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Abstract

Bone marrow transplants are frequently used to treat diseases such as blood
and bone marrow cancers. To perform a bone marrow transplant, it is neces-
sary to eliminate the patient’s existing bone marrow. In practice, this is most
often achieved by irradiating the patient’s entire body – a process known as
total body irradiation (TBI) – which frequently results in radiation related side
effects. A safer alternative to TBI is total marrow irradiation (TMI), which
is concerned with irradiating the bone marrow and avoiding healthy tissue as
much as possible.

In prior work, we considered the possibility of using intensity modulated ra-
diation therapy (IMRT) for the purpose of TMI and specifically, we developed
algorithms to solve a fundamental problem in IMRT treatment planning known
as the beam orientation optimization (BOO) problem. In this study, we consider
the fluence map optimization (FMO) problem which is at the heart of the BOO
problem and consider several methods of improving FMO solution speed and
quality. In particular, we consider different line search strategies for the pro-
jected gradient algorithm which solves the FMO problem, different warm-start
techniques for speeding up FMO evaluation in a BOO setting, and algorithms
for parallelized objective function and gradient evaluation to improve the speed
of FMO when a large number of beams is used.

We present results from our tests of different line search strategies and dif-
ferent warm start methods. We also report results from using our parallelism-
enhanced FMO algorithm to solve the FMO problem with 396 beams. We
discuss the quality of the different line search and warm start methods; we also
discuss the quality of the 30-beam solutions we studied in this and prior work
and the limitations of using IMRT for TMI. We conclude by identifying some
interesting questions for future research.
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Chapter 1

Introduction

Bone marrow transplantation, or hematopoietic stem cell transplantation, is one
method of treatment for a number of diseases of the blood and bone marrow.
These include certain forms of cancer (such as leukemia and lymphoma) as
well as other diseases (such as aplastic anemia and sickle cell disease). To
prepare a patient for a bone marrow transplant, the patient’s existing diseased
bone marrow must be completely eliminated. This is typically done through a
procedure known as total body irradiation (TBI). In TBI, the patient’s entire
body is irradiated with a single, wide-angle beam to a single prescribed level of
dose (e.g. 12Gy).

This type of therapy is ineffective for two main reasons. The first reason
is that healthy organs which are not affected by the disease are irradiated un-
necessarily, leading to post-treatment complications. The second reason is that
for the treatment to be fully effective, all of the patient’s bone marrow must
be eliminated – if any marrow still affected by the disease remains when the
transplant is performed, there is a significant chance of the disease recurring.
Unfortunately, the higher dose levels needed to achieve a higher elimination of
the bone marrow also come with more frequent and more severe toxic effects
in healthy tissue. A clinical example illustrating this tradeoff is Clift et al.
[1991], where the authors show that the relapse rate for acute myeloid leukemia
decreases significantly when the . . . dose is increased from 12 Gy to 15.75 Gy;
at the same time, “the lower relapse probability in the patients receiving the
higher dose . . . [does] not result in improved survival because mortality from
causes other than relapse [increases]”, as patients receiving the higher dose were
more likely to develop radiation-related diseases such as cytomegalovirus (CMV)
pneumonia and hepatic veno-occlusive disease.

One type of radiation therapy that could be more appropriate for this type
of therapy is intensity modulated radiation therapy (IMRT). In conventional
radiation therapy, such as the type used in TBI, each beam is of homogeneous
intensity: at any point in the cross-section of the beam, the intensity is always
the same. In IMRT, each beam that is used in the treatment is made up of
several thousand smaller beams or beamlets; the intensity of each beamlet can
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be controlled individually. As a result, the three-dimensional shape of the dose
delivered by the beams can be conformed quite accurately to the shape of the
target being irradiated (in this case, the patient’s bone marrow). A method of
treatment that specifically targets the bone marrow is classified as total marrow
irradiation (TMI); in this case, the use of IMRT for TMI is termed intensity
modulated total marrow irradiation (IM-TMI).

With regard to alternatives to TBI, there are have been some past stud-
ies into alternative modalities for TMI, including IMRT. Aydogan and Roeske
[2007] and Aydogan et al. [2007] consider the delivery of TMI using IM-TMI
(intensity modulated total marrow irradiation) and show that using standard
commercial planning systems, large reductions in dose to organs such as the
liver, kidneys and heart can potentially be achieved. Schultheiss et al. [2007]
and Wong et al. [2006] consider total marrow irradiation (TMI) using helical
tomotherapy, and similarly show that the dose delivered to critical organs can
be significantly reduced from conventional TMI levels. In contrast to these stud-
ies, we consider the problem of TMI treatment planning within a mathematical
framework that we have successfully applied to TMI previously in Mǐsić et al.
[2009] and Mǐsić et al. [2010]; we also consider non-coplanar beams, which allows
issues of uncertainty in the dose deposited to be avoided.

In order to use IMRT for TMI, there are two basic problems that must
be solved. The first problem is concerned with how the beamlet intensities,
or fluences, should be set for a given ensemble of beams to deliver a certain
dose to the bone marrow while minimizing the dose delivered to healthy tissue.
This problem is known as the fluence map optimization (FMO) problem; in this
study, we use a convex optimization formulation of FMO that was first proposed
in Romeijn et al. [2006] and has been used successfully in previous studies (see
Aleman et al. [2008b] and Aleman et al. [2008a]). We solve this optimization
problem using the projected gradient algorithm, a standard algorithm for solving
such problems. This is the primary problem we will be considering in this study;
in particular, we will be studying techniques for improving both the speed with
which the FMO problem is solved, and improving the quality of the final beamlet
intensities returned.

The second problem is the beam orientation optimization (BOO) problem,
which is concerned with determining how a set of beams should be oriented for
the dose to be delivered optimally. The FMO problem plays a substantial role
in our formulation of the BOO problem, because the optimal objective function
value of the FMO problem for a set of beams quantifies the quality of that set
of beams – that is, how capable the beams are of delivering the prescribed dose
to the bone marrow while minimizing the dose delivered to healthy tissue. We
have already studied the BOO problem for TMI previously in Mǐsić et al. [2010];
although we will not directly be dealing with the BOO problem, the second part
of this study is concerned with fluence map optimization in the context of BOO.

This study has three main goals. The first goal is to study the effectiveness
of three different strategies for performing the line search phase of the projected
gradient algorithm. The line search strategy that is used in the projected gra-
dient algorithm is very important because it determines the amount of time
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required to solve the problem as well as the quality of the end solution. In
a clinical environment, it is important to be able to obtain quality solutions
quickly as there is typically a very limited timeframe available for treatment
plan optimization.

The second goal is to study three different techniques for warm-starting FMO
evaluation in the context of the Add/Drop algorithm. These techniques are of
interest because of the fact that two sets of beams which differ by only one beam
will typically have very similar optimal beamlet intensities; by exploiting this
similarity, it is possible to greatly increase the rate at which the FMO problem
is solved in the context of the Add/Drop algorithm.

The third goal of this study is to develop parallelized algorithms for objective
function and gradient evaluation in the context of FMO, and to employ these
algorithms to solve the FMO problem with all possible beam orientations. The
motivation behind this part of the study is to learn about the absolute qual-
ity of our solutions in Mǐsić et al. [2010]: it is relatively straightforward to see
whether a treatment is better than conventional TBI, but it is much more diffi-
cult to determine how good the treatment is and whether a better treatment is
possible. By solving the FMO problem with all possible orientations we obtain
a treatment plan that is the best (or close to the best) that can be physically
realized for a patient, and we thus gain insight into how good treatments with
smaller numbers of beams really are.
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Chapter 2

Background

2.1 Beam Orientation Optimization

The beam optimization optimization (BOO) model that we use is identical to
the one used in Mǐsić et al. [2010]. Although the BOO problem is not the focus
of this study and we do not explicitly define any new algorithms to solve it, we
will need to make reference to some variables from BOO (and Add/Drop) when
we discuss warm-start methods in Chapter 4, so we will briefly describe BOO
and Add/Drop here.

2.1.1 Model

We use θ to represent a single beam orientation, and Θ to represent a set of
beams – that is, Θ = (θ1, . . . ,θn), where n is the number of beam orientations
in Θ. We consider non-coplanar beam orientations obtained from rotating the
gantry of the linear accelerator and translating the couch in the z-axis, so each
beam orientation can be fully described by its gantry rotation and couch-z
translation, i.e., θ = (θG, θz), where θG is the gantry rotation and θz is the
couch-z translation.

Although the linear accelerator that is used to deliver IMRT treatments
is technically capable of delivering radiation from any gantry angle and any
couch-z translation, we discretize the set of gantry angles and the set of couch-z
translations so that the gantry angle θG and couch-z translation θz are re-
stricted to lie in the finite sets SG and Sz respectively. In this study, we
discretize the range of gantry angles [0◦, 360◦) at every 10◦, resulting in the
set SG = {0, 10, 20, . . . , 350}. Similarly, we discretize the range of couch-
z translations [−160 cm,−60 cm] at every 10cm, resulting in the set Sz =
{−160,−150,−140, . . . , −60}.

We define the set of possible beam orientations as B = {θ | θG ∈ SG, θz ∈
Sz}. Consequently, the set of beams Θ is an element of the Cartesian product
of n copies of B ( Θ ∈

∏n
i=1 B).
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Finally, we define the function F :
∏n

i=1 B → R as the optimal objective
function value obtained from solving the fluence map optimization problem
(described in the next section) using the bixels of a set of beams Θ ∈

∏n
i=1 B.

The function F is used as a measure of the quality of a set of beams, with lower
values corresponding to better sets of beams. With these definitions we can
define the BOO problem as

minimize F(Θ)

subject to Θ ∈
n∏

i=1

B

2.1.2 Add/Drop Algorithm

Due to the nonlinearity and nonconvexity of the function F and the lack of an
analytic relationship between Θ and F(Θ), this optimization problem is very
difficult to solve. We thus turn to the Add/Drop algorithm, which is a type
of neighborhood search heuristic for solving the BOO problem. The Add/Drop
algorithm was first studied in Kumar [2005] and subsequently studied in Aleman
et al. [2008a] to solve the BOO problem for site-specific treatment planning.
More recently, it was applied in our previous work (see Mǐsić et al. [2010]) to
the BOO problem for TMI using IMRT. The form of Add/Drop that is used in
this study is the form used in Mǐsić et al. [2010]; we describe it briefly here.

We use D to represent the set of degrees of freedom of each beam. For
this study, D = {G, z}, where G corresponds to the gantry angle and z to the
couch-z translation.

The Add/Drop algorithm works in the following way. In iteration i, we have a
current iterate, Θ(i). We establish a neighborhood Nbd(Θ(i)) around Θ(i), where
Nbd(Θ(i)) is the set of all Θ ∈

∏n
i=1 B such that Θ is obtained by modifying beam

θb of Θ(i) with respect to component d. We identify the solution Θ̄ ∈ Nbd(Θ(i))
which minimizes F on Nbd(Θ(i)). We check whether F(Θ̄) < F(Θ(i)); if so,
the solution Θ̄ improves our objective function value, so we set Θ(i+1) = Θ̄.
Otherwise, we consider a different pair (b, d) ∈ {1, . . . , n} ×D, which furnishes
a different type of neighborhood around Θ(i).

The algorithm terminates when all Θ ∈
⋃n

b=1

⋃
d∈D Nbd(Θ(i)) have been

examined without improvement to the current objective function value, F(Θ(i)).
(For a more detailed description, the reader is referred to Mǐsić et al. [2010].)

2.1.3 Relevant Literature

The BOO problem for IMRT treatment planning has been well studied. Ale-
man et al. [2008a], Pugachev and Xing [2002], Stein et al. [1997], Rowbottom
et al. [2001], Rowbottom et al. [1999a] and Djajaputra et al. [2003] all apply
some form of simulated annealing to BOO. Genetic algorithms have similarly
been applied to the BOO problem - see Hou et al. [2003], Li et al. [2004],
Haas et al. [1999], Ezzell [1996] and Schreibmann and Xing [2005]. Other meta-
heuristic approaches that have been applied include evolutionary algorithms (see
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Schreibmann et al. [2004]), neural networks (see Rowbottom et al. [1999b]) and
particle swarm optimization (see Li et al. [2005]). Some studies, such as Haas
et al. [1999], Schreibmann et al. [2003] and Potrebko et al. [2008], approach BOO
from a geometric standpoint and consider the area/volume of intersection of the
beams. Gaede et al. [2004] optimize beam orientations by scrutinizing the rela-
tive change in existing beamlet intensities when a new beam is added to a current
set of beams. Craft [2007] uses a gradient search algorithm where the gradient
is constructed using linear programming (LP) duality theory. Söderström and
Brahme [1992] approach beam selection by considering the integral of the low
frequency portion of the Fourier transform of the optimal beam profile for each
beam, and also by considering the entropy of the optimal beam profiles. A
related information theoretic approach which has also been applied to BOO is
vector quantization, which is employed by Ehrgott et al. [2008], Acosta et al.
[2008] and Reese [2005]. Some studies have taken a more graph-theoretic ap-
proach to BOO: Ehrgott et al. [2008] approaching BOO as a set cover problem,
while Reese [2005] and Lim et al. [2009] connect BOO to the p-median problem.
D’Souza et al. [2008] use the method of nested partitions, where the solution
space for the BOO problem is successively divided into smaller subregions iter-
ation by iteration, with promising subregions being explored more extensively
than less promising one.

Another heuristic idea that has also been studied for BOO is that of beam’s
eye view (BEV), which considers what portions of different structures are “seen”
by different beams (see Pugachev and Xing [2002] and Pugachev and Xing
[2001]). Related to this idea is that of target’s eye view (TEV) where, for
each critical structure, the beam’s eye view from every possible orientation is
considered, allowing each beam to be scored differently depending on how much
overlap there is between the critical and target structures (see Cho et al. [1999]).
Gokhale et al. [1994] consider the attenuation of radiation emanating from a
hypothetical source placed at the target and select the paths of least resistance
(resulting in the lowest degree of attenuation). In addition to heuristic methods,
exhaustive search strategies have also been applied to BOO – see Wang et al.
[2004], Liu et al. [2006], Stein et al. [1997] and Meedt et al. [2003]. BOO has
also been extensively studied within the framework of integer and mixed-integer
programming: see Lee et al. [2006], Ehrgott and Johnston [2003], D’Souza et al.
[2004], and Lim et al. [2008]).

2.2 Fluence Map Optimization

2.2.1 Model

Like the BOO model that we use, the fluence map optimization (FMO) model
that we use is identical to the one used in Mǐsić et al. [2010]; we briefly describe
it here for later reference.

Suppose we are given a set of beams Θ. The main decision variable of the
FMO problem is the variable xi, which is the intensity or fluence of beamlet i;
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the index i belongs to the set BΘ, which is the set of bixel indices of all beams
in Θ.

We let S represent the set of critical structures and T represent the set of
target structures. We let zjs represent the total dose received by voxel j in
structure s. The index j ranges from 1 to vs, where vs is the number of voxels
in structure s. We let Dijs represent the dose deposition coefficient of beamlet
i in voxel j of structure s – that is, the dose delivered to voxel j of structure s
by beamlet i at unit intensity.

If we make the assumption that the dose to each voxel in each structure is
additive, then we can relate the xi values to the zjs values by defining

zjs =
∑

i∈BΘ

Dijsxi, (2.1)

i.e. the sum of all of the beamlet intensities of the beams weighted by their
corresponding Dijs values.

With the dose defined, we are now interested in assigning a value to how
well the actual dose in each voxel matches the dose we desire in that voxel. We
let Fjs(zjs) be the penalty function associated with voxel j in structure s, and
we define it as

Fjs(zjs) =
1
vs

[
ws (Ts − zjs)

p
s

+ + ws (zjs − Ts)
ps

+

]
, (2.2)

where Ts is the target dose for structure s, ws and ws are the coefficients for
underdosing and overdosing of structure s, p

s
and ps are the powers for un-

derdosing and overdosing of structure s, and the function (·)+ is defined as
(·)+ = max(·, 0). Essentially, the value Fjs(zjs) represents the weighted de-
viation of the dose in zjs from the target dose of structure s. To ensure the
resulting optimization problem is convex, we set ws, ws > 0 and p

s
, ps > 1.

Having defined Fjs, we define our optimization problem as

minimize F (x) =
∑
s∈S

vs∑
j=1

Fjs(zjs)

subject to zjs =
∑

i∈BΘ

Dijsxi, ∀j ∈ {1, . . . , vs}, ∀s ∈ S ∪ T

xi ≥ 0, ∀i ∈ BΘ

We solve this optimization problem using the projected gradient algorithm,
which is described more fully in Section 3.2.

2.2.2 Relevant Literature

Many other formulations of the FMO problem exist in the literature. Some
studies formulate the problem as a MIP problem (see Preciado-Walters et al.
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[2004], Lee et al. [2003, 2006] and Lim et al. [2008]), while others consider FMO
as a multi-criteria optimization problem (see Küfer et al. [2003], Hamacher and
Küfer [2002] and Lahanas et al. [2003]). With regard to convex optimization
formulations, the FMO problem has previously been modelled as an LP (see
Craft [2007], Romeijn et al. [2006], Hamacher and Küfer [2002], Küfer et al.
[2003] and Lim et al. [2008]), second-order cone program (SOCP) (see Zinchenko
et al. [2008]), weighted least-squares problem (see Gaede et al. [2004]) and as a
generic convex optimization problem (see Choi and Deasy [2002]).

The projected gradient algorithm which we will discuss in the next chap-
ter has been widely used in radiotherapy treatment planning. For examples
of different types of projected gradient techniques that have been applied to
radiotherapy treatment planning, see Trofimov et al. [2005], Men et al. [2009],
Thieke et al. [2003] and Ólafsson et al. [2005].

2.3 Dose Volume Histograms

The objective function F defined in the previous section gives us the total
weighted deviation of the actual dose deposited in the voxels of the patient
geometry from the desired overall dose, which constitutes one measure of the
quality of a collection of beamlet intensities. However, we cannot directly deter-
mine from a given value of F what the resulting dose distribution in the patient
geometry will be. A high value, for instance, could mean that the bone marrow
is being heavily underdosed, but could just as easily mean that some important
organs are being overdosed; furthermore, we do not really know a priori whether
a value is “high” or “low” in an absolute sense.

It is possible to represent the dose distribution delivered by a treatment to
different structures through what is known as a dose volume histogram (DVH).
A DVH is a graph for a particular structure which tells us, for each level of
dose, what percentage of the structure’s volume receives that amount of dose or
higher. In the case of a critical organ, this graph can then be evaluated using
medical guidelines and past experience to determine whether the structure will
be spared or not; in the case of the bone marrow, the graph can be evaluated
to determine whether or not the bone marrow receives enough dose to ensure
the patient does not relapse after treatment.

A set of example DVHs for a TMI treatment is shown in Figure 2.1. In
this set of DVHs (and all subsequent DVHs) hemiPTV represents the patient’s
bone marrow from the hips up; we can see from its curve that roughly 93-94%
of the bone marrow volume receives a dose of 12Gy or more. Our criterion for
sufficient dose to the bone marrow is that 95% of the volume of the bone marrow
must receive at least the target dose of 12Gy; in this case, the treatment plan
falls slightly short of this requirement. We can also see that the spinal cord
(represented by cord) begins to drop off from 100% volume at roughly the 5Gy
point; this indicates that the entire volume of the spinal cord receives at least
5Gy. This meansthat the treatment plan delivers significantly more dose to the
spinal cord than it does to the other organs (for any other organ, the percentage
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Figure 2.1: Example DVHs.

of the volume that receives at least 5Gy is less than 50%), and thus does not
do as good a job of sparing the spinal cord as it does for the other organs.

For TMI, the ideal DVH for a critical structure would be a step function
that drops from 100% at 0Gy to 0% immediately after, indicating that the
entire organ volume receives no radiation. The ideal DVH for the bone marrow
would be a step function that is 100% between 0 and 12Gy, and drops to 0%
immediately after 12Gy, indicating that the entire bone marrow volume receives
exactly 12Gy. Thus, to perform a quick, heuristic evaluation of a set of DVHs
for a TMI treatment plan, one would look for how closely the organ curves
resemble a step function at 0Gy (and how close they are in general to the (0Gy,
0%) point), and how closely the bone marrow curve resembles a step function at
12Gy. (In a conventional TBI treatment, all of the patient’s structures receive
12Gy, so the DVH curve of each organ would in theory resemble a step function
from 100% to 0% at 12Gy.)

Currently, due to the low level of planning required for TBI, there are no
universally agreed upon criteria for TMI treatments. We use the following cri-
teria, which we developed together with our collaborators at Princess Margaret
Hospital, to evaluate treatment plans:

1. At least 95% of the bone marrow volume must receive at least 12Gy;

2. At most 20% of the bone marrow volume can receive 20Gy or more;

3. None of the bone marrow volume can receive 25Gy or more; and

4. The majority of the volume of each organ should receive below 8Gy.
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The first condition ensures that the bone marrow is sufficiently eliminated
before the transplant, while the last condition ensures that no organ is signifi-
cantly overdosed. The second and third conditions ensure that the bone marrow
is not significantly overdosed. It is important to control the degree to which the
bone marrow is overdosed because at doses of 30Gy and above, fibrosis begins
to occur, which prevents the newly transplanted bone marrow from success-
fully integrating into the patient’s bones and the patient’s body. We thus limit
the volume receiving at least 20Gy and at least 25Gy to protect against this
possibility.
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Chapter 3

Line Search Strategies

3.1 Introduction

The first form of computational enhancement to fluence map optimization in the
context of total marrow irradiation that we will study will be the use of different
line search strategies in the projected gradient algorithm. In particular, we will
study the standard backtracking line search strategy, a backtracking line search
strategy with step length reduction and a forward line search strategy. The type
of line search strategy is of direct interest to us in our goal of improving fluence
map optimization because the line search strategy determines both the quality
of the step (which ultimately affects the final FMO value obtained) and how
many different step lengths are tested (and thus how many objective function
evaluations occur) in each iteration of projected gradient.

We will begin by describing how the projected gradient algorithm works; we
will then describe the three different line search strategies, and present results
for all three resulting implementations of projected gradient.

3.2 Projected Gradient

The projected gradient algorithm is a general algorithm that can be used solving
convex optimization problems, where the objective function is a convex function
and the feasible set is a convex set. Given an initial solution, the algorithm
determines an appropriate step length, moves by that amount in the direction
of the negative gradient and projects that solution, if it is infeasible, onto the
feasible set. The algorithm is formally presented as Algorithm 1.

In Algorithm 1 the function π maps x, which may be infeasible, to x̂. For
the FMO problem that we are concerned with, the only constraints placed on
the variables are that each variable must be greater than or equal to zero, and
less than or equal to some upper bound U on the beamlet intensities. As a
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Algorithm 1 Generalized Projected Gradient
Require: Percentage change tolerance ε
1: Generate an initial solution x(0)

2: Set p = 0.
3: while p > ε do
4: Generate a step length λ
5: Set x(i+1) = π(x(i) − λ∇F (x(i)))
6: Set p = (F (x(i))− F (x(i+1)))/F (x(i))
7: end while

result, the coordinates of x̂ = π(x) are defined as follows, for all i ∈ BΘ:

x̂i =

 0 if xi < 0,
xi if 0 ≤ xi ≤ U,
U if xi > U.

(3.1)

To ensure that the sequence of iterates (x(i))∞i=1 converges to the global min-
imum of the optimization problem reasonably quickly, the step lengths should
be chosen to satisfy certain conditions. For the line search variations that we
study, we require that the the step length λ satisfies the sufficient decrease (also
known as Armijo) condition,

F (π(x(k) − λ∇F (x(k)))) ≤ F (x(k))− σ

λ
‖x(k) − π(x(k) − λ∇F (x(k)))‖2, (3.2)

where σ ∈ (0, 1). (Details on this condition in the context of projected gra-
dient can be found in Bertsekas [1976] and in Nocedal and Wright [2006] for
unconstrained problems.)

There is another condition that could potentially also be imposed on the
step length λ called the curvature condition (see Nocedal and Wright [2006])
to ensure that the algorithm does not take very small steps. However, this
condition is undesirable from a computational standpoint because in order to
verify that it is satisfied, we would also need to compute the gradient of F at
every iterate x̃ corresponding to a potential step length λ. Furthermore, from
our prior experience with the backtracking projected gradient algorithm in the
context of Add/Drop in Mǐsić et al. [2010] (which is described in the next section
and does not employ such a condition), we know that it is possible to obtain
quality solutions even in the absence of such a condition.

3.2.1 Backtracking Line Search

The step length λ in Algorithm 1 can be chosen using a number of different ways.
The backtracking method used here is the backtracking line search strategy of
Bertsekas [1976], which is shown here as Algorithm 2. This type of line search
strategy selects a step length by starting with an initial step length R, checking
whether the resulting solution x̃ satisfies the sufficient decrease, and scaling it
by a factor β (where β ∈ (0, 1)) until it satisfies the condition.
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Algorithm 2 Projected Gradient, Backtracking Line Search
Require: Percentage change tolerance ε < 1, initial length R0, scale factor

β ∈ (0, 1), constant σ ∈ (0, 1)
1: Generate an initial solution x(0)

2: Set R = R0

3: Set p = 1
4: while p > ε do
5: Set λ = R/‖∇F (x(i))‖
6: Set x̃ = π(x(i) − λ∇F (x(i)))
7: while F (x̃) ≤ F (x(i))− σ

λ‖x
(i) − x̃‖2 do

8: Set λ = βλ
9: Set x̃ = π(x(i) − λ∇F (x(i)))

10: end while
11: Set x(i+1) = π(x(i) − λ∇F (x(i)))
12: Set p = (F (x(i))− F (x(i+1)))/F (x(i))
13: Set i = i + 1
14: end while

3.2.2 Reduced Step Line Search

The next type of line search strategy that we consider is the reduced step line
search. This form of line search is identical to the backtracking line search shown
as Algorithm 2, with the slight difference that after m iterations of the outer
loop, the initial step length R is set to a new value R̄, where R̄ < R0. This
algorithm grew out of observations that the backtracking projected gradient
algorithm in general takes steps as large as R0 in the early iterations and in later
iterations, takes steps that are generally of length βR0 or smaller. By reducing
the initial step length after a few outer loop iterations, we eliminate step lengths
that are not likely to satisfy the sufficient decrease condition and thus reduce the
overall number of line search iterations (without severely affecting the quality
of the end solution).

3.2.3 Forward Line Search

In the backtracking line search implementation of projected gradient, we start
from an initial step length R and in each line search iteration that the step
length λ does not meet the sufficient decrease condition, it is scaled down by
a factor of β. In a similar way we can define a forward line search version of
the projected gradient algorithm, where we start from an initial step length R
and keep scaling the step length λ up by a factor of γ (γ ∈ (1,∞)) to just
before the point where λ no longer satisfies the sufficient decrease condition.
The procedure is formally defined as Algorithm 3.

The reasoning behind scaling the step length up to just before the point
where it no longer yields a sufficient decrease in F can be explained as follows.
To ensure that the algorithm finds a satisfactory step length using a forward line
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Algorithm 3 Projected Gradient, Forward Line Search
Require: Percentage change tolerance ε, initial length R0, scale factor γ
1: Generate an initial solution x(0)

2: Set R = R0

3: Set p = 0
4: while p > ε do
5: Set λ = R/‖∇F (x(i))‖
6: Set x̃ = π(x(i) − λ∇F (x(i)))
7: while F (x̃) ≥ F (x(i))− σ

λ‖x
(i) − x̃‖2 do

8: Set λ = γλ
9: Set x̃ = π(x(i) − λ∇F (x(i)))

10: end while
11: Set x(i+1) = π(x(i) − λ/γ · ∇F (x(i)))
12: Set p = (F (x(i))− F (x(i+1)))/F (x(i))
13: Set i = i + 1
14: end while

search method, it makes sense that the initial step length should be sufficiently
small so that the line search loop can examine a larger range of step lengths.
However, small step lengths typically always meet the sufficient decrease con-
dition, so if the initial length is very small, then the algorithm will in general
always accept it, leading to a very slow rate of change in the iterate x and
consequently a slow change in the objective function value F (x). By increasing
the step length until it no longer yields a sufficient decrease in F , we are able
to force the algorithm to take larger steps and increase the rate at which the
sequence (x(i))n

i=1 converges to the minimizer of F . (In the case that the first
step length λ = R/‖∇F (x(i))‖ does not satisfy the initial step length, it is also
scaled down by γ. Although we do not check whether the new step length γ · λ
satisfies the sufficient decrease condition, the initial step length of R can be
chosen to be small enough that this is never an issue.)

3.3 Computational Results

Each type of projected gradient was executed on a Dell Intel Core 2 Duo laptop
with a 2.4GHz CPU and 8GB of RAM on ten different randomly generated
30-beam solutions. The initial bixels of all of the beams were set to 0.3. Each
variant also had the same percentage change tolerance of 0.01 and the same
σ value of 0.00001. For the reduced step projected gradient implementation,
m was set to 3. For both the backtracking and reduced step implementations,
R0 = 50 and β = 0.25. For the forward line search implementation, R0 = 3 and
γ = 10.

Table 3.2 shows the final objective function value attained for each starting
point by each implementation of projected gradient. We can see from this
table that generally the reduced step projected gradient yields the highest final
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objective function values while the standard backtracking projected gradient
yields the lowest, which indicates that the reduced step projected gradient yields
lower quality solutions than the backtracking projected gradient. We can also
see that the forward projected gradient method falls between the backtracking
and reduced step methods in terms of final objective function value.

From the perspective of total computation time and number of iterations, the
reduced step projected gradient exhibits the best performance. From Table 3.1,
we see that on average the reduced step method terminates in fewer iterations
than the backtracking and forward methods; similarly, from Table 3.3 we see the
reduced step method also takes less actual time to terminate than the other two
methods. Also, from Table 3.6 we see that the reduced step projected gradient
method requires fewer line search iterations per outer loop iteration than both
the backtracking and forward line search implementations, which conforms to
what we predicted earlier for the reduced step method.

We can also see from the same table that the forward line search method
on average results in a higher number of line search iterations per outer loop
iteration. This is not surprising given our definition of the forward line search
method; if we execute the backtracking method and the initial step length sat-
isfies the sufficient decrease condition, it will be accepted, and the iteration will
terminate with only one line search iteration, corresponding to the initial step
length. (This type of scenario occurs in the early iterations, when the bixels are
still highly suboptimal.) On the other hand, if we execute the forward method
and the initial step length satisfies the sufficient decrease condition (which is
typically the case), then the algorithm will perform at least one more line search
iteration to check if the current step length can be scaled up without violating
the sufficient decrease condition. Thus, the iteration will terminate with at least
two line search iterations. It makes sense, therefore, for the forward line search
method to (on average) have more line search iterations per outer loop iteration
than the backtracking line search method.

It is natural to ask why the reduced step projected gradient method per-
formed significantly worse than the backtracking and forward projected gradient
methods in these tests. One reason why could be that the value of m chosen
for these tests was too low, and that in some early iterations where the back-
tracking method picked a larger step length, the reduced step method picked a
smaller step length, resulting in a smaller immediate decrease and affecting the
decrease achieved in subsequent iterations. It is conceivable that with a higher
value of m, the reduced step method would come closer to achieving the same
level of final objective function value as the backtracking method (as it would
essentially pick the same step lengths for iterations 1 through m). With higher
values of m, however, the benefit of reducing the number of line search iterations
becomes diminished, as fewer iterations will start from the smaller initial step
length.

Another reason why the reduced step method performs worse is that it termi-
nates too early – for starting points 4, 5, 8, 9 and 10, the backtracking projected
gradient is able to perform six more iterations before terminating. It is conceiv-
able that with a lower percentage tolerance, the reduced step projected gradient
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Starting Num. Iter.s Num. Iter.s Num. Iter.s
Point (Backtracking) (Reduced Step) (Forward)

1 17 23 18
2 12 18 13
3 15 21 11
4 17 7 22
5 17 7 8
6 12 15 18
7 17 20 21
8 20 12 18
9 13 7 23
10 20 7 9

Average 16 13.7 16.1

Table 3.1: Total number of (outer loop) iterations for each type of projected
gradient and each starting point. (The average indicates the average number of
iterations for each type of projected gradient, taken over all starting points.)

method would continue for longer and achieve the same objective function value
(or better) by the times that the backtracking projected gradient currently ter-
minates for each of the aforementioned starting points. This is supported by the
results of Tables 3.4 and 3.5, which show that for the very same starting points,
the reduced step projected gradient achieves a significantly higher average re-
duction in objective function value per iteration and per line search iteration
than either the backtracking or the forward projected gradient implementations.

3.4 Treatment Plan Quality

From the computational results in the previous section, we saw that in terms
of final objective function value, the backtracking line search yielded the lowest
values on average, while the reduced step line search yielded the highest on
average. To attain a sense of how these differences in objective function value
map to differences in treatment plan quality, the DVHs of the end solutions
of the backtracking, reduced step and forward line search methods for starting
point 4 are provided as Figures 3.1, 3.2 and 3.3.

From these DVHs, we can see that the significantly higher average final
objective function value associated with the reduced step method translates to
a very poor treatment plan; in Figure 3.2, all of the critical structures have
median doses greater than 5Gy, with some structures (such as the oral cavity,
saliva glands, bowel and bladder) receiving extremely high levels of dose. In
contrast, the DVHs for the backtracking line search solution in Figure 3.1 show
that, with the exception of the left kidney and stomach, the majority of the
critical organs have median doses of approximately 5Gy. Furthermore, there is
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Starting Final Obj. Fn. Val. Final Obj. Fn. Val. Final Obj. Fn. Val.
Point (Backtracking) (Reduced Step) (Forward)

1 12098.9 12230.2 12481.6
2 15275.6 13422.0 15345.9
3 12679.4 12580.5 16087.6
4 12017.1 22455.8 11873.0
5 12829.5 22690.6 18714.6
6 18492.0 17148.7 15552.0
7 12524.1 12806.9 12208.7
8 12479.2 16288.4 13781.7
9 12764.2 21507.1 11724.5
10 11822.9 23452.3 19184.0

Average 13298.3 17458.3 14695.4

Table 3.2: Final objective function value for each type of projected gradient and
each starting point. (The average indicates the average final objective function
value, taken over all starting points.)

Starting Total Time Total Time Total Time
Point (Backtracking) (Reduced Step) (Forward)

1 45.1 51.7 50.4
2 31.7 40.5 38.1
3 42.3 50.9 34.2
4 49.2 15.7 68.1
5 42.0 13.4 22.7
6 32.5 34.0 54.4
7 47.6 46.7 63.7
8 57.3 27.3 53.4
9 34.2 14.5 66.3
10 55.5 14.7 27.2

Average 43.7 30.9 47.8

Table 3.3: Total time required (in minutes) for each type of projected gradient
and each starting point. (The average indicates the average total time for each
type of projected gradient, taken over all starting points.)
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Starting Obj. Fn. Red. per It. Obj. Fn. Red. per It. Obj. Fn. Red. per It.
Point (Backtracking) (Reduced Step) (Forward)

1 3197.5 2319.5 2986.9
2 4354.8 2926.8 3986.0
3 3482.7 2442.8 4535.0
4 3005.1 6273.8 2296.5
5 3296.7 7147.8 6694.7
6 4041.9 3271.7 2788.3
7 3017.9 2526.5 2430.1
8 2665.4 4257.5 2902.3
9 4407.2 7357.2 2451.2
10 2668.9 6513.1 5418.4

Average 3413.8 4503.7 3648.9

Table 3.4: Average objective function reduction per iteration for each type of
projected gradient and each starting point. (The average indicates the average
objective function reduction per iteration for each type of projected gradient,
taken over all starting points.)

Starting OF. Red. per LS. It. OF. Red. per LS. It. OF. Red. per LS. It.
Point (Backtracking) (Reduced Step) (Forward)

1 1550.3 1646.1 1269.4
2 2177.4 2163.3 1594.4
3 1741.4 1744.9 1814.0
4 1457.0 5377.6 984.2
5 1648.4 6126.7 2466.5
6 2020.9 2544.6 1185.0
7 1509.0 1920.1 1034.1
8 1266.0 3345.2 1233.5
9 2203.6 6306.2 1037.0
10 1300.2 5582.7 2064.1

Average 1687.4 3675.7 1468.2

Table 3.5: Average objective function reduction per line search iteration for
each type of projected gradient and each starting point. (The average indicates
the average objective function reduction per line search iteration for each type
of projected gradient, taken over all starting points.)
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Starting Avg. # LS. It. per It. Avg. # LS. It. per It. Avg. # LS. It. per It.
Point (Backtracking) (Reduced Step) (Forward)

1 2.06 1.41 2.35
2 2.00 1.35 2.50
3 2.00 1.40 2.50
4 2.06 1.17 2.33
5 2.00 1.17 2.71
6 2.00 1.29 2.35
7 2.00 1.32 2.35
8 2.11 1.27 2.35
9 2.00 1.17 2.36
10 2.05 1.17 2.63

Average 2.03 1.27 2.44

Table 3.6: Average number of line search iterations per projected gradient iter-
ation for each type of projected gradient and each starting point. (The average
indicates the average number of line search iterations per projected gradient
iteration for each type of projected gradient, taken over all starting points.)

a significant difference in target coverage; the backtracking line search solution
guarantees that 95% of the target volume receives a dose of 11.9Gy or more,
while the reduced step line search can only guarantee that 95% of the target
volume receives 10.1Gy or more.

Comparing the backtracking line search solution and the forward line search
solution, we can see that for this particular instance the difference in treatment
plan quality is quite small; the critical organs receive roughly the same median
dose in both plans, and the forward line search solution also guarantees that
95% of the target volume receives a dose of 11.9Gy or more.
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Figure 3.1: DVHs of backtracking line search solution for starting point 4.
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Figure 3.2: DVHs of reduced step line search solution for starting point 4.
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Figure 3.3: DVHs of forward line search solution for starting point 4.
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Chapter 4

Warm-start Techniques

4.1 Introduction

The Add/Drop algorithm, as explained earlier, is an iterative algorithm which
changes a solution (a set of beams) by modifying (or attempting to modify)
a single beam in a single component in each iteration. As a result, when we
compare the set of beams Θ(i) in iteration i to a neighboring set of beams
Θ̃ ∈ Nbd(Θ(i)) (where (b, d) ∈ {1, . . . , n}×{G, z}), we find that the two solutions
differ by only one beam, and the two non-matching beams differ in only one
component. Since the two solutions share all but one beam, the two solutions
are very similar to one another, and our intuition suggests that the optimal
beamlet intensities of the common beams of Θ(i) and Θ̃ should also be very
close to one another.

This observation about how the beamlet intensities should change within
Add/Drop gives rise to a computational enhancement to FMO evaluation in
the context of Add/Drop: specifically, the idea of warm-starting the FMO eval-
uation of a neighboring set of beams Θ̃ by using the bixels of the current set of
beams Θ(i). We will study three different modes of FMO initialization: cold-
start, warm-start using averaging and warm-start using least-squares. In the
descriptions that follow we will use

• Θ(i) to represent the current solution;

• Θ̃ to represent a neighboring solution of Θ(i), whose FMO we are interested
in evaluating;

• θk to represent the single beam in Θ(i) which is altered;

• θ̃k to represent the beam in Θ̃ which corresponds to θk in Θ(i);

• Bθ̃j
to represent the set of indices of the bixels which belong to beam θ̃j

in Θ̃;

• Bθj
to represent the set of bixel indices of beam θj in Θ(i);
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• xi be the optimal intensity value of beamlet i ∈ BΘ(i) ; and

• x̃i be the optimal intensity value of beamlet i ∈ BΘ̃.

4.1.1 Cold-start

The most basic form of FMO initialization that we will consider is cold-started
FMO evaluation. When an FMO evaluation is cold-started, the bixels of each
beam are initialized to a pre-defined constant, and these bixels are fed into the
projected gradient algorithm which calculates the FMO value for the beam.
This mode of FMO evaluation does not make use of the bixels of the current
solution: whenever an FMO is evaluated in this way, it is essentially calculated
“from scratch”.

Mathematically, if we let κ represent this pre-defined constant, we would
then set

x̃i = κ (4.1)

for all i ∈ BΘ̃. We would then use the resulting set of bixels x̃ as our initial
solution for FMO evaluation.

4.1.2 Warm-start using averaging

The first real warm-start method we consider is warm-started FMO evaluation
using averaging. Given a neighboring solution whose FMO we are trying to
calculate, we initialize the bixels of its beams as follows:

1. For each beam that the neighboring solution Θ̃ has in common with the
current solution Θ(i), set the initial bixels of the beam to the optimal bixel
values of the same beam in Θ(i).

2. For beam number k where the neighboring solution Θ̃ and the current
solution Θ(i) differ, calculate x̄, the average of the bixels of the altered
beam θk in the current solution Θ(i), and initialize all of the bixels of the
corresponding beam θ̃k in Θ̃ to x̄.

As mentioned earlier, the neighboring solution and the current solution differ
by only one component of one beam, so we intuitively expect the optimal bixel
values of the common beams of the neighboring solution and the current solution
to be very close to one another. By allowing FMO evaluation to begin from a
set of bixels that should be quite close to the actual optimal set of bixels, the
projected gradient algorithm we employ to solve the FMO problem should be
able to converge more quickly to the optimal set of bixels. This improvement
in the speed of FMO evaluation should result in a higher quality solution being
found by Add/Drop, as the algorithm will be able to go through a higher number
of iterations.

The step which involves averaging the bixels of the beam that is altered in
the current solution and uniformly setting the bixels of the corresponding beam
in the neighboring solution to this average can be justified by considering the
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energy of the beams. The sum of the bixels of the beam can be thought of as
a measure of the total energy of the beam; the higher the sum of the bixels,
the more radiation is being delivered, and the greater the effect the beam has
on the patient. (If the sum of the bixels is zero, all of the bixels are zero,
and the beam is essentially not delivering any radiation in the treatment.) By
setting the bixels of the corresponding beam in the neighboring solution to the
average of the altered beam in the current solution, the individual bixel sums
of the two beams will be very close to one another, and so the effects of the
two beams on the patient should be somewhat similar. (There will certainly
be some differences in their effect due to the differences in the directions of the
beams.)

Mathematically, we set
x̃i = xi (4.2)

for every i ∈ Bθj
and all θj ∈ Θ(i) \ {θk}. For those i ∈ Bθ̃k

, we first calculate

x̄ =
1

|Bθk
|

∑
i′∈Bθk

xi′ , (4.3)

and then set
x̃i = x̄ (4.4)

for all i ∈ Bθ̃k
. The vector of bixels x̃ is then our initial solution when the

projected gradient algorithm is executed for Θ̃.

4.1.3 Warm-start using least-squares

In the method of warm-starting FMO evaluation using averaging, the motivation
behind averaging the bixels of the altered beam θk in the current solution Θ(i)

and setting the bixels of the corresponding beam θ̃k in the neighboring solution
Θ̃ to this average was to attempt to get θ̃k to have a similar effect to θk. In this
second warm-start method, we take this notion further by selecting the bixels of
θ̃k so that the dose contributed by θ̃k is as close as possible to the contribution
of θk in a least-squares sense.

To make this notion rigorous, we define z
(k)
js to be the dose contributed to

voxel j in structure s by the bixels of θk; it is given by

z
(k)
js =

∑
i∈Bθk

Dijsxi. (4.5)

To obtain the initial bixel values of θ̃k, that is, the values of x̃, we solve the
following optimization problem:
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minimize Z =
∑
s∈S

vs∑
j=1

(
z̃
(k)
js − z

(k)
js

)2

(4.6)

subject to z̃
(k)
js =

∑
i∈Bθ̃k

Dijsx̃i, ∀s ∈ S, j ∈ {1, . . . , vs}

x̃i ≥ 0, ∀i ∈ Bθ̃k

For the other beams in Θ̃, we set the bixels to the corresponding bixels in
Θ(i) - i.e. we set

x̃i = xi (4.7)

for every i ∈ Bθj
and all θj ∈ Θ(i) \ {θk}.

To see why initializing the bixels of θ̃k in this manner might be desirable,
consider the following illustrative example. Suppose that the beamlets of θ̃k are
able to attain a dose contribution that is very close to (or the same as) the dose
contribution of the beamlets of the old beam θk. The two solutions Θ̃ and Θ(i)

will then result in very similar doses in the patient (i.e. the values of zjs will be
very close to each other). This in turn means that the objective function value
associated with x̃ (the initial bixels of Θ̃) will be very similar to, if not the same
as, the objective function value associated with x (the optimal bixel values of
Θ(i)). This places us in an advantageous position because if we begin evaluating
the FMO value of Θ̃ starting from x̃, our FMO value will be approximately as
good as the FMO value of Θ(i); this means that the projected gradient phase
will either be short if the starting solution is already sufficiently optimal, or will
yield a significantly better solution.

On the other hand, if the beamlets of the θ̃k are unable to attain a con-
tribution in dose that is at all similar to the beamlets of the old beam, then
that could mean two things. One scenario is that it may still be possible for
the beam to improve the solution (e.g. by delivering dose to target voxels that
are already covered by other beams, but doing so at a lower penalty to the
objective). In this case, the projected gradient algorithm still has to iterate as
usual, and we do not gain any improvement in the time needed to calculate the
FMO. In contrast, if the beam is “bad” (i.e. taking out the old beam prevents
the solution from hitting a lot of target voxels and forces overdosing in critical
structure voxels), then once again, the projected gradient algorithm still has to
iterate normally.

4.2 Computational Results

To test the effectiveness of these methods, we implemented the sequential cycling
Add/Drop (SCAD) algorithm, described in Mǐsić et al. [2010], with each mode
of FMO initialization. Both δG and δz were set to 20. For the cold-start mode
of FMO initialization, κ was set to 0.3; the optimization problem (4.6) for the
warm-start using least-squares mode was solved using the MATLAB command
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Starting Num. Iter.s Num. Iter.s Num. Iter.s
Point (Cold-start) (Warm-start, averaging) (Warm-start, least-squares)

1 15 55 52
2 14 47 45
3 9 43 43
4 9 35 41
5 10 38 41
6 9 39 40
7 7 37 41
8 13 38 39
9 10 37 38
10 10 38 36
11 9 34 41
12 7 31 36
13 10 48 47

Average 10.2 40.0 41.5

Table 4.1: Number of Add/Drop iterations attained for each starting point and
using each mode of FMO initialization. (The average indicates the average
number of iterations for each mode over all of the starting points.)

lsqlin using the default parameters. These three implementations were then
executed on 13 randomly chosen starting points and were allowed to run for 12
hours.

Table 4.2 shows the average time per Add/Drop iteration for each starting
point and using each mode of FMO initialization, while Table 4.1 shows the
number of Add/Drop iterations for each starting point. As we can see from
these results, the two warm-start techniques lead to significantly lower FMO
evaluation times and thus lower Add/Drop iteration times than the cold-start
method; this leads to a significantly higher number of iterations in each execu-
tion of the Add/Drop algorithm with the two warm-start techniques than in each
execution with the cold-start technique. The difference between the warm-start
using averaging and the warm-start using least-squares modes is less significant:
the two methods attain comparable rates of FMO evaluation, with the warm-
start using least-squares method perhaps exhibiting slightly lower Add/Drop
iteration time (as shown by the average time per iteration and average number
of iterations over all of the starting points).

In addition to these results on the rate of FMO evaluation in all three
Add/Drop implementations, Table 4.3 shows the final FMO value attained for
each starting point, while Table 4.4 provides the difference in final FMO value
for each starting point between each pair of the three modes of FMO initializa-
tion (cold-start versus warm-start using averaging, cold-start versus warm-start
using least-squares, warm-start using averaging versus warm-start using least-
squares). From these tables we can see that for all of the starting points tested,
the cold-start method of FMO initialization leads to final FMO values that are
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Starting Avg. Time / Iter. Avg. Time / Iter. Avg. Time / Iter.
Point (Cold-start) (Warm-start, averaging) (Warm-start, least-squares)

1 47.7 13.0 13.7
2 50.3 15.2 15.9
3 75.3 17.1 16.7
4 73.5 20.2 17.3
5 70.8 18.8 17.1
6 77.8 18.2 17.7
7 95.3 19.2 17.2
8 56.0 18.7 18.1
9 69.3 19.0 18.9
10 66.0 18.6 19.7
11 75.0 20.7 17.2
12 93.0 22.6 19.6
13 71.5 14.9 15.6

Average 70.9 18.2 17.3

Table 4.2: Average time per Add/Drop iteration in minutes for each starting
point and using each mode of FMO initialization. (The average indicates the
average time per iteration for each mode over all of the starting points.)

higher (and therefore worse) than the two warm-start methods.
We can also see, from Table 4.4, that the cold-start method leads to final

FMO values that are on average approximately 2900 units greater than those of
the warm-start using averaging method and approximately 3300 units greater
than those of the warm-start using least-squares method. These differences are
significant because they are quite large relative to the average of the final FMO
values attained using the cold-started Add/Drop: the average cold-start final
FMO value is 14906.1, which means that the warm-start using averaging and
warm-start using least-square methods are able to reduce the average final FMO
value obtained using the cold-start method by roughly 20 %. As we will see in
the next section, this difference in numerical FMO value does translate to a
significant difference in overall treatment plan quality.

When we compare the warm-start using averaging and the warm-start using
least-squares methods, the results from Table 4.4 and Table 4.3 become less
striking. In particular, the overall difference in final FMO value is lower: the
final FMO values obtained by the warm-start using averaging A/D is on average
443.8 units higher than the final FMO values obtained by the warm-start using
least-squares A/D. (Relative to the average final FMO value obtained using the
warm-start using averaging method, the difference of 443.8 units translates to
only a 4 % reduction in final FMO value.) Furthermore, for one starting point
the final FMO value obtained using the warm-start using averaging method is
actually better than the value obtained using the warm-start using least-squares
method. Overall we can see that, while the warm-start using least-squares
method is generally able to attain a better FMO value than the warm-start using
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Starting Final FMO Value Final FMO Value Final FMO Value
Point (Cold-start) (Warm-start, averaging) (Warm-start, least-squares)

1 19109.3 18355.8 17302.5
2 21613.2 11756.9 11675.7
3 18416.9 13093.0 12414.4
4 12262.7 10959.1 10396.2
5 14457.3 11177.4 10738.1
6 14743.8 10668.1 10601.0
7 11184.0 10473.4 10198.5
8 11849.7 10310.6 10056.4
9 13212.4 11581.5 10868.0
10 12075.8 10730.7 10234.6
11 12587.9 10562.7 10600.8
12 11458.5 10560.7 9990.0
13 20807.5 15987.5 15371.8

Average 14906.1 12016.7 11572.9

Table 4.3: Final FMO value for each starting point and using each mode of
FMO initialization.

averaging method, the improvement is not as significant as the improvement that
is realized when we move from the cold-start method to either of the warm-start
methods.

4.3 Treatment Plan Quality

We now compare the three modes of FMO initialization with respect to treat-
ment plan quality. Figures 4.1, 4.2 and 4.3 show dose volume histograms (DVHs)
for the final beam solution of starting point 6 using the cold-start, the warm-
start using averaging and the warm-start using least-squares methods respec-
tively. From these DVHs, we can see that the two warm-start methods are able
to achieve better plan quality than the cold-start method. In particular, we
can see that the two warm-start methods lead to lower median doses in the
critical organs while achieving slightly higher dose in the bone marrow (indi-
cated as “hemiPTV” in the DVHs). We can also see that the tails of a number
of organ DVH curves drop off at a slower rate in the cold-start plan – for ex-
ample, the curve for the liver indicates that approximately 33% of the liver
volume receives 5Gy or more in the cold-start plan, while approximately only
27% receives 5Gy or more in the warm-start using averaging plan. Furthermore,
we can see that a larger volume of the bone marrow receives more than 20Gy
in the cold-start plan than in both the warm-start plans (which is an impor-
tant consideration as extensive overdose to the bone marrow can lead to fibrosis,
which can detrimentally affect the success of the subsequent bone marrow trans-
plant). Another important difference is that both of the warm-start plans meet
treatment plan criteria; the warm-start using averaging and warm-start using
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Starting Final FMO Diff. Final FMO Diff. Final FMO Diff.
Point (CS - WS avg) (CS - WS lsq) (WS avg - WS lsq)

1 753.4 1806.7 1053.3
2 9856.3 9937.5 81.2
3 5323.9 6002.5 678.6
4 1303.6 1866.6 562.9
5 3280.0 3719.3 439.3
6 4075.7 4142.8 67.1
7 710.6 985.5 274.9
8 1539.1 1793.3 254.3
9 1630.9 2344.4 713.5
10 1345.1 1841.2 496.0
11 2025.3 1987.2 -38.1
12 897.8 1468.5 570.7
13 4820.0 5435.7 615.7

Average 2889.4 3333.2 443.8

Table 4.4: Difference in final FMO value between each pair of the three modes
of FMO initialization for each starting point. (“CS” stands for “cold-start”,
“WS avg” stands for “warm-start using averaging” and “WS lsq” stands for
“warm-start using least-squares”; the average at the bottom indicates the av-
erage difference in final FMO value for each pair of the three modes over all of
the starting points.)
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least-squares plans ensure that 95% of the bone marrow receives at least 12.4
and 12.5Gy respectively, while the cold-start plan can only ensure that 95% of
the bone marrow receives at least 10.7Gy.

Comparing the two warm-start plans with one another, we can see that
there is very little qualitative difference between them. The volume of the bone
marrow that receives 12Gy or more is approximately the same for both plans,
and the volume that receives 20Gy or more is also very similar for both plans.
The dose distributions in the organs in both plans are very similar: the organs
in the top panels of both Figures 4.2 and 4.3 (left and right lungs, spinal cord,
heart, left and right kidneys, liver and stomach) all achieve median doses of
4Gy or less, and the volumes of each critical organ receiving 12Gy or more are
extremely similar in both plans.
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Figure 4.1: DVHs of final beam solution for starting point 6, obtained by the
cold-started A/D.
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Figure 4.2: DVHs of final beam solution for starting point 6, obtained by the
warm-started using averaging A/D.
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Figure 4.3: DVHs of final beam solution for starting point 6, obtained by the
warm-started using least-squares A/D.
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Chapter 5

Parallelized Objective
Function and Gradient
Evaluation

5.1 Introduction

The process of fluence map optimization is, in general, a highly computationally
intensive process. The reason for this is that any gradient-based algorithm for
fluence map optimization will require the calculation of the objective function F
and the calculation of the gradient ∇F for a given set of bixels, which are them-
selves computationally expensive processes. To calculate the objective function,
we must first calculate the dose to every voxel of every structure, which requires
loading the dose deposition coefficients for each beam and each structure, and
adding up the effects of each beamlet of each beam to every voxel in every
structure. After calculating the dose, we must then go through every voxel of
every structure, calculate the associated penalty contribution of the voxel, and
add up these penalty contributions to get the final value of F for the bixels.
To calculate the gradient, we must go through every beam and every structure,
load the corresponding dose deposition coefficients and then loop through every
beamlet of the selected beam and every voxel of the selected structure to add up
the contribution of the voxel to the component of the gradient for each beamlet.

These computations become particularly difficult in the context of TMI for
a couple of reasons. First of all, to appropriately plan for TMI a large number
of structures must be contoured, which results in a large number of voxels
to be considered. Second of all, to design a satisfactory TMI treatment, a
large number of beams should be used, which results in more computations to
calculate the dose to every voxel of the patient geometry and more computations
to calculate the correspondingly larger gradient vector.

At the same time, there is also a great amount of interest in generating
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plans for TMI which utilize a large number of beams. One reason why solving
the FMO problem with a large number of beams (or all beams for which dose
deposition coefficients are available) is interesting is that it allows us to validate
our earlier plans: by solving the FMO problem with a large number of beams,
we will essentially find out what the best possible treatment plan for TMI is.
By knowing what the best possible treatment plan for TMI is, we will of course
know whether our earlier plans are better than conventional TBI plans, but we
will also know how good they are in an absolute sense.

Another reason why solutions using a large number of beams are interesting
is that it is still not clear what type of radiation therapy is best suited for
TMI. The plans that are considered here are all “point-and-shoot” IMRT: the
gantry is rotated and the couch shifted for one beam direction, the patient is
irradiated for some period of time from that direction, the beam is turned off,
and the gantry is rotated and the couch shifted for the next beam direction. In
contrast, another form of radiotherapy that may be more effective may be arc
therapy, where the beam is continuously on as the gantry and couch are shifted
(sweeping out an “arc” around the patient). This type of radiotherapy may be
better suited for TMI because instead of irradiating the patient from a finite
number of beam orientations, the patient is being irradiated from a continuum
of beam orientations. A first approach to arc therapy could potentially involve
first developing a plan with a large number of fixed beams, and then optimally
determining how the gantry and couch will be shifted to transition from one
beam to the next, and how the beamlets will change from one beam to the
next.

In this chapter, we outline how the serial algorithms for objective function
and gradient evaluation work. We then present an algorithm which can utilize
multiple processors to compute the dose to every voxel in parallel and to com-
pute the gradient in parallel. We show and discuss results for an implementation
of the standard backtracking projected gradient which uses these parallelized
algorithms to develop TMI plans using 396 beams.

5.2 Serial Objective Function and Gradient Eval-
uation

5.2.1 Notation

In the descriptions that follow, we will use

• z to represent the vector of voxel doses (z = [zjs]s∈S,j∈{1,...,vs});

• D(k) to represent the matrix of Dijs values corresponding to a single beam
and all of the voxels in the patient geometry (i.e. D(k) has

∑
s∈S vs rows

and |Bθk
| columns); and

• D(k)
s to represent the matrix of Dijs values corresponding to a single beam
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and all of the voxels in a single organ s (i.e. D(k)
s has vs rows and |Bθk

|
columns).

5.2.2 The Operations of FMO

For a column vector of beamlet intensities x corresponding to a set of n beams
Θ, we are interested in three different operations:

• The calculation of the voxel doses: for each voxel j ∈ {1, . . . , vs}, and each
structure s ∈ S, we calculate

zjs =
∑

i∈BΘ

Dijsxi. (5.1)

• The penalization of the voxel doses: we calculate the total penalty associ-
ated with the bixels x as

F (x) =
∑
s∈S

vs∑
j=1

1
vs

[
ws (Ts − zjs)

p
s

+ + ws (zjs − Ts)
ps

+

]
. (5.2)

• The calculation of the gradient : we calculate

∇F =
[

∂F

∂xi

]
(5.3)

where

∂F

∂xi
=

∑
s∈S

vs∑
j=1

1
vs

[
ws · ps

· (Ts − zjs)
p

s
−1

+ · (−Dijs) (5.4)

+ ws · ps · (zjs − Ts)
ps−1
+ · (+Dijs)

]
for each i ∈ BΘ.

5.2.3 Algorithm Description

If the objective function and gradient are to be evaluated serially, we use Algo-
rithms 4, 5 and 6, which are defined below.

5.2.4 Number of Operations

When computed serially, we can see that z, F and ∇F require different numbers
of smaller operations:

• z: To calculate one element of z, we need to sum through all the beamlets,
which constitutes |BΘ| operations. We must do this for each voxel, so the
total number of operations is on the order of Nv · |BΘ|, where Nv is the
total number of voxels (Nv =

∑
s∈S vs).
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Algorithm 4 Calculate voxel dose z (serial)
1: Initialize zjs = 0 for all s ∈ S, j ∈ {1, . . . , vs}
2: for k = 1 to n do
3: for all s ∈ S do
4: Load D(k)

s from hard disk
5: for all i ∈ Bθk

do
6: for j = 1 to vs do
7: Set zjs = zjs + Dijsxi

8: end for
9: end for

10: end for
11: end for

Algorithm 5 Calculate F (x) from voxel dose z (serial)
1: Initialize F (x) = 0
2: for all s ∈ S do
3: for j = 1 to vs do
4: if zjs < Ts then
5: Set F (x) = F (x) + 1

vs
ws (Ts − zjs)

p
s

6: else
7: Set F (x) = F (x) + 1

vs
ws (zjs − Ts)

ps

8: end if
9: end for

10: end for

Algorithm 6 Calculate gradient ∇F from voxel dose z (serial)

1: Initialize ∂F
∂xi

= 0 for each i ∈ BΘ

2: for k = 1 to n do
3: for all s ∈ S do
4: Load D(k)

s from hard disk
5: for all i ∈ Bθk

do
6: for j = 1 to vs do
7: if zjs > Ts then
8: Set ∂F

∂xi
= ∂F

∂xi
− 1

vs
Dijswsps

(Ts − zjs)
p

s
−1

9: else
10: Set ∂F

∂xi
= ∂F

∂xi
+ 1

vs
Dijswsps (zjs − Ts)

ps−1

11: end if
12: end for
13: end for
14: end for
15: end for
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• F : To calculate the objective function F given z, we must sum through
every voxel. This results in a number of operations on the order of Nv.

• ∇F : To calculate one element of the gradient ∇F , we must sum through
each voxels, resulting in Nv operations. We must do this for each beamlet,
so the total number of operations is on the order of Nv · |BΘ|.

In other words, as the number of beamlets |BΘ| grows, the number of smaller
operations required to calculate z and ∇F grows linearly in |BΘ|. Each beam
that is considered for TMI has approximately the same number of beamlets, so
|BΘ| grows linearly with the number of beams n. On the other hand, calculating
F requires Nv operations always, regardless of the number of beams that are
used for the treatment. These observations suggest that the calculation of z and
the calculation of∇F would most benefit from parallelization, and in Section 5.3
we present an algorithms for objective function and gradient evaluation which
parallelize exactly those calculations.

5.3 Parallel Objective Function and Gradient Eval-
uation

As we observed in the previous section, the time required to compute the ob-
jective function and gradient for a given set of bixels grows with the number of
beams. In this section, we describe a parallelized algorithm for calculating the
objective function and the gradient which allows us to mitigate the effect of this
growth.

The general idea behind these algorithms is as follows. Suppose that we
desire to calculate the objective function for a set of bixels corresponding to n
beams. Suppose also that Q processors are available to us, where Q divides
evenly into n. Then to calculate the total dose delivered, we can divide up the
set of n beams into Q subsets, each consisting of n/Q beams. We can then,
in parallel, calculate the contribution of each subset to the total dose, collect
the contributions and add them up to obtain the overall dose to each voxel.
(This is possible since the dose is a linear function of the bixel intensities.) To
calculate the actual objective function, we penalize the overall voxel dose using
Algorithm 5 as before.

To calculate the gradient for a set of bixels we proceed in a similar way.
Given n and Q as described above together with the overall voxel dose, we can
divide up the set of n beams into Q subsets. We can then, in parallel, calculate
the piece of the gradient that corresponds to each subset (that is, calculate the
partial derivative of F for each bixel in each subset of beams). After these
pieces are calculated, we can collect them and concatenate them to obtain the
gradient.

5.3.1 Notation

In addition to the notation defined earlier, we will use
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• x(k) to represent the part of the x vector associated with beam θk ∈ Θ;

• Q to represent the total number of processors available for use;

• q to refer to a particular processor in {1, . . . Q}, and to the subset of beams
of Θ assigned to processor q;

• z(q) to represent the voxel dose contribution of the qth beam subset;

• g(q) to represent the piece of the gradient associated with the qth beam
subset;

• h(k) to represent the piece of the gradient associated with beam θk ∈ Θ;

• yjs to represent an auxilliary scalar associated with voxel j in structure s;
and

• y to represent the column vector of yjs values for all s ∈ S, j ∈ {1, . . . , vs}.

5.3.2 Parallel Operations

Suppose that subset number q of Θ consists of beams θLq
, θLq+1, . . . , θUq−1, θUq

.
We can then define the voxel contribution of the qth beam subset as

z(q) =
Uq∑

k=Lq

D(k)x(k). (5.5)

If the subsets numbered 1 to Q comprise the entire set of beams Θ, we can
calculate the overall voxel dose as

z =
Q∑

q=1

z(q), (5.6)

i.e. summing up the voxel dose contributions of each beam subset to obtain the
overall voxel doses associated with Θ.

We can express the operation of calculating the gradient ∇F in a similar
way. We let g(q) be the part of ∇F corresponding to beam subset number q, so
that we can express ∇F as

∇F =
[
g(1) g(2) . . . g(Q)

]
. (5.7)

To define g(q), we first let y be an auxilliary column vector, defined as
y = [yjs]s∈S,j∈{1,...,vs}, where

yjs =
1
vs

[
−wsps

(Ts − zjs)
p

s
−1

+ + wsps (zjs − Ts)
ps−1
+

]
. (5.8)

If subset number q of Θ consists beams θLq , θLq+1, . . . , θUq−1, θUq , we can
then define

g(q) =
[
h(Lq) h(Lq+1) . . . h(Uq−1) h(Uq)

]
, (5.9)

where
h(k) = yT D(k). (5.10)
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5.3.3 Algorithm Descriptions

Given a number Q which divides evenly into the number of beams n, the ob-
jective function and gradient can be calculated in parallel by the following set
of algorithms. Algorithm 7 describes how to calculate the voxel dose of the qth
beam subset (z(q)), which is then used by Algorithm 8 to calculate the com-
plete voxel dose z. Similarly, Algorithm 9 describes how to calculate the piece
of the gradient associated with the qth beam subset (g(q)), which is used by
Algorithm 10 to obtain the complete gradient ∇F .

Algorithm 7 Calculate voxel dose z(q) of beam subset q on processor q

Require: Parameter Q (total number of processors), parameter n (total num-
ber of beams), processor number q

1: Initialize z
(q)
js = 0 for all s ∈ S, j ∈ {1, . . . vs}

2: Set L = n(q − 1)/Q + 1, U = nq/Q
3: for k = L to U do
4: Load D(k) from hard disk
5: Set z(q) = z(q) + D(k)x(k)

6: end for

Algorithm 8 Calculate complete voxel dose z (parallel)
Require: Parameter Q (total number of processors), parameter n (total num-

ber of beams)
1: Initialize zjs = 0 for all s ∈ S, j ∈ {1, . . . , vs}
2: for q = 1 to Q do
3: Execute Algorithm 7 on processor q with parameters Q, n
4: end for
5: Wait for Algorithm 7 to finish on processors 1, 2, . . . , Q
6: for q = 1 to Q do
7: Set z = z + z(q)

8: end for

5.4 Computational Results

The parallelized algorithms for dose and gradient calculation described were
used in a standard implementation of the projected gradient with a backtracking
line search. The resulting projected gradient algorithm was used to solve the
FMO problem using all 396 beam orientations in B with different sets of FMO
parameters. To give a sense of the size of this optimization problem, the total
number of bixels that could be used to treat the patient was 977,601 while the
total number of voxels was 651,410. In each case, 11 processors were used (i.e.
Q was set to 11) and the percentage change tolerance was set to 10−6. Each
case was allowed to execute for just over 24 hours.
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Algorithm 9 Calculate partial gradient g(q) associated with beam subset q on
processor q

Require: Parameter Q (total number of processors), parameter n (total num-
ber of beams), parameter z (total voxel dose), processor number q

1: Initialize yjs = 0 for all s ∈ S, j ∈ {1, . . . , vs}
2: for k = 1 to n do
3: for all s ∈ S do
4: for j = 1 to vs do
5: if zjs < Ts then
6: Set yjs = − 1

vs
wsps

(Ts − zjs)
p

s
−1

7: else
8: Set yjs = 1

vs
wsp̄s (zjs − Ts)

p̄s−1

9: end if
10: end for
11: end for
12: end for

13: Set L = n(q − 1)/Q + 1, U = nq/Q

14: Initialize g
(q)
i = 0 for all i ∈

⋃U
k=L Bθk

15: for k = L to U do
16: Load D(k) from hard disk
17: Set h(k) = yT D(k)

18: end for
19: Set g(q) =

[
h(L) h(L+1) . . . h(U−1) h(U)

]

Algorithm 10 Calculate complete gradient ∇F (parallel)
Require: Parameter Q (total number of processors), parameter n (total num-

ber of beams)
1: for all q = 1 to Q do
2: Execute Algorithm 9 with parameters q, n on processor q
3: end for
4: Wait for Algorithm 9 to finish on processors 1, 2, . . . , Q
5: Set ∇F =

[
g(1) g(2) . . . g(Q−1) g(Q)

]

48



0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Elapsed time (hours)

O
bj

. f
n.

 v
al

ue

Obj. fn. value versus time (PG using parallelized obj. fn. and grad. evaluation, opt_original)

Figure 5.1: Plot of objective function value versus time for projected gradient
using parallelized objective function and gradient evaluation and parameter set
opt original.

Three different sets of optimization parameters were used. The parameter
set opt original is the main set of parameters used in Mǐsić et al. [2010], which
attempts to account for all of the critical organs. The parameter set opt ooc 3
is another set of parameters used in Mǐsić et al. [2010], which accounts for all
of the organs except for the spinal cord. The parameter set opt atlasair 2
is equivalent to opt original with the exception of the threshold dose of the
bone marrow, which is reduced from its value in opt original.

Figures 5.1, 5.3 and 5.5 show objective function value versus time for opt original,
opt ooc 3 and opt atlasair 2 respectively. We can see that the greatest
amount of change in the objective function occurs at the beginning, within the
first five to six hours. After the six hour mark, the rate at which the objective
function value changes becomes much slower.

Similarly, Figures 5.2, 5.4 and 5.6 show the percentage change in objective
function value versus time for opt original, opt ooc 3 and opt atlasair 2
respectively: from these plots, we can see that the greatest amount percentage
change in the objective function occurs within the first five to six hours. We
can also see that for all three sets of parameters, there is a slight spike in the
percentage change in objective function value shortly before the ten hour mark.

5.5 Treatment Plan Quality

To compare the treatment plan quality of the three parameter sets, three sets
of DVHs were prepared:
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Figure 5.2: Plot of percentage change in objective function value versus time for
projected gradient using parallelized objective function and gradient evaluation
and parameter set opt original.
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Figure 5.3: Plot of objective function value versus time for projected gradient
using parallelized objective function and gradient evaluation and parameter set
opt ooc 3.
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Figure 5.4: Plot of percentage change in objective function value versus time for
projected gradient using parallelized objective function and gradient evaluation
and parameter set opt ooc 3.
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Figure 5.5: Plot of objective function value versus time for projected gradient
using parallelized objective function and gradient evaluation and parameter set
opt atlasair 2.
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Figure 5.6: Plot of percentage change in objective function value versus time for
projected gradient using parallelized objective function and gradient evaluation
and parameter set opt atlasair 2.

• Figures 5.8, 5.9 and 5.10 shows the 396-beam solution at six hours, twelve
hours and shortly after 24 hours using the opt original parameter set;

• Figures 5.11, 5.12 and 5.13 shows the 396-beam solution at six hours,
twelve hours and shortly after 24 hours using the opt ooc 3 parameter
set; and

• Figures 5.14, 5.15 and 5.16 shows the 396-beam solution at six hours,
twelve hours and shortly after 24 hours using the opt atlasair 2 para-
meter set.

In addition to these DVHs corresponding to 396-beam solutions, Figure 5.7
shows a 30 beam solution obtained using the warm-start using least-squares
Add/Drop and using the opt original parameter set.

From these DVHs, a few things become evident. First of all, comparing the
30-beam opt original solution in Figure 5.7 to the final opt original solution
in Figure 5.10, we can see that although the 396-beam solution is better, the
DVHs of the 396-beam solution are qualitatively very similar to those of the
30 beam solution. In particular, of all of the critical organs, the spinal cord
receives the most dose in both Figures 5.7 and 5.10; after the spinal cord, the
lungs receive the next highest amount of dose, with just under 20% of the
volumes of the left and right lungs receiving more than 10Gy. With regard to
improvement, we can see that all of the critical organs (except the spinal cord)
in the 30-beam plan receive a median dose of at most 5Gy; in the final 396-beam
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plan using the opt original parameter set, the same organs receive a median
dose of at most 4Gy. Furthermore, there is an increase in dose to the target: in
the 30 beam plan, 95% of the target volume receives more than 12.9Gy, while
the same percentage of the target volume in the 396-beam plan receives more
than 13.5Gy.

Second of all, we can see that the change in DVH quality for all three para-
meter sets is relatively small from 6 hours to 12 hours, and from 12 hours to the
final plan. For opt original, the DVH curves for the stomach, liver and spinal
cord drop down approximately three to four percentage points from 6 hours to
12 hours, and approximately one percentage point from 12 hours to the final
plan. The dose to the target also changes by a small amount; 95% of the target
volume receives 13.1Gy or more at 6 hours, 13.4Gy or more at 12 hours and
13.5Gy in the final plan. For opt ooc 3, we can see that from 6 hours to 12
hours and from 12 hours to the final plan, there is a drop in the median dose of
the majority of the critical organs by approximately 0.5Gy. The change to the
target dose is slightly more significant from 6 hours to 12 hours, however; at 6
hours 95% of the target volume receives only 11.9Gy or more, while at 12 hours
95% of the target volume receives 12.5Gy or more. For opt atlasair 2, the
change in critical organ dose is slightly greater from 6 to 12 hours than it is for
the other parameter sets, with the majority of the critical organs curves being
shifted down by approximately 5%; from 12 hours to the final plan, the change
is not as significant. These small changes match the behaviour shown in the
plots of the previous section, which show that for all three sets of parameters,
most of the change in the objective function value occurs in the first five to six
hours, and that the rate of change in the objective function is greatly reduced
after the six hour mark.

The most important knowledge that can be taken away from these results
concerns the limitations of using IMRT (and external beam radiotherapy) for
the purpose of total marrow irradiation. Although we have not exhaustively
searched through all possible sets of parameters, the parameter sets that are
reported were the ones which were best able to satisfy our treatment plan crite-
ria. As such, they strongly suggest the existence of several limitations of using
IMRT for TMI:

1. It is not possible to achieve a median dose of under 2Gy for a majority of
the critical organs while achieving adequate dose in the target;

2. It is not possible to achieve a median dose in the spinal cord below 6Gy;
and

3. It is not possible to achieve a low median dose in the spinal cord while
simultaneously reducing overdosing in the lungs (the volume that receives
10Gy or more) and achieving the target dose in the bone marrow.

The first and second points are clear from the DVHs of all three sets of parame-
ters. The third fact we can infer from comparing the DVHs of opt ooc 3 (Fig-
ure 5.13) with the DVHs of opt original and opt atlasair 2 (Figures 5.10
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and 5.16 respectively). With opt ooc 3, we can see that the overdose in the
lungs is fairly tame (with only roughly 10% of the volume of each lung receiv-
ing more than 10Gy), but the spinal cord receives a very high amount of dose
(median dose is higher than the target dose of 12Gy). On the other hand, with
opt atlasair 2, the spinal cord receives a lower amount of dose (median dose
of approximately 6Gy), but a higher volume of the lungs receives 10Gy or more,
and the corresponding DVH curves for the lungs drop off at a much slower rate
than they do for opt ooc 3.

It is interesting to observe that using the opt original parameter set, the
396-beam solution obtained after 6 hours (Figure 5.8) is just as good, if not
slightly better, than the benchmark 30 beam solution in Figure 5.7 with respect
to both target dose and organ sparing. (Similarly, the opt atlasair 2 solution
obtained after 6 hours also compares very favorably to the benchmark 30 beam
solution, although it is only able to guarantee that 95% of the bone marrow
volume receives more than 11.5Gy, and so falls slightly short of meeting all
of our treatment plan criteria.) This suggests that this type of parallelized
projected gradient algorithm has strong potential to be used to generate fixed
beam solutions that could then be used to develop arc therapy treatment plans
in a clinically realistic timeframe.

Of the three sets of parameters that we tested, opt atlasair 2 gives the best
results. Comparing the opt atlasair 2 set to the opt ooc 3 set, we see that
the opt ooc 3 set allows for a lower overall dose to the lungs (just under 10%
of the volume of the lungs receiving 10Gy or more for opt ooc 3 versus roughly
15% of the volume of the lungs receiving 10Gy or more for opt atlasair 2).
However, the opt ooc 3 set allows for an unacceptable level of dose to the
spinal cord, which is not the case for opt atlasair 2 (spinal cord median dose
is just over 12Gy for opt ooc 3 versus roughly 6Gy for opt atlasair 2). Com-
paring the opt atlasair 2 set to the opt original set, we see that the fi-
nal opt atlasair 2 plan still achieves the required target dose, but does so
with every organ receiving less dose than in opt original (the median dose
of each organ decreases by an amount between roughly 0.5Gy and 1Gy from
opt original to opt atlasair 2). More interestingly, the opt atlasair 2 set
performs better at controlling the level of overdose in the bone marrow (10% of
the target volume receives roughly 19Gy or more for opt original, versus al-
most 0% of the volume for opt original). This may be desirable because as we
have mentioned before, high levels of overdose can lead to fibrosis in the bones
and detrimentally affect the success of the subsequent bone marrow transplant.
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Figure 5.7: DVHs of a 30 beam solution obtained shortly after 12 hours, with
opt original parameter set.
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Figure 5.8: DVHs of 396-beam solution at six hours of projected gradient exe-
cution time, with opt original parameter set.
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Figure 5.9: DVHs of 396-beam solution at twelve hours of projected gradient
execution time, with opt original parameter set.
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Figure 5.10: DVHs of 396-beam solution shortly after 24 hours of projected
gradient execution time, with opt original parameter set.
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Figure 5.11: DVHs of 396-beam solution at six hours of projected gradient
execution time, with opt ooc 3 parameter set.
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Figure 5.12: DVHs of 396-beam solution at twelve hours of projected gradient
execution time, with opt ooc 3 parameter set.
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Figure 5.13: DVHs of 396 beam solution shortly after 24 hours of projected
gradient execution time, with opt ooc 3 parameter set.
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Figure 5.14: DVHs of 396 beam solution at six hours of projected gradient
execution time, with opt atlasair 2 parameter set.
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Figure 5.15: DVHs of 396 beam solution at twelve hours of projected gradient
execution time, with opt atlasair 2 parameter set.
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Figure 5.16: DVHs of 396 beam solution shortly after 24 hours of projected
gradient execution time, with opt atlasair 2 parameter set.
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Chapter 6

Conclusions and Future
Work

From this study we can reach a number of important conclusions regarding
methods to improve fluence map optimization for TMI. From our discussion of
line search strategies in Chapter 3, we see that at the moment, the backtracking
line search strategy seems to provide the best results of all three line search
methods, both in terms of computation time and quality of the end solution.
However, more testing is required to see whether the reduced step and forward
line search can attain an improvement over the normal backtracking line search
implementation of projected gradient.

In Chapter 4, we studied three different techniques for warm-starting FMO
evaluation in the framework of the Add/Drop algorithm for BOO. We saw that
both warm-start techniques (warm-start using averaging and warm-start us-
ing least-squares) led to a significant reduction in computation time over the
standard cold-start method, and also led to significantly lower final FMO values.
Both of the warm-start methods which we studied could be readily implemented
in MATLAB and could be applied to FMO for other treatment planning prob-
lems, not just TMI. Also, these methods help to highlight the versatility of the
FMO formulation that we use and why it may be desirable to use the exact
FMO value (as opposed to an approximation or a different figure of merit) as
the quality of a set of beams.

Finally, in Chapter 5 we developed parallelized algorithms for objective func-
tion and gradient evaluation, and used these algorithms to obtain high-quality
treatment plans using all available beams. By solving the FMO problem with
all possible beams, we have discovered what appear to be basic limitations of
IM-TMI: in particular, that it is not possible to achieve a median dose below
2Gy in the majority of the organs simultaneously, while meeting the target dose
requirement; that the lungs and spinal cord are the most difficult critical organs
to spare; and that it is not possible to drive the dose in the lungs below a cer-
tain level without greatly increasing the dose in the spinal cord. We have also
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discovered that the 30-beam solutions which we proposed earlier in Mǐsić et al.
[2010], although not as good as the corresponding opt original solutions with
396 beams, are not significantly worse than the 396 beam solutions.

In future work, we could consider other kinds of warm-start procedures to
speed up FMO evaluation in Add/Drop – in particular, we could consider warm-
start schemes where instead of directly reusing the bixels of Θ\{θk}, we instead
modify those bixels in some way in response to the dose deposition coefficients
of the new beam, θ̃k. It would also be interesting to more closely examine the
structure of our FMO problem and the structure of the Dijs values to determine
if it is possible to place some kind of guarantee on the quality of the initial set of
bixels obtained by the warm-start using averaging and warm-start using least-
squares techniques (e.g. if the Dijs of θk and θ̃k “differ” by some amount, then
what kind of objective function value can we expect for the initial bixel values
x̃?).

The implementation of projected gradient using the parallelized objective
function and gradient algorithms has yielded some interesting results about what
the best physically possible IMRT treatment looks like and where our previous
30-beam solutions stand. More parameter sets should be tested to confirm that
the parameter sets shown here do represent the best possible solutions. An
intriguing observation that we made about this algorithm was that for both
opt atlasair 2 and opt original parameters sets, the solution obtained after
6 hours generally compared quite favorably to the 30-beam solution obtained
after 12 hours. It would be interesting to explore whether these solutions could
in some way be used to identify which beams in the set of all beams are better
than others and guide the design of plans using smaller numbers of beams.

Finally, as stated earlier, a promising alternative to conventional IMRT for
TMI may be arc therapy. The parallelism-enhanced projected gradient algo-
rithm that we studied in Chapter 5 constitutes the first step in designing an arc
therapy plan; the next step would involve designing an algorithm to determine
an appropriate “route” to take through the beams, and to fill in the bixels along
the path in some optimal way.
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