
Approximation Algorithms for
Dynamic Resource Allocation

Vivek F. Farias∗ Benjamin Van Roy†‡

March 8, 2005

Abstract

We consider a problem of allocating limited quantities ofM types of resources amongN independent activities that
evolve overT epochs. In each epoch, we assign to each activity a task which consumes resources, generates utility, and
determines the activity’s subsequent state. We study the complexity of, and approximation algorithms for, maximizing
average utility.

1 Introduction

We consider a problem of allocating limited quantities ofM types of resources amongN independent activities that
evolve overT time periods. During each period, a task is assigned to each activity. A task consumes resources, generates
utility, and determines the subsequent state of the activity. The goal is to maximize average utility.

As a motivating context, consider dynamic allocation of hundreds of computers and human experts among tens of
thousands of information processing activities, each of which involves a sequence of tasks such as document translation,
natural language processing, speech recognition, document comparison, and web crawling. Such activities might be
managed, say, at a news organization such as the Associated Press. There are potentially many ways to carry out each
activity, each of which may require different resources and generate a different level of utility. Further, as major news
events occur, the portfolio of activities can change significantly, and the organization may require rapid reallocation of
resources.

In this paper, we propose a model that aims to capture salient features of this problem. Our problem bears some
similarities with the decision-CPM problem [2, 5], which is known to be intractable [3]. Our problem also encompasses
the project selection problem studied in [4].

We prove that the associated optimization problem is NP-hard to approximate within any constant factor. We then
propose and study two polynomial-time approximation algorithms which guarantee small errors in different regimes. The
first leads to an error of no more thanUMT/N , whereU is the maximal time-averaged utility that can be generated by
an activity. The second algorithm promisesO(U

√
N ln(MT)/R) error, whereR is the available quantity of the scarcest

resource.
Our bounds are worst-case and additive. Computational experiments on randomly drawn problem instances suggest

that the approximate solutions generally result in moderate percentage losses in parameter regimes for which the algo-
rithms are designed.

The remainder of this paper is organized as follows. In Section 2 we present the problem formulation and compare
it with models studied in [2, 4]. In Section 3 we show that the corresponding optimization problem is NP-hard to ap-
proximate to within any constant factor. We then present two equivalent integer programming formulations in Section 4.
Section 5 presents linear programming relaxations to these integer programs. One has a polynomial number and the other
an exponential number of decision variables. We show that an optimal solution to the second can be efficiently computed
using an optimal solution to the first. Section 6 establishes integrality properties of vertices of the second linear program.
and presents an approximation algorithm that provides useful performance guarantees in theMT � N regime. Then, in
Section 7, we discuss a randomized rounding approach to the problem that uses ideas from [8]. This approach provides

∗Electrical Engineering, Stanford University
†Electrical Engineering and Management Science and Engineering, Stanford University
‡Corresponding author: Terman 315, Stanford University, Stanford, CA 94305-4023. email:bvr@stanford.edu

1

approximation guarantees that can be useful whenMT > N . In Section 8 we discuss some computational experience
with randomly drawn problem instances. That section also introduces a useful integer programming heuristic for problems
in theMT � N regime. Finally, in Section 9, we present extensions of the model.

2 Problem Formulation

We consider the allocation ofM resource types (indexedm = 1, . . . ,M) to N activities (indexedn = 1, . . . , N) over
T time periods (indexedt = 1, . . . , T). In each time period, a quantityRm ∈ < of eachmth resource is available for
allocation. Unused resources do not accumulate; the quantity of resources remains fixed over time. At the beginning of
each time period, the state of each activity takes on a value in a finite setS = {1, . . . , |S|} and for each activity, a task is
selected from a finite setA = {1, . . . , |A|}.

Let xn,t ∈ S andan,t ∈ A denote the state of and task assigned to thenth activity in thetth time period. The state of
the activity at the beginning of the(t + 1)th time period is given byfn(xn,t, an,t). Further, during thetth time period, the
activity generates utilityun(xn,t, an,t) and consumes resourcesrn,m(xn,t, an,t). We assume that there is a distinguished
taska′ ∈ A that generates no utility and consumes no resources; i.e.,un(x, a′) = 0 andrn,m(x, a′) = 0 for all n, m, and
x. This can be thought of as an option to idle, however, it is not essential to assumefn(x, a′) = x.

The objective is to maximize utility, averaged over activities and time. In particular, we have the following optimization
problem, which we will refer to as the dynamic resource allocation (DRA) problem:

max 1
NT

∑
t

∑
n un(xn,t, an,t)

s. t.
∑

n rn,m(xn,t, an,t) ≤ Rm ∀t, m,
fn(xn,t, an,t) = xn,t+1 ∀n, t.

The decision variables are the actionsan,t. Note that the problem data consist of functionsun : S × A 7→ <, rn,m :
S ×A 7→ <, fn : S ×A 7→ S, scalar resource quantitiesRm, and initial statesxn,1. Hence, the problem data is encoded
asΘ(|S|2|A|N + |S||A|NM) real numbers. We assume that these numbers are rational so that the input representation
is finite.

One way to view the DRA problem involves drawingN directed acyclic graphs, each representing one activity. The
nodes of each graph are partitioned intoT + 1 subsets, each representing a time period. The(T + 1)th subset consists of
a single node representing termination of the activity. Thetth subset (fort ≤ T) consists of up to|S| nodes, representing
the possible states of the activity at that time. Edges represent potential state transitions, each edge pointing from a node
in a tth period to one in a(t + 1)th period. Each edge is also associated with a bundle of resources consumed and utility
generated during the transition. The DRA problem is to determine trajectories through the activity graphs that maximize
aggregate utility subject to resource constraints.

Our problem bears similarities with the decision-CPM problem [2]. Decision-CPM requires finding a directed acyclic
subgraph (specified by a suitable, possibly non-linear constraint set) of an activity graph which is itself an arbitrary
directed acyclic graph. Edges have associated costs and the goal is to minimize total cost incurred. Our problem may be
viewed as a discrete-time decision-CPM problem wherein the activity graph is a forest that decomposes into a set ofN
separate activity graphs. We are required to find paths in each of these to maximize aggregate utility. Resource constraints
preclude a trivial decomposition of the problem. These resource constraints impose an activity selection problem similar
to that discussed in [4], which considers the selection of an activity portfolio wherein each activity is associated with a
time-dependent resource consumption profile and resource consumption is constrained by a prescribed budget.

3 Computational Complexity

What quality of approximations might we expect? We use a result of Chekuri and Khanna [1] that establishes inapprox-
imability of the packing integer program to show that the DRA problem is hard to approximate to within any constant
factor.

Theorem 1. For anyα < ∞, the DRA problem is NP-hard to approximate to within a factor ofα.

Proof: We consider a restricted class of DRA problems, withT = 1 and|A| = 2. The first of the two tasks consumes
a quantityCmn ∈ [0, 1] (rational) of the resource and generates utilityun ∈ [0, 1] (rational), while the second consumes

2

nothing and earns no utility. There areRm ∈ [1,∞) units of eachmth resource. This DRA problem is equivalent to the
packing integer program:

max 1
N u′a

s. t. Ca ≤ R
a ∈ {0, 1}N

By Theorem 6 of [1], for anyα < ∞, this problem is NP-hard to approximate to within a factor ofα. 2

Our proof above reduces a packing integer program to a DRA problem with the same input size. In particular, optimal
solutions of a packing integer program withN variables andM constraints correspond to optimal solutions of a DRA
problem withM resource types andN activities. Theorem 6 of [1] is proved via a reduction of maximum independent
set to the packing integer program problem whereN � M , which illustrates the hardness of the DRA problem in the
N � M regime. It may still be possible to generate good approximations in other regimes.

4 Integer Programming Formulations

The approximation algorithms we will develop revolve around two integer programs (IP), each of which solves the DRA
problem, and their linear programming (LP) relaxations. We present these two IPs in this section.

4.1 The Edge IP

For eachn, x, a, andt, let φn,x,a,t be an indicator taking value 1 if at timet, activity n is in statex and assigned taska,
and 0 otherwise. Further, for eachn

Fn(x, a, x) =
{

1 if fn(x, a) = x,
0 otherwise.

The DRA problem can then be solved via the following 0-1 integer program:

max 1
NT

∑
n,x,a,t un(x, a)φn,x,a,t

s. t.
∑

n,x,a rn,m(x, a)φn,x,a,t ≤ Rm ∀t, m,

φn,x,a,1 = 0, ∀n, a, x 6= xn,1,∑
x,a Fn(x, a, x)φn,x,a,t−1 =

∑
a φn,x,a,t ∀n, x, t > 1,∑

x,a φn,x,a,t ≤ 1 ∀n, t,

φn,x,a,t ∈ {0, 1} ∀n, x, a, t.

The variables of this IP represent flows along edges of activity graphs. We will refer to this IP as theEdge IP. We digress
to note that the above program permits that for somen, φn,x,a,t = 0 for all x, a in everyepoch; in such a case setting
φn,xn,1,a′,1 = 1, and selecting the idling actiona′ in each subsequent epocht > 1 for activity n will also be a feasible
solution of equal value to the above integer program and the corresponding DRA problem.

4.2 The Trajectory IP

It is useful to consider another IP that has as its variables flows along possible trajectories in each activity graph. Here,
a trajectory for thenth project is a sequence ofT state-task pairs:(xn,1, an,1), (xn,2, an,2), . . . , (xn,T , an,T). Note that
there are|A|T possible trajectories per activity. We assume that these trajectories are indexed byj ∈ {1, . . . , |A|T },
denoting trajectoryj of activity n by (xj

n,1, an,1), . . . , (x
j
n,T , aj

n,T).
For eachn andj, let θn,j be an indicator taking value 1 if activityn follows trajectoryj and0 otherwise. The DRA

problem can then be solved by the followingtrajectory IP:

max 1
NT

∑
n,t,j un(xj

t , a
j
t)θn,j

s. t.
∑

n,j rn,m(xj
t , a

j
t)θn,j ≤ Rm ∀t, m,∑

j θn,j ≤ 1 ∀n,

θn,j ∈ {0, 1} ∀n, j.

Analogous to the case of the Edge IP, we note that the above formulation permits that for somen, θn,j = 0 for all j; in
such a case settingθn,j = 1 for somej such thataj

n,t = a′ for all t will also be a feasible solution of equal value to the
above integer program and the corresponding DRA problem.

3

5 LP Relaxations

Our approximation algorithms entail solving a relaxation of the trajectory IP (which we will refer to as thetrajectory
LP) wherein we relax the constraintθn,j ∈ {0, 1} to θn,j ≥ 0. Since the number of decision variables is exponential
in T , straightforward formulation and solution of the trajectory LP is impractical. Instead, we develop an algorithm that
efficiently solves the trajectory LP in two steps. The first step is to solve a relaxation of the edge IP (which we will refer
to as theedge LP), wherein we relax the constraintφn,x,a,t ∈ {0, 1} to φn,x,a,t ≥ 0. This LP involvesNT |S||A| decision
variables and can therefore be solved in polynomial time.

Each decision variable of the edge LP is associated with an edge in an activity graph. For any optimal solution of
the trajectory LP, there is a feasible solution to the edge LP with equal objective value. The latter can be generated by
assigning to each edge a value equal to the sum of values associated with trajectories that traverse the edge.

The converse is also true. That is, for any optimal solution of the edge LP, the trajectory LP has a feasible solution with
equal objective value. Consequently, lettingz∗ELP be the optimal objective value of the edge LP, we have the following
result:

Theorem 2.
z∗ELP = z∗TLP

We will now present a polynomial time algorithm that computes an optimal solution to the trajectory LP, given an
optimal solution to the edge LP. In addition to completing the proof of the above lemma, this algorithm provides the
second step of our algorithm for solving the trajectory LP.

Let φ∗ be an optimal solution of the edge LP. Fixn. Flow conservation implies that ifφ∗n,x,a,t > 0 for some edge
(x, a, t), the edge must be part of a trajectoryj for whichφ∗

n,xj
t ,aj

t ,t
> 0 for all t.

We consider an iterative algorithm that computes an optimal solutionθ∗ of the trajectory LP. The algorithm is ini-
tialized with θ = 0 andφ = φ∗ and terminates withθ = θ∗ andφ = 0. In each iteration, the algorithm identifies the
edge(x, a, t) = argmin{φn,x,a,t ≥ 0} with minimal positive value and ajth trajectory for which(xj

t
, aj

t
) = (x, a)

andφn,xj
t ,aj

t ,t ≥ φx,a,t for all t. Then, the algorithm setsθn,j := φn,x,a,t and for eacht, updatesφn,xj
n,t,a

j
n,t,t

:=
φn,xj

n,t,a
j
n,t,t

− φn,x,a,t; that is, values along the trajectory are deducted from the edge LP solution and added to the tra-

jectory LP solution. Because the sequence of edge LP solutions is monotonically decreasing and each iteration sets one
component to zero, the algorithm terminates in no more than|S||A|T iterations. Further, after each iteration, we have∑

x,a,t

un(x, a)φn,x,a,t +
∑
t,j

un(xj
t , a

j
t)θn,j =

∑
x,a,t

un(x, a)φ∗n,x,a,t.

It follows that, upon termination, ∑
t,j

un(xj
t , a

j
t)θn,j =

∑
x,a,t

un(x, a)φ∗n,x,a,t.

If we apply the algorithm we have described to each of theN activities, we arrive at an optimal solution to the
trajectory LP with at mostN |S||A|T nonzero valued variables. Note thatθ∗ need not be represented exhaustively; only
storage of the nonzero variables is required.

6 Using an Optimal Vertex

Our first approximation algorithm converts an optimal solutionθ∗ of the trajectory LP to an optimal vertex. Task assign-
ment is then carried out based on this optimal vertex.

6.1 Vertices of the Trajectory LP

Each activity is associated with|A|T variables, 1 type 2 constraint, and|A|T type 3 constraints. It is easy to see that at
most|A|T among these type 2 and type 3 constraints can be binding. Further, if|A|T of these type 2 and type 3 constraints
arebinding, all|A|T variables associated with the activity are integer valued.

There are a total ofN |A|T variables. Hence, at any vertex, at leastN |A|T constraints are binding. No more thanMT
of these can be of type 1. Hence, at leastN |A|T −MT of these must be of types 2 or 3. It follows that no more than
MT activities can have non-integer valued variables. We state this fact as a lemma, which is very similar to a well-known
result from [7].

4

Lemma 1. At any vertex of the trajectory LP, no more thanMT activities are associated with non-integer values.

Given an optimal solutionθ∗, an optimal vertex can be computed by solving a linear program involving only the
nonzero-valued components ofθ∗, which is equivalent to solving the trajectory LP with all other variables constrained to
be equal to zero. Since the number of nonzero components is polynomial in the input size, this can be done in polynomial
time.

6.2 Task Assignment

To convert an optimal vertex of the trajectory LP to a suboptimal feasible solution of the DRA problem, consider idling
during every period in each activity for which (1) there are associated non-integer-valued variables or (2) every variable is
equal to zero. The variables associated with each other activity assign value 1 to a selected trajectory and 0 to all others,
and we simply assign tasks to follow the selected trajectory. It is easy to see that this results in a feasible solution to the
DRA problem. Further, if

U = max
n,j

1
T

∑
t

un(xj
t , a

j
t),

the utility is at least the objective value of the trajectory LP minusUMT/N . Since the objective value of the trajectory
LP exceeds that of the DRA problem, this also offers a performance loss bound.

We conclude our discussion in terms of a theorem. Letz∗DRA andz∗TLP denote the optimal objective values of the
DRA problem and the trajectory LP, respectively. Letz̃TLP denote the objective value associated with the suboptimal
solution to the DRA that we have described.

Theorem 3. A feasible solution to the DRA problem with an objective value of

z̃TLP ≥ z∗TLP −
UMT

N
≥ z∗DRA −

UMT

N
,

can be computed in polynomial time.

7 Randomized Rounding

In Section 5, we presented a means of producing a sparse optimal solution to the trajectory LP. This sparsity enables
construction of feasible solutions to the trajectory IP via the randomized rounding techniques of [8]. Such solutions are
near optimal whenR �

√
N , whereR = minm Rm. That is, the availability of the scarcest resource is large relative to

the square root of the number of projects.
Let θ∗n,j , j ∈ {1, . . . , |A|T }, n ∈ {1, . . . , N}, be a basic optimal solution to the trajectory LP. If one were to randomly

assign trajectoryj to activityn with a probability slightly less thanθ∗n,j , and assign the idling trajectory with the remaining
probability, then one might hope to hope to generate a feasible solution to the DRA with value close toz∗TLP . This is the
spirit of the randomized rounding approach we pursue in this section.

7.1 An Existence Result

We will first show that there exists a feasible solution to IP that is within an additive error ofO(U
√

N lnMT/R) of the
optimal solution to the trajectory-LP. Towards this end we introduce some notation and preliminary results. For some
fixed scalarν, ν ∈ (0, 1], we define the following random variables:

• For eachm,n, t, letRν
m,n,t represent the random quantity of resourcem consumed by activityn in time t if activity

n were assigned trajectoryj with probabilityθ∗n,jν and the idling trajectory with probability1 − ν
∑

j θ∗n,j . Note

thatRν
m,n,t has support{(rn,m(xj

t , a
j
t); j = 1, . . . , |A|T }∪{0} and takes valuern.m(xj

t , a
j
t) with probabilityνθ∗n,j

and0 with the remaining probability.

• For eachn, let Uν
n represent the random utility earned by activityn if it were assigned trajectoryj with prob-

ability νθ∗n,j and the idle trajectory with probability1 − ν
∑

j θ∗n,j . Note thatUν
n has support{un(xj

t , a
j
t); j =

1, . . . , |A|T } ∪ {0} and takes valueun(xj
t , a

j
t) with probabilityνθ∗n,j and0 with the remaining probability.

5

Now observe that if one were to construct a random solution to the DRA wherein activityn were assigned trajectoryj
with probabilityνθ∗n,j and the idle trajectory with probability1−ν

∑
j θ∗n,j , then

∑N
n=0 Uv

n/NT corresponds to the value

of such a randomly generated solution whileRm −
∑N

n=0 Rv
m,n,t is the quantity of resourcem left unused at timet. The

following concentration results will be useful in establishing existence of a feasible solution with objective value close to
z∗TLP .

Lemma 2. For anyε > 0 let ν = 1− 1
R

√
N ln(MT+1+ε)

2 . If ν ≥ 0, then we have for eachm, t:

P

[
N∑

n=0

Rv
m,n,t ≥ Rm

]
≤ 1

MT + 1 + ε

Lemma 2 gives us an upper-bound on the probability that the resource constraint for resourcem in time t is violated by
our randomly generated solution.

Lemma 3. Givenε > 0, let ν be as in the previous Lemma and assumeν ≥ 0. Letδ = U
νz∗T LP

√
ln(MT+1+ε)

2N . Then,

P

[
N∑

n=0

Uv
n/NT ≤ ν(1− δ)z∗TLP

]
≤ 1

MT + 1 + ε

Lemma 3 gives us an upper-bound on the probability that the value of our randomly generated solution to the DRA is less

thanν(1− δ)z∗TLP = z∗TLP −
[

U
R + U

N

] √
N ln(MT+1+ε)

2 .

The proofs of both Lemmas rely essentially on the Hoeffding bound [6], and have been omitted for brevity.
Armed with Lemmas 3 and 2, we are ready to prove our main result on the existence of a feasible solution to the DRA
with value close toz∗TLP :

Lemma 4. Givenε > 0 let ν be as in Lemma 2. Ifν ≥ 0, then there exists a feasible solution to IP with value

≥ z∗TLP − U
√

2N ln(MT + 1 + ε)/R

Proof: From Lemma 2, we have that for eachm, t:

P

[
N∑

n=0

Rv
m,n,t ≥ Rm

]
≤ 1

MT + 1 + ε

That is, the probability that a randomly generated solution violates the resource constraint for resourcem in time t is less
than1/(MT + 1 + ε).
Let δ be as in Lemma 3. Then, we also have that:

P

[
N∑

n=0

Uv
n/NT ≤ ν(1− δ)z∗TLP

]
≤ 1

MT + 1 + ε

That is, the probability that the value of a randomly generated solution is less thanz∗TLP −
[

U
R + U

N

] √
N ln(MT+1+ε)

2

is less than1/(MT + 1 + ε). Thus the probability that any of these events occur

P

[
∪(m,t){

N∑
n=0

Rv
m,n,t ≥ Rm} ∪ {

N∑
n=0

Uv
n/NT ≤ ν(1− δ)z∗TLP}

]
is, by the union bound, less than

P

[
N∑

n=0

Uv
n/NT ≤ ν(1− δ)z∗TLP

]
+

∑
m,t

P

[
N∑

n=0

Rv
m,n,t ≥ Rm

]
≤ MT + 1

MT + 1 + ε

6

Consequently we have that the probability that no constraint is violated and that the value of the randomly generated

solution is greater thanz∗TLP −
[

U
R + U

N

] √
N ln(MT+1+ε)

2 is

P

[N∑
n=0

Rv
m,n,t ≤ Rm ∀m, t;

N∑
n=0

Uv
n/NT ≥ ν(1− δ)z∗TLP

]

=1− P

[
∪(m,t){

N∑
n=0

Rv
m,n,t ≥ Rm} ∪ {

N∑
n=0

Uv
n/NT ≤ ν(1− δ)z∗TLP}

]
>

ε

MT + 1 + ε

(1)

That is, we have the existence of a feasible solution to IP with value

≥ z∗TLP −
[
U

R
+

U

N

]√
ln(MT + 1 + ε)

2N

We assume without loss of generality thatR < N (for otherwise every solution to the DRA is feasible, trivializing IP), so
that, we have the existence of a feasible solution to IP with value

≥ z∗TLP − U
√

2N ln(MT + 1 + ε)/R

2

7.2 Task Assignment via Randomized Rounding

Our discussion thus far suggests the following natural randomized algorithm which may be used to generate a feasible
solution to IP, of the quality indicated by Lemma 4. Given a solutionθ∗n,j , j ∈ {1, . . . , J}, n ∈ {1, . . . , N} to the TLP,
the algorithm assigns (independently for eachn) trajectoryj to activity n with probability νθ∗n,j and assigns the idle
trajectory with probability1 − ν

∑
j θ∗n,j . Since solutions to the TLP haveN + MT positive components cf. Lemma 1,

this procedure takesΘ(N + MT) time. In the event that the resultant solution is not feasible, or the value of the resultant

solution is less thanz∗TLP −
[

U
R + U

N

] √
ln(MT+1+ε)

2N , the solution is discarded and the procedure repeated. Now by

(1) the probability that the rounded solution does not need to be discarded is greater thanε
MT+1+ε so that the expected

number of iterations required is less thanMT+1+ε
ε . We conclude our discussion in this section with the following theorem.

Let the random variablẽzRAND denote the objective value associated with the suboptimal solution to the DRA that the
procedure we have described terminates on.

Theorem 4. Givenε > 0, if 1
R

√
N ln(MT+1+ε)

2 ≤ 1 then a feasible solution to the DRA problem with an objective value
of

z̃RAND ≥ z∗TLP − U
√

2N ln(MT + 1 + ε)/R ≥ z∗DRA − U
√

2N ln(MT + 1 + ε)/R,

can be computed in randomized polynomial time.

8 Computational Experience

The bounds of Theorems 3 and 4 are worst-case and additive. In this section, we present computational experiments
on randomly drawn problem instances. The results suggest that the approximate solutions generally result in moderate
percentage losses in parameter regimes for which they are designed. Alongside performance, we report statistics on
compute time to demonstrate that the algorithms scale well to large problems. Finally, we propose an integer programming
heuristic that, for problems in theMT � N regime, further improves approximations without requiring much additional
compute time.

8.1 Generative Model

We consider random problem instances with|S| = 10, |A| = 3, N = 100, and various values ofM andT . For fixed
N, |S|, |A|,M andT , we generate the activity graph for a single project as follows. Connect the start state for projectn

7

M 5 10 20
T Approx. Time Approx. Time Approx. Time

5
Opt.Vert. 0.889 +/- 0.005 8.308 +/- 0.187 0.774 +/- 0.016 15.91 +/- 0.331 0.605 +/- 0.016 31.21 +/-0.731

Heur. 0.971 +/- 0.009 4.107 +/- 0.077 0.915 +/- 0.019 7.082 +/- 0.379 0.916 +/- 0.030 16.52 +/- 1.490
Rounding. 0.758 +/- 0.017 8.416 +/- 0.201 0.713 +/- 0.019 16.07 +/- 0.346 0.708 +/- 0.016 31.62 +/- 0.741

10
Opt.Vert. 0.771 +/- 0.012 42.01 +/- 0.639 0.620 +/- 0.012 115.3 +/- 2.996 0.380 +/- 0. 016 296.8 +/- 17.16

Heur 0.986 +/- 0.002 21.76 +/- 2.715 0.975 +/- 0.003 132.2 +/- 28.41 0.968 +/- 0.022 1663 +/- 564.8
Rounding 0.709 +/- 0.017 42.31 +/- 0.611 0.682 +/- 0.014 116.1 +/- 3.019 0.679 +/- 0.017 298.2 +/- 170.9

20
Opt.Vert. 0.614 +/- 0.011 239.6 +/- 5.790 0.365 +/- 0. 015 741.4 +/- 24.90 0.127 +/- 0.012 1196 +/- 22.52

Heur. *** *** *** *** *** ***
Rounding 0.701 +/- 0.020 240.7 +/- 5.793 0.686 +/- 0.018 743.5 +/- 24.90 0.668 +/- 0.018 1201 +/- 22.50

Table 1: Performance for the optimal vertex and rounding algorithms, as well as the heuristic for varying values ofM and
T . Approximation ratios reported are lower bounds computed from the value of the LP-relaxations. *** indicates that the
heuristic was unsuccessful in finding a feasible solution after a day of computation. Computation time reported in seconds
for SunBlade 2000 machines with 2GB of RAM.

(which is selected uniformly at random fromS), xn,1, tok randomly selected states fromS wherek is selected uniformly
at random between1 and|A|. Each of thesek states represent the reachable states att = 2. We repeat the procedure for
each of thesek states and continue in this fashion, to construct an activity graph spanningT epochs. For each edge in
the activity graph, we set resource consumption of each of theM resources to some random value distributed uniformly
on [0, 1]. We also set the utility of the edge to some random value distributed uniformly on[0, 1]. N project-graphs are
generated in this manner. We setRm = 0.5N for eachm. Such a model, while fairly general, allows us transparent
control on two parameters required to identify the regime of the algorithms’ applicability. First, we are assured that
E[z∗DRA]/U ≥ 0.25 where the expectation is over problem instances, and second, thatR/

√
N ≥ 5 for n ≥ 100.

8.2 The Optimal Vertex Algorithm

We will call our two algorithms theoptimal vertex algorithmand therandomized rounding algorithm. We first discuss
the performance of the optimal vertex algorithm. We would like to study percentage losses associated with problems
for which MT � N , this being the regime in which Theorem 3 assures small additive loss. Table 1 illustrates that
for problems from our generative model, moderate percentage losses result for instances with values ofMT/N as high
as1/2. Further the algorithm requires only a few seconds to solve each instance. The performance of the algorithms
deteriorates whenMT grows larger thanN .

8.3 The Randomized Rounding Algorithm

For the randomized rounding algorithm, we would like to examine percentage losses for problems in whichMT is large
relative toN . Table 1 illustrates that moderate percentage losses are obtained for instances with values ofMT/N as large
as4. Further the algorithm requires only a few minutes to solve each instance. Even for the choices ofε as small as10−5,
the algorithm required just a single rounding iteration. This is attributed to the fact that the bounds used to compute theν
andδ parameters are themselves extremely conservative. In contrast, a commercial integer programming solver (CPLEX)
employing heuristics to find a first feasible solution quickly, was unable to produce a feasible solution even after a day of
computation for most instances in theMT > N regime.

8.4 A Task Assignment Heuristic for theMT � N regime

We also believe that the use of a generic integer programming technique such as branch-and-bound with a tree exploration
heuristic that emphasizes finding feasible solutions quickly is likely to perform very well on problems in theMT � N
regime. This is because the root node relaxation for the Edge integer program has very few fractional variables cf.
Corollary 1 bellow, and a simple depth first search on the fractional variables is guaranteed to produce a feasible solution
no worse than that produced by our algorithm.

8

Corollary 1. There exists a basic optimal solution to the Edge LP wherein at leastN −MT projects have integral flows
and at most2MT 2 variables are fractional.

Proof: Lemma 1 shows the existence of an optimal, possibly over-complete basis for the Edge LP wherein at least
N −MT projects have integral flows and at most2MT 2 variables are fractional. Since there must be a subset of columns
of such an over-complete optimal basis that forms an optimal basis, and since this subset necessarily includes columns
corresponding to projects with integer solutions, the claim follows. 2

One heuristic we experimented with along these lines, is presented in Table 1. After computing an optimal vertex to
the trajectory LP, the heuristic fixes integer valued variables in the edge LP, and in place of the task assignment procedure
of Section 6.2, uses the first feasible solution from a generic integer programming solver to resolve fractional edges. As
illustrated in Table 1, the heuristic takes very little additional time, and produces significantly better approximations for
problems in theMT < N regime. As the value ofMT/N increases, the heuristic quickly become computationally
infeasible.

9 Resource Roles and other Extensions

We introduce the concept of arole. The execution of a task requires certain roles be filled by available resources. As an
illustration, returning to the example of the Associated Press, the role of translating Arabic to English might be filled by a
translator (the resource) that is bilingual in English and Arabic, or by one that is trilingual is English, Arabic and Hindi.
The optimal vertex algorithm can be extended to accommodate this.

More formally, we consider the model of Section 2, where in place ofM resource types, we haveM roles. We will
assume that at each of theT epochs we haveL resource units indexed (indexedl = 1, . . . , L), where each resource is
associated with a qualification setql ⊆ {1, . . . ,M} that represents the roles unitl may be assigned to. Here, we let
rn,m(x, a) denote the number ofroles of typem that need to be filled by thenth project if it were in statex and took
actiona. Matching resources to roles in timet may be viewed as a transportation problem withL supply nodes each with
a supply of1, andM demand nodes each with a demand determined by the choice of actions for each project in timet.
Thef t

lm variables in the edge LP and trajectory LP below correspond to the flow variables for the transportation problem
for time t; an edge from resourcel to rolem exists iffm ∈ ql. We have the following analogue of the edge LP (ELP’):

max 1
NT

∑
n,x,a,t un(x, a)φn,x,a,t

s. t.
∑

n,x,a rn,m(x, a)φn,x,a,t ≤
∑

l f
t
lm ∀t, m

φn,x,a,1 = 0, ∀n, a, x 6= xn,1,∑
x,a Fn(x, a, x)φn,x,a,t−1 =

∑
a φn,x,a,t ∀n, x, t > 1,∑

x,a φn,x,a,t ≤ 1 ∀n, t,∑
m f t

lm ≤ 1 ∀l, t.
f t

lm ≥ 0 ∀l, m, t.
φn,x,a,t ≥ 0 ∀n, x, a, t.

We also have the following analogue to the trajectory-LP (TLP’):

max 1
NT

∑
n,t,j un(xj

t , a
j
t)θn,j

s. t.
∑

n,j rn,m(xj
t , a

j
t)θn,j ≤

∑
l f

t
lm ∀t,m (type 1)∑

m f t
lm ≤ 1 ∀l, t.

f t
lm ≥ 0 ∀l,m, t.∑

j θn,j ≤ 1 ∀n, (type 2)
θn,j ≥ 0 ∀n, j. (type 3)

Analogous to Theorem 2, we have the following theorem:

Theorem 5.
z∗ELP′ = z∗TLP′

The proof of this result is identical to that presented in Section 5; given an optimal solution to ELP’, it is possible using
the flow decomposition procedure in that section to construct an optimal solution to TLP’ in polynomial time. Furthermore
it is not hard to see that the following analogue to Lemma 1 holds (the argument used in Lemma 1 applies identically).

9

Lemma 5. At any vertex of TLP’, no more thanMT activities are associated with non-integer values.

Finally, given an optimal solution(θ∗n,j , f
t∗
lm) to TLP’, we assign trajectories to activities exactly as described in

Section 6.2. In doing so, we are assured of integral demands for each role, less than or equal to
∑

l f
t∗
lm for eachm, t.

Arriving at an allocation of resources to roles then requires the solution ofMT transportation problems whose feasibility
follows from the feasibility of(θ∗n,j , f

t∗
lm). We conclude our discussion of this extension with the following theorem. Let

z̃TLP′ denote the objective value associated with the suboptimal solution to the DRA problem with roles that we have
described.

Theorem 6. A feasible solution to the DRA problem with roles having an objective value of

z̃TLP′ ≥ z∗TLP′ −
UMT

N
≥ z∗DRA′ −

UMT

N
,

can be computed in polynomial time.

We close the paper mentioning a few immediate extensions of our model and results. Instead of assuming that the
availability of a resource stays fixed over time, we may also model the vector of available resources evolving according
to some time varying linear dynamical system. Denoting byRt, theM -dimensional vector of available resources at time
t, and assuming that at timet, Rt evolves according to the linear systemRt+1 = AtRt + bt, whereAt ∈ <M×M and
bt ∈ <M , and further thatR1 is known in advance, we may consider the following DRA problem with time-varying
resource availability:

max 1
NT

∑
t

∑
n un(xn,t, an,t)

s. t.
∑

n rn,m(xn,t, an,t) ≤ (Rt)m ∀t, m,
fn(xn,t, an,t) = xn,t+1 ∀n, t.
Rt+1 = AtRt + bt ∀t < T

The natural analogues to the Edge and Trajectory LPs for the above problem have properties identical to those of the
Edge LP and Trajectory LP explored in Sections 5 and 6; the proofs and algorithms of those sections apply identically. It
is therefore possible to efficiently produce, for the DRA problem with time varying resource availability, a solution having
value≥ z∗DRA − UMT/N .

Finally, we note that there is no reason to assume, for either the optimal vertex algorithm or the rounding algorithm,
that the functionsun : S ×A 7→ <, rn,m : S ×A 7→ <, fn : S ×A 7→ S are independent oft; such a dependence merely
increases problem description length by a factor ofT .

Acknowledgments

This research was supported by a supplement to NSF Grant ECS-9985229 provided by the Management of Knowledge
Intensive Dynamic Systems Program (MKIDS). We thank Sid Berkowitz for stimulating discussions that inspired the
problem formulation and Ashish Goel, Pete Veinott, and Yinyu Ye, for helpful discussions on approximation algorithms.

References
[1] Chandra Chekuri and Sanjeev Khanna. On Multidimensional Packing Problems.SIAM Journal on Computing, 33(4):837–851,

2004.

[2] W. Crowston and G. L. Thompson. Decision CPM: A Method for Simultaneous Planning, Scheduling, and Control of Projects.
Operations Research, 15(3):407–426, 1967.

[3] P. De; E. J. Dunne; J. B. Ghosh and C. E. Wells. Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks.
Operations Research, 45(2):302–306, 1997.

[4] G.L.Nemhauser and Z. Ullman. Discrete Dynamic Programing and Capital Allocation.Management Science, 15(9):494–505,
1969.

[5] Thomas J. Hindelang and John F. Muth. A Dynamic Programming Algorithm for Decision CPM Networks.Operations Research,
27(2):225–241, 1979.

[6] W. Hoeffding. Probability for sums of bounded random variables.J. Amer. Stat., 58:13–30, 1963.

[7] Alan S. Manne. Programming of Economic Lot Sizes.Management Science, 4(2):115–135, 1958.

[8] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms approximating packing integer programs.Journal of
Computer and System Sciences, 37:130–143, 1988.

10

