop) when we
discuss warm-start methods in Section 4.

2.1. BOO problem

We use h to represent a single beam orientation and B to
represent the set of all possible beam orientations for a single beam.
We use Y to represent a set of beams, Y¼ ðh1, . . . ,hnÞABn, where n

is the number of beams. We use F ðYÞ to represent the quality of the
beam set Y (where smaller values correspond to better treatments),
which is the optimal FMO objective function value for that set of
beams. The BOO problem for n beams can then be stated as

minimize F ðYÞ
subject to YABn:

Due to the nonlinearity and nonconvexity of the function F with
respect to Y, the BOO problem is difficult to solve [5]. We therefore
use the Add/Drop algorithm, a neighborhood search heuristic for
BOO in TMI described in [1] (see Algorithm 1). We give a brief
overview of the algorithm here.

Let D represent the set of degrees of freedom of each beam; in
this study, D¼ fG,zg, where G corresponds to the gantry angle and z

to the couch-z translation. In iteration i, we have a current iterate,
YðiÞ. We establish a neighborhoodN bdðY

ðiÞ
Þ around YðiÞ, determined

by beam bAYðiÞ and degree of freedom dAD (see [1] for full details
regarding the construction of N bdðY

ðiÞ
Þ). We evaluate F for every

neighbor in N bdðY
ðiÞ
Þ and identify the solution YAN bdðY

ðiÞ
Þ which

minimizes F on N bdðY
ðiÞ
Þ. If the new point improves the objective

function, the algorithm moves to the new point. Otherwise, we
consider a different pair ðb0,d0ÞAf1, . . . ,ng � D and repeat this
process with N b0d0 ðY

ðiÞ
Þ around YðiÞ. The algorithm terminates when

every neighborhood of the current solution YðiÞ has been examined
without improvement.

Algorithm 1. BASIC ADD/DROP.
1:
 Generate initial starting point Y0.

2:
 Set Yn :¼ Y0 and i :¼ 0.

3:
 while Stopping criterion is not met do

4:
 Select dAD and bAf1, . . . ,jYjg.

5:
 Set YA arg min F ðN bdðYiÞ.

6:
 if F ðYÞoF ðYn

Þ then

7:
 Set Yn :¼ Y and Yiþ1 :¼ Y.

8:
 Set i :¼ iþ1.

9:
 end if

10:
 if All points in

Sk
b ¼ 1

S
dADN bdðYiÞ have been sampled

without improvement then

11:
 Yn is a local minimum; go to Step 16.

12:
 else

13:
 Go to Step 4.

14:
 end if

15:
 end while

16:
 return Yn.
2.2. FMO problem

Let BY represent the set of beamlet indices corresponding to
the set of beams Y, and let xi represent the intensity of beamlet
iABY. Let S and T represent the set of critical structures and target
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structures, respectively. The number of voxels of structure sAS [

T is given by vs. Define zjs as the total dose received by voxel j in
structure s, where Dijs is the dose deposition coefficient of beamlet
i in voxel j of structure s.

The objective function of the FMO problem is a weighted sum
of penalty functions for each structure. We use ws and w

s
to

represent the weights for overdose and underdose in voxels of
structure s, with Ts defining the point at which under- or overdose
is penalized. We use ps and p

s
to represent the powers for

overdose and underdose in voxels of structure s. The objective
function of the FMO problem is

FðxÞ ¼
X

sA S[T

Xvs

j ¼ 1

FjsðzjsÞ, ð1Þ

where zjs is given by

zjs ¼
X

iABY

Dijsxi ð2Þ

and the penalty function Fjs is defined as

FjsðzjsÞ ¼
1

vs
ðw

s
½ðTs�zjsÞþ �

p
sþws½ðzjs�TsÞþ �

ps Þ, ð3Þ

where ð�Þþ ¼maxf0,�g. The FMO problem can then be stated as

minimize FðxÞ

subject to xiZ0 8iABY:

By choosing w
s
,wsZ0 and p

s
,psZ1 for each structure sAS [ T ,

the FMO objective function F is a convex function, and the FMO
problem is a convex optimization problem. To solve this problem,
we employ the projected gradient algorithm (Algorithm 2), a
general algorithm commonly used in large convex optimization
problems. Given an initial solution, the algorithm iteratively
moves an appropriate step length in the direction of the negative
gradient. If the solution is infeasible at any time, the solution is
projected onto the feasible set using the function p. The algorithm
repeats until the relative improvement between consecutive
iterations falls below a given threshold e.

Algorithm 2. Generalized Projected Gradient.
Require Percentage change tolerance e

1:
 Generate an initial solution xð0Þ
2:
 Set p¼ 1.

3:
 while p4e do

4:
 Generate a step length l

5:
 Set xðiþ1Þ ¼ pðxðiÞ�lrFðxðiÞÞÞ
6:
 Set p¼ ðFðxðiÞÞ�Fðxðiþ1ÞÞÞ=FðxðiÞÞ
7:
 end while
3. Line search strategies

In Algorithm 2, the procedure which is used to generate a step
length l in each iteration is known as a line search. The line search
step of projected gradient methods is known to be computation-
ally intensive, and thus we first examine several line search
strategies as computational enhancements to FMO in the context
of total marrow irradiation. In particular, we study the standard
backtracking line search, a backtracking line search with step
length reduction; a forward line search; a golden section line
search; a dichotomous line search; and a quadratic interpolation
line search.

The type of line search strategy is of direct interest to us
because the line search strategy determines both the quality
of the step (which affects the final FMO value obtained) and
how many different step lengths are tested (and thus how
many objective function evaluations occur) in each iteration of
projected gradient. Although the projected gradient algorithm
has been widely used in radiotherapy treatment planning (e.g.,
[3,6–9]), line search strategies for projected gradient in the
context of IMRT have not been previously studied as extensively
as in our study.

For our line search strategies, the step length l must satisfy the
sufficient decrease (also known as Armijo) condition,

FðpðxðkÞ�lrFðxðkÞÞÞÞrFðxðkÞÞ�
s
l
JxðkÞ�pðxðkÞ�lrFðxðkÞÞÞJ2, ð4Þ

where sA ð0,1Þ to ensure that the sequence of iterates obtained
from Algorithm 2 converges to the global minimum of the FMO
problem at a reasonable rate. Details on this condition in the
context of projected gradient can be found in [10,11] for uncon-
strained problems.

3.1. Backtracking line search

The backtracking line search [10] determines a step length in
each projected gradient iteration by starting with a step length R0,
checking whether the resulting solution ~x satisfies the sufficient
decrease, and scaling it by a factor b (where bAð0,1Þ) until it
satisfies the condition.

3.2. Reduced step line search

The reduced step line search is identical to the backtracking
line search, with the slight difference that after m iterations of the
outer loop, the initial step length is changed from R0 to a new
value R. This algorithm grew out of observations that the back-
tracking projected gradient algorithm in general takes steps as
large as R0 in the early iterations and in later iterations, takes
steps that are generally of length bR0 or smaller. By reducing the
initial step length after a few outer loop iterations, we eliminate
step lengths that are not likely to satisfy the sufficient decrease
condition and thus reduce the overall number of line search
iterations (without severely affecting the quality of the end
solution).

3.3. Forward line search

The forward line search is similar to the backtracking line
search, with the exception that the step lengths move forward
rather than backward. In the forward line search, we start from an
initial step length R0 and scale the step length l up by a factor of g
(where gAð1,1Þ) to just before the point where l no longer
satisfies the sufficient decrease condition.

The reasoning behind scaling the step length up to just before
the point where it no longer yields a sufficient decrease in F can
be explained as follows. To ensure that the algorithm finds a
satisfactory step length using a forward line search method, the
initial step length should be sufficiently small so that the line
search loop can examine a larger range of step lengths. However,
small step lengths typically always meet the sufficient decrease
condition, so if the initial length is very small, the algorithm will
almost always accept the first step, leading to a very slow rate of
change in the iterate x and consequently a slow change in the
objective function value F(x). By increasing the step length until it
no longer yields a sufficient decrease in F, we are able to force
the algorithm to take larger steps and increase the rate at which
the sequence of iterates converges to the minimizer of F. (In the
case that the first step length l¼ R=JrFðxðiÞÞJ does not satisfy the
initial step length, it is also scaled down by g. Although we do not
check whether the new step length g � l satisfies the sufficient
decrease condition, the initial step length of R can be chosen to be
small enough that this is never an issue in practice.)
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3.4. Golden section and dichotomous line searches

The golden section and dichotomous line search (similar to
bisection) methods are well known methods for minimizing a
univariate function when a minimum is known to exist in an
interval ½a0,b0� (the region of uncertainty). For this application, the
function that is to be minimized in each projected gradient
iteration k is

~f ðlÞ ¼ FðpðxðkÞ�lrFðxðkÞÞÞÞ,

and the interval of uncertainty is of the form ½0,R0=JrFðxðkÞÞJ�,
where R0 is an initial length that must be specified. Let mk be the
midpoint of the interval ½ak,bk�.The dichotomous search operates
by calculating ~f ðmk�dÞ and ~f ðmkþdÞ, and comparing them to see
whether the minimum lies in ½ak,mkþd� or ½mk�d,bk�. Therefore,
for the dichotomous search, we also need to specify d, which is a
distinguishability constant.

Our implementations of these methods follow closely the
descriptions given in [12], with the following modification: when
the objective function is evaluated at multiple step lengths, it is
evaluated from largest length to smallest, and the first step length
which passes the Armijo condition accepted.

3.5. Quadratic interpolation

The quadratic interpolation line search [11] is described as
follows. Given the univariate function ~f ,

~f ðlÞ ¼ FðpðxðkÞ�lrFðxðkÞÞÞÞ,

we check an initial step length l0. If l0 satisfies the Armijo
condition (4), then l0 is chosen as the step length. Otherwise, we
form a quadratic approximation to ~f :

~f qðlÞ ¼
~f ðl0Þ�

~f ð0Þþ ~f
0
ð0Þl0

l2
0

 !
l2
þð~f

0
ð0ÞÞlþ ~f ð0Þ:

We then calculate the minimizer of this quadratic, l1:

l1 ¼�
~f
0
ð0Þl2

0

2ð~f ðl0Þ�
~f ð0Þ�~f

0
ð0ÞÞ

:

If l1 satisfies the Armijo condition (4), we accept it. Otherwise, we
repeat this process, with l1 taking the place of l0, until we find an
acceptable step length.
4. Warm-start techniques

The Add/Drop algorithm, as explained in Section 2.1, is an
iterative algorithm which improves a solution (a set of beams) by
modifying a single beam in a single degree of freedom in each
iteration. As a result, when we compare the set of beams YðiÞ in
iteration i to a neighboring set of beams ~YAN bdðY

ðiÞ
Þ (where

ðb,dÞAf1, . . . ,ng � fG,zg), we find that the two solutions differ by
only one beam, and the two non-matching beams differ in only
one degree of freedom. Since the two solutions share all but one
beam, the two solutions are very similar to one another, and our
intuition suggests that the optimal beamlet intensities of the
common beams of YðiÞ and ~Y should also be very close to one
another.

This observation about how the beamlet intensities should
change within Add/Drop gives rise to a computational enhance-
ment to FMO evaluation in the context of Add/Drop: specifically,
the idea of warm-starting the FMO evaluation of a neighboring set
of beams ~Y by using the bixels of the current set of beams YðiÞ.
The benefit of this enhancement is that it reduces the time
required by the Add/Drop algorithm to find high quality solutions.
By warm-starting the FMO evaluation of a neighboring solution ~Y
– that is, using the bixels of the current solution YðiÞ to determine
the starting bixels of the neighboring solution – the time required
for FMO evaluation can be greatly reduced. By reducing the time
required for FMO evaluation, the Add/Drop algorithm can explore
the solution space Bn more rapidly and locate good solutions
earlier in the search process. This is important from a clinical
standpoint because the amount of time available for beam
orientation optimization is limited and it is not possible to run
the Add/Drop algorithm until it naturally terminates by finding a
local minimum.

We will study three different modes of FMO initialization:
cold-start, warm-start using averaging and warm-start using
least-squares. There have not been any prior studies into warm-
start procedures in the context of BOO to facilitate FMO evalua-
tions. In [13], the authors use warm-starting for the purpose of
aperture weight optimization and not in the context of BOO. In
[14], the authors also perform warm-starting in a different way,
with a set of beams identified from an integer programming
model being used as the starting set of beams for a heuristic
algorithm.

In the warm-start approaches, we use YðiÞ to represent the

current set of beams; ~Y to represent a neighboring solution of

YðiÞ, whose FMO value we are interested in evaluating; hk to

represent the single beam in YðiÞ which is altered; ~hk to represent

the beam in ~Y which corresponds to hk in YðiÞ; B ~h j
to represent

the set of indices of the beamlets which belong to beam ~hj in ~Y;

Bhj
to represent the set of bixel indices of beam hj in YðiÞ; xi to

represent the optimal intensity value of beamlet iABYðiÞ ; and ~xi to

represent the starting intensity value of beamlet iAB ~Y .

4.1. Cold-start

The most basic form of FMO initialization that we will consider
is cold-started FMO evaluation. When an FMO evaluation is
cold-started, the bixels of each beam are initialized to a pre-defined
constant, and these bixels are fed into the projected gradient
algorithm which calculates the FMO value for the beam. This mode
of FMO evaluation does not make use of the bixels of the current
solution: whenever an FMO is evaluated in this way, it is essentially
calculated ‘‘from scratch’’.

Mathematically, if we let k represent this pre-defined con-
stant, we would set ~xi ¼ k for all iAB ~Y . We would then use the
resulting set of bixels ~x as our initial solution for FMO evaluation.

4.2. Warm-start using averaging

The first warm-start method we consider is warm-started FMO
evaluation using averaging. Given a neighboring solution whose
FMO we are trying to calculate, we initialize the bixels of its
beams in the following way: for each beam that the neighboring

solution ~Y has in common with the current solution YðiÞ, set the
initial bixels of the beam to the optimal bixel values of the same

beam in YðiÞ. For beam number k where the neighboring solution
~Y and the current solution YðiÞ differ, calculate x, the average of

the bixels of the altered beam hk in the current solution YðiÞ, and

initialize all of the bixels of the corresponding beam ~hk in ~Y to x.
As mentioned earlier, the neighboring solution and the current

solution differ by only one degree of freedom of one beam, so we
intuitively expect the optimal bixel values of the common beams
of the neighboring solution and the current solution to be very
close to one another. By allowing FMO evaluation to begin from a
set of bixels that should be quite close to the actual optimal set of
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bixels, the projected gradient algorithm we employ to solve the FMO
problem should be able to converge more quickly to the optimal set
of bixels. This improvement in the speed of FMO evaluation should
result in a higher quality solution being found by Add/Drop, as the
algorithm will be able to go through a higher number of iterations.

The step which involves averaging the bixels of the beam that
is altered in the current solution and uniformly setting the bixels
of the corresponding beam in the neighboring solution to this
average can be justified as follows. The sum of the bixels of
the beam can be thought of as a measure of the total energy of the
beam; the higher the sum of the bixels, the more radiation is
being delivered, and the greater the effect the beam has on the
patient. (If the sum of the bixels is zero, all of the bixels are zero,
and the beam is essentially not delivering any radiation in
the treatment.) By setting the bixels of the corresponding beam
in the neighboring solution to the average of the altered beam in
the current solution, the individual bixel sums of the two beams
will be very close to one another, and so the effects of the two
beams on the patient should be somewhat similar.

Mathematically, we set ~xi ¼ xi for every iABhj
and all

hjAYðiÞ\fhkg. For those iAB ~hk
, we first calculate

x ¼
1

jBhk
j

X
i0ABhk

xi0 ð5Þ

and then set ~xi ¼ x for all iAB ~hk
. The vector of bixels ~x is then our

initial solution when the projected gradient algorithm is executed
for ~Y.

4.3. Warm-start using least-squares

In the method of warm-starting FMO evaluation using aver-
aging, the motivation behind averaging the bixels of the altered
beam hk in the current solution YðiÞ and setting the bixels of the
corresponding beam ~hk in the neighboring solution ~Y to this
average was to attempt to get ~hk to have a similar effect to hk. In
this second warm-start method, we take this notion further by
selecting the bixels of ~hk so that the dose contributed by ~hk is as
close as possible to the contribution of hk in a least-squares sense.

To make this notion rigorous, we define zðkÞjs to be the dose
contributed to voxel j in structure s by the bixels of hk; it is given by

zðkÞjs ¼
X

iABhk

Dijsxi: ð6Þ

To obtain the initial bixel values of ~hk, that is, the values of ~x,
we solve the following optimization problem:

minimize Z ¼
X
sAS

Xvs

j ¼ 1

ð~zðkÞjs �zðkÞjs Þ
2

subject to ~zðkÞjs ¼
X

iAB ~hk

Dijs ~xi 8sAS, jAf1, . . . ,vsg,

~xiZ0 8iAB ~hk
: ðWarm� LSÞ

For the other beams in ~Y, we set the bixels to the correspond-
ing bixels in YðiÞ; i.e., ~xi ¼ xi for every iABhj

and all hjAYðiÞ\fhkg.
To see why initializing the bixels of ~hk in this manner might be

desirable, consider the following example. Suppose that the
beamlets of ~hk are able to attain a dose contribution that is very
close to (or the same as) the dose contribution of the beamlets of
the old beam hk. The two solutions ~Y and YðiÞ will then result in
very similar doses in the patient. This in turn means that the
objective function value associated with ~x will be very similar to,
if not the same as, the objective function value associated with x.
If we begin evaluating the FMO value of ~Y starting from ~x,
the projected gradient phase will either be short if the starting
solution is already sufficiently good, or will yield a significantly
better solution.

On the other hand, if the beamlets of the ~hk are unable to
attain a contribution in dose that is at all similar to the beamlets
of the old beam, then that could mean two things. One scenario is
that it may still be possible for the beam to improve the solution
(e.g., by delivering dose to target voxels that are already covered
by other beams, but doing so at a lower penalty to the objective).
In this case, the projected gradient algorithm still has to iterate as
usual, and we do not gain any improvement in the time needed to
calculate the FMO. In contrast, if the beam is ‘‘bad’’ (i.e., taking out
the old beam prevents the solution from hitting a lot of target
voxels and forces overdosing in critical structure voxels), then
once again, the projected gradient algorithm still has to iterate
normally.
5. Parallel computations for FMO evaluation

The process of fluence map optimization for TMI is a highly
computationally intensive process because the objective function
and gradient evaluations require the summation of the dose
delivered from � 75,000 beamlets (for 30 beams) to � 650,000
voxels. These doses are then penalized accordingly.

Despite the number of computations, there is a need for the
ability to generate IM-TMI plans using a large number of beams.
One reason is that it allows us to validate our earlier plans: by
solving the FMO problem with all possible beams, we can deter-
mine the best possible treatment plan for TMI to use as a bench-
mark. Another reason is that a transition to arc-based treatments
will require dose calculations at a far larger number of beams
than step-and-shoot treatments.

Parallelization of the objective function and gradient evalua-
tion allows us to counteract the increase in computation time
associated with large numbers of beams. Suppose that we wish to
calculate the objective function for a set of bixels corresponding
to n beams. Suppose also that Q processors are available to us,
where Q divides evenly into n. Then to calculate the total dose
delivered, we can divide up the set of n beams into Q subsets, each
consisting of n=Q beams. We can then, in parallel, calculate the
contribution of each subset to the total dose, collect the contribu-
tions and add them up to obtain the overall dose to each voxel. To
calculate the actual objective function, we penalize the overall
voxel dose in a serial manner. The gradient can be similarly
calculated. The advantage of splitting up the beams into Q subsets
is that each subset consists of n=Q beams, so we only need to
transfer n=Q dose deposition matrices to each worker node. If we
were to split the dose calculation by voxel, or subsets of voxels as
in [3], we would need to transfer matrices for all n beams.

In addition to the notation defined earlier, let z represent the
vector of zjs values for all sAS,jAf1, . . . ,vsg; DðkÞ represent the matrix
of Dijs values corresponding to a single beam and all voxels; xðkÞ

represent the part of the x vector associated with beam hkAY; Q

represent the total number of processors available for use; q refer to
a particular processor in f1, . . . ,Qg, and to the subset of beams of Y
assigned to processor q; zðqÞ represent the voxel dose contribution
of the qth beam subset; gðqÞ represent the piece of the gradient
associated with the qth beam subset; hðkÞ represent the piece of the
gradient associated with beam hkAY; yjs represent an auxiliary
scalar associated with voxel j in structure s; and y represent the
column vector of yjs values for all sAS, jAf1, . . . ,vsg.

Suppose that Y¼ ðh1,h2, . . . ,hnÞ, and subset number q of Y
consists of beams hLq

, hLqþ1, . . . , hUq�1, hUq
. We can then define the

voxel contribution of the qth beam subset as zðqÞ ¼
PUq

k ¼ Lq
DðkÞxðkÞ. If

the subsets numbered 1 to Q comprise the entire set of beams Y, we
can calculate the overall voxel dose as z¼

PQ
q ¼ 1 zðqÞ, i.e., summing
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up the voxel dose contributions of each beam subset to obtain the
overall voxel doses associated with Y.

We can express the gradient calculation similarly. We let gðqÞ

be the part of rF corresponding to beam subset number q, so that
we can express the gradient as rF ¼ ½gð1Þ gð2Þ . . . gðQ Þ�. To define
gðqÞ, we first let y be an auxiliary column vector, defined as
y¼ ½yjs�sAS,jA f1,...,vsg

, with

yjs ¼
1

vs
�w

s
p

s
ðTs�zjsÞ

p
s
�1

þ þwspsðzjs�TsÞ
ps�1
þ

h i
, ð7Þ

where ð�Þþ indicates maxf�,0g.
If subset number q of Y consists beams hLq

,hLqþ1, . . . ,hUq�1,hUq
,

we can then define gðqÞ ¼ ½hðLqÞ hðLqþ1Þ
� � � hðUq�1Þ hðUqÞ�, where

hðkÞ ¼ yT DðkÞ.
We now formally define the algorithms used to execute these

parallel operations. Algorithm 3 describes how to calculate the
voxel dose of the qth beam subset (zðqÞ), which is then used by
Algorithm 4 to calculate the complete voxel dose z. Similarly,
Algorithm 5 describes how to calculate the piece of the gradient
associated with the qth beam subset (gðqÞ), which is used by
Algorithm 6 to obtain the complete gradient rF.

Algorithm 3. Calculate voxel dose zðqÞ of beam subset q on
processor q.
Require Parameter Q (total number of processors), parameter
n (total number of beams), processor number q
1:
 Initialize zðqÞjs ¼ 0 for all sAS, jAf1, . . . vsg
2:
 Set L¼ nðq�1Þ=Qþ1, U ¼ nq=Q
3:
 for k¼L to U do

4:
 Load DðkÞ from hard disk

5:
 Set zðqÞ ¼ zðqÞ þDðkÞxðkÞ
6:
 end for
Algorithm 4. Calculate complete voxel dose z (parallel).
Require Parameter Q (total number of processors), parameter
n (total number of beams)

1:
 Initialize zjs ¼ 0 for all sAS, jAf1, . . . ,vsg
2:
 for q¼ 1 to Q do

3:
 Execute Algorithm 3 on processor q with parameters Q, n
4:
 end for

5:
 Wait for Algorithm 3 to finish on processors 1,2, . . . ,Q

6:
 for q¼ 1 to Q do
Table 1
7:
 Set z¼ zþzðqÞ

Number of voxels in each structure. The bone

marrow is the planning target volume (PTV).

8:
 end for
Structure Number of

voxels
Algorithm 5. Calculate partial gradient gðqÞ associated with beam
subset q on processor q.
Left lung 29,274
Right lung 40,248

Spinal cord 1856

Heart 18,746

Left kidney 5638
Require Parameter Q (total number of processors), parameter
n (total number of beams), parameter z (total voxel dose),
processor number q
Right kidney 5263
1:
 Initialize yjs ¼ 0 for all sAS, jAf1, . . . ,vsg
Liver 74,986
2:
 for k¼ 1 to n do

Stomach 12,195
3:
 for all sAS do

PTV 331,715

Parotid and submandibular 959
4:
 for j¼ 1 to vs do
glands
5:
 if zjsoTs then

Esophagus 1138
6:

Bowel 119,557
Set yjs ¼�
1
vs

w
s
p

s
ðTs�zjsÞ

p
s
�1
Bladder 4662
7:
 else

Oral cavity 4926
8:

Left eye 130
Set yjs ¼
1
vs

wspsðzjs�TsÞ
ps�1
Right eye 117
9:
 end if
Total 651,410

10:
 end for

11:
 end for
12:
 end for

13:
 Set L¼ nðq�1Þ=Qþ1, U ¼ nq=Q
14:
 Initialize gðqÞi ¼ 0 for all iA
SU

k ¼ L Bhk
15:
 for k¼L to U do

16:
 Load DðkÞ from hard disk

17:
 Set hðkÞ ¼ yT DðkÞ
18:
 end for

19:
 Set gðqÞ ¼ ½hðLÞ hðLþ1Þ . . . hðU�1Þ hðUÞ�
Algorithm 6. Calculate complete gradient rF (parallel).
Require Parameter Q (total number of processors), parameter
n (total number of beams)

1:
 for all q¼ 1 to Q
2:
 Execute Algorithm 5 with parameters q, n on processor q
3:
 end for

4:
 Wait for Algorithm 5 to finish on processors 1,2, . . . ,Q

5:
 Set rF ¼ ½gð1Þ gð2Þ � � � gðQ�1Þ gðQÞ�
6. Results

All of the algorithms presented were implemented in MATLAB
and tested on a 64-bit, 32-node CentOS cluster, with each node
having 8 GB of memory and eight AMD Opteron 2354 2.2 GHz
processors. All parallelizations were performed using the MATLAB
Parallel Computing Toolbox, with each task to be performed in
parallel specified using the createTask function and all of the tasks
assigned to a specific job created using the createJob function.

A single patient case provided by The Princess Margaret
Hospital (Toronto, ON, Canada) under research ethical clearance
was used to demonstrate the performance of the algorithms.
Table 1 displays the number of voxels in each structure that was
considered for this patient case. Only the bone marrow from the
pelvis up was considered, as the legs do not contain any critical
structures and can be irradiated separately. The total set of beams
B consisted of 396 beams. These beams were obtained by
allowing the gantry angle to range from 01 to 3501 in 101 incre-
ments and consider 11 equispaced couch-z translations from just
below the patient’s pelvis to the top of the patient’s head. The
number of bixels in each beam ranged from 1759 to 3146, with a



Table 3
Add/Drop iteration number, projected gradient (P.G.) time, average total FMO time

and final FMO value statistics for the three types of warm-start techniques.

Statistic Cold-start Warm-start

(averaging)

Warm-start

(least-squares)

Add/Drop iterations

Mean 11.8 37.8 41.7

St. dev. 2.5 3.4 2.5

Minimum 7 28 36

Maximum 17 49 48

PG time (min)

Mean 58.9 16.5 8.7

St. dev. 12.5 1.4 0.5

Minimum 37.5 12.4 7.4

Maximum 92.4 19.4 10.0

AT FMO time (min)

Mean 58.9 16.5 13.7

St. dev. 12.5 1.4 0.6

Minimum 37.5 12.4 12.4

Maximum 92.4 19.4 15.0

F ðYn
Þ

Mean 13,571.9 11,139.8 10,799.7

St. dev. 2684.6 1001.1 971.2

Minimum 11,216.0 10,169.4 9992.9

Maximum 21,628.5 16,378.4 15,994.9
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mean of 2469 and a median of 2464. The only bixels allowed in
each beam were those which were able to deliver positive dose to
at least one target voxel; as the target is essentially the entire
skeletal structure, each beam contains a large number of usable
bixels.

6.1. Computational results

Each type of line search procedure was tested on 50 different
randomly generated 30-beam solutions. The initial bixels of all of
the beams were set to 0.3. The percentage change tolerance was
0.01 and s was set to 0.0001. These values were chosen as our
preliminary testing indicated that they provided the best perfor-
mance for all of the line search procedures. For the reduced step
projected gradient implementation, the step length is reduced after
m¼3 iterations to a new step length of R ¼ 12:5. For the back-
tracking, reduced step, golden section, dichotomous and quadratic
interpolation implementations, the initial step length was R0 ¼ 50.
For the backtracking and reduced step implementations, the scale
factor applied in each line search iteration was b¼ 0:25. For the
dichotomous search, the distinguishability constant d was set to
0:5=JrFðxðiÞÞJ in each iteration. For the forward line search imple-
mentation, the initial step length was R0 ¼ 3 and the scale factor
applied in each line search iteration was g¼ 8. These procedure-
specific parameter values were selected as our preliminary testing
indicated that they provided the best balance between computa-
tional time and FMO value for their respective procedures. No
parallelization was employed in the implementations of these line
search methods.

Table 2 shows statistics related to the number of projected
gradient outer loop iterations, the total execution time and final
objective function value for all six implementations over all 50
starting points. On average, the reduced step projected gradient
yields the lowest final objective function values while the golden
section projected gradient yields the highest values. The golden
section and dichotomous strategies both have the highest execu-
tion times, likely because these algorithms decrease the step
length relatively slowly compared to the other methods.

Each warm-start procedure was tested on the sequential cycling
Add/Drop (SCAD) algorithm, described in [1]. In the resulting Add/
Drop implementations, the neighborhood search was parallelized
by assigning each FMO evaluation to a separate processor/node.
We note that this form of parallelization is different from the type of
parallelization described in Section 5; it was done to speed up the
execution of the Add/Drop method, because the FMO calculations
for solutions which neighbor the current solution are independent of
Table 2
Projected gradient (PG) iteration numbers, execution times and final objective function

Statistic Backtracking Reduced step Forward

PG iterations

Mean 12.2 13.0 13.9

St. dev. 4.1 4.5 5.8

Minimum 3 3 2

Maximum 20 22 23

Time (min)

Mean 54.4 48.5 69.1

St. dev. 19.1 15.8 26.3

Minimum 11.8 12.1 13.9

Maximum 96.5 83.0 115.6

FðxnÞ

Mean 17,328.0 17,310.0 17,765.5

St. dev. 5763.9 5414.4 6753.9

Minimum 11,663.1 12,009.4 11,662.1

Maximum 35,339.0 35,339.0 42,207.6
each other and can all be performed at the same time. We empha-
size that this problem-based parallelization is not the focus of
this particular computational experiment. No parallelizations were
applied at the FMO level.

The neighborhood sizes used for each warm-started Add/Drop
implementation were the same as those used in [1]. For the cold-
start mode of FMO initialization, k was set to 0.3 (the same value
used for the line search procedures). The optimization problem
WARM-LS for the warm-start using least-squares mode was
solved using the MATLAB command lsqlin using the default
parameters. These three implementations were then executed on
50 randomly chosen 30-beam starting points and were allowed
to run for 12 h, as this is typically how much time would be
available in a clinical environment. Table 3 presents computa-
tional results. For each starting point, the projected gradient run
times of all of the sets of beams sampled over the course of
the Add/Drop execution were averaged to obtain an average
projected gradient time; the average projected gradient time
statistics are obtained from these (50) average projected gradient
value statistics for the six types of line search techniques.

Golden section Dichotomous Quad. interp.

10.3 10.7 9.0

4.7 4.1 2.2

2 2 5

22 24 15

55.8 61.1 40.1

29.4 28.9 11.4

9.7 10.0 21.3

131.5 164.4 72.6

20,875.0 19,670.5 18,789.2

6363.2 5430.3 2792.5

14,301.4 13,360.4 14,872.1

42,220.2 36,904.4 25,445.6
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times. Similarly, for each starting point, the total FMO time
(which is the projected gradient run time plus any pre-projected
gradient warm-start procedure) of all of the sets of beams
sampled over the course of the Add/Drop execution were aver-
aged to obtain an average total FMO time; the average total
FMO time statistics are obtained from these (50) average total
FMO times.

Table 3 shows that the two warm-start techniques lead to both
significantly lower projected gradient (PG) run times, which is a
contributing factor to the significantly lower average total FMO
times. The averaging warm-start procedure requires a negligible
amount of time (less than 0.25 s), while the least-squares warm-
start procedure on average takes 5.0 min with a standard devia-
tion of 0.4 min. This is reflected in the Average Total FMO Time
section of Table 3, which shows that in terms of average total
FMO time, the warm-start using least-squares method is only
slightly better than the warm-start using averaging method,
which explains the similarity in Add/Drop iterations and final
optimal FMO values.

The parallelism-enhancements described in Section 5 were used
in an implementation of projected gradient with a backtracking line
search with initial step length R0 ¼ 50, scale factor of b¼ 0:25,
Armijo condition constant s¼ 0:0001 and percentage change toler-
ance e¼ 10�6. These parameters are the same as those used for
the line search testing described earlier in this section, with the
exception of e, which was greatly reduced in order to ensure that the
algorithm does not terminate too early. This implementation was
used to solve the FMO problem using all 396 beam orientations in B
to obtain the best treatment possible with our model. Each objective
function and gradient evaluation was split among 11 nodes; this
number was chosen as it divides evenly into 396 beams and from
our preliminary testing, this was the minimum number of nodes
required to ensure that the 396-beam solution would be very strong
after 6 h of execution. (This is particularly important if the solution
from this algorithm is to be used as a precursor to an algorithm for
generating arc therapy treatments, as discussed at the beginning of
Section 5.) Only one 2.2 GHz processor was used from each node
and each node had 8GB of memory available. The total number of
bixels in the plan was 977,601 while the total number of voxels was
651,410. The projected gradient algorithm was allowed to execute
for just over 24 h.

Fig. 1 shows that the greatest amount of change in the
objective function occurs within the first 5 h. Similarly, Fig. 1 also
shows that the greatest amount percentage change in the objec-
tive function occurs within the first 5 h, indicating that the
projected gradient algorithm can obtain a good solution with
396 beams in 5 h.
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Fig. 1. Plots of objective function value versus time (left) and percentage change in ob

objective function and gradient evaluation for the 396 beam solution. Each objective

described in Section 5.
6.2. Treatment plan quality

In order to judge treatment quality beyond the simple value
of F ðYÞ, we use a dose volume histogram (DVH), a graphical
representation of the dose delivered to each structure. A DVH is a
graph for a particular structure which indicates, for each level of
dose, what percentage of the structure’s volume receives that
amount of dose or higher. The TMI treatment requirements are
that at least 95% of the bone marrow volume must receive at least
12 Gy and a maximum of 25 Gy, and at most 20% of the bone
marrow can receive more than 20 Gy. Further, the majority of
each organ volume should receive 8 Gy or less.

Fig. 2 shows the reduced step line search solution for a single
starting point. The solution achieves fairly high target coverage
(95% of the target volume receives at least 11.5 Gy) and meets the
target overdose constraints. Most organs meet the treatment
criterion. The most overdosed organs are the stomach, bowel,
bladder and spinal cord; although it is difficult to control over-
dosing in the spinal cord [1], it may be possible to lower the
overdosing in the stomach, bowel and bladder with more pro-
jected gradient iterations.

Fig. 3 shows DVHs of representative final beam solutions
obtained using the cold-start and the warm-start using least-
squares methods. The warm-start using averaging solution is not
shown as it is very similar to the warm-start using least-squares
solution. From these DVHs, we can see that the warm-start
methods are able to achieve better plan quality than the cold-
start method. In particular, we can see that the warm-start
methods lead to lower median doses in the critical organs while
achieving slightly higher dose in the bone marrow (indicated as
‘‘hemiPTV’’ in the DVHs). We can also see that the tails of a
number of organ DVH curves drop off at a slower rate in the cold-
start plan. Furthermore, we can see that a larger volume of the
bone marrow receives more than 20 Gy in the cold-start plan than
in both the warm-start plans, which is an important consideration
as extensive overdose to the bone marrow can lead to fibrosis,
which can detrimentally affect the success of the subsequent
bone marrow transplant. Another important difference is that
both of the warm-start plans achieve satisfactory target dose;
the warm-start using least-squares plans ensures that 95% of the
bone marrow receives at 12.7 Gy, while the cold-start plan can
only ensure that 95% of the bone marrow receives at least 9.8 Gy.

Fig. 4 shows the 396-beam solution at 6 h, 12 h and shortly
after 24 h of parallelism-enhanced projected gradient execution.
From these DVHs, we gain a number of insights. First, the DVHs of
the 396-beam solution are qualitatively similar to those of the
least-squares warm-start 30-beam solution. In particular, of all of
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function and gradient evaluation was split across 11 processors in the manner
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Fig. 3. DVHs of final beam solutions obtained from two different warm-started Add/Drop methods after 12 h of execution, started from the same initial 30-beam solution.

Top: cold-start solution and bottom: warm-start using least-squares solution.
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Fig. 2. DVHs of a 30-beam solution, with bixels optimized using the projected gradient algorithm with the reduced step backtracking line search strategy (described in

Section 3).
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the critical organs, the spinal cord receives the most dose; after
the spinal cord, the lungs receive the next highest amount of dose,
with just under 20% of the volumes of the left and right lungs
receiving more than 10 Gy. With regard to improvement, there is
an increase in dose to the target—in the 30-beam plan, 95% of
the target volume receives more than 12.7 Gy, while the same
percentage of the target volume in the 396-beam plan receives
more than 13.5 Gy. There are also slight improvements to the
dose received by many critical organs. Comparing the 396-beam
solutions at the 6-, 12- and 24-h marks, we can see that there
are very small changes in the dose received by many organs and
the bone marrow (95% of the target volume receives 13.1 Gy or
more at 6 h, 13.4 Gy or more at 12 h and 13.5 Gy in the final plan).
These small changes match the behaviour shown in the plots
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Fig. 4. DVHs of 396-beam solution after 6 h (top), 12 h (middle) and 24 h (bottom) of projected gradient execution time. Each objective function and gradient evaluation

was split across 11 processors in the manner described in Section 5.
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of the previous section, which show that most of the change in
the objective function value occurs in the first 5 h, and that the
rate of change in the objective function is greatly reduced
after 6 h. It is interesting to observe that the 396-beam solution
obtained after 6 h is just as good as the warm-start using
least-squares 30-beam solution in Fig. 3 with respect to both
target dose and organ sparing. This suggests that this type of
parallelized projected gradient algorithm has strong potential to
be used to generate fixed beam solutions that could then be used
to develop arc therapy treatment plans in a clinically realistic
timeframe.
7. Conclusion

Several methods for improving the computational tractability
of TMI using IMRT have been presented. The reduced step back-
tracking line search strategy provides the best results of the six
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line search methods, both in terms of computation time and final
objective function value. However, the clinical improvement that
this strategy exhibits over the ordinary backtracking line search
strategy is only modest.

Both warm-start techniques led to a significant reduction in
computation time over the standard cold-start method, and also
led to significantly lower final FMO values and improved treat-
ment plans. Both of these warm-start methods can be readily
implemented in MATLAB and can be applied to FMO for other
treatment planning problems, not just TMI. Also, these methods
help to highlight the versatility of our FMO formulation and why
it may be desirable to use the exact FMO value (as opposed to an
approximation or a different figure of merit) as the quality of a set
of beams.

Finally, from our parallelism-enhanced FMO results, we have
discovered that it is possible to obtain strong 396-beam solutions
with 11 processors after just 6 h of execution. Furthermore,
we have also discovered that the 30-beam Add/Drop solutions
compare quite favorably to the 396-beam solutions we have
presented here, highlighting the power of the Add/Drop algorithm
for IM-TMI treatment planning.

In future work, we could consider other kinds of warm-start
procedures to speed up FMO evaluation in Add/Drop. In particu-
lar, we could consider warm-start schemes where instead of
directly reusing the bixels of Y\fhkg, we modify those bixels in
response to the dose deposition coefficients of the new beam, ~hk.
It would also be interesting to more closely examine the structure
of our FMO problem and the structure of the Dijs values to
determine if it is possible to place some kind of guarantee on
the quality of the initial set of bixels obtained by the warm-start
using averaging and warm-start using least-squares techniques
(e.g., if the Dijs of hk and ~hk differ by some amount, then what kind
of objective function value can we expect for the initial bixel
values ~x?).

The implementation of projected gradient using the paralle-
lized objective function and gradient algorithms has yielded some
interesting results about where our previous 30-beam solutions
stand. An intriguing observation that we made about this algo-
rithm was that the solution obtained after 6 h generally compared
quite favorably to the 30-beam solution obtained after 12 h. It
would be interesting to explore whether these solutions could in
some way be used to identify which beams in the entire collection
are better than others and guide the design of plans using smaller
numbers of beams.

Finally, as stated earlier, arc therapy is a promising alternative to
conventional IMRT for TMI. The parallelism-enhanced projected
gradient algorithm could constitute a first step in designing an arc
therapy plan; the next step would involve designing an algorithm to
determine an appropriate ‘‘route’’ to take through the beams, and to
fill in the bixels along the path in some optimal way.
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