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We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce
upper and lower bounds on the optimal value (the “price”) of a high-dimensional optimal stopping prob-

lem. The PO method builds on a dual characterization of optimal stopping problems as optimization problems
over the space of martingales, which we dub the martingale duality approach. We demonstrate via numer-
ical experiments that the PO method produces upper bounds of a quality comparable with state-of-the-art
approaches, but in a fraction of the time required for those approaches. As a by-product, it yields lower bounds
(and suboptimal exercise policies) that are substantially superior to those produced by state-of-the-art methods.
The PO method thus constitutes a practical and desirable approach to high-dimensional pricing problems. Fur-
thermore, we develop an approximation theory relevant to martingale duality approaches in general and the
PO method in particular. Our analysis provides a guarantee on the quality of upper bounds resulting from these
approaches and identifies three key determinants of their performance: the quality of an input value function
approximation, the square root of the effective time horizon of the problem, and a certain spectral measure
of “predictability” of the underlying Markov chain. As a corollary to this analysis we develop approximation
guarantees specific to the PO method. Finally, we view the PO method and several approximate dynamic pro-
gramming methods for high-dimensional pricing problems through a common lens and in doing so show that
the PO method dominates those alternatives.
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1. Introduction

Consider the following optimal control problem:
A Markov process evolves in discrete time over the
state space � . Denote this process by �xt� t ≥ 0�. The
process is associated with a state-dependent reward
function g� � →�. Our goal is to solve the optimiza-
tion problem

sup
�

E��
�
g�x� � � x0 = x��

where the optimization is over stopping times �

adapted to the �xt� process, and � ∈ �0�1� is a discount
factor. In other words, we wish to pick a stopping
time that maximizes the expected discounted reward.
Such optimal stopping problems arise in a myriad of
applications, most notably in the pricing of financial
derivatives.
In principle, the above stopping problem can be

solved via the machinery of dynamic programming.
However, the applicability of the dynamic program-
ming approach is typically curtailed by the size of
the state space � . In particular, in many applications

of interest, � is a high-dimensional space and thus
intractably large.
Because high-dimensional stopping problems are

important from a practical perspective, a number of
alternative approaches that contend with the so-called
“curse of dimensionality” have emerged. There are
two broad classes of methods by which one can
develop bounds on the optimal value of a stop-
ping problem, motivated essentially by distinct char-
acterizations of the optimal solution to the stopping
problem:
• Lower Bounds/Approximate Dynamic Programming

(ADP). The optimal control is characterized by an opti-
mal value function, which, in turn, is the unique solu-
tion to the so-called Bellman equation. A natural goal
is to attempt to approximate this value function by
finding “approximate” solutions to the Bellman equa-
tion. This is the central goal of ADP algorithms such
as regression pricing methods of the type pioneered by
Carriere (1996), Longstaff and Schwartz (2001), and
Tsitsiklis and Van Roy (2001). Such an approximate
solution can then be used to both define a control
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policy and, via simulation of that (suboptimal) policy,
a lower bound on the optimal value function.
• Upper Bounds/Martingale Duality. At a high level,

this approach may be thought of as relaxing the
requirement of causality, while simultaneously intro-
ducing a penalty for this relaxation. The appropri-
ate penalty function is itself a stochastic process
(a martingale), and by selecting the “optimal” mar-
tingale, one may in fact solve the original stopping
problem. In the context of stopping problems, part of
this characterization appears to date back at least to
the work by Davis and Karatzas (1994), and this idea
was subsequently fully developed by Rogers (2002)
and Haugh and Kogan (2004).
Not surprisingly, finding such an optimal martin-

gale is no easier than solving the original stopping
problem. As such, the martingale duality approach
consists of heuristically selecting “good” martingale
penalty functions, using these to compute upper
bounds on the price (i.e., the optimal value of the
stopping problem). Here, two techniques are com-
monly employed. The first, which we will call a
dual value function approach, derives a martingale
penalty function from an approximation to the opti-
mal value function. Such an approximation will typ-
ically be generated, for example, along the course of
regression pricing procedures such as those described
above. Alternatively, in what we will call a dual pol-
icy approach, a martingale penalty function can be
derived from a heuristic control policy. This latter
approach was proposed by Andersen and Broadie
(2004). A good control policy will typically also be
generated using a regression pricing procedure.
A combination of these methods has come to rep-

resent the state of the art in financial applications
(see, e.g., Glasserman 2004). There, practitioners typi-
cally use regression pricing to derive optimal policies
for the exercise of American and Bermudan options,
and to derive lower bounds on prices. The martingale
duality approach is then applied in a complemen-
tary fashion to generate upper bounds, using either
the dual value function approach or the dual policy
approach. Taken together, these methods provide a
“confidence bound” on the true price. In this area, the
development of such methodologies is thought to be
worth considerable financial value, and thus may rep-
resent the greatest practical success of approximate
dynamic programming.
The present paper, in a nutshell, introduces a

new approach to solving high-dimensional stopping
problems that draws on techniques from both of
the methodologies above, and ultimately unifies our
understanding of the two approaches. This new
method is ultimately seen to be desirable from the
practical perspective of rapidly pricing high-dimen-
sional financial derivatives. In addition, we develop a

theory that allows us to characterize the quality of the
solutions produced by the approaches above.
In greater detail, we make the following contribu-

tions
• A New Algorithm. ADP algorithms systematically

explore approximations to the optimal value function
within the span of some predefined set of basis func-
tions. The duality approach, on the other hand, relies
on an ad hoc specification of an appropriate martin-
gale penalty process. We introduce a new approach,
which we call the pathwise optimization (PO) method.
The PO method systematizes the search for a good
martingale penalty process. In particular, given a set
of basis functions whose linear span is expected to
contain a good approximation to the optimal value
function, we posit a family of martingales. As it
turns out, finding a martingale within this family
that produces the best possible upper bound to the
value function is a convex optimization problem. The
PO method seeks to solve this problem. We show
that this method has several merits relative to extant
schemes:

1. The PO method is a specific instance of the
dual value function approach. By construction, how-
ever, the PO method produces an upper bound that
is provably tighter than any other dual value function
approach that employs a value function approxima-
tion contained in the span of the same basis func-
tion set. These latter approximations are analogous to
what is typically found using regression methods of
the type proposed by Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001). We demonstrate
this fact in numerical experiments, where we will
show that, given a fixed set of basis functions, the
benefit of the PO method over the dual value func-
tion approach in concert with regression pricing can
be substantial. We also see that the incremental com-
putational overhead of the PO method over the latter
method is manageable.

2. We compare the PO method to upper bounds
generated using the dual policy approach in concert
with policies derived from regression pricing. Given
a fixed set of basis functions, we will see in numerical
experiments that the PO method yields upper bounds
that are comparable to but not as tight as those from
the latter approach. However, the PO method does
so in a substantially shorter amount of time, typically
requiring a computational budget that is smaller by
an order of magnitude.

3. The aforementioned regression techniques are
the mainstay for producing control policies and lower
bounds in financial applications. We illustrate that the
PO method yields a continuation value approxima-
tion that can subsequently be used to derive control
policies and lower bounds. In computational exper-
iments, these control policies and lower bounds are
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substantially superior to those produced by regres-
sion methods.
In summary, the PO method is quite attractive from

a practical perspective.
• Approximation Theory. We offer new guarantees

on the quality of upper bounds of martingale penalty
approaches in general, as well as specific guaran-
tees for the PO method. We compare these guaran-
tees favorably to guarantees developed for other ADP
methods. Our guarantees characterize the structural
properties of an optimal stopping problem that are
general determinants of performance for these tech-
niques. Specifically:

1. In an infinite horizon setting, we show that the
quality of the upper bound produced by the generic
martingale duality approach depends on three param-
eters: the error in approximating the value function
(measured in a root-mean-squared error sense), the
square root of the effective time horizon (as also
observed by Chen and Glasserman 2007), and a cer-
tain measure of the “predictability” of the underlying
Markov process. We believe that this latter parame-
ter provides valuable insight on aspects of the under-
lying Markov process that make a particular pricing
problem easy or hard.

2. In an infinite horizon setting, we produce rel-
ative upper bound guarantees for the PO method.
In particular, we produce guarantees on the upper
bound that scale linearly with the approximation
error corresponding to the best possible approximation
to the value function within the span of the basis func-
tions employed in the approach. Note that the latter
approximation is typically not computable. This result
makes precise the intuition that the PO method pro-
duces good price approximations if there exists some
linear combination of the basis functions that is able
to describe the value function well.

3. Upper bounds produced by the PO methods
can be directly compared to upper bounds produced
by linear programming-based ADP algorithms of the
type introduced by Schweitzer and Seidmann (1985),
de Farias and Van Roy (2003), and Desai et al. (2012).
In particular, we demonstrate that the PO method
produces provably tighter upper bounds than the lat-
ter methods. Although these methods have achieved
considerable success in a broad range of large-scale
dynamic optimization problems, they are dominated
by the PO method for optimal stopping problems.
The literature on ADP algorithms is vast, and we

make no attempt to survey it here. Bertsekas (2007,
Chap. 6) provides a good, brief overview. ADP algo-
rithms are usually based on an approximate approach
for solving Bellman’s equation. In the context of opti-
mal stopping, methods have been proposed that are
variations of approximate value iteration (Tsitsiklis

and Van Roy 1999, Yu and Bertsekas 2007), approx-
imate policy iteration (Longstaff and Schwartz 2001,
Clément et al. 2002), and approximate linear program-
ming (ALP) (Borkar et al. 2009).
Martingale duality-based upper bounds for the

pricing of American and Bermudan options, which
rely on Doob’s decomposition to generate the penalty
process, were introduced by Rogers (2002) and Haugh
and Kogan (2004). Rogers (2002) suggested the pos-
sibility of determining a good penalty process by
optimizing linear combinations of martingales; our
method is a special case of this that uses a specific
parametrization of candidate martingales in terms of
basis functions. Andersen and Broadie (2004) showed
how to compute martingale penalties from rules and
obtain upper bounds; practical improvements to these
technique were studied by Broadie and Cao (2008).
An alternative “multiplicative” approach to duality
was introduced by Jamshidian (2003). Its connec-
tions with martingale duality approach were explored
by Chen and Glasserman (2007), who also devel-
oped approximation guarantees for martingale dual-
ity upper bounds. Belomestny et al. (2009) described
a variation of the martingale duality procedure that
does not require inner simulation. Rogers (2010)
described a pure dual algorithm for pricing. Gener-
alizations of the martingale duality approach to con-
trol problems other than optimal stopping have been
studied by Rogers (2008), Lai et al. (2010), Brown et al.
(2010), and Brown and Smith (2011). Furthermore,
Brown et al. (2010) generalized martingale duality to
a broader class of information relaxations.

2. Formulation

Our framework will be that of an optimal stop-
ping problem over a finite time horizon. Specifi-
cally, consider a discrete-time Markov chain with state
xt ∈� ⊂�n at each time t ∈ � �= �0�1� � � � �d�. Denote
by P the transition kernel of the chain. Without loss
of generality, we will assume that P is time invariant.
Let � �= �� t� be the natural filtration generated by the
process �xt�, i.e., for each time t, � t

�= ��x0�x1� � � � �xt�.
Given a measurable function g� � → �, we define

the payoff of stopping when the state is xt as g�xt�.
For each t ∈� , let � t be the space of real-valued mea-
surable functions Jt� � →� defined on state space � ,
with E�Jt�xt�

2 � x0� < �, for all x0 ∈ � . Assume that
g ∈ � t for all t. Define � to be the set of functions
J � � × � → � such that, for each t ∈ � , Jt

�= J �·� t� is
contained in the set � t . In other words, � is the set of
Markovian processes (i.e., time-dependent functionals
of the state) that possess second moments.
A stationary exercise policy �

�= ��t� t ∈� � is a col-
lection of measurable functions where each �t� � →
�STOP�CONTINUE� determines the choice of action
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at time t as a function of the state xt . Without loss of
generality, we will require that �d�x� = STOP for all
x ∈ � , i.e., the process is always stopped at the final
time d.
We are interested in finding a policy that maximizes

the expected discounted payoff of stopping. The value
of a policy � assuming one starts at state x in period t

is given by

J
�

t
�x�

�=E��
���t�−t

g�x���t�
� � xt = x��

where ���t� is the stopping time ���t�
�= min�s ≥

t� �s�xs�= STOP�. Our goal is to find a policy � that
simultaneously maximizes the value function J

�

t
�x�

for all t and x. We will denote such an optimal policy by
�

∗ and the corresponding optimal value function by J
∗.

In principle, J ∗ may be computed via the follow-
ing dynamic programming backward recursion: for
all x ∈� and t ∈� ,

J
∗
t
�x�

�=






max�g�x���E�J ∗
t+1�xt+1� � xt = x��

if t < d�

g�x� if t = d�

(1)

The corresponding optimal stopping policy �
∗ is

“greedy” with respect to J
∗ and given by

�
∗
t
�x�

�=






CONTINUE

if t < d and g�x�< �E�J ∗
t+1�xt+1� � xt = x��

STOP otherwise.
(2)

2.1. The Martingale Duality Approach

We begin by defining the martingale difference opera-
tor �. The operator � maps a function V ∈� 1 to the
function �V � � ×� → � according to ��V ��x1�x0�

�=
V �x1� − E�V �x1� � x0�. Given an arbitrary function
J ∈�, define the process

Mt

�=
t�

s=1

�
s
��Js��xs�xs−1�� ∀ t ∈� �

Then, M is a martingale adapted to the filtration � .
Hence, we view � as a projection onto the space of
martingale differences.
Next, we define, for each t ∈� , the martingale dual-

ity upper bound operator Ft� � →� t according to

�FtJ ��x�

�=E

�
max
t≤s≤d

�
�
s−t

g�xs�−
s�

p=t+1

�
p−t

�Jp�xp�xp−1�

�����xt = x

�
�

Finally, we define J
∗ ∈ � according to J

∗
�x� t�

�=
J
∗
t
�x�. We are now ready to state the following key

lemma, due to Rogers (2002) and Haugh and Kogan
(2004). A proof is provided in §A.1 of the online sup-
plement (available at http://moallemi.com/ciamac/
papers/po-2010-supplement.pdf) for completeness.

Lemma 1 (Martingale Duality). (i) (Weak Dual-
ity) For any J ∈� and all x ∈� and t ∈� , J ∗

t
�x�≤ FtJ �x�.

(ii) (Strong Duality) For all x ∈� and t ∈ � , J ∗
t
�x�=

FtJ
∗
�x�.

The above result may be succinctly stated as fol-
lows: For any t ∈� �x ∈� ,

J
∗
t
�x�= inf

J∈�
FtJ �x�� (3)

This is an alternative (and somewhat convoluted)
characterization of the optimal value function J

∗.
Its value, however, lies in the fact that any J ∈ �
yields an upper bound, and evaluating this upper
bound for a given J is for all practical purposes not
impacted by the size of � . Indeed, extant approaches
to using the above characterization to produce upper
bounds on J

∗ use, as surrogates for J , an approx-
imation of the optimal value function J

∗ (see, e.g.,
Glasserman 2004). This approximation can be derived
over the course of a regression pricing method of the
type introduced by Longstaff and Schwartz (2001) or
Tsitsiklis and Van Roy (2001). We call this the dual
value function approach. Alternatively, an approximat-
ing value function corresponding to a suboptimal pol-
icy (Andersen and Broadie 2004) can be used, where
the policy is typically produced by a regression pric-
ing method. We call this the dual policy approach.

3. The Pathwise Optimization Method

Motivated by the (in general, intractable) optimiza-
tion problem (3), we are led to consider the follow-
ing: what if one chose to optimize over functions J ∈
�̂ ⊂�, where �̂ is compactly parametrized and easy
to optimize over? Motivated by ADP algorithms that
seek approximations to the optimal value function
that are linear combinations of some set of basis func-
tions, we are led to the following parametrization:
Assume we are given a collection of K basis functions
�

�= ��1��2� � � � ��K� ⊂ �. Ideally these basis func-
tions capture features of the state space or optimal
value function that are relevant for effective decision
making, but frequently generic selections work well
(e.g., all monomials up to a fixed degree). We may
then consider restricting attention to functions that are
linear combinations of elements of �, i.e., functions of
the form

��r�t�x�
�=

K�

l=1

rl�l�x� t�� ∀x ∈�� t ∈� �

Here, r ∈ �K is known as a weight vector. Denote
this subspace of � by �̂ and note that �̂ is com-
pactly parameterized by K parameters (as opposed
to �, which is infinite dimensional in general). Setting
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the starting epoch to t = 0 for convenience, we may
rewrite the optimization problem (3) restricted to �̂ as

inf
r

F0�r�x�� (4)

We call this problem the pathwise optimization problem.
The lemma below demonstrates that (4) is, in fact, a
convex optimization problem.

Lemma 2. For every t ∈� and x ∈� , the function r �→
Ft�r�x� is convex in r .

Proof. Observe that, given a fixed �x� t� and as a
function of r , Ft�r�x� is a nonnegative linear combina-
tion of a set of pointwise suprema of affine functions
of r , and hence must be convex as each of these oper-
ations preserves convexity. �
Before devising a practical approach to solving (4),

let us reflect on what solving this program accom-
plishes. We have devised a means to systematically
and, anticipating the developments in the sequel,
practically, find a martingale penalty process within a
certain parametrized family of martingales. To appre-
ciate the value of this approach, we note that it is
guaranteed, by construction, to produce tighter upper
bounds on price than any dual value function meth-
ods derived from value function approximations that
are within the span of the same basis function set.
These latter approximations are analogous to what
is typically found using regression methods of the
type proposed by Longstaff and Schwartz (2001) and
Tsitsiklis and Van Roy (2001).1
Now, from a practical perspective, the optimiza-

tion problem (4) is an unconstrained minimization of
a convex function over a relatively low-dimensional
space. Algorithmically, the main challenge is evaluat-
ing the objective, which is the expectation of a func-
tional over paths in a high-dimensional space. We will
demonstrate that this can be efficiently approximated
via sampling.

3.1. Solution via Sampling

Consider sampling S independent outer sample paths
of the underlying Markov process starting at some
given state x0; denote path i by x

�i� �= �x
�i�

s � s ∈ � � for
i= 1�2� � � � �S. Given a fixed weight vector r and ini-
tial state x0, define a sampled approximation to the
upper bound F0�r�x0� by

F̂
S

0 �r�x0�

�= 1
S

S�

i=1

max
0≤s≤d

�
�
s
g�x

�i�

s
�−

s�

p=1

�
p
���r�p�x

�i�

p
�x

�i�

p−1�

�
� (5)

1 Strictly speaking, the regression pricing approaches of Longstaff
and Schwartz (2001) and Tsitsiklis and Van Roy (2001) seek linearly
parameterized approximations to the optimal continuation value
function, as is described in §4. However, the same ideas could easily
be applied to find linearly parameterized approximations to the
optimal value function.

By the strong law of large numbers, almost surely,
F̂
S

0 �r�x0� → F0�r�x0�, as S → �. This suggests
F̂
S

0 �r�x0� as a useful proxy for the objective in the
pathwise optimization problem (4).
However, consider the quantities that appear in the

left-hand side of (5),

���r�p�x
�i�

p
�x

�i�

p−1�

= ��r�p�x
�i�

p
�−E���r�p�xp� � xp−1 = x

�i�

p−1��

The expectation in the above expression may, in cer-
tain cases, be computed in closed form (see, e.g.,
Glasserman and Yu 2002, Belomestny et al. 2009).
More generally, however, to achieve a tractable objec-
tive, we can instead replace the conditional expec-
tation by its empirical counterpart. In particular,
we generate I independent inner samples �x

�i� j�

p � j =
1� � � � � I�, conditional on xp−1 = x

�i�

p−1. In other words,
these inner samples are generated according to the
one-step transition distribution P �x

�i�

p−1� ·�. Then, con-
sider the approximation

�̂��r�p�x
�i�

p
�x

�i�

p−1�
�= ��r�p�x

�i�

p
�− 1

I

I�

j=1

��r�p�x
�i� j�

p
�� (6)

Note that, almost surely, �̂��r�p�x
�i�

p �x
�i�

p−1�→ ���r�p ·
�x

�i�

p �x
�i�

p−1� as I → �. This suggests the nested Monte
Carlo approximation

F̂
S� I

0 �r�x0�

�= 1
S

S�

i=1

max
0≤s≤d

�
�
s
g�x

�i�

s
�−

s�

p=1

�
p
�̂��r�p�x

�i�

p
�x

�i�

p−1�

�
(7)

to the objective in the pathwise optimization prob-
lem (4). Having thus replaced expectations by their
empirical counterparts, we are ready to state a gen-
eral, implementable, sampled variant of the optimiza-
tion problem (4):

inf
r

F̂
S� I

0 �r�x�� (8)

The following theorem establishes that, subject to
technical conditions and given a sufficiently large
number of outer sample paths S and one-stage inner
samples I , the upper bound achieved by minimizing
the nested Monte Carlo approximation F̂

S� I

0 �r�x0� can
be made arbitrarily close to that of the pathwise opti-
mization problem (4).

Theorem 1. Let � ⊂�K be a compact set. Fix an initial
state x0 and �> 0. Then, almost surely, if S is sufficiently
large, for all I sufficiently large,

���min
r∈�

F0�r�x0�−min
r∈�

F̂
S� I

0 �r�x0�

���≤ ��
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The proof of Theorem 1 is provided in §A.2 of the
online supplement. It relies on establishing the uni-
form convergence of F̂ S� I

0 �r�x0�→ F0�r�x0� over all r
in the compact set � .2
Now, observe that the sampled optimization prob-

lem (7) can be written as

minimize
r�u

1
S

S�

i=1

ui

subject to ui +
s�

p=1

�
p
�̂��r�p�x

�i�

p
�≥ �

s
g�x

�i�

s
��

∀1≤ i≤ S� 0≤ s ≤ d�

(9)

The optimization problem (9) is a linear program
(LP) that can be solved with standard commercial LP
solvers. It has K+S variables and S�d+1� constraints.
Because no two variables �ui�uj� with i �= j appear in
the same constraint, it is easy to see that the Hessian
corresponding to a logarithmic barrier function for
the problem has block arrow structure. Inverting this
matrix will require O�K

2
S� floating point operations

(see, e.g., Boyd and Vandenberghe 2004, Appendix C,
p. 675). Consequently, one may argue that the com-
plexity of solving this LP via an interior point method
essentially scales linearly with the number of outer
sample paths S.

3.2. Unbiased Upper Bound Estimation

Denote by r̂PO a solution to the sampled pathwise
problem (9). An obvious upper bound on J

∗
0 �x0� is

given by the optimal value of quantity F0�r̂PO�x0�.
Because we can’t compute this quantity directly, it
makes sense to approximate it via sampling to obtain
an estimated upper bound. Note that the optimal
objective value of the problem (9) itself is a biased
upper bound estimate. This bias comes from the fact
that the fact that the expected value of the minimum
of the sample average in (9) is less than the minimum
of the expected value and is essentially a consequence
of Jensen’s inequality (see, e.g., Glasserman 2004,
§8.2). To obtain an unbiased upper bound estimate,
given r̂PO, we use a second, independent Monte Carlo
procedure to estimate an upper bound as follows:
1. Generate a second set of S outer sample paths,

each with I inner samples, obtained independently of
the samples used in solving (9).

2 Note that the restriction of the weight vectors to a compact set
is a standard technical assumption in the theoretical analysis of
sample average approximations to optimization problems (see, e.g.,
Shapiro et al. 2009). In practice, this bounding set can be chosen
to be sufficiently large so as to be likely to include the optimal
solution of the unconstrained pathwise optimization problem (4),
or it can simply be omitted.

2. Compute the sampled martingale differences
associated with value function approximation �r̂PO

using (6), with the new set of samples. As dis-
cussed by Glasserman (2004, §8.7, p. 473), because
(6) involves an unbiased estimate of the conditional
expectation, this expression indeed yields a martin-
gale difference.
3. Using the new sample paths and the new sam-

pled martingale differences, compute the quantity

1
S

S�

i=1

max
0≤s≤d

�
�
s
g�x

�i�

s
�−

s�

p=1

�
p
�̂��r̂PO�p�x

�i�

p
�x

�i�

p−1�

�
� (10)

By Lemma 1, the expected value of (10) is an upper
bound on the optimal value. By the strong law of
large numbers, (10) will thus converge to an upper
bound as S → �. Finally, the central limit theorem
can be applied to compute confidence intervals for the
upper bound estimator of (10).

3.3. Lower Bounds and Policies

The PO method generates upper bounds on the per-
formance of an optimal policy. We are also inter-
ested in generating good stopping policies, which,
in turn, will yield lower bounds on optimal perfor-
mance. Here, we describe a method that does so by
computing a continuation value approximation.
In particular, for 0 ≤ t < d and xt ∈ � , denote

by C
∗
t
�xt� the optimal continuation value, or the

best value the can be achieved by any policy at
time t and state xt that does not immediately stop.
Mathematically,

C
∗
t
�xt�

�= �E�J
∗
t+1�xt+1� � xt��

Note that the optimal policy �
∗ can be expressed suc-

cinctly in terms of C∗ via

�
∗
t
�x�

�=
�
CONTINUE if t<d and g�x�<C

∗
t
�x��

STOP otherwise�
(11)

for all t ∈ � and x ∈ � . In other words, �∗ decides
to stop or not by acting greedily using C

∗ to assess
the value of not stopping. Inspired by this, given a
good approximation C̃ to the optimal continuation
value, we can attempt to construct a good policy by
replacing C

∗ with C̃ in (11).
Now, given a solution to (9), r̂PO, we can generate

upper bounds on continuation value and regress these
against basis functions to generate a continuation
value approximation. In particular, it follows from
Lemma 1 that

C
∗
t
�xt� ≤ E

�
max

t+1≤s≤d

�
s−t

g�xs�

−
s�

p=t+2

�
p−t

���r̂PO�p�xp�xp−1�

����xt
�
� (12)
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for all 0≤ t < d and xt ∈� . Thus, at time t along the
ith sample path, a point estimate of an upper bound
on C

∗
t
�x

�i�

t
� is given by

c̄
�i�

t

�= max
t+1≤s≤d

�
s−t

gs�x
�i�

s
�

−
s�

p=t+2

�
p−t

�
��r̂PO�p�x

�i�

p
�− Ê

�
��r̂PO�p�xp� � x�i�

p−1

��
�

For each 0 ≤ t < d − 1, the values �c̄
�i�

t
�1 ≤ i ≤ S�

can now be regressed against basis functions to obtain
a continuation value approximation. In particular,
defining a set of K basis functions of the state xt , �t

�=
��1� t��2� t� � � � ��K� t�⊂� t , we can consider linear com-
binations of the form

��t�t��x�
�=

K�

l=1

�l� t�l� t�x�� ∀x ∈��

where �t ∈�K is a weight vector.3 The weight vectors
��t�0≤ t < d� can be computed efficiently in a recur-
sive fashion as follows:
1. Iterate backward over times t = d − 1�d −

2� � � � �0.
2. For each sample path 1≤ i≤ S, we need to com-

pute the continuation value estimate c̄
�i�

t
. If t = d− 1,

this is simply c̄
�i�

d−1 = �g�x
�i�

d
�. If t < d − 1, this can be

computed recursively as

c̄
�i�

t
= �max

�
g�x

�i�

t+1�� c̄
�i�

t+1

−����r̂PO�t+2�x
�i�

t+2�− Ê���r̂PO�t+2�xt+2� � x�i�

t+1��
�
�

3. Compute the weight vector �t via the regression

�t ∈ argmin
�

1
S

S�

i=1

��t��x
�i�

t
�− c̄

�i�

t
�
2
�

We may then use the suboptimal policy that is greedy
with respect to the continuation value approximation
given by �t�t , for each 0≤ t ≤ d− 1.
Observe that, at a high-level, our algorithm is

reminiscent of the regression pricing approach of
Longstaff and Schwartz (2001). Both methods proceed
backward in time over a collection of sample paths,
regressing basis functions against point estimates of
continuation values. Longstaff and Schwartz (2001)
use point estimates of lower bounds derived from
suboptimal future policies. We, on the other hand, use
point estimates of upper bounds derived from the PO
linear program (9). As we shall see in §4, despite the
similarities, the PO-derived policy can offer signifi-
cant improvements in practice.

3 In our experimental work we used �
l� t
� · � = �

l
�·� t�. In other

words, we used the same basis function architecture to approximate
continuation values as was used for value functions.

4. Computational Results

In this section, we will illustrate the performance
of the PO method versus a collection of competi-
tive benchmark algorithms in numerical experiments.
We begin by defining the benchmark algorithms in
§4.1. In §4.2, we define the problem setting, which is
that of pricing a high-dimensional Bermudan option.
Implementation details such as the choice of basis
functions and the state sampling parameters are given
in §4.3. Finally, the results are presented in §4.4.

4.1. Benchmark Methods

The landscape of techniques available for pricing
high-dimensional options is rich; a good overview of
these is available from Glasserman (2004, Chap. 8).
We consider the following benchmarks, representative
of mainstream methods, for purposes of comparison
with the PO method:
• Lower Bound Benchmark. The line of work devel-

oped by Carriere (1996), Tsitsiklis and Van Roy
(2001), and Longstaff and Schwartz (2001) seeks to
produce approximations to the optimal continuation
value function. These approximations are typically
weighted combinations of prespecified basis functions
that are fit via a regression-based methodology. The
greedy policies with respect to these approximations
yield lower bounds on price.
We generate a continuation value approximation Ĉ

using the Longstaff and Schwartz (2001) (LS) method.
Details are available from Glasserman (2004, Chap. 8,
p. 461). We simulate the greedy policy with respect
to this approximation to generate lower bounds.
We refer to this approach as LS-LB.
• Upper Bound Benchmarks. The martingale duality

approach, originally proposed for this task by Rogers
(2002) and Haugh and Kogan (2004), is widely used
for upper bounds. Recall from §2.1 that a martingale
for use in the duality approach is computed using the
optimal value function, and extant heuristics use sur-
rogates that approximate the optimal value function.
We consider the following surrogates:

1. DVF-UB. This is a dual value function
approach that derives a value function approxima-
tion from the continuation value approximation of
the LS-LB regression pricing procedure. In particu-
lar, given the LS-LB continuation value approxima-
tion, Ĉ, we generate a value function approximation
V̂ according to

V̂t�x�
�=max�g�x�� Ĉt�x��� ∀x ∈�� t ∈� �

This approach is described by Glasserman (2004, §8.7,
p. 473).

2. DP-UB. This is a dual policy approach that
derives a value function approximation from the pol-
icy suggested by the LS-LB regression pricing pro-
cedure. In particular, let �̂ denote the greedy policy
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derived from the LS-LB continuation value approxi-
mation Ĉ, i.e., for all states x and times t,

�̂t�x�
�=
�
CONTINUE if t < d and g�x�< Ĉt�x��

STOP otherwise�

Define V
�̂

t
�x� as the value of using the policy �̂ start-

ing at state x in time t. The quantity V
�̂

t
�x� can be

computed via an inner Monte Carlo simulation over
paths that start at time t in state x. This can then
be used as a value function surrogate to derive a
martingale for the duality approach. This approach
was introduced by Andersen and Broadie (2004), and
a detailed description is available from Glasserman
(2004, §8.7, pp. 474–475).
The LS-LB, DVF-UB, and DP-UB methods des-

cribed above will be compared with upper bounds
computed with the PO method (PO-UB) and their cor-
responding lower bounds (PO-LB), as described in §3.
Further implementation details for each of these tech-
niques will be provided in §4.3.

4.2. Problem Setting

We consider a Bermudan option over a calendar time
horizon T defined on multiple assets. The option
has a total of d exercise opportunities at calendar
times ���2�� � � � � �d�, where �

�= T /d. The payoff of
the option corresponds to that of a call option on
the maximum of n non-dividend-paying assets with
an up-and-out barrier. We assume a Black–Scholes
framework, where risk-neutral asset price dynamics
for each asset j are given by a geometric Brownian
motion, i.e., the price process

�
P

j

s � s ∈�+
�
follows the

stochastic differential equation

dP
j

s
= rP

j

s
ds+�jP

j

s
dW

j

s
� (13)

Here, r is the continuously compounded risk-free
interest rate, �j is the volatility of asset j , Wj

s is a stan-
dard Brownian motion, and the instantaneous corre-
lation of each pair Wj

s and W
j
�

s is �jj � . Let �pt�0≤ t ≤ d�

be the discrete-time process obtained by sampling Ps

at intervals of length �, i.e., pj
t

�= P
j

�t
for each 0≤ t ≤ d.

On the discrete time scale indexed by t, the possible
exercise times are given by � �= �1�2� � � � �d�, and the
discount factor is given by �

�= e
−r�.

The option is “knocked out” (and worthless) at
time t if, at any of the times preceding and includ-
ing t, the maximum of the n asset prices exceeded
the barrier B. We let yt ∈ �0�1� serve as an indicator
that the option is knocked out at time t. In particular,
yt = 1 if the option has been knocked out at time t

or at some time prior, and yt = 0 otherwise. The �yt�

process evolves according to

yt =
�
�
�max1≤j≤n p

j

0≥B�
if t = 0�

yt−1 ∨ �
�max1≤j≤n p

j

t
≥B�

otherwise.

A state in the associated stopping problem is then
given by the tuple x �= �p�y� ∈�n×�0�1�, and the pay-
off function is defined according to

g�x�
�=
�
max

j

pi�x�−K

�+
�1− y�x���

where y�x� and pj�x�, respectively, are the knock-out
indicator and the jth price coordinates of the compos-
ite state x.

4.3. Implementation Details

4.3.1. Basis Functions. We use the following set
of n+ 2 basis functions:

�1�x� t�= �1− y�x��� �2�x� t�= g�x��

�j+2�x� t�= �1− y�x��pj�x�� ∀1≤ j ≤ n�

Described succinctly, our basis function architecture
consists of a constant function, the payoff function,
and linear functions of each asset price, where we
have further ensured that each basis function takes
the value zero in states where the option is knocked
out. This is because zero is known to be the exact
value of the option in such states. Note that many
other basis functions are possible. For instance, the
prices of barrier options on each of the individual
stocks seems like a particularly appropriate choice.
We have chosen a relatively generic basis architec-
ture, however, to disentangle the study of the pricing
methodology from the goodness of a particular tailor-
made architecture.

4.3.2. State Sampling. Both the PO method as
well as the benchmark methods require sampling
states from the underlying Markov chain; however,
their requirements tend to be different. In particu-
lar, the LS-LB procedure requires only outer sample
paths, DVF-UB and PO-UB require outer sample
paths with shallow inner sampling (next state sam-
ples), and DP-UB requires outer sample paths with
deep inner sampling (sample paths simulated till the
option expires or gets exercised). In general, it may
be possible to judiciously choose the sampling param-
eters to, for example, optimize the accuracy of a
method given a fixed computational budget, and that
such a good choice of parameters will likely vary from
method to method. We have not attempted such an
optimization. For LS-LB and DP-UB, we have cho-
sen parameters that generally follow those chosen by
Andersen and Broadie (2004), and for DVF-UB and
PO-UB, parameters were chosen so that the resulting
standard error is comparable to that for DP-UB. In this
sense, our choice of parameters represents an “apples-
to-apples” comparison. Our parameter settings are
listed below:
• LS-LB. This approach requires sample paths of

the underlying Markov process to run the regression
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procedure. We used 200�000 sample paths for the
regression. The greedy policy with respect to the
regressed continuation values was evaluated over
2�000�000 sample paths.
• PO-UB. In the notation of §3.1, we solved the

LP (9) using S = 30�000 outer sample paths and I =
500 next state inner samples for one-step expecta-
tion computations. Given a solution, r̂PO, we evalu-
ated F0�r̂PO�x0� using a distinct set of S = 30�000 outer
sample paths, with I = 500 inner samples for one-step
expectations.
• PO-LB. The policy here is constructed using com-

putations entailed in the PO-UB method. We evalu-
ate this policy to compute the lower bound using the
same set of 2�000�000 sample paths used for the eval-
uation of LS-LB above.
• DVF-UB. As discussed earlier, a value function

estimate V̂ is obtained from the continuation value
estimates of the regression procedure used for LS-LB
above. We then estimate the DVF-UB upper bound,
F0V̂ �x0�, using the same set of 30�000 sample paths
and one-step samples in the evaluation of PO-UB

above.
• DP-UB. As discussed earlier, this approach uses

the value function approximation V
�̂. We obtain con-

tinuation value estimates Ĉ via the regression com-
putation for LS-LB. We estimate the upper bound
F0V

�̂
�x0� using 3�000 sample paths;4 we evaluate V

�̂

at each point along these sample paths using 10�000
inner sample paths.

4.4. Results

In the numerical results that follow, the following
common problem settings were used:5
• strike price K = 100; knock-out barrier price

B= 170; time horizon, T = 3 years;
• risk-free rate r = 5% (annualized); volatility

�j = 20% (annualized).
In Table 1, we see the upper and lower bounds
produced by the PO approach and the benchmark
schemes described above. Here, we vary the number
of assets n and the initial price p

j

0 = p̄0 common to
all assets, and the assets are uncorrelated (�jj � = 0).
Standard errors are in parentheses. We report aver-
age upper and lower bounds on the option price over
10 trials. In §C of the online supplement, we provide
additional results where the number of exercise oppor-
tunities d and the asset price correlation matrix � are

4 Andersen and Broadie (2004) used 1�500 sample paths. We chose
the larger number to obtain standard errors comparable to the other
approaches in the study.
5 Note that all the parameter choices here are symmetric across
assets, and hence the assets are identical in the problems we
consider. However, this symmetry was not exploited in our
implementations.

varied. Taken together, we make the following broad
conclusions from these experimental results:
• Lower Bound Quality. The PO-LB method pro-

vides substantially better exercise policies than does
the LS-LB procedure and consequently tighter lower
bounds. The exercise policies provide an improve-
ment of over 100 basis points in most of the exper-
iments; in some cases the gain was as much as
200 basis points.
• Upper Bound Quality. The DVF-UB upper bounds

are the weakest, whereas the DP-UB upper bounds
are typically the strongest. The gap between these two
bounds was typically on the order of 100 basis points.
The upper bound produced via the PO-UB method
was of intermediate quality, but typically recovered
approximately 60% of the gap between the DVF-UB

and DP-UB upper bounds.
Table 2 summarizes relative computational require-

ments of each method. Note that for the dual upper
bound methods we report the time to compute both
upper and lower bounds. This is for consistency,
because for the DVF-UB and DP-UB methods, the
LS-LB continuation value estimate is required and
must be computed first. The running times are typ-
ically dominated by sampling requirements and can
be broken down as follows:
• LS-LB. The LS-LB method requires only the gen-

eration of outer sample paths and is thus the fastest.
• LS-LB +DVF-UB. Along each outer sample path,

the DVF-UB method requires generation of inner sam-
ples for the next state.
• PO-LB + PO-UB. For the PO-UB method, the

structure of the LP (9) permits extremely efficient
solution via an interior point method as discussed
in §3.1; the computation time is dominated by sam-
pling rather than optimization. Qualitatively, the sam-
pling requirements for the PO-UB method are the
same as that of DVF-UB: next state inner samples are
needed. However, to generate an unbiased estimate,
the PO-UB method requires one set of sample paths
for optimization and a second set of sample paths
for evaluation of the upper bound estimate. Hence,
PO-UB takes about twice the computational time of
DVF-UB.
• LS-LB + DP-UB. The inner simulation require-

ments for DP-UB result in that method requiring an
order of magnitude more time than either of the other
upper bound approaches. This is because, along each
outer sample path, inner samples are needed not just
for one time step, but for an entire trajectory until the
option is knocked out or exercised.
To summarize, these experiments demonstrate the

two primary merits to using the PO method to pro-
duce upper and lower bounds:
1. The PO-UB method produces upper bounds that

are superior to the DVF-UB method and, in many
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Table 1 A Comparison of the Lower and Upper Bound Estimates of the PO and Benchmarking Methods as a Function of the Common Initial Asset Price

pj
0 = p̄0 and the Number of Assets n

(a) Upper and lower bounds, with standard errors

p̄0 LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.

n= 4 assets
90 32�754 �0�005� 33�011 �0�011� 34�989 �0�014� 35�117 �0�026� 35�251 �0�013�

100 40�797 �0�003� 41�541 �0�009� 43�587 �0�016� 43�853 �0�027� 44�017 �0�011�
110 46�929 �0�003� 48�169 �0�004� 49�909 �0�016� 50�184 �0�017� 50�479 �0�008�

n= 8 assets
90 43�223 �0�005� 44�113 �0�009� 45�847 �0�016� 46�157 �0�037� 46�311 �0�015�

100 49�090 �0�004� 50�252 �0�006� 51�814 �0�023� 52�053 �0�027� 52�406 �0�014�
110 52�519 �0�005� 53�488 �0�007� 54�890 �0�020� 55�064 �0�019� 55�513 �0�005�

n= 16 assets
90 49�887 �0�003� 50�885 �0�006� 52�316 �0�020� 52�541 �0�010� 52�850 �0�011�

100 52�879 �0�001� 53�638 �0�004� 54�883 �0�020� 55�094 �0�016� 55�450 �0�013�
110 54�620 �0�002� 55�146 �0�003� 56�201 �0�009� 56�421 �0�016� 56�752 �0�007�

(b) Relative values of bounds

p̄0 (PO-LB)− (LS-LB) (%) (PO-UB)− (DP-UB) (%) (DVF-UB)− (PO-UB) (%)

n= 4 assets
90 0�257 0�78 0�127 0�39 0�134 0�41

100 0�744 1�82 0�266 0�65 0�164 0�40
110 1�240 2�64 0�275 0�59 0�295 0�63

n= 8 assets
90 0�890 2�06 0�310 0�72 0�154 0�36

100 1�162 2�37 0�239 0�49 0�353 0�72
110 0�970 1�85 0�174 0�33 0�450 0�86

n= 16 assets
90 0�998 2�00 0�225 0�45 0�308 0�62

100 0�759 1�43 0�210 0�40 0�356 0�67
110 0�526 0�96 0�220 0�40 0�331 0�61

Notes. For each algorithm, the mean and standard error (S.E.; over 10 independent trials) is reported. The number of exercise opportunities was d = 54, and
the common correlation was �jj �0= �̄= 0. Percentage relative values are expressed relative to the LS-LB lower bound.

cases, of comparable quality to the state-of-the-art DP-
UB method. However, the PO-UB method requires an
order of magnitude less computational effort than the
DP-UB approach and is highly practical.
2. The PO-LB method produces substantially supe-

rior exercise policies relative to the LS-LB method.
These policies are effectively a by-product of the
upper bound computation.

Table 2 Relative Time Values for Different Algorithms for the Stopping

Problem Setting of Table 1 with n= 16 Assets

Method Time (normalized)

LS-LB (lower bound only) 1�0
LS-LB +DVF-UB (upper and lower bounds) 3�6
PO-LB +PO-UB (upper and lower bounds) 6�8
LS-LB +DP-UB (upper and lower bounds) 51�7

Note. Here, all times are normalized relative to that required for the compu-
tation of the LS-LB lower bound. All computations were single threaded and
performed on an Intel Xeon E5620 2.40 GHz CPU with 64 GB of RAM. The
PO-UB linear program was solved with IBM ILOG CPLEX 12.1.0 optimiza-
tion software.

5. Theory

In this section, we will seek to provide theoretical
guarantees for the martingale penalty approach in
general as well as specific guarantees for the PO
method.
Note that our setting here will be that of an optimal

stopping problem that is discounted, stationary, and
has an infinite horizon. This will yield us consider-
ably simpler notation and easier statement of results
and is also consistent with other theoretical literature
on ADP for optimal stopping problems (e.g., Tsitsiklis
and Van Roy 1999, Van Roy 2010). Many of our results
in the aforementioned setting have finite horizon,
nonstationary analogues, and the intuition derived
from these results carries over to the nonstationary
setting. In particular, we establish two theorems for
the stationary setting and outline their nonstationary
analogues in §B of the online supplement. Our sta-
tionary setting is introduced in §5.1.
Our first class of theoretical results are approximation

guarantees. These guarantee the quality of an upper
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bound derived from the martingale duality approach,
relative to error in approximating the value function.
A crucial parameter for our bounds measures the
“predictability” of a Markov chain; this is introduced
in §5.2. In §5.4, we develop an approximation guar-
antee that applies generically to martingale duality
upper bounds and discuss the structural properties of
optimal stopping problems that impact this bound. In
§5.5, we develop a relative guarantee that is specific to
the PO method; this guarantees the quality of the PO
upper bound relative to the best approximation of the
true value function within the span of the basis func-
tions. In §5.6, we compare our guarantees to similar
guarantees that have been developed for ADP lower
bounds.
Our second class of theoretical results are compari-

son bounds, developed in §5.7. Here, we compare the
upper bounds arising to the PO approach to other
upper bounds that have been developed using ADP
techniques based in linear programming. In this case,
the upper bounds can be compared on a problem
instance by problem instance basis, and we show that
the PO method dominates the alternatives.

5.1. Preliminaries

Consider a discrete-time Markov chain with state xt ∈
� ⊂ �n at each time t ∈ �0�1� � � ��. Denote by P the
transition kernel of the chain. Assume that the chain
is ergodic, with stationary distribution �. Let � �= �� t�

be the natural filtration generated by the process �xt�,
i.e., for each time t, � t

�= ��x0�x1� � � � �xt�.
Given a function g� � → �, we define the payoff

of stopping when the state is xt as g�xt�. We define
� to be the set6 of real-valued functions V � � →� of
the state space with E��V �x0�

2
�<�. Here, E� denotes

expectation with respect to the stationary distribution.
We assume that g ∈ �. We are interested in maxi-
mizing the expected discounted payoff of stopping.
In particular, given an initial state x ∈ � , define the
optimal value function

J
∗
�x�

�= sup
�

E��
�
g�x� � � x0 = x��

Here, the supremum is taken over all � -adapted stop-
ping times � , and � ∈ �0�1� is the discount factor.
We will abuse notation to also consider the tran-

sition kernel as a one-step expectation operator
P � � →�, defined by

�PJ ��x�
�=E�J �xt+1� � xt = x�� ∀x ∈� �

Given a function J ∈ �, define the Bellman operator
T � � →� by

�TJ ��x�
�=max�g�x���PJ �x��� ∀x ∈� �

6 Note that earlier we defined � to be the set of real-valued func-
tions of state and time. In the stationary infinite horizon setting, it
suffices to consider only functions of state.

Observe that the optimal value function is the unique
fixed point TJ ∗ = J

∗.
To define the pathwise optimization approach in

this setting, we first define the martingale difference
operator �. The operator � maps a function J ∈� to a
function �J � � ×� →�, where

�J �xt�xt−1�
�= J �xt�− PJ �xt−1�� ∀xt−1� xt ∈� �

Observe that, for any J , the process ��J �xt�xt−1�� t ≥ 1�
is a martingale difference sequence. Now, for each J ,
the martingale duality upper bound operator F � � →� is
given by

�FJ ��x�
�= E

�
sup
s≥0

�
s
g�xs�−

s�

t=1

�
t
�J �xt�xt−1�

��x0 = x

�
�

∀x ∈� �

The following lemma establishes that the F opera-
tor yields dual upper bounds to the original prob-
lem; the proof follows along the lines of the proof of
Lemma 1, found in §A.1 of the online supplement,
and is omitted:

Lemma 3 (Infinite Horizon Martingale Dual-

ity). (i) (Weak Duality). For any function J ∈� and all
x ∈� , J ∗�x�≤ FJ �x�.
(ii) (Strong Duality). For all x ∈� , J ∗�x�= FJ

∗
�x�.

To find a good upper bound, we begin with collec-
tion of K basis functions

�
�= ��1��2� � � � ��K�⊂��

Given a weight vector r ∈�K , define the function �r ∈
� as the linear combination

��r��x�
�=

k�

l=1

rl�l�x�� ∀x ∈� �

We will seek to find functions within the span of the
basis � that yields the tightest average upper bound.
In other words, we will seek to solve the optimization
problem

minimize
r

E��F�r�x0��� (14)

As before, this optimization problem is an uncon-
strained minimization of a convex function.

5.2. Predictability

Our approximation guarantees incorporate a notion
of predictability of the underlying Markov chain,
which we will define in this section. First, we begin
with some notation. For functions J � J � ∈�, define the
inner product

�J � J ��� �=E��J �x0�J
�
�x0���
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Similarly, define the norms

�J�p�� �= �E���J �x0��p��1/p� ∀p ∈ �1�2��

�J�� �= sup
x∈�

�J �x���

define Var��J � to be the variance of J �x� under the
distribution �, i.e.,

Var��J �
�=E���J �x0�−E��J �x0���

2
��

and define the one-step conditional variance

Var�J �x1� � x0� �=E
�
�J �x1�−E�J �x1� � x0��2 � x0

�
�

The following quantity, a property of the transition
kernel P , will be important for our analysis:

��P �= sup
J∈�� J �=0

�
E��Var�J �x1� � x0��

Var��J �

�1/2

� (15)

To interpret ��P �, note that, by the law of total vari-
ance and the fact that � is the stationary distribution,
for J ∈�,

E��Var�J �x1� � x0�� = Var��J �x1��−Var��E�J �x1� � x0��
= Var��J �x0��−Var��E�J �x1� � x0��
≤ Var��J �� (16)

thus, ��P � ∈ �0�1�. By the definition (15), for all J ∈�,

E��Var�J �x1� � x0��≤ ��P �
2 Var��J ��

Suppose that ��P �≈ 0. Then, for all J ,

E��Var�J �x1� � x0���Var��J ��

In this case, for all J , the average uncertainty of J �x1�
conditioned on the previous state x0 is much less than
the unconditional uncertainty of J �x1�, i.e., when x1 is
distributed according to its prior distribution, which
is the stationary distribution. For such chains, the
state of the Markov chain x0 gives significant infor-
mation about all functionals of the subsequent pro-
cess state x1, and thus, for all intents and purposes,
significant information about the subsequent state x1
itself. Alternatively, suppose that ��P �≈ 1. Then, there
exists some J such that

E��Var�J �x1� � x0��≈Var��J ��

In this case, knowledge of the state x0 does not mean-
ingfully reduce the uncertainty of J �x1�. Motivated
by these cases, we interpret ��P � as a measure of
predictability, and we will call Markov chains where
��P �≈ 0 predictable.
Predictability is important because it provides a

bound on the operator norm of the martingale differ-
ence operator �. When a Markov chain is predictable,
it may be possible to approximate a particular mar-
tingale difference, say �J

∗, by some other martingale

difference, say �J , even if J ∗ is not particularly well
approximated by J . This is captured in the following
lemma:

Lemma 4. Given functions J � J
� ∈ �, define a distance

between the martingale differences �J , �J � by

��J −�J
��2�� �=

�
E����J �x1�x0�−�J ��x1�x0��2��

Then,
��J −�J

��2�� ≤ ��P �

�
Var��J − J ���

Proof. Set W �= J − J
�, and observe that

��W�22�� = E���W �x1�−E�W �x1� � x0��2�
= E��Var�W �x1� � x0��≤ ��P �

2 Var��W ��

The result follows. �

5.3. Example of a Predictable Chain

In this section, we will provide an alternative, spec-
tral characterization of predictability. We will use this
characterization to illustrate a naturally arising exam-
ple of a predictable Markov chain, namely, a chain
where the calendar time between transitions is short.
To begin, recall that P is the transition kernel of the

Markov chain, which we also interpret as a one-step
expectation operator. Define P

∗ to be the adjoint of P
with respect to the inner product � · � · �� . In the case
of a finite or countable state space, P ∗ can be written
explicitly according to

P
∗
�y�x�

�= ��x�P �x�y�

��y�
� ∀x�y ∈� �

Note that P ∗ is the time reversal of P ; it corresponds
to the transition kernel of the Markov chain running
backward in time.
The following lemma, the proof of which is pro-

vided in §A.3 of the online supplement, provides a
spectral characterization of the predictability of P :

Lemma 5. Suppose that the state space � is finite.
Then,

��P �=
�
��I − P ∗P ��

where �� · � is the spectral radius. Furthermore, if P is time-
reversible (i.e., if P = P

∗), then

��P �=
�
��I − P 2�≤

�
2��I − P ��

Observe that the matrix P
∗
P , known as a multiplica-

tive reversiblization (Fill 1991), corresponds to a transi-
tion one step backward in time in the original Markov
chain, followed by an independent step forward in
time. Suppose for the moment that the Markov chain
is reversible, i.e., that P = P

∗. Then, by Lemma 5, ��P �
will be small when I ≈ P , or, the state xt+1 at time
t+1 in the Markov chain is approximated well by the
current state xt . In other words, the Markov chain is
closer to a deterministic process.
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The spectral analysis of I −P
∗
P is also important in

the study of mixing times, or the rate of convergence
of a Markov chain to stationarity. In that context, one
is typically concerned with the smallest nonzero eigen-
value (see, e.g., Montenegro and Tetali 2006); infor-
mally, if this is large, the chain is said to be fast mixing.
In the present context, we are interested in the largest
eigenvalue, which is small in the case of a predictable
chain. Thus, our predictable chains necessarily mix
slowly.
One class of predictable Markov chains occurs

when the calendar time scale between successive
stopping opportunities is small:

Example 1 (Sampled State Dynamics). Suppose
that the Markov chain �xt� takes the form xt = zt� for
all integers t ≥ 0, where �> 0 and �zs ∈�� s ∈�+� is a
continuous time Markov chain with generator Q over
a finite state space � . In other words, �xt� are discrete-
time samples of an underlying continuous time chain
over time scales of length �. In this case, the transi-
tion probabilities take the form P = e

Q� and P
∗ = e

Q
∗
�.

As �→ 0,

��P �=
�
��I − eQ

∗�eQ��=
�
���Q∗ +Q�+ o�

√
��→ 0�

5.4. Upper Bound Guarantees

Lemma 3 establishes that, given a function J ∈ �, FJ
is an upper bound on J

∗, and that if J = J
∗, this upper

bound is tight. Hence, it seems reasonable to pick J to
be a good approximation of the optimal value func-
tion J

∗. In this section, we seek to make this intuition
precise. In particular, we will provide a guarantee on
the quality of the upper bound, that is, a bound on the
distance between FJ and J

∗, as a function of the qual-
ity of the value function approximation J and other
structural features of the optimal stopping problem.
The following lemma provides the key result for

our guarantee. It characterizes the difference between
two upper bounds FJ and FJ

� that arise from two dif-
ferent value function approximations J � J

� ∈ �. The
proof is provided in §A.3 of the online supplement.

Lemma 6. For any pair of functions J � J � ∈�,

�FJ − FJ
��2�� ≤ R����√

1−�
��P �

�
Var��J − J ���

where R� �0�1� → �1�
�
5/2� is a bounded function

given by

R���
�=min

�
1√
1−�

�
2√
1+�

�
�

Taking J
� = J

∗ in Lemma 6, we immediately have
the following:

Theorem 2. For any function J ∈�,

�FJ − J
∗�2�� ≤ R����√

1−�
��P �

�
Var��J − J ∗�� (17)

Theorem 2 provides a guarantee on the upper
bound FJ arising from an arbitrary function J . It is
reminiscent of the upper bound guarantee of Chen
and Glasserman (2007). In the present (discounted
and infinite horizon) context, their upper bound guar-
antee can be stated as

�FJ − J
∗�� ≤ 4�√

1−�2
�J − J

∗��� (18)

It what follows, we will compare these two bounds, as
well as identify the structural features of the optimal
stopping problem and the function J that lead to a
tight upper bound FJ . In particular, notice that the
right-hand side of the guarantee in Theorem 2 can be
decomposed into three distinct components:
• Value Function Approximation Quality. Theorem 2

guarantees that the closer the value function approxi-
mation J is to J

∗, the tighter the upper bound FJ will
be. Importantly, the distance between J and J

∗ is mea-
sured in terms of the standard deviation of their dif-
ference. Under this metric, the relative importance of
accurately approximating J

∗ in two different states is
commensurate to their relative probabilities. On the
other hand, the guarantee (18) requires a uniformly
good approximation of J ∗. In a large state space, this
can be challenging.
• Time Horizon. Theorem 2 has dependence on the

discount factor �. In typical examples, � ≈ 1, and
hence we are most interested in this regime.
One way to interpret � is as defining an effective

time horizon. To be precise, consider an undiscounted
stopping problem with the same state dynamics and
reward function, but with a random finite horizon
that is geometrically distributed with parameter �.
We assume that the random time horizon is unknown
to the decision maker, and that if the process is
not stopped before the end of this time horizon, the
reward is zero. This undiscounted, random but finite
horizon formulation is mathematically equivalent to
our discounted, infinite horizon problem. Hence, we
define the effective time horizon Teff to be the expected
length of the random finite time horizon, or

Teff

�= 1
1−�

� (19)

The guarantee of Theorem 2 is O�
�
Teff�, i.e., it grows

as the square root of the effective time horizon. This
matches (18), as well as the original finite horizon
bound of Chen and Glasserman (2007).
• Predictability. Theorem 2 isolates the dynamics of

the Markov chain through the ��P � term; if ��P � is
small, then the upper bound FJ will be tight. In other
words, all else being equal, chains that are more
predictable yield better upper bounds. In some sense,
optimal stopping problems on predictable Markov
chains are closer to deterministic problems to begin
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with, and hence less care is needed in relaxing nonan-
ticipativity constraints.
The dependence of Theorem 2 on predictability

can be interpreted in the sampled state dynamics of
Example 1. In this case, we assume that the transition
probabilities of the Markov chain take the form P =
e
Q�, where Q is the generator for a continuous time
Markov chain, and �> 0 is the calendar time between
successive stopping opportunities. In this setting, it is
natural that the discount factor also scale as a func-
tion of the time interval �, taking the form � = e

−r�,
where r > 0 is a continuously compounded interest
rate. Then, as �→ 0,

R����√
1−�

��P �=
�
2��Q∗ +Q�

r
+ o�1��

In this way, the premultiplying constants on the right-
hand side of Theorem 2 remain bounded as the num-
ber of stopping opportunities is increased. This is not
the case for (18).

5.5. Pathwise Optimization Approximation

Guarantee

The result of §5.4 provides a guarantee on the upper
bounds produced by the martingale duality approach
given an arbitrary value function approximation J

as input. When the value function approximation J

arises from the PO method, we have the follow-
ing result:

Theorem 3. Suppose that rPO is an optimal solution for
(14). Then,

�F�rPO − J
∗�1�� ≤ R����√

1−�
��P �min

r

�
Var���r − J ∗��

Proof. Observe that, for any r ∈ �K , by the opti-
mality of rPO and Lemma 3,

�F�rPO − J
∗�1�� = E��F�rPO�x0�− J

∗
�x0��

≤ E��F�r�x0�− J
∗
�x0��

= �F�r − J
∗�1�� �

Because � is a probability distribution, � ·�1�� ≤
� ·�2�� , thus, applying Theorem 2,

�F�rPO − J
∗�1�� ≤ �F�r − J

∗�2��

≤ R����√
1−�

��P �

�
Var���r − J ∗��

The result follows after minimizing the right-hand
side over r . �
To compare Theorems 2 and 3, observe that The-

orem 2 provides a guarantee that is a function of
the distance between the value function approxima-
tion J and the optimal value function J

∗. Theorem 3,

on the other hand, provides a guarantee relative to
the distance between the best possible approximation
given the basis functions � and the optimal value
function J

∗. Note that it is not possible, in general,
to directly compute this best approximation, which is
the projection of J ∗ on to the subspace spanned by �,
because J

∗ is unknown to begin with.

5.6. Comparison to Lower Bound Guarantees

It is instructive to compare the guarantees provided
on upper bounds by Theorems 2 and 3 to guaran-
tees that can be obtained on lower bounds derived
from ADP methods. In general, the ADP approach to
lower bounds involves identifying approximations to
the optimal continuation value function C

∗, which is
related to the optimal value function J

∗ via

C
∗
�x�= �E�J

∗
�xt+1� � xt = x��

J
∗
�x�=max�g�x��C∗

�x��� ∀x ∈� �

Given the optimal continuation function C
∗, an

optimal policy is defined via

�
∗
�x�

�=
�
CONTINUE if g�x�<C

∗
�x��

STOP otherwise�

In other words, �∗ stops when g�x�≥C
∗
�x�.

Similarly, given an approximate continuation value
function C, we can define the policy

��x�
�=
�
CONTINUE if g�x�<C�x��

STOP otherwise�

The value function J
� for this policy can be estimated

via Monte Carlo simulation. Because J
∗ is the optimal

value function, we have that J
�
�x� ≤ J

∗
�x� for every

state x. In other words, J � is a lower bound to J
∗.

Analogous to Theorem 2, Tsitsiklis and Van Roy
(1999) establish that

�J ∗ − J��2�� ≤ 1
1−�

�C −C
∗�2�� � (20)

Given a set of basis functions �, there are a number
of ways to select a weight vector r so that the linear
function �r can be used as an approximate continu-
ation value function. Methods based on approximate
value iteration are distinguished by the availability of
theoretical guarantees. Indeed, Van Roy (2010) estab-
lishes a result analogous to Theorem 3 for approxi-
mate value iteration, that

�J ∗ − J��1�� ≤ �J ∗ − J��2��

≤ L
∗

1−�
min

r

��r −C
∗�2��� (21)

where L
∗ ≈ 2�17.

Comparing (20) and (21) to Theorems 2 and 3, we
see broad similarities: both sets of results provide
guarantees on the quality of the lower (respectively,
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upper) bounds produced, as a function of the qual-
ity of approximation of C∗ (respectively, J ∗). There are
key differences, however. Defining the effective time
horizon Teff

�= �1−��
−1 as in §5.4, the premultiplying

constants in the lower bound guarantees are O�Teff�,
whereas the corresponding terms in our upper bound
guarantees are O�

�
Teff�. Furthermore, Van Roy (2010)

established that, for any ADP algorithm, a guaran-
tee of the form (21) that applies over all problem
instances must be linear in the effective time horizon.
In this way, the upper bound guarantees of Theo-
rems 2 and 3 have better dependence on the effective
time horizon than is possible for lower bounds, inde-
pendent of the choice of ADP algorithm. Furthermore,
the upper bound guarantees highlight the importance
of a structural property of the Markov chain, namely,
predictability. There is no analogous term in the lower
bound guarantees.

5.7. Comparison to Linear Programming Methods

We can compare upper bounds derived from the
pathwise method directly to upper bounds derived
from two other approximate dynamic programming
techniques.
First, we consider the approximate linear program-

ming approach. The ALP approach to ADP was intro-
duced by Schweitzer and Seidmann (1985) and ana-
lyzed and further developed by de Farias and Van Roy
(2003, 2004). The ALP is based on the LP formulation
for the exact solution of a dynamic program due to
Manne (1960). A testament to the success of the ALP
approach is the number of applications it has seen
in recent years in large-scale dynamic optimization
problems. In our discounted, infinite horizon optimal
stopping setting, the ALP approach involves finding
a value function approximation within the span of the
basis by solving the optimization program

minimize
r

Ec��r�x0��

subject to �r�x�≥ g�x�� ∀x ∈�� (22)

�r�x�≥ �E��r�xt+1� � xt = x�� ∀x ∈� �

Here, c is a positive probability distribution over the
state space know as the state-relevance distribution;
it is natural (but not necessary) to take c = �. Note
that (22) is a linear program and that, for each state
x, the pair of linear constraints in (22) are equivalent
to the Bellman inequality �r�x�≥ T�r�x�. Denote the
set of feasible r by �ALP ⊂�K .
As we shall see momentarily, if r ∈ �ALP is feasi-

ble for the ALP (22), then �r is a pointwise upper
bound to the optimal value function J

∗. The following
theorem establishes that the martingale duality upper
bound F�r is at least as good:
Theorem 4. Suppose r ∈ �ALP is feasible for the ALP

approach (22). Then, for all x ∈� ,

J
∗
�x�≤ F�r�x�≤�r�x��

Proof. Using Lemma 3 and the definition of the
constraint set �ALP,

J
∗
�x� ≤ F�r�x�

= E

�
sup
s≥0

�
s
g�xs�

−
s�

t=1

�
t
�
�r�xt�−E��r�xt� � xt−1�

� ���x0 = x

�

= E

�
sup
s≥0

�
s
�g�xs�−�r�xs��+�r�x0�

+
s−1�

t=0

�
t
�
�E��r�xt+1� � xt�−�r�xt�

� ���x0 = x

�

≤ E

�
sup
s≥0

�r�x0�

���x0 = x

�
=�r�x�� �

We can interpret the ALP approach (22) as finding
an upper bound in the set ��r� r ∈�ALP� that is small-
est on average, as measured according to the state-
relevance distribution c. Alternatively, consider solv-
ing the pathwise optimization problem

minimize
r

Ec�F�r�x0��� (23)

Theorem 4 implies that the resulting martingale dual-
ity upper bound will be, on average, at least as good.
In this way, the PO method dominates ALP.
Similarly, smoothed approximate linear programming

(SALP) was recently introduced by Desai et al. (2012).
In our present context, this seeks to solve the linear
program

minimize
r� s

E�

�
�r�x0�+

1
1−�

s�x0�

�

subject to �r�x�+ s�x�≥ g�x�� ∀x ∈��

�r�x�+ s�x�

≥ �E��r�xt+1� � xt = x�� ∀x ∈��

s�x�≥ 0� ∀x ∈� �

(24)

Observe that (24) is a relaxation of (22) when c = �

that is formed by introducing a vector of slack vari-
ables s ∈ �� . Desai et al. (2012) argue that this relax-
ation yields a number of theoretical benefits relative
to the ALP approach, and demonstrate superior prac-
tical performance in a computational study.
The following lemma allows us to interpret SALP

as an unconstrained convex minimization problem:

Lemma 7. Given J ∈ �, define the operator FSALP�

� →� by

�FSALPJ ��x�
�= E

�
J �x0�+

��

t=0

�
t
�TJ �xt�− J �xt��

+
���x0 = x

�
�

∀x ∈� �
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Then, SALP (24) is equivalent to the convex optimization
problem

minimize
r

E��FSALP�r�x0��� (25)

Proof. Suppose �r� s� is feasible for SALP (24).
Then,

E�

�
�r�x0�+

1
1−�

s�x0�

�

≥E�

�
�r�x0�+

1
1−�

�T�r�x0�−�r�x0��
+
�

=E�

�
�r�x0�+

��

t=0

�
t
�T�r�xt�−�r�xt��

+
�

=E��FSALP�r�x0��� (26)

where we use the constraints of (24) and the fact that �
is the stationary distribution. Hence, r achieves at least
the same objective value in (25). Conversely, for any
r , define s

�= �T�r−�r�
+ componentwise. Then, �r� s�

is feasible for (24), and (26) holds with equality. Thus,
�r� s� achieves the same objective value in (24) as r

in (25). �
The following theorem shows that the FSALP opera-

tor also yields dual upper bounds to the optimal value
function, analogous to the F operator in the path-
wise method. Critically, however, the upper bounds of
the pathwise method pointwise dominate those of the
SALP method, which in turn pointwise dominate that
of those ALP method.

Theorem 5. For an arbitrary weight vector r ∈�K ,

J
∗
�x�≤ F�r�x�≤ FSALP�r�x�� ∀x ∈� �

In addition, if r ∈ �ALP, i.e., r is feasible for the ALP
approach (22), then

J
∗
�x�≤ F�r�x�≤ FSALP�r�x�=�r�x�� ∀x ∈� �

Proof. Given a weight vector r ∈�K , by Lemma 3,

J
∗
�x� ≤ F�r�x�=E

�
sup
s≥0

�
s
g�xs�

−
s�

t=1

�
t
�
�r�xt�−E��r�xt� �xt−1�

����x0=x

�

= E

�
sup
s≥0

�
s
�g�xs�−�r�xs��+�r�x0�

+
s−1�

t=0

�
t
�
�E��r�xt+1� �xt�−�r�xt�

����x0=x

�

≤ E

�
sup
s≥0

�
s
�g�xs�−�r�xs��

++�r�x0�

+
s−1�

t=0

�
t
�
�E��r�xt+1� �xt�−�r�xt�

�+ ���x0=x

�

≤ E

�
sup
s≥0

�r�x0�

+
s�

t=0

�
t
�
T�r�xt�−�r�xt�

�+ ���x0=x

�

= FSALP�r�x��

which completes the first part of the result. If r ∈�ALP,
it immediately follows that FSALP�r�x�=�r�x�. �
In the context of the ALP and SALP optimization

problems (22) and (24), Theorem 5 yields that

minimize
r

E��F�r�x0�� ≤ minimize
r

E��FSALP�r�x0��

≤ minimize
r∈�ALP

E���r�x0���

In other words, given a fixed set of basis functions, the
PO method yields an upper bound that is on average
at least as tight as that of the SALP method, which in
turn yields an upper bound that is on average at least
as tight at that of the ALP method.

6. Conclusion

We have presented what we believe is a practical
scheme for high-dimensional pricing problems based
on the martingale duality approach. In particular, we
have attempted to show that the PO method can be
used to compute upper bound on price of a quality
comparable with state-of-the-art methods in a fraction
of the time required for those methods. In addition,
the approach yields, as a by-product, exercise policies
that yield substantial improvements over policies
derived via generic regression-based methods. There
are several directions that merit further investigation;
we point out two:
• Implementation. As opposed to solving an LP, one

may imagine solving the minimization problem over
weight vectors r in the PO method via a stochastic
(sub)gradient method. In particular, define

�l�r�
�=E

�
−

s
∗
�r��

p=1

�
p
��l�xp�xp−1�

���x0 = x

�
� ∀1≤ l≤K�

where s∗�r� is a random variable that, along each sam-
ple path, is a time that maximizes the inner opti-
mization problem in the definition of F0�r�x�. It is
not difficult to see that the vector ��r� is a subgradi-
ent of F0�r�x� with respect to r . Thus, very roughly,
one might imagine a method that would update the
r vector incrementally with each sampled path, x�i�,
according to an update rule of the form r ← r +
�i�

�i�
�r�. Here, �i > 0 is a step size, and �

�i�
�r� is a

point estimate of the subgradient ��x� evaluated over
the single sample path x

�i�. Such a method has the
advantage of not requiring an LP solver in addition
to being online—the approach optimizes the upper
bound simultaneously with sampling.
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• Policy Generation. The policy used to generate our
lower bounds required that we regress continuation
value upper bounds implied by our approach against
a set of basis functions. It is natural to ask whether
a more direct method is possible—for instance, the
greedy policy with respect to the �rPO. This appears
to be a nontrivial question. In particular, it is not
hard to see that if the constant function were a basis
function, then the PO method could not identify a
unique optimal coefficient for that basis function. On
the other hand, if one chose to use a policy that was
greedy with respect to �rPO, it is clear that the coeffi-
cient corresponding to this basis function could dra-
matically alter the nature of the policy.

Acknowledgments

The third author thanks Mark Broadie and Paul Glasserman
for helpful discussions. The research of the second author
was partially supported by a National Science Foundation
CAREER award.

References

Andersen L, Broadie M (2004) Primal-dual simulation algorithm for
pricing multidimensional American options. Management Sci.
50(9):1222–1234.

Belomestny D, Bender C, Schoenmakers J (2009) True upper bounds
for Bermudan products via non-nested Monte Carlo. Math.
Finance 19(1):53–71.

Bertsekas DP (2007) Dynamic Programming and Optimal Control,
Vol. 2, 3rd ed. (Athena Scientific, Belmont, MA).

Borkar VS, Pinto J, Prabhu T (2009) A new learning algorithm for
optimal stopping. Discrete Event Dynamic Systems 19(1):91–113.

Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge
University Press, Cambridge, UK).

Broadie M, Cao M (2008) Improved lower and upper bound algo-
rithms for pricing American options by simulation. Quant.
Finance 8(8):845–861.

Brown DB, Smith JE (2011) Dynamic portfolio optimization with
transaction costs: Heuristics and dual bounds. Management Sci.
57(10):1752–1770.

Brown DB, Smith JE, Sun P (2010) Information relaxations
and duality in stochastic dynamic programs. Oper. Res.
58(4):785–801.

Carriere JF (1996) Valuation of the early-exercise price for deriva-
tive securities using simulations and splines. Insurance: Math.
Econom. 19(1):19–30.

Chen N, Glasserman P (2007) Additive and multiplicative duals for
American option pricing. Finance Stochastics 11(2):153–179.

Clément E, Lamberton D, Protter P (2002) An analysis of a
least squares regression method for American option pricing.
Finance Stochastics 6(4):449–471.

Davis M, Karatzas I (1994) A deterministic approach to optimal
stopping. Kelly FP, ed. Probability, Statistics, and Optimization:
A Tribute to Peter Whittle (John Wiley & Sons, New York),
455–466.

de Farias DP, Van Roy B (2003) The linear programming ap-
proach to approximate dynamic programming. Oper. Res. 51(6):
850–865.

de Farias DP, Van Roy B (2004) On constraint sampling in the lin-
ear programming approach to approximate dynamic program-
ming. Math. Oper. Res. 293(3):462–478.

Desai VV, Farias VF, Moallemi CC (2012) Approximate dynamic
programming via a smoothed linear program. Oper. Res. 60(3).

Fill JA (1991) Eigenvalue bounds on convergence to stationarity
for nonreversible Markov chains, with an application to the
exclusion process. Ann. Appl. Probab. 1(1):62–87.

Glasserman P (2004) Monte Carlo Methods in Financial Engineering
(Springer-Verlag, New York).

Glasserman P, Yu B (2002) Simulation for American options: Regres-
sion now or regression later? Niederreiter H, ed. Monte Carlo
and Quasi-Monte Carlo Methods (Springer-Verlag, New York),
213–226.

Haugh MB, Kogan L (2004) Pricing American options: A duality
approach. Oper. Res. 52(2):258–270.

Jamshidian F (2003) Minimax optimality of Bermudan and Ameri-
can claims and their Monte-Carlo upper bound approximation.
Technical report, NIB Capitial, The Hague, The Netherlands.

Lai G, Margot F, Secomandi N (2010) An approximate dynamic
programming approach to benchmark practice-based heuris-
tics for natural gas storage valuation. Oper. Res. 58(3):564–582.

Longstaff FA, Schwartz ES (2001) Valuing American options by sim-
ulation: A simple least-sqaures approach. Rev. Financial Stud.
14(1):113–147.

Manne AS (1960) Linear programming and sequential decisions.
Management Sci. 60(3):259–267.

Montenegro R, Tetali P (2006) Mathematical Aspects of Mixing Times
in Markov Chains (NOW Publishers, Boston).

Rogers LCG (2002) Monte Carlo valuation of American options.
Math. Finance 12(3):271–286.

Rogers LCG (2008) Pathwise stochastic optimal control. SIAM J.
Control Optim. 46(3):1116–1132.

Rogers LCG (2010) Dual valuation and hedging of Bermudan
options. SIAM J. Financial Math. 1(1):604–608.

Schweitzer P, Seidmann A (1985) Generalized polynomial approx-
imations in Markovian decision processes. J. Math. Anal. Appl.
110(2):568–582.
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