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Abstract

We consider the problem of A-B testing when the impact of the treatment is marred by a
large number of covariates. Randomization can be highly ine�cient in such settings, and thus
we consider the problem of optimally allocating test subjects to either treatment with a view
to maximizing the precision of our estimate of the treatment e�ect. Our main contribution is
a tractable algorithm for this problem in the online setting, where subjects arrive, and must be
assigned, sequentially, with covariates drawn from an elliptical distribution with finite second
moment. We further characterize the gain in precision a�orded by optimized allocations rela-
tive to randomized allocations, and show that this gain grows large as the number of covariates
grow. Our dynamic optimization framework admits a number of generalizations that incorpo-
rate important operational constraints such as the consideration of selection bias, budgets on
allocations, and endogenous stopping times. In a set of numerical experiments, we demonstrate
that our method simultaneously o�ers better statistical e�ciency and less selection bias than
state-of-the-art competing biased coin designs.

1. Introduction

The prototypical example of an ‘A-B test’ is the design of a clinical trial where one must judge
the e�cacy of a treatment or drug relative to some control. In a di�erent realm, A-B testing
today plays an increasingly pivotal role in e-commerce, ranging from the optimization of content
and graphics for online advertising, to the design of optimal layouts and product assortments for
webpages. E-commerce properties will even use A-B testing as a means of finding the best third
party vendor for a specific service on their website (such as, say, recommendations or enterprise
search).

�The authors wish to thank Anthony Atkinson, Steve Chick, Shane Hendersen, Nathan Kallus, Costis Maglaras,
Assaf Zeevi, and Jose Zubizarreta for helpful discussions. The second author’s work was supported in part by NSF
CAREER Grant CMMI-1054034. The third author was supported by NSF Grant CMMI-1235023.
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A natural approach to A-B testing is to independently, and with equal probability, assign each
subject to either the treatment or control groups. Following such a randomized allocation, the
benefit of the treatment relative to the control can be estimated from the outcomes of subjects in
the two groups. The notion of a subject here can range from a patient in the clinical trial setting to
a web-surfer or impression in the e-commerce setting. Similarly, the notion of a treatment can vary
from an actual medical treatment in the clinical trial setting to the decision to show a specific ad
in the e-commerce setting. While randomized allocation is simple and can easily be shown to yield
unbiased estimates of the treatment e�ect under a minimal set of assumptions, the e�ciency of
this procedure (or, the sample size needed to get a statistically significant estimate of the treatment
e�ect) can prove onerous in practice. To see, why consider the following challenges:

1. Limited Sample Size: In the clinical trial setting, the number of subjects is limited for several
reasons. As an example, the cost of managing a single subject through a clinical trial is tens
of thousands of dollars (see, e.g., Steensma and Kantarjian, 2014). In the e-commerce setting,
one may need to conduct many thousands of A-B tests in an ongoing fashion. As an example,
consider an advertising firm that uses A-B testing on live impressions (i.e., web-surfers) to
mechanically decide the appropriate messaging, text size, font, color etc. for the creatives it
generates for an online advertising campaign. In this domain, a reduction in the sample size
needed to learn can, due to scale, result in dramatic, continual cost savings.

2. Confounding E�ects: Running counter to the need for quick inference, the impact of a partic-
ular treatment (or design decision) may be marred by a potentially large number of covariates.
The presence of these covariates makes the inference of the treatment e�ect more challenging,
since the di�erence in outcome of the treatment and control groups might be due to a lack
of ‘balance’ in the covariates in the two groups. While the law of large numbers assures us
that a large enough sample size will ‘wash out’ the impact of this imbalance of covariates,
the requisite sample size may grow exceedingly large when the number of covariates is large
and/or the treatment e�ect is small.

3. ‘Small’ Treatment E�ects: Similar to the covariate imbalance issue above, the incremental
impact of the treatment under study may be relatively ‘small’. This creates a challenge in the
measurement of small treatment e�ects, which, despite their magnitude, many nevertheless
be important in settings where the selected treatments will be applied on a su�ciently large
scale. More precisely, if one imagined a model where the outcome is additively impacted
by the treatment and exogenous noise, we expect the sample size required to discern the
treatment from noise to grow quadratically with the ratio of the standard deviation of the
exogenous noise to the treatment e�ect. To (heuristically) see why, observe that if S

n

is the
sum of n independent, zero mean random variables, each with standard deviation ‡, ◊ > 0 is
some constant, and �(·) is the cumulative distribution of the standard normal, then by the
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central limit theorem, we expect
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This suggests that, in order to di�erentiate a treatment e�ect with magnitude ◊ from exoge-
nous noise with standard deviation ‡, we need on the order of ‡2/◊2 samples.

4. Operational Constraints: As already alluded to, A-B tests can be expensive, either because of
an explicit cost related to managing test subjects or the implicit risk of testing a sub-optimal
treatment. These issues clearly impact the choice of sample size and frequently imply a budget
on the number of subjects allocated to the alternative treatment whose e�cacy we seek to
measure. It is also not unusual to dynamically ‘stop’ a trial based on ones confidence in the
outcome. In clinical trials, one cares about ‘selection bias’ in addition to e�ciency; measures
such as selection bias speak to concerns of robustness (to modeling errors or manipulation),
or even fairness. Taken together, these operational constraints further complicate an already
challenging problem.

Addressing theses challenges motivates considering the careful design of such A-B tests. In
particular, given a collection of subjects, some of whom must be chosen for treatment, and others
assigned to a control, we would like an assignment that ‘balances’ the distribution of covariates
across the two groups. This in turn could conceptually yield an e�cient estimate of the treatment
e�ect, the primary concern alluded to above.

Given the broad applicability of an e�cient A-B test, it is perhaps not surprising that a large
body of literature within the statistical theory of the design of experiments has considered this
very problem, starting with the nearly century old work of Fisher (1935). While we defer a review
of this substantial literature to Section 1.2, a very popular approach to dealing with the problem
of achieving covariate balance is the use of ‘stratification’. In this approach, the subjects are
divided into a number of groups based on the covariates. In other words, the covariate space is
divided into a number of regions and subjects whose covariates lie in a certain region are grouped
together. Further, each of the groups is randomly split to be allocated to the treatment or the
control. Unfortunately, stratification does not scale gracefully with the number of covariates since
the number of groups required in stratification will grow exponentially with the dimension. Another
natural idea would be to ‘match’ subjects with similar covariates, followed by assigning one member
of a match to the treatment and the other to the control. Such a design would try to mimic an
idealistic scenario in which, for n subjects under the experiment, we have n/2 pairs of ‘twins’. If the
matched subjects are indeed close to each other in the space of covariates, we would have that the
distribution of covariates in the treatment and control is close to each other, which would cancel out
the e�ect of these covariates. While this latter approach does allow us to consider a large number
of covariates, the literature only appears to present heuristics motivated by these ideas.

To add a further challenge beyond those already discussed, an additional (and very important)
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requirement apparent from the applications above is that the process of allocating subjects (or
impressions) to a particular treatment (or creative) must be made sequentially, in an online or
dynamic fashion. Again, there is a literature on dynamic allocation starting with seminal work
by Efron (1971) on ‘biased coin designs’ (BCDs). While a BCD seeks to balance the number
of subjects in the treatment and control groups, there is by now a robust literature on so-called
covariate adaptive BCDs. These schemes extend Efron’s original proposal so that one cares about
balance in not just the number of subjects across the two groups but also seeks balance in the
covariate distribution. Viewed from the perspective of dynamic optimization, all of these heuristics
can be seen as myopic schemes that in making an allocation at a given point in time fail to hedge
against the future stream of arriving subjects. In fact, the literature surprisingly does not consider
the design of an ‘optimal’ online allocation of subjects to treatments — or online A-B testing in our
parlance — as a principled dynamic optimization problem where dynamic programming techniques
for optimal sequential decision-making can be applied.

The present paper casts the problem of computing an e�cient estimate of the treatment e�ect
in an A-B test as a dynamic optimization problem. Despite this being a high-dimensional control
problem, we show that one can e�ciently compute near-optimal solutions to this problem when
covariates are elliptically distributed. We show that our approach yields Pareto improvements over
state of the art alternatives covariate adaptive BCD approaches. As a secondary contribution, we
also show that that the important ‘o�ine’ variant of the problem also admits an e�cient optimal
algorithm and tightly characterize the value of optimization in that setting.

1.1. This Paper

Our approach, in a nutshell, is to formulate online A-B testing as a (computationally challenging)
dynamic optimization problem and develop approximation and exact algorithms for the same.
In particular, the present paper considers the setting where a subject’s response is linear in the
treatment and covariates; as we discuss later, this is a canonical model and ubiquitous in the
literature on experiment design. We consider the problem of minimizing the variance of our estimate
of the treatment e�ect by optimally allocating subjects to either the treatment or control group. We
formulate this problem as a dynamic optimization problem and make the following contributions:

1. O�ine Allocation: In the o�ine setting, i.e., where the allocation can be made after observing
all subjects, we show that the problem can be solved e�ciently by using as a subroutine a
generalization of the MAX-CUT SDP relaxation of Goemans and Williamson (1995). While
not our main result, this result shows that the problem of o�ine A-B testing (which is
still valuable in some traditional applications) can surprisingly be solved e�ciently. We also
characterize the value of optimized allocations relative to randomization in this setting and
show that this value grows large as the number of covariates grows.

2. Sequential Allocation: In the online setting — which is the algorithmic focal point of our work
— our optimization problem is, not surprisingly, a high dimensional dynamic optimization
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problem with dimension that grows like the number of covariates. We show how to break the
curse of dimensionality here. In particular, we show that the state space of this dynamic
optimization problem collapses if covariates come from an elliptical family of distributions (a
family that includes, for example, the multivariate Gaussian). This yields an e�cient algo-
rithm that is provably optimal in the elliptical distribution setting and that can nonetheless
be employed when covariates are not from an elliptical family.

3. A General Framework: We show that our dynamic optimization formulation permits the con-
sideration of criteria beyond just the variance of the treatment e�ect. Specifically, we extend
our formulation to a framework that can accommodate the simultaneous minimization of
selection bias; the minimization of general separable cost functions of the allocation; endoge-
nous (optimal) stopping criteria (as opposed to a-priori fixed sample sizes); and budgets on
the sample size for a given treatment, to name just a few applications of the framework.

4. Experimental Comparisons: We compare our approach to sequential allocation with a host of
so-called covariate adaptive BCD approaches, several of which are considered state-of-the-art.
It is typical to measure the performance of such approaches not just in terms of e�ciency, but
also with respect to the so-called selection bias they induce. Here we show that our approach
yields a Pareto improvement over these alternatives. In addition to synthetic data, we run
our experiment on real user impression data from Yahoo.com. We show similar Pareto gains
despite the fact that the covariates in the real data are categorical.

Thus, our main contribution is providing an algorithm for the challenging problem of sequential
A-B testing that can be shown to be near-optimal when covariates are drawn from an elliptical
family. The algorithm is applicable to a canonical family of treatment models and also applies to
the simultaneous optimization of several criteria. Given the vast extant literature on this problem,
and the fact that it is nominally high-dimensional, it is a pleasant surprise that such an algorithm
exists.

1.2. Related Literature

The theory of optimal experiment design (which, in a sense, subsumes the problems we consider
here) starts with the seminal work of Fisher (1935). Important textbook expositions of this mature
topic include that of Pukelsheim (2006) and Cook et al. (1979), the latter of which discusses the
notion of covariate matching as it applies to practice. While not our primary focus, the ‘o�ine’
problem we discuss in this paper is of practical relevance in the social sciences; see Raudenbush et al.
(2007), for an application and heuristics. Kallus (2013) studies an approach to this problem based
on linear mixed integer optimization with an application to clinical trials. In a follow-up paper,
Kallus (2012) presents a robust optimization framework for the o�ine problem with an emphasis on
allocations of treatments that are robust to the specific form of the model of each subject’s response
as a function of the treatments and subject covariates (we merely consider linear functions here).
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The value of optimization has also recently received attention from the economics community; Kasy
et al. (2013) discusses several optimization formations that complement those proposed by Kallus
(2012). Unlike Kallus (2013, 2012) however, Kasy et al. (2013) o�ers no algorithmic approach
to solve the problems he proposes (and unfortunately, his problem formulations appear largely
intractable). In contrast, for the linear models we consider here, we o�er an e�cient approximation
algorithm. Our o�ine problem may be viewed as a special case of the problem of D

a

-optimal
experiment design and fortuitously coincides with an optimality criterion that already enjoys wide
acceptance.

The problem that is of greatest algorithmic interest to us is the ‘online’ allocation problem,
where treatments must be assigned to subjects as they arrive. With regard to this sequential
problem, Efron (1971) proposed an allocation strategy, referred to as a ‘biased coin design’ (BCD),
that sought to ‘balance’ the number of subjects in each trial while minimizing certain types of
selection bias. Now whereas Efron’s BCD seeks only to balance the number of subjects between
test and control groups, there is by now a robust literature on so-called covariate adaptive BCDs
(CA-BCDs). Such schemes seek balance not just in the number of subjects but also in the covariate
distribution between groups. Perhaps the most widely used CA-BCD is the procedure proposed
by Pocock and Simon (1975) wherein the authors recommend a ‘bias’ that depends on a generic
cost function of the covariate imbalance between the two groups. Atkinson (1982, 1999) proposed
the first CA-BCD whose design is rooted in theory, specifically to the notion of D

a

optimality
in experiment design; of course this approach comes at the cost of assuming a treatment e�ect
model. A number of model-based CA-BCD proposals have followed, including Smith’s rule (Smith,
1984b,a); the Bayesian procedure of Ball et al. (1993); and rule ABCD, proposed by Baldi Antognini
and Zagoraiou (2011), to name a few. The so-called minimization approach of Pocock and Simon
(1975) (which applies to generic cost functions of covariate imbalance) has also been recently
analyzed by Hu and Hu (2012), who prescribe a more refined class of cost functions that lead
to asymptotic balance. Alternatives to the CA-BCD procedure have also been proposed recently:
Kapelner and Krieger (2013) presents an approach to achieving covariate balance based on ideas
from the theory of online matching.

Viewed from the perspective of dynamic optimization, except for the heuristic proposed by
Kapelner and Krieger (2013), all of the above approaches can be regarded as myopic policies. Such
policies only consider the immediate impact of an allocation decision, and do not consider the
impact on future decisions. In general, myopic policies will not be optimal. It is worth noting
that for all of the aforementioned procedures, the theoretical analysis available, if any, is always
in a limiting regime where sample size grows large keeping the number of covariates fixed. Little
is understood in finite samples. More generally, Rosenberger and Sverdlov (2008) note that “very
little is known about the theoretical properties of covariate-adaptive designs”. In contrast, we see
that our approach yields provably optimal allocations in finite samples for a host of optimality
criteria. As we see in our experimental work, this also translates to Pareto improvements over
several of the schemes described above, even on real data. It is worth noting however, that such
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statements of optimality require restrictions on the types of treatment models one can consider, as
well as distributional assumptions on the covariates.

Related but Distinct Problems.
It is important to distinguish the experiment design problems considered here from ‘bandit’

problems, particularly those with side information (e.g., Woodroofe, 1979; Langford and Zhang,
2007) as both classes of problems frequently find application in very related applications. In theory,
the experimental design setting is appropriate when an irrevocable decision of what treatment
is appropriate must be made (e.g., the number of ads to display with search results), whereas
the bandit setting is appropriate in a setting where the decision can be changed over time to
optimize the (say) long-run average value of some objective (e.g., maximizing revenues by finding
the best audience for a specific campaign). In practice, the choice of which framework to use
is frequently complicated by operational considerations. For instance consider the problem of
deciding between two distinct creatives in an advertising campaign. The bandit formulation is
elegant and quite natural for this setting (Hauser et al., 2009; Schwartz et al., 2017). Despite
this, it is common industry practice to make such decisions using frequent A-B tests1. From a
methodological perspective, an important di�erence is that solution methods for bandit problems
need to address an ‘exploitation-exploration’ trade-o� between learning the best alternative and
collecting rewards to optimize the objective, while there is no such trade-o� in our experimental
design setting.

Other problems in marketing science are also close in spirit to the A-B testing problem we study.
Adaptive conjoint analysis seeks to learn the tastes of an individual (or a group of individuals) by
asking a sequence of questions (or presenting a sequence of choices). In an e�ort to learn accurately
with as small a number of questions, Toubia et al. (2003, 2004) propose a dynamic optimization
procedure that is in the spirit of the ellipsoid method in convex optimization.

Another closely related class of problems are ranking and selection problems where the task is
to pick the best of a set of alternatives with a budget on samples (for an overview, see Kim and
Nelson, 2006). In our lexicon, the emphasis in such problems is choosing from multiple (typically,
greater than two) treatments in the absence of observable covariates on a sample. Interestingly,
recent progress on this class of problems has also heavily employed dynamic optimization techniques
(see, e.g., Chick and Gans, 2009; Chick and Frazier, 2012; Chick et al., 2015).

As a final note, the major emphasis in our work is on A-B testing with a fixed budget on
samples. It is interesting to consider A-B tests that can be ‘stopped’ with continuous monitoring.
Doing so can introduce a significant bias towards false discovery; Johari et al. (2015) have recently
made exciting progress on this problem.

1For example, consider the following case study by one of the largest providers of commercial A-B testing infras-
tructure: https://blog.optimizely.com/2014/02/03/case-study-sony-ab-tests-banner-ads/.
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2. Model

In this section we describe the model. Given the model assumptions in Section 2.1, our problem is
to maximize the precision of our estimate of the treatment e�ect. In Section 2.2 we pose the two
optimization problem that are of interest. One of them is the o�ine problem where all subjects
can be observed before making allocation decisions and the other is the sequential problem where
subjects must be allocated without knowing the future arrivals. In Section 2.3 we present a simple
upper bound on the precision of any estimate of the treatment e�ect given an allocation; this allows
us to define the notions of e�ciency and loss. Section 2.4 concludes with an intuitive interpretation
of our optimization problems.

2.1. Setup

We must learn the e�cacy of a treatment by observing its e�ect on n subjects. The kth subject is
assigned a treatment x

k

œ {±1}. The kth subject is associated with a covariate vector (i.e., side
information or context) Z

k

œ Rp. We assume that impact of the treatment on the kth subject is
given by:

y
k

= x
k

◊ + Z€
k

Ÿ + ‘
k

.

This assumes a linear dependence of the covariates and treatment decision on the outcome. The
treatment e�ect ◊ œ R and the weights on the covariates Ÿ œ Rp are unknown. Our aim is to
estimate ◊. The {‘

k

} are i.i.d. zero mean random variables with variance ‡2. The key restriction
imposed by this model is that the impact of treatment is additive, an assumption that is ubiquitous
in all of the related literature on the topic. Further, we assume that there is no endogeneity. In
other words, there are no unobserved covariates.

Letting Z œ Rn◊p be the matrix whose kth row is Z€
k

, throughout this paper, we will assume
that:

Assumption 1. The first column of Z is a vector of all ones. Further, Z is full rank and p Æ n ≠ 1.

The requirement that one of the covariates be a constant ensures that ◊ is interpreted as a
treatment e�ect, otherwise it could be learned from the assignment of a single treatment. The
crucial assumption is that p Æ n ≠ 1, which nonetheless allows for a large number of covariates.2

In fact the scenario where p ≥ n is particularly relevant. For a particular allocation of treatments,
x, let us denote by ◊̂

x

the least squares estimator for ◊.
2We will informally refer to p as the number of covariates even though, strictly speaking, it is the dimension of

the linear model and could include second order terms, interaction terms between covariates, etc.
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2.2. Optimization Problem

We are interested in finding an estimator with minimal variance or, equivalently, maximal precision.
A standard calculation yields that the estimator ◊̂

x

has precision

Prec(◊̂
x

) , 1
Var(◊̂

x

)
= x€P

Z

‹x

‡2

, (1)

where P
Z

‹ , I ≠ Z(Z€Z)≠1Z€. Details are presented in Section A of the appendix.
We can now immediately state the o�ine experiment design problem:

(P1) , maximize x€P
Z

‹x

subject to x œ {±1}n.

Here, given the collection of covariates Z, we seek to find the allocation x which yields the least
squares estimator with maximal precision.

In many real world applications the assignments need to be made in a sequential fashion.
Subjects arrive one at a time and the assignment must be made without the knowledge of subjects
in the future. We formulate this as a dynamic optimization problem. To this end we must now
assume the existence of a measure on the covariate process {Z

k

}. We define a filtration {F
k

} by
setting, for each time k, F

k

to be the sigma algebra generated by the first k covariates (Z
1

, . . . , Z
k

)
and the first k ≠ 1 allocations (x

1

, . . . , x
k≠1

). The online experiment design problem is then given
by:

(P2) , maximize E
Ë
x€P

Z

‹x
È

subject to x œ {±1}n,

x
k

is F
k

-measurable, ’ 1 Æ k Æ n,

where the expectation is over the distribution of the covariate process. Here, the objective is to
maximized the expected ex post precision.3

2.3. Upper Bound, E�ciency, and Loss

The following upper bound on the precision of any unbiased estimator that is a straightforward
consequence of the Cramér-Rao bound:

Proposition 1. If ‘ ≥ N(0, ‡2I), then for any covariate matrix Z and any unbiased estimator (◊̂, Ÿ̂),
including non-least squares estimators, we have:

Prec(◊̂
x

) Æ n

‡2

,

an upper bound on the optimal value of both problems (P1) and (P2). For non-Gaussian noise ‘,
this upper bound still holds for all least squares estimators.

3Note that, in the online case, because of Jensen’s inequality, maximizing precision and minimizing variance are
no longer equivalent objectives.
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This proposition, whose proof is provided for completeness in Section A of the appendix, shows
that the precision of the optimal estimator4 is O(n). Consider the case when subjects are identical,
i.e., p = 1 and Z

k

= 1 for all k. It is easy to note that, in this case assuming n is even, the optimal
design allocates half of the subjects to either treatments. Further, the precision of such a design is
n/‡2, the optimal achievable precision. For p > 1 this precision is less than this value. Thus the
presence of covariates only makes the inference challenging.

Motivated by Proposition 1, we define e�ciency as the the precision of an estimator normalized
by the Cramér-Rao upper bound, i.e.,

E�(◊̂
x

) , Prec(◊̂
x

)
n/‡2

Æ 1,

Loss is defined as the sub-optimality of an estimator relative to the upper bound measured additively
in sample units:

Loss(◊̂
x

) , n ≠ ‡2Prec(◊̂
x

) Ø 0,

so that
Prec(◊̂

x

) = n ≠ Loss(◊̂
x

)
‡2

.

We consequently see that loss can intuitively be thought of as “the e�ective number of subjects on
whom information is lost due to the imbalance of the design” (Atkinson, 2014).

2.4. Problem Interpretation

Before moving on to algorithm design, we pause to interpret the o�ine and online problems pre-
sented above. First we begin with an intuitive interpretation of the objective. Define the im-
balance vector in covariate values between the test and control groups, �

n

œ Rp, according to
�

n

, q
n

k=1

x
k

Z
k

= Z€x. Notice that the empirical second moment matrix for the covariates is
given by �

n

, Z€Z/n. Then, it is easy to see that the objective of the o�ine problem (P1) reduces
to

x€P
Z

‹x = x€
1
I ≠ Z(Z€Z)≠1Z€

2
x = n

1
1 ≠ �€

n

�≠1

n

�
n

2
.

Therefore, the o�ine problem (P1) is equivalent to minimizing the square of the weighted euclidean
norm of �

n

, ...�
n

...
2

�

≠1
n

, �€
n

�≠1

n

�
n

,

while (P2) seeks to minimize the expected value of this quantity where the expectation is over the
covariate process and our allocations. Put simply, both problems seek to minimize the aggregate
imbalance of covariates between the treatment and control groups, measured according to this
norm.

4In what follows, given a function f(·) and a positive function g(·), as n æ Œ we say f(n) = O(g(n))
if lim supnæŒ |f(n)|/g(n) < Œ, we say f(n) = o(g(n)) if limnæŒ |f(n)|/g(n) = 0, we say f(n) = �(g(n)) if
lim supnæŒ |f(n)/g(n)| > 0, and finally we say f(n) = �(g(n)) if f(n) = O(g(n)) and f(n) = �(g(n)).
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As a final point, we note that the measure of ‘imbalance’ minimized in problems (P1) and
(P2) was derived assuming a least squares estimator, and it is worth noting that this choice is
not arbitrary. Specifically, note that the Cramér-Rao bound dictates that, provided x and Z are
independent of ‘, and further if ‘ is normally distributed, then for any unbiased estimator of the
treatment e�ect ◊̃

x

, we have that
E�(◊̃

x

) Æ E�(◊̂
x

)

where the right hand side quantity is the e�ciency of the least square estimator. Now both problems
(P1) and (P2) seek to find an allocation x to maximize the latter quantity, or its expected value,
respectively. Consequently, both problems may be interpreted as seeking an allocation of samples to
the test and control group with a view to maximizing the e�ciency of our estimate of the treatment
e�ect among all unbiased estimators of the treatment e�ect.

3. The O�ne Optimization Problem

In this section, we consider the o�ine optimization problem (P1). We show that this combinato-
rial problem permits a tractable, constant factor approximation using an SDP-based randomized
rounding algorithm. Moreover, in this setting, we can analyze the e�ect optimization has on the
precision of the estimator of the treatment e�ect, as compared to randomization. To this end,
we first obtain the mean precision of the randomized design. Surprisingly, precision is a simple
function of n and p and does not depend on the data matrix Z. We show that when p ≥ n, the
randomization is rather ine�cient and the precision is O(1). This can be contrasted with the upper
bound on precision given by Proposition 1 which is �(n). To conclude the section, we analyze the
performance of the optimal allocation assuming a distribution on Z. We show that for any p, the
precision of optimal allocation is �(n). Thus concluding that when p ≥ n, randomization can be
arbitrarily bad as compared to the optimal design.

3.1. Approximation Algorithm for (P1)

First, we observe that there is a tractable approximation algorithm to solve the combinatorial
optimization problem (P1). In particular, consider the semidefinite program (SDP) over symmetric
positive semidefinite matrices Y œ Rn◊n given by5

(P1-SDP) , maximize tr (P
Z

‹Y )
subject to Y

kk

= 1, ’ 1 Æ k Æ n,

Y ≤ 0,

Y œ Rn◊n.

It is straight forward to see that (P1-SDP) is a relaxation of (P1) in the sense that it achieves
higher objective value: given an optimal solution x̂ œ {±1}n for (P1), define the symmetric positive

5Here, Y ≤ 0 denotes that Y is a symmetric and positive semidefinite matrix.
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definite matrix Ŷ , x̂x̂€ œ Rn◊n. Then, clearly Ŷ satisfies the constraints of (P1-SDP). Also,
tr

1
P

Z

‹ Ŷ
2

= x̂€P
Z

‹ x̂, so the objective values for (P1) and (P1-SDP) coincide. Therefore, the
optimal objective value of (P1-SDP) must be larger than that of (P1). Moreover, because it is an
SDP, (P1-SDP) can be e�ciently solved in polynomial time.

Based upon prior work on the MAX-CUT problem (Goemans and Williamson, 1995), the fol-
lowing result, due to Nesterov (1997), establishes that (P1-SDP) can be used as the basis of a
randomized algorithm to solve (P1) with a constant factor guarantee with respect to the optimal
design. The corresponding (randomized) allocation procedure is described in Algorithm 1.

1: procedure SDPAllocation(Z) Û Compute an allocation x̃
2: Set Y ú ≤ 0 to be an optimal solution of the program (P1-SDP) given the data matrix Z
3: Set the matrix V œ Rn◊n with columns v

1

, . . . , v
n

œ Rn so that the matrix decomposition
Y = V €V holds

4: Let u œ Rn be a vector chosen at random uniformly over the unit sphere
5: for k Ω 1, n do

6:

x̃
k

Ω
I

+1 if u€v
k

Ø 0,

≠1 if u€v
k

< 0,

7: end for

8: return x̃
9: end procedure

Algorithm 1: Randomized allocation algorithm based on (P1-SDP).

Theorem 1. Given a data matrix Z œ Rn◊p, set the allocation x̃ œ Rn according to Algorithm 1.
Then,

E
u

Ë
x̃€P

Z

‹ x̃
È

Ø 2
fi

max
xœ{±1}n

x€P
Z

‹x,

where the expectation is taken over the choice of random vector u in Algorithm 1. In order words,
the expected value achieved by the vector x̃ in the o�ine experiment design problem (P1) is within
a constant factor 2/fi of the best possible.

Proof. This theorem is a direct consequence of Theorem 3.4.2 of Ben-Tal and Nemirovski (2001).
That result states that any quadratic integer optimization problem with objective x€Qx, such that
x œ {±1}n, can be approximated within a relative error of fi/2 using the prescribed algorithm,
provided Q is positive semidefinite. Since P

Z

‹ is positive semidefinite (indeed, it is a projection
matrix), the result follows. ⌅

3.2. Optimal Allocations vs. Randomized Allocations

Randomization is the most popular technique used for A-B testing. In what follows, we will compare
the performance of randomization to what can be achieved by the optimal o�ine allocation of (P1).

In its most basic variation, simple randomization partitions the population into two equally sized
groups, each assigned a di�erent treatment, where the partition is chosen uniformly at random over

12



all such partitions (for simplicity, we will assume that the population is of even size). Denote by
X

rand

œ {±1}n the random allocation generated by simple randomization, and denote by ◊̂
Xrand

the resulting unbiased least squares estimator for ◊.

Theorem 2. If n is even, given a covariate matrix Z, define the expected precision and loss of
simple randomization

Prec
rand

, E
Xrand

Ë
Prec

1
◊̂

Xrand

2È
, Loss

rand

, E
Xrand

Ë
Loss

1
◊̂

Xrand

2È
,

where the expectations are taken over the random allocation X
rand

. Then,

Prec
rand

= n

‡2

3
1 ≠ p ≠ 1

n ≠ 1

4
, Loss

rand

= n

n ≠ 1 (p ≠ 1).

The proof relies on simple probabilistic arguments and is presented in Section B of the appendix.
Surprisingly the precision and loss of the randomized allocation does not depend on the data matrix
Z at all, as long as it is full rank and has a constant column.

Comparing with the upper bound of Proposition 1, we notice that in the large sample size regime
where n æ Œ, simple randomization is asymptotically order optimal in the sense that it achieves
precision that grows with order n — the maximum permitted by the upper bound of Proposition 1
— when p π n. This may not be the case when p is close to n, however. For example, if p = n ≠ 1,
which is the maximum value p can take under Assumption 1, then Prec

rand

¥ 1/‡2, which is of
constant order. In such a case, the least squares estimator ◊̂

Xrand will not asymptotically converge
to ◊ as n æ Œ. In general, simple randomization is asymptotically order optimal any time that
p

n

= o(n) as n æ Œ.
Now we consider the performance of the optimal estimator that would be obtained by solving

the o�ine experiment design problem (P1). By construction, the optimal estimator will clearly
have precision that is at least that of the randomized procedure. We would like to understand the
magnitude of the possible improvement, however, and to see if it is material. Unlike in the simple
randomized case, however, the precision of the optimal estimator depends on the covariate matrix
Z. Moreover, it is di�cult to obtain a closed-form expression for this precision as a function of Z.

We can illustrate this with a simple example. Consider the case where p = n ≠ 1. The precision
of the optimal estimator is given by

sup
xœ{±1}n

x€P
Z

‹x

‡2

.

Since p = n≠1, the null space of Z€ is a one dimensional subspace of Rn. Let y œ Rn be a non-zero
vector such that Z€y = 0 and ÎyÎ2

2

= 1. That is, y is a unit vector in the null space of Z€. It is
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easy to see that P
Z

‹ = yy€. Thus, the precision of the optimal estimator is

sup
xœ{±1}n

x€yy€x

‡2

= sup
xœ{±1}n

1
y€x

2
2

‡2

= ÎyÎ2

1

‡2

. (2)

Now, consider the following two cases:

1. y has only two non-zero components given by 1/
Ô

2 and ≠1/
Ô

2. In this case, the optimal
precision is 2/‡2. Thus, in this case, randomization is within a constant factor of optimal.

2. y has entries such that |y
i

| = 1/
Ô

n and 1

€y = 0. In this case, the precision is n/‡2. Thus,
in this case, the optimal design achieves the Cramér-Rao upper bound and the performance
is a significant improvement over the randomized design.

The preceding two cases show, that depending on the covariate matrix Z (which determines
the vector y in the discussion above), the performance of the optimal design may be a drastic
improvement over that of the randomized design. In order to study the performance of the optimal
design, we proceed by making a certain probabilistic assumption on Z. Under this assumption, we
will then analyze the distribution of performance of the optimal design. For this purpose, we will
assume a distribution on the covariate matrix Z as follows:

Assumption 2. Given (n, p) with 1 Æ p < n, assume that the covariate matrix Z œ Rn◊p has
independent and identically distributed rows. Further, assume that for each 1 Æ k Æ n, the kth
row Z

k

œ Rp satisfies Z
k,1

= 1, and that the vector of all components except the first satisfies
Z

k,2:p

≥ N(0, �), i.e., it is distributed according to a multivariate normal distribution with zero
mean and covariance matrix � œ Rp≠1◊p≠1.

It is easy to check that, under Assumption 2, the covariate matrix Z will satisfy the full rank
condition of Assumption 1 almost surely. Consider a sequence of problems indexed by the sample
size n, and where the dimension of the covariates is given by 1 Æ p

n

< n. For each n, let
Zn,pn œ Rn◊pn be the data matrix satisfying Assumption 2. We have that:

Theorem 3. Suppose that Assumption 2 holds with � = fl2I. Let xú be an optimal design obtained
by solving (P1) with covariate matrix Z = Zn,pn, and let ◊̂

x

ú
,Z

n,pn be the corresponding least squares
estimator of ◊. Denote the precision of this estimator by

Precn,pn
ú , Prec

1
◊̂

x

ú
,Z

n,pn

2
.

Then, we have that for any ‘ > 0,

lim
næŒ

P
3Precn,pn

ú
n

<
1

8fi‡2

≠ ‘

4
= 0,

where the probability is measured over the distribution of the covariates.

Theorem 3 states that, with high probability, the optimal o�ine optimization-based design
always yields �(n) precision under Assumption 2. Comparing to Theorem 2, the optimal precision
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is a �(n) relative improvement over that of simple randomization when p is large (i.e., p = �(n)). In
other words, if the number of covariates is comparable to the sample size, we might expect dramatic
improvements over simple randomization through optimization. Moreover, while the optimal design
requires solution of (P1), which may not be tractable, Theorem 1 suggests a tractable approximation
which is guaranteed to achieve the same precision as the optimal design up to a constant factor.

The proof of Theorem 3 is presented in Section C. Here we provide a proof sketch. Let Zn,p œ
Rn◊p and Zn,n≠1 œ Rn◊n≠1 be two covariate matrices defined on the same probability space (under
the Assumption 2 with � = fl2I) such that they are identical on the first p columns. We show
that Precn,p

ú Ø Precn,n≠1

ú . This establishes that p = n ≠ 1 corresponds to the worst case precision
and allows us to focus on the sequence Precn,n≠1

ú . We then analyze the distribution of Zn,n≠1.
We show that Precn,n≠1

ú can be written down as a function of a unit vector in the null space of
(Zn,n≠1)€, say y

n

œ Rn. Further, y
n

describes a random one-dimensional subspace of Rn that
is invariant to orthonormal transformations that leave the constant vector unchanged. There is
a unique distribution that has this property. We then identify the distribution and compute the
precision in closed-form using this distribution. In particular, we show that, as n æ Œ,

Precn,n≠1

ú
n

æ 1
8fi‡2

,

where the convergence is in distribution.

4. Sequential Problem

We now consider the online experiment design problem (P2). Here, decisions must be made sequen-
tially. At each time k, an allocation x

k

œ {±1} must be made based only on the first k covariates
and any prior allocations. In other words, x

k

is F
k

-measurable.
In this section we show that the optimization problem is tractable. First, we pose a surrogate

problem in which the objective of (P2) is simplified. The details of this simplification are provided in
Section 4.1. In Section 4.2, we show that the reduction in performance when the surrogate problem
is used to device an assignment policy is negligible. Focusing on the surrogate problem, we show
that the surrogate problem is a p-dimensional dynamic program in Section 4.3. Surprisingly, if we
assume that the data generating distribution for the covariates comes from the so-called elliptical
family then the state space collapses to two dimensions, making the dynamic program tractable.
This state space collapse is presented in Section 4.4.

4.1. Formulation and Surrogate Problem

In order to formulate the sequential problem with an expected value objective, a probabilistic model
for covariates is necessary. We will start by making the following assumption:

Assumption 3. Given (n, p) with 1 Æ p < n, assume that the covariate matrix Z œ Rn◊p has
independent and identically distributed rows. Further, assume that for each 1 Æ k Æ n, the kth row
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Z
k

œ Rp satisfies Z
k,1

= 1, and that the vector Z
k,2:p

œ Rp≠1 of all components except the first has
zero mean and covariance matrix � œ Rp≠1◊p≠1.

Assumption 3 requires that the sequentially arriving covariates are i.i.d. with first and second
moments. Assumption 2, by comparison, in addition imposes a Gaussian distribution.

Problem (P2) can be viewed as maximizing the expectation of terminal reward that is given by

x€P
Z

‹x = x€
1
I ≠ Z(Z€Z)≠1Z€

2
x = n ≠ 1

n

A
nÿ

k=1

x
k

Z
k

B€

�≠1

n

A
nÿ

k=1

x
k

Z
k

B

, (3)

where the sample second moment of covariates is given by

�
n

, 1
n

nÿ

k=1

Z
k

Z€
k

.

We write this matrix in block form as

�
n

=
C

1 M€
n

M
n

�
n

D

,

where,

�
n

, 1
n

nÿ

k=1

Z
k,2:p

Z€
k,2:p

, M
n

, 1
n

nÿ

k=1

Z
k,2:p

.

Here, M
n

and �
n

correspond to sample estimates of the covariate mean and covariance structure,
respectively.

We define, for each k, the scalar sample count imbalance ”
k

œ R and the covariate imbalance
vector �

k

œ Rp≠1 by

”
k

,
kÿ

¸=1

x
¸

, �
k

,
kÿ

¸=1

x
¸

Z
¸,2:p

. (4)

The terminal reward (3) is equal to

x€P
Z

‹x = n ≠ 1
n

Ë
”

n

�€
n

È C
1 M€

n

M
n

�
n

D≠1

C
”

n

�
n

D

.

Problem (P2) is then equivalent to

(P3) , minimize E
S

U
Ë
”

n

�€
n

È C
1 M€

n

M
n

�
n

D≠1

C
”

n

�
n

DT

V

subject to x œ {±1}n,

x
k

is F
k

-measurable, ’ 1 Æ k Æ n.

Observe that the objective of (P3) corresponds to n times the loss of the estimator.
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As n æ Œ, by the strong law of large numbers (under mild additional technical assumptions),
�

n

æ � and M
n

æ 0 almost surely. Motivated by this fact, in developing an e�cient algorithm
for (P3), our first move will be to consider a surrogate problem that replaces the sample covariance
matrix �

n

with the exact covariance matrix � and sets the sample mean M
n

to the exact mean 0:

(P3Õ) , minimize E
Ë
”2

n

+ Î�
n

Î2

�

≠1

È

subject to x œ {±1}n,

x
k

is F
k

-measurable, ’ 1 Æ k Æ n.

Here, given an arbitrary covariance matrix �̂ œ Rp≠1◊p≠1, we find it convenient to introduce the
norm Î · Î

ˆ

�

≠1 on Rp≠1 defined by ÎzÎ
ˆ

�

≠1 , (z€�̂≠1z)1/2. In the present context, this norm is
typically referred to as a Mahalanobis distance.

The roles of the sample count imbalance ”
n

and the covariate imbalance vector �
n

in the
surrogate problem (P3Õ) are intuitive: requiring ”

n

to be small balances the number of assignments
between the two treatments (the focus of the so-called biased-coin designs). Requiring the same of
�

n

will tend to ‘balance’ covariates — when �
n

is small, the empirical moments of the covariates
across the two treatments are close. As discussed in the introduction, heuristics developed in the
literature on the design of optimal trials tend to be driven by precisely these two forces.

For the rest of this section we will focus on the surrogate problem. We want to first justify the
use of the surrogate objective. We do this by providing an approximation guarantee in Section 4.2.
We then turn our attention on how to solve the surrogate problem via dynamic programming in
the subsequent sections.

4.2. Approximation Guarantee for the Surrogate Problem

First, we show that the policy obtained by solving (P3Õ) is near optimal. Denote by µ̂ the measure
over the sequence x

k

induced by an optimal solution for the surrogate control problem (P3Õ), and let
µú denote the measure induced by an optimal policy for our original dynamic optimization problem
(P3). Now, ”

n

and �
n

are random variables given an allocation policy. Given a allocation policy
µ, define

Dn,p

µ

, E
µ

CË
”

n

�€
n

È
�≠1

n

C
”

n

�
n

DD

to be the objective value of (P3) under the allocation policy µ with sample size n and covariate
dimension p. The following result is demonstrated, without loss of generality, under the assumption
that � is the identity (otherwise, we simply consider setting Z

k,2:p

to �≠1/2Z
k,2:p

):

Theorem 4. Suppose that Assumption 2 holds with � = I and let ‘ > 0 be any positive real
number. Consider a sequence of problems indexed by the sample size n, where the dimension of the
covariates is given by 1 Æ p

n

< n and “
n

> 0 are real numbers such that, for n su�ciently large,
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n Ø L max(p
n

, l log 2/“
n

)/‘2. Then, as n æ Œ

Dn,pn
µ̂

Æ
31 + ‘

1 ≠ ‘

4
2

Dn,pn
µ

ú + “
n

n2 + “
n

n2p
n

+ O

3Ú
n

p
n

≠ 1

4
.

Here, L and l are universal constants. In particular, selecting “
n

Ã 1/n4 yields

Dn,pn
µ̂

Æ
31 + ‘

1 ≠ ‘

4
2

Dn,pn
µ

ú + O

3Ú
n

p
n

≠ 1

4
. (5)

The result above relies on the use of non-asymptotic guarantees on the spectra of random
matrices with sub-Gaussian entries and can be found in Section D of the appendix.

The preceding result bounds the objective of the problem (P3) when (P3Õ) is used to devise an
allocation policy. However, we are interested in the objective of the problem problem (P2), which
is the precision or inverse variance of the design corresponding to the policy used. In particular,
denote by Precn,p

µ

the expected precision of the estimator when allocations are made with a policy
µ, for a problem with sample size n and covariate dimension p, i.e.,

Precn,p

µ

=
E

µ

Ë
x€P

Z

‹x
È

‡2

=
n ≠ Dn,p

µ

/n

‡2

. (6)

Then, we have the following:

Corollary 1. Suppose that Assumption 2 holds with � = I. Consider a sequence of problems indexed
by the sample size n, where the dimension of the covariates is given by 1 Æ p

n

< n, and a fixed
positive real number ‘ > 0 such that

‘ >
Ú

L lim sup
næŒ

p
n

/n,

for a universal constant L. Then, as n æ Œ,

Precn,pn
µ̂

Precn,pn
µ

ú
Ø 1 ≠ 4‘3

(L ≠ ‘2)(1 ≠ ‘2) + o(1).

Corollary 1 gives the multiplicative loss in the precision by using an allocation derived from
the surrogate problem (P3Õ). The multiplicative loss depends on the ratio p/n, which is captured
in the choice of ‘. For small values of ‘ the ratio of precision obtained by solving (P3Õ) and (P2)
approaches 1. Note that this result holds in an asymptotic regime where p and n both increase to
infinity, as long as p/n remains small.

Proof of Corollary 1. Consider (5) in Theorem 4. This holds when

n Ø L max(p
n

, l log 2/“
n

)
‘2
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with “
n

= b/n4 for some constant b. Equivalently,

n Ø L max(p
n

, 4l log n + 2l log b)
‘2

.

For n su�ciently large, clearly the constraint that n Ø L(4l log n + 2l log b)/‘2 will be satisfied.
Therefore, combined with the lower bound hypothesized for ‘, (5) holds as n æ Œ.

Using (6),

Precn,pn
µ

ú ≠ Precn,pn
µ̂

=
Dn,pn

µ̂

≠ Dn,pn
µ

ú

n‡2

Æ

(1 + ‘)2

(1 ≠ ‘)2

Dn,pn
µ

ú ≠ D
µ

ú + O

3Ú
n

p
n

≠ 1

4

n‡2

=
4‘Dn,pn

µ

ú

n‡2(1 ≠ ‘)2

+ o(1)

= 4‘

(1 ≠ ‘)2

3
n

‡2

≠ Precn,pn
µ

ú

4
+ o(1).

(7)

The first inequality follows from Theorem 4 and the last equality from (6).
Let Precn,pn

rand

denote precision of the randomized policy. Using Theorem 2 and the optimality of
µú, we have that

n

‡2

≠ Precn,pn
µ

ú Æ n

‡2

≠ Precn,pn
rand

= n

‡2

p
n

≠ 1
n ≠ 1 Æ n

‡2

p
n

n
Æ ‘2n

L‡2

, (8)

where the last inequality uses the fact that, by hypothesis, p
n

/n Æ ‘2/L. Substituting this into (7)
we get that

Precn,pn
µ

ú ≠ Precn,pn
µ̂

Æ 4‘3n

(1 ≠ ‘)2L‡2

+ o(1).

Now, using (8) we get that,

Precn,pn
µ

ú Ø n

‡2

A

1 ≠ ‘2

L

B

.

Thus, we have that,

1 ≠
Precn,pn

µ̂

Precn,pn
µ

ú
Æ 4‘n

Precn,pn
µ

ú (1 ≠ ‘)2L‡2

+ o(1)

Æ 4‘3

(L ≠ ‘2)(1 ≠ ‘2) + o(1).

This yields the result. ⌅
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4.3. Dynamic Programming Decomposition

It is not di�cult to see that (P3Õ) is a terminal cost dynamic program with state (”
k≠1

, �
k≠1

) œ Rp

at each time k. The pair (”
k

, �
k

) can be interpreted as the post-decision state of the dynamic
decision problem immediately after the kth allocation. In other words, given the past arrival
sequence and actions, (”

k

, �
k

) summarizes the the impact of this ‘past’ on the future objective.
This is formally stated in the following proposition:

Proposition 2. Suppose that Assumption 3 holds. For each 1 Æ k Æ n, define the function Q
k

: R◊
Rp≠1 æ R by the Bellman equation

Q
k

(”
k

, �
k

) ,

Y
__]

__[

”2

n

+ Î�
n

Î2

�

≠1 , if k = n,

E
C

min
uœ{±1}

Q
k+1

(”
k

+ u, �
k

+ uZ
k+1,2:p

)
D

, if 1 Æ k < n.
(9)

Then,

1. At each time k, the optimal continuation cost for the dynamic program (P3Õ) is given by
Q

k

(”
k

, �
k

). In other words, this is the expected terminal cost, given then covariates observed
and the allocations made up to and including time k, assuming optimal decisions are made
at all future times.

2. Suppose the allocation xú
k

at each time k is made according to

xú
k

œ argmin
uœ{±1}

Q
k

(”
k≠1

+ u, �
k≠1

+ uZ
k,2:p

) .

Then, the sequence of allocations xú is optimal for the online experiment design problem (P3Õ).

Proposition 2, whose proof is presented in Section E of the appendix, suggests a standard
dynamic programming line of attack for the surrogate problem (P3Õ): optimal continuation cost
functions {Q

k

}
1ÆkÆn

can be computed via backward induction, and these can then be applied
to determine an optimal policy. However, the dimension of this dynamic program is given by
the number of covariates p. In general, the computational e�ort required by this approach will be
exponential in p — this is the so-called curse of dimensionality. Thus, outside of very small numbers
of covariates, say, p Æ 3, the standard dynamic programming approach is intractable. However,
as we will now see, that the surrogate problem surprisingly admits an alternative, low dimensional
dynamic programming representation.

4.4. State Space Collapse

Proposition 2 yields a dynamic programming approach for the surrogate problem (P3Õ) that is
intractable for all but very small values of p. What is remarkable, however, is that if the covariate
data is assumed to have an elliptical distribution, then (P3Õ) can be solved via a tractable two-
dimensional dynamic program. We first present the technical definition.
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Definition 1. A random variable X taking values in Rm has an elliptical distribution if the charac-
teristic function Ï : Cm æ C has the form

Ï(t) , E
Ë
exp(it€X)

È
= exp(iµ€t)�(t€�t),

for all t œ Cm, given some µ œ Rm, � œ Rm◊m, and a characteristic function � : C æ C.

Elliptical distributions, studied extensively, for example, by Cambanis et al. (1981), are a gen-
eralization of the multivariate Gaussian distribution. The name derives from the fact that if an
elliptical distribution has a density, then the contours of the density are ellipsoids in Rm parame-
terized by µ and �. A useful standard result for us (see, e.g., Cambanis et al., 1981) is that these
distributions can be generated by independently generating the direction and the length of the
deviation (in Î · Î

�

≠1-norm) from the center µ:

Proposition 3. If X has an elliptical distribution with parameters µ, �, and �, then there exists a
non-negative random variable R such that,

X
d= µ + R�1/2U,

where U is distributed uniformly on the unit sphere {x œ Rp≠1 | ÎxÎ2

2

= 1} and U and R are
independent.

Thus, any elliptical distribution can be identified with a vector µ œ Rm, a positive semidefinite
matrix � œ Rm◊m, and random variable R taking values on the non-negative real line. We denote
such a distribution by Ell(µ, �, R). It can be shown that if R2 ≥ ‰2

m

is a chi-squared distribution
with m degrees of freedom, then Ell(µ, �, R) is a Gaussian distribution with mean µ and covariance
�. Well-known distributions such as the multivariate t-distribution, Cauchy distribution, and
logistic distribution also fall in the elliptical family.

We state the assumption needed for the state space collapse.

Assumption 4. Given (n, p) with 1 Æ p < n, assume that the covariate matrix Z œ Rn◊p has
independent and identically distributed rows. Further, assume that for each 1 Æ k Æ n, the kth
row Z

k

œ Rp satisfies Z
k,1

= 1, and that the vector Z
k,2:p

œ Rp≠1 of all components except the first
is distributed according to Ell(0, �, R), where it is assumed that the random variable R has finite
second moment, and further that, without loss of generality,6 E[R2] = p ≠ 1.

The following theorem shows how the p-dimensional dynamic program is reduced to a 2-
dimensional one with Assumption 4.

Theorem 5. Suppose that Assumption 4 holds. For each 1 Æ k Æ n, define the function q
k

: Z ◊
6Note that under our assumption, it is easy to verify that each covariate vector Zk,2:p is zero mean. Our choice

of normalization E[R2] = p ≠ 1 ensures that the covariance matrix of Zk,2:p is given by �. This second moment
requirement does exclude heavy-tailed elliptical distributions such as the Cauchy distribution. However, it is necessary
so that our performance criteria (expected precision) is finite.
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R
+

æ R according to

q
k

(m, ⁄) ,

Y
__]

__[

m2 + ⁄, if k = n,

E
C

min
uœ{±1}

q
k+1

1
m + u, ⁄ + 2uRU

1

Ô
⁄ + R2

2D

, if 1 Æ k < n.
(10)

Here, when k < n, the expectation is taken over independent random variables U and R that are
the random variables in the stochastic decomposition of Z

1,2:p

from Assumption 4. Then,

1. At each time k, the optimal continuation cost for the dynamic program (P3Õ) is given by

Q
k

(”
k

, �
k

) = q
k

1
”

k

, Î�
k

Î2

�

≠1

2
.

In other words, this is the expected terminal cost, given then covariates observed and the
allocations made up to and including time k, assuming optimal decisions are made at all
future times.

2. Suppose the allocation xú
k

at each time k is made according to

xú
k

œ argmin
uœ{±1}

q
k

1
”

k≠1

+ u, Î�
k≠1

+ uZ
k,2:p

Î2

�

≠1

2
. (11)

Then, the sequence of allocations xú is optimal for the online experiment design problem (P3Õ).

For the case of Gaussian distribution, the recursion (10) for solving the DP can be simplified
according to the following corollary:

Corollary 2. If Assumption 2 holds, then, for 1 Æ k Æ n, the functions qgauss

k

: Z ◊ R
+

æ R are
given by

qgauss

k

(m, ⁄) ,

Y
__]

__[

m2 + ⁄, if k = n,

E
C

min
uœ{±1}

qgauss

k+1

1
m + u,

!Ô
⁄ + u÷

"
2 + ›

2D

, if 1 Æ k < n.
(12)

Here, when k < n, the expectation is taken over independent random variables (÷, ›) œ R2, where
÷ ≥ N(0, 1) is a standard normal random variable, and › ≥ ‰2

p≠2

is chi-squared random variable
with p ≠ 2 degrees of freedom.7

We defer the proof of Theorem 5 and Corollary 2 until Section 4.5 in order to make several
remarks:

1. A key point is that, unlike the standard dynamic programming decomposition of Proposi-
tion 2, Theorem 5 provides a tractable way to solve the surrogate problem (P3Õ), independent
of the covariate dimension p. This is because the recursion (10) yields a two-dimensional

7If p = 2, we take › , 0.
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dynamic program. One of the state variables of this program, m, is discrete, taking values
on the integers from ≠n to n. Further, one can show that, with high probability, the second
state variable ⁄ is O(n2) thereby allowing us to discretize the state-space on a two-dimensional
mesh. The functions {q

k

} can be numerically evaluated on this grid via backward induction.
Note that since the expectation in (10) is over a two-dimensional random variable, it can be
computed via numerical integration. Further details of this procedure are given in Section 6.

2. Moreover, the functions {q
k

} do not directly depend on the matrix � at all and only indirectly
depend on time horizon n through the remaining time k ≠n. In fact, they only depend on the
covariate dimension p. For example, in the Gaussian case, this means that if these functions
are computed o�ine, they can subsequently be applied to all p-dimensional problem with a
Gaussian data distribution.

3. Finally, the algorithm assumes that the covariance matrix � is known. This is needed to
compute the Î · Î

�

≠1-norm of �
k

. In practice, � may not be known, and may need to be
estimated from data. However, observe that � depends only on the distribution of covariates
across the subject population, not on the outcome of experiments. In the applications we have
in mind, there is typically a wealth of information about this population known in advance
of the experimental trials. Hence, � can be estimated o�ine even if the number of covariates
p is large and the number of experimental subjects n is small.

For example, in an online advertising setting, and advertiser may want to compare two cre-
atives using A-B testing with a limited number of experimental subjects. In advance of any
experiments, the advertiser can use historical data from other trials or market surveys over
the same population of subjects to estimate �.

4.5. Proof of Theorem 5

In essence, the proof of Theorem 5 relies on the symmetry of the elliptical distribution for each co-
variate vector Z

k,2:p

. In particular, for orthonormal matrix Q œ Rp≠1◊p≠1, �≠1/2Z
k,2:p

has the same
distribution as Q�≠1/2Z

k,2:p

. As a result of this spherical symmetry, under any non-anticipating
policy, the distribution of the Mahalanobis distance Î�

k+1

Î
�

≠1 at time k + 1 is invariant across all
�

k

of a fixed Mahalanobis distance Î�
k

Î
�

≠1 at time k. Thus, as opposed to having to maintain
the p-dimensional state variable (”

k

, �
k

), one merely needs to maintain the two-dimensional state
variable (”

k

, Î�
k

Î
�

≠1).
To make this argument formal, we first define an inner product È·, ·Í

�

≠1 on Rp≠1 by

È�, �ÕÍ
�

≠1 , �€�≠1�Õ,

for �, �Õ œ Rp≠1. Using the symmetry of elliptical distribution, we can establish that:

Lemma 1. Suppose � œ Rp≠1 is a fixed p ≠ 1-dimensional vector and X ≥ Ell(0, �, R) is an
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elliptically distributed p ≠ 1-dimensional random vector. Then,

(ÈX, XÍ
�

≠1 , ÈX, �Í
�

≠1) d=
1
R2, RÎ�Î

�

≠1U
1

2
.

In particular, when X ≥ N(0, �) has a Gaussian distribution, then,

(ÈX, XÍ
�

≠1 , ÈX, �Í
�

≠1) d=
1
’€’, Î�Î

�

≠1’
1

2
,

for an independent and normally distributed p ≠ 1-dimensional random vector ’ ≥ N(0, I).

Proof. Since X follows the elliptical distribution,

X
d= R�1/2U.

Thus,
ÈX, XÍ

�

≠1
d= R2U€�1/2�≠1�1/2U = R2.

Also,
ÈX, �Í

�

≠1
d= R�€�≠1/2U.

But, by the symmetry of the distribution of U , for any h œ Rp≠1, h€U is has the same distri-
bution as ÎhÎ

2

U
1

. Due to independence of U and R, (ÈX, XÍ
�

≠1 , ÈX, �Í
�

≠1) is distributed as
(R2, RÎ�Î

�

≠1U
1

).
To prove the last statement, note that for the Gaussian case (R, U) ≥ (Î’Î

2

, ’/Î’Î
2

), if ’ ≥
N(0, I). Thus,

(R2, RÎ�Î
�

≠1U
1

) =
3

Î’Î2

2

, Î’Î
2

Î�Î
�

≠1e€
1

’

Î’Î
2

4
= (’€’, Î�Î

�

≠1’
1

).

⌅

Now we are ready to prove the theorem.

Proof of Theorem 5. We will prove, by backward induction over 1 Æ k Æ n, that

Q
k

(”
k

, �
k

) = q
k

1
”

k

, Î�
k

Î2

�

≠1

2
(13)

holds for all ”
k

œ Z, �
k

œ Rp≠1. The result will then follow from Proposition 2.
Comparing (9) and (10), (13) clearly holds for k = n.
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Now, assume that (13) holds for k + 1. Then, from (9),

Q
k

(”
k

, �
k

) = E
C

min
uœ{±1}

q
k+1

1
”

k

+ u, Î�
k

+ uZ
k+1,2:p

Î2

�

≠1

2D

= E
C

min
uœ{±1}

q
k+1

1
”

k

+ u, Î�
k

Î2

�

≠1 + ÎZ
k+1,2:p

Î2

�

≠1 + 2uÈZ
k+1,2:p

, �
k+1

Í
�

≠1

2D

= E
C

min
uœ{±1}

q
k+1

1
”

k

+ u, Î�
k

Î2

�

≠1 + R2 + 2uRe€
1

UÎ�Î
�

≠1

2D

, q
k

1
”

k

, Î�
k

Î2

�

≠1

2
.

(14)

The third equality follows from Lemma 1. ⌅

Finally, we prove Corollary 2.

Proof of Corollary 2. Following the proof of Theorem 5, we will simplify the expression for (14).
In particular, using the final part of Lemma 1,

Q
k

(”
k

, �
k

) = E
C

min
uœ{±1}

qgauss

k+1

1
”

k

+ u, Î�
k

+ uZ
k+1,2:p

Î2

�

≠1

2D

= E
C

min
uœ{±1}

qgauss

k+1

1
”

k

+ u, Î�
k

Î2

�

≠1 + R2 + 2uRe€
1

UÎ�Î
�

≠1

2D

= E
C

min
uœ{±1}

qgauss

k+1

1
”

k

+ u, Î�
k

Î2

�

≠1 + ’€’ + 2u’
1

Î�Î
�

≠1

2D

= E
C

min
uœ{±1}

qgauss

k+1

1
”

k

+ u, Î�
k

Î2

�

≠1 + › + ÷2 + 2u÷Î�Î
�

≠1

2D

= E
C

min
uœ{±1}

qgauss

k+1

1
”

k

+ u, (Î�
k

Î
�

≠1 + u÷)2 + ›
2D

.

Here, › ≥ ‰2

p≠2

if p > 2 and › , 0 if p = 2, and ÷ ≥ N(0, 1) are independent of each other. ⌅

5. Variations of the Sequential Problem: A Dynamic Programming
Framework

The vanilla formulation of the sequential problem (P2) described in Section 2.2 solely optimizes
statistical e�ciency. In reality, a complete framework must allow the designer to model a number of
additional constraints relevant to practical implementation, including budgets on allocations to the
treatment arm; controlling selection bias in addition to maximizing e�ciency; optimally stopping
an experiment if e�ciency objectives are met; and so forth. We will establish that the solution
approach described in Section 4 applies to a substantially more general class of problem than the
vanilla problem (P2).

To setup this dynamic programming framework, we introduce a few new concepts:
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• We will think of the allocation at time 1 Æ k Æ n as a bias v
k

œ [0, 1]. Our optimization
algorithm will yield the optimal bias at any given point in time, and then we pick an allocation
by flipping a coin with this bias, i.e., setting

x
k

=

Y
]

[
+1 with probability v

k

,

≠1 with probability 1 ≠ v
k

.
(15)

This is the same decision space as in a biased coin design.

• We are given convex stage wise costs, c : [0, 1] æ R, that are a function of bias. This can
capture for instance, the ‘cost’ of a sample unit; the extent of ‘non-randomness’ in a given
choice of bias, etc.

• The set of permitted bias v
k

at any stage 1 Æ k Æ n can be constrained to an arbitrary convex
set that is itself a function of the state at that time, V

k

!
”

k≠1

, Î�
k≠1

Î2

�

≠1
"

µ [0, 1].

• Instead of a fixed time horizon n, we allow the experiment to be stopped early according to a
stopping time 1 Æ · Æ n. As we discuss below this allows us to model optimal early stopping
based, for instance, on estimating the treatment e�ect with a desired precision.

Given these concepts, and an arbitrary parameter “ Ø 0, consider the following generalization of
the problem (P3Õ):

(P3ÕÕ) , minimize E
C

”2

·

+ Î�
·

Î2

�

≠1 + “
·ÿ

k=1

c(v
k

)
D

subject to v
k

œ V
k

!
”

k≠1

, Î�
k≠1

Î2

�

≠1
"

, ’ 1 Æ k Æ n,

v
k

is F
k

-measurable, ’ 1 Æ k Æ n.

Following the same arguments as in Section 4.4, (P3ÕÕ) can be solved according to optimal contin-
uation costs given by the two-dimensional Bellman recursion8

q
k

(m, ⁄) ,

Y
___________]

___________[

m2 + ⁄, if k = · ,

E
C

min
vœVk+1(m,⁄)

“c(v)

+vq
k+1

1
m + 1, ⁄ + 2RU

1

Ô
⁄ + R2

2

+(1 ≠ v)q
k+1

1
m ≠ 1, ⁄ ≠ 2RU

1

Ô
⁄ + R2

2D

,

if 1 Æ k < · ,
(16)

for each time k. Given the optimal continuation costs, an optimal decision v
k

at each time k can
8In order for the decomposition (16) to apply, an additional technical assumption is needed on the stopping time

· : we assume that, for each 1 Æ k < · , the distribution of the random variable corresponding the to future stopped
payo� ”2

· + Î�· Î2
�≠1 is conditionally independent of the history given the current state (”k, �k).
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be computed according to

vú
k

œ argmin
vœVk

!
”k≠1,Î�k≠1Î2

�≠1
" “c(v)

+ vq
k

1
”

k≠1

+ 1, Î�
k≠1

+ Z
k,2:p

Î2

�

≠1

2

+ (1 ≠ v)q
k

1
”

k≠1

≠ 1, Î�
k≠1

≠ Z
k,2:p

Î2

�

≠1

2
,

(17)

In the following sections, we illustrate how (P3ÕÕ) addresses several practical variations of the
sequential allocation problem.

5.1. Selection Bias

An important consideration that has emerged in the literature on A-B testing is managing so-called
‘selection bias’. Following Blackwell and Hodges (1957), one commonly defines the selection bias of
an allocation over n time steps as 2

n

q
n

k=1

|v
k

≠ 1/2|. Notice that perfect randomization has zero
selection bias, whereas a fully deterministic procedure (where v

k

is either 0 or 1) has the highest
bias possible, one.

It is frequently important to balance this bias against e�ciency (or, equivalently, loss). In
particular, we want a Pareto optimal solution across the two criteria. Atkinson (2014) compares a
multitude of state-of-the-art biased coin design (BCD) procedures and calls a procedure ‘admissible’
if it is not Pareto dominated by some other procedure. He finds that none of the heuristics he
examines can be ruled out implying that none of these heuristics are Pareto optimal. But by
varying “ Ø 0 in (P3ÕÕ), we can generate a Pareto optimal solution at any point on the trade-o�
curve. Specifically, to incorporate selection bias into our framework, we simply define

c(v) , |v ≠ 1/2|, · , n, V
k

, [0, 1]. (18)

Our approach can consequently produce any design on the Pareto frontier, and thus Pareto domi-
nate state-of-the-art BCD designs. We will see this numerically in Section 6.

Notice that the optimal policy equation (17) in the setting of (18) is a linear program. Direct
examination of this program yields an interesting insight: at every time k, the optimal action for
(P3ÕÕ) is restricted to v

k

œ {0, 1/2, 1}. In other words, an optimal policy will only either take a
deterministic action or fully randomize. This is in contrast to the main BCD heuristics developed in
the literature (some of which we will describe shortly in Section 6.3), which tend to vary probabilities
over the entire interval [0, 1].

5.2. Allocation Budget

Assuming a test with a total sample size n samples, the designer may be happy to assign these
samples to the control arm (the ‘status quo’) but may want to limit exposure to the test. Formally,
we may want to have a budget B on the number of +1 allocations in the trial. As it turns out BCD
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does not naturally extend to this setting (Han et al., 2009; Kuznetsova and Tymofyeyev, 2012).
(P3ÕÕ) can trivially incorporate a budget constraint, we simply define

c(v) , 0, · , n, V
k

1
”

k≠1

, Î�
k≠1

Î2

�

≠1

2
,

Y
]

[
[0, 1] if k + ”

k≠1

< 2B,

{0} otherwise.

5.3. Endogenous Stopping

Consider the (not uncommon) scenario where there is an economic cost associated with every
incremental sampling unit in a sequential trial, and all we care about is estimating the treatment
e�ect up to a desired level of precision; see Johari et al. (2015) for a broader discussion of related
problems. In such a scenario, we may opportunistically want to stop early so that the sample size
is in fact picked endogenously. For concreteness, let us suppose that the unit cost per sample is a
constant r. Assume further that it su�ces to estimate the treatment e�ect with precision Ÿ, unless
the trial has run up to a sample size of n in which case we must stop. One can think of n here as
an upper bound on sample size imposed by the trial designer. The objective is simply to minimize
the expected cost of the trial. This problem is easily modeled in our framework. Specifically, (P3ÕÕ)
can capture this problem by defining

c(v) , r, · , min
;

k Ø 1 : k ≠ 1
k

1
”2

k

+ Î�
k

Î2

�

≠1

2
Ø Ÿ‡2

<
· n, V

k

, [0, 1].

6. Experiments

This section focuses on numerical experiments with data. We will attempt to highlight the relative
merits of our approach vis-à-vis simple randomization, as well as biased coin designs (BCDs).
As discussed in the literature review, BCDs are an approach to minimizing loss (or equivalently,
maximizing e�ciency) by dynamically adjusting for covariate imbalances.

Our goal will be to show that for a given level of selection bias, our approach provides an
improvement in e�ciency (or a reduction in loss) over competing BCDs. Equivalently, our approach
can achieve a given level of e�ciency with a smaller level of selection bias. We will study these
relative merits for varying values of sample size n, and the number of covariates p. Finally, while our
analysis in Section 4 required the covariates to follow an elliptical distribution, such a requirement
may not hold in real applications. As such we conduct experiments using click log data from Yahoo!
wherein the covariates are categorical; we show that our approach enjoys similar relative merits in
this setting.

6.1. BCDs, Loss, and Selection Bias

Let v
k

œ [0, 1] denote the probability that the kth allocation is set to x
k

= +1 under a given
allocation rule A. Recall from Section 5.1 that a measure of selection bias under A is defined
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according to

BiasA , E
C

2
n

nÿ

k=1

|v
k

≠ 1/2|
D

œ [0, 1].

(Here, we have normalized the bias to be contained in the unit interval.) This measure captures the
extent of randomness (or, equivalently, how predictable any given allocation is) under A (Blackwell
and Hodges, 1957). Also, recall our definition of loss,

LossA , n ≠ E
Ë
x€P

Z

‹x
È

= E
5
x€Z

1
Z€Z

2≠1

Z€x

6
Ø 0.

The loss under A is interpreted as the e�ective number of samples on which information is lost due
to an imbalance in covariates. It is well known that any allocation rule engenders a trade-o� between
loss and selection bias, so that a comparison between rules ideally compares the entire trade-o�
curve attained by the two rules (Atkinson, 2002). We will do precisely this in the experiments that
follow.

Observe that the expressions for bias and loss do not depend on the experimental outcomes
{y

k

}. From an empirical perspective, this is helpful: we can assess any rule A, given only access
to the covariate distribution. The conclusions we draw on the relative merits of one approach with
respect to another hold across any linear model for the given covariate structure.

6.2. Data

We run our experiments on two di�erent data distributions for the covariates. Assumption 3 holds
in both cases. Thus, {Z

k

} are i.i.d. and Z
k,1

is assumed to be 1. We run our experiments with the
following sampling distributions for Z

2:p

:

Synthetic Gaussian Data. In our synthetic experiments, we assume that Z
2:p

follows multivariate
normal distribution. This is, of course, an elliptical distribution, so that Assumption 2 is satisfied.
For the covariance matrix �, we set �

ii

= 1.0 and �
ij

= 0.1 for any j ”= i.

Yahoo! User Data. To experiment on data from a more realistic setting, we use a dataset of
user click log data from the Yahoo! front page.9 The users here are visitors to ‘Featured Tab of the
Today Module’ on the Yahoo! front page. In the dataset, each user has 136 associated features,
such as age and gender. Each feature is binary, taking values in {0, 1}. Some of these features were
constant throughout the dataset, and these were discarded. Duplicate and co-linear features were
discarded as well. Features were selected at random until up to p = 40 features were collected.
Feature selection was repeated independently in each simulation trial.

Our algorithm requires the covariance matrix of the data as an input. For this purpose, we
estimate the covariance matrix from a portion of the dataset. This estimate is obtained by simply
taking a sample average across 1 million data points kept aside from the rest of the experiments.

9This dataset is obtained from the Yahoo! Labs repository of datasets available for academic research, and can be
downloaded as “R6B — Yahoo! Front Page Today Module User Click Log Dataset, version 2.0” at http://webscope.

sandbox.yahoo.com/catalog.php?datatype=r.
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Finally, for evaluation purposes, we require a generative model for the data. To this end, from
a set of 1 million data points we sample individual data points, with replacement. In other words,
as the sampling distribution we use the empirical distribution of the 1 million data points used for
testing. Such a sampling procedure is intended to mimic the arrival of users on the Yahoo! front
page.

6.3. Algorithms

Dynamic Programming (Our Approach). The problem at hand is addressed by the dynamic
programming formulation described in Sections 5.1. As such, we are required to compute the
2-dimensional value functions given by {q

k

}
1ÆkÆn

. These functions are computed o�ine by back-
ward induction following (16). Here, we provide the computational details for this operation. In
particular, given q

k+1

(·, ·), we compute q
k

(·, ·) as follows:

1. Discretization: The first state variable m is discrete and can take values from ≠n to n. We
discretize values for the second state variable ⁄ on a geometric mesh taking values ⁄i

0

for
⁄

0

, 1.5 and 0 Æ i Æ 26. The maximum value value of ⁄ was chosen so that Î�
k

Î2

�

≠1 has a
low probability of exceeding it.

2. Sampling: For each discretized pair (m, ⁄) we estimate q
k

(m, ⁄) via Monte Carlo simulation.
In particular, N = 10,000 pairs10 (›, ÷) œ R2 are sampled from the appropriate distributions
and q

k

(m, ⁄) is estimated according to (16) using the corresponding empirical measure. We
use the same sample set of (›, ÷) for all (m, ⁄) at which this is evaluated.

3. Interpolation: Given an (m, ⁄) such that ⁄ is not a discretized mesh point, we estimate
q

k+1

(m, ⁄) in the Bellman recursion (16) by linear interpolation between the closest points in
the discretized mesh.

Biased Coin Designs. In addition to our own dynamic programming algorithm, we will consider
several other rules proposed in the literature. These include: Rule ABCD (Baldi Antognini and
Zagoraiou, 2011), which following Atkinson (2014), we refer to as Rule J; Smith’s rule (Rule S)
(Smith, 1984b,a); Atkinson’s rule (Rule A) (Atkinson, 1982), and the Bayesian procedure of Ball
et al. (1993) (Rule B). Rules J, S, and B are all parameterized by a scalar parameter, which we
denote fl, that may take values in (0, Œ). Rule A is a special case of Rule S taking fl = 1. As fl æ 0,
these rules become equivalent to randomization. On the other hand, as fl æ Œ, these rules become
entirely deterministic in nature. As such, for values of fl close to zero, one expects low selection
bias whereas as fl æ Œ one expects to see a reduction in loss at the expense of selection bias; a

10In all examples, our algorithm assumes that the covariate data is generated from a multivariate normal, even
when this was not true (Yahoo! dataset). In this case, when Z2:p ≥ N(I, �) is multivariate normal, ⁄+2uRU1

Ô
⁄+R2

has the same distribution as (
Ô

⁄ + u÷
"2 + › where ÷ is a standard normal and › is a chi-squared random variable

with p ≠ 2 degrees of freedom. See also Corollary 2.
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deterministic rule has the largest possible selection bias of 1. In order to precisely specify each of
these rules, define

d
k

(u
k+1

, Z
k+1,2:p

) ,
1
1 ≠ u

k+1

”
k

/k ≠ u
k+1

Z€
k+1,2:p

�≠1�
k

/k
2

2

where u
k+1

œ {±1}, Z
k+1,2:p

œ Rp≠1, and ”
k

and �
k

have the usual definitions (4). For background
on the function d

k

(·, ·), see Atkinson (1982); this quantity arises naturally in the sequential design
of D

A

-optimal experiments. The rules described above then take the following form:

1. Rules S/A: Assign x
k+1

= +1 with probability

v
k+1

, d
k

(+1, Z
k+1,2:p

)fl

d
k

(+1, Z
k+1,2:p

)fl + d
k

(≠1, Z
k+1,2:p

)fl

.

The parameter fl can take values in (0, Œ). Rule A corresponds to the special case where
fl = 1.

2. Rule B: Assign x
k+1

= +1 with probability

v
k+1

, (1 + d
k

(+1, Z
k+1,2:p

))fl

(1 + d
k

(+1, Z
k+1,2:p

))fl + (1 + d
k

(≠1, Z
k+1,2:p

))fl

.

The parameter fl can again take values in (0, Œ). This rule is very similar to Rule S, but
permits a Bayesian interpretation (Ball et al., 1993).

3. Rule D: Assign x
k+1

= +1 deterministically if d
k

(+1, Z
k+1,2:p

) > d
k

(≠1, Z
k+1,2:p

), set x
k+1

=
≠1 otherwise. This rule is obtained in the limit as fl æ Œ for rules A, S, and B. Note that
this deterministic rule is equivalent to a myopic policy that seeks to optimize the objective of
(P3Õ) assuming that x

k+1

is the final allocation to be made, and ignoring the impact of this
allocation on future decision making.

4. Rule J: Define the ‘discrepancy’ after k allocations, D
k

(Z
k+1,2:p

) according to

D
k

(Z
k+1,2:p

) , 2 ≠ k (d
k

(+1, Z
k+1,2:p

) + d
k

(≠1, Z
k+1,2:p

))
d

k

(+1, Z
k+1,2:p

) ≠ d
k

(≠1, Z
k+1,2:p

) ,

assuming d
k

(+1, Z
k+1,2:p

) ”= d
k

(≠1, Z
k+1,2:p

). If D
k

(Z
k+1,2:p

) < 0, we assign x
k+1

= +1 with
probability

v
k+1

, |D
k

(Z
k+1,2:p

)|fl
1 + |D

k

(Z
k+1,2:p

)|fl .

If, on the other hand D
k

(Z
k+1,2:p

) > 0, we assign x
k+1

= +1 with probability

v
k+1

, 1
1 + |D

k

(Z
k+1,2:p

)|fl .

Finally, if D
k

(Z
k+1,2:p

) = 0 or d
k

(+1, Z
k

) = d
k

(≠1, Z
k

), we simply randomize (v
k+1

= 1/2).
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The parameter fl can again take values in (0, Œ).

6.4. Results

Our goal is to compare the statistical e�ciency of our dynamic programming-based sequential
algorithm to the various competing BCDs discussed above while controlling for selection bias.
In order to do this, we run each BCD procedure for an increasing sequence of value of fl. The
smallest value used, fl = 0, is simply equivalent to randomized allocation. The largest value of
fl we considered for each scheme was chosen so that the rule was e�ectively deterministic. We
implemented our sequential DPalgorithm for an increasing sequence of values of “, tracing out a
similar trade-o� curve.

Results are reported in Figures 1, 2, and 3. Of these, Figures 1 and 2 show results on synthetic
Gaussian data while Figure 3 shows results on the Yahoo! dataset. Each data point in these figures
is the average of 10,000 independent Monte Carlo trials with shared randomness across all BCD
rules and our own rule; and di�erent data points were generated for each rule by varying their
respective configurations of fl and “.

These figures reveal that:

1. For any target level of selection bias, our dynamic programming algorithm has the smallest loss
among all of the alternatives implemented. In this way, the DP approach Pareto dominates
all alternatives. The relative improvement in loss can be non-trivial: the loss incurred under
our approach can be up to five times smaller for moderate budgets on selection bias. Put
a di�erent way the e�ective number of samples ‘lost’ due to covariate imbalance can be
substantially smaller for a given budget on selection bias.

2. The relative improvement alluded to above is particularly pronounced for smaller values of
p/n. Our intuition here is as follows: keeping n fixed one expects to require fewer non-
random allocations for small p. As such, the importance of strategizing on when to employ a
non-random allocation has greater impact in such a setting.

3. The relative merits of our sequential approach appear more pronounced in the setting where
n is larger.

4. Finally, observe that Figure 3 shows results on the Yahoo! dataset, and that the covariates in
this experiment are in fact categorical. Despite this we see that our approach exhibits similar
improvements relative to the competing BCD schemes.

7. Conclusion

We conclude with a summary of what we have accomplished and what we view as key directions
for further research. At a conceptual level, this paper illustrates the power of the ‘optimization’
viewpoint in what are inherently statistical problems: we have presented a provably near optimal
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Figure 1: Bias-loss trade-o� on synthetic Gaussian data for n = 100 and varying values of p.
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Figure 2: Bias-loss trade-o� on synthetic Gaussian data for n = 1000 and varying values of p.
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Figure 3: Bias-loss trade-o� on the Yahoo! dataset for n = 100 and varying values of p.
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solution to a problem for which a plethora of heuristics were available. In addition to establishing the
appropriate approach to this problem, the algorithms we have developed are eminently practical and
easy to implement — a property that is crucial for the sorts of applications that motivated this work.
On a more pragmatic note, we have quantified the value of these sorts of optimization approaches
establishing precise estimates of the benefits optimization approaches provide over straightforward
randomization. These estimates illustrate that in so-called high dimensional setting — i.e., in
settings where the number of covariates is large, such approaches can provide order of magnitude
improvements in sampling e�ciency.

A number of directions remain for future research. We highlight several here in parting:

1. Normality: To what extent can our assumption on the normality of covariates be relaxed?
Can we develop approximation guarantees for the situation when covariates are not normally
distributed?

2. Non-linear models: Can we allow for a nonlinear dependence on covariates? One direction
to accomplish this is perhaps a reliance of some manner of non-parametric ‘kernel’ approach.
The good news here is that the value of optimization is likely to be even higher in such an
infinite-dimensional setting.

3. More than two alternatives: The present paper considers only the two alternative setting,
an important direction for future work would be to consider settings where there is a larger
number of choices.
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A. Derivation of the Optimization Problem

Here derive the expression for precision used in Section 2. Denote the matrix X , [x Z] and
— , [◊ Ÿ€]€. Thus our model is

y = X— + ‘.

The least squares estimate —̂ of — is given by

—̂ = (X€X)≠1X€y = (X€X)≠1X€(X— + ‘) = — + (X€X)≠1X€‘.

Then,
Var(—̂) = (X€X)≠1X€Var(‘‘€)X(X€X)≠1 = ‡2(X€X)≠1.

Thus variance of ◊̂ = —̂
1

is

Var(◊̂) = ‡2e€
1

(X€X)≠1e
1

= ‡2e€
1

C
x€x x€Z

Z€x Z€Z

D≠1

e
1

= ‡2

x€(I ≠ Z(Z€Z)≠1Z€)x.

Here, e
1

, (1, 0, . . .) is the first coordinate vector, and for the last equality we apply the block
matrix inversion formula.

Proof of Proposition 1. By the Cramér-Rao bound we have that,

Cov
AC

◊̂

Ÿ̂

DB

≤ I(◊, Ÿ)≠1,

where I(◊, Ÿ) is the Fisher information matrix. Under the Gaussian assumption for ‘ it is easy to
see that,

I(◊, Ÿ)≠1 = ‡2

C
x€x x€Z

Z€x Z€Z

D≠1

.

If e
1

is the unit vector along the first coordinate then,

Var(◊̂) Ø e€
1

I(◊, Ÿ)≠1e
1

= ‡2

x€(I ≠ Z(Z€Z)≠1Z€)x.
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Thus,

Prec(◊̂) Æ
x€

1
I ≠ Z(Z€Z)≠1Z€

2
x

‡2

= n ≠ x€Z(Z€Z)≠1Z€x

‡2

Æ n

‡2

.

The inequality follows since Z(Z€Z)≠1Z€ is positive semidefinite.
The last statement is consequence of the fact that x€

1
I ≠ Z(Z€Z)≠1Z€

2
x/‡2 is the precision

of the optimal least squares estimator. ⌅

B. Performance of the Randomized Algorithm

We begin with a lemma that relies on some linear algebra arguments.

Lemma 2. Consider a vector a œ Rp≠1 and an invertible Q œ Rp≠1◊p≠1 such that the matrix,
C
1 a€

a Q

D

,

is invertible. Then,
Ë
1 a€

È C
1 a€

a Q

D≠1

C
1
a

D

= 1.

Proof. By the block matrix inversion formula,

C
1 a€

a Q

D≠1

=

S

WWU

fl≠1 ≠fl≠1a€Q≠1

≠fl≠1Q≠1a (Q ≠ aa€)≠1

T

XXV =
C

fl≠1 ≠fl≠1a€Q≠1

≠fl≠1Q≠1a Q≠1 + fl≠1Q≠1aa€Q≠1

D

,

where fl , 1 ≠ a€Q≠1a. Thus,

Ë
1 a€

È C
1 a€

a Q

D≠1

C
1
a

D

= fl≠1 ≠ 2fl≠1a€Q≠1a + a€Q≠1a + fl≠1

1
a€Q≠1a

2
2

= fl≠1 ≠ 2fl≠1(1 ≠ fl) + 1 ≠ fl + fl≠1 (1 ≠ fl)2

= 1 ≠ 2(1 ≠ fl) + (1 ≠ fl)fl + 1 + fl2 ≠ 2fl

fl
= 1.

⌅

Now we turn our attention to quantifying the performance of the randomized design.

Lemma 3. Supposed the allocation x is chosen at random from the set {±1}n independently of the
covariate values Z, according to some distribution so that, for all 1 Æ i < j Æ n,

E
x

[x
i

x
j

] = –,
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for some constant –. Then,
E

x

Ë
Loss

1
◊̂

x

2È
= (1 ≠ –)p + –n,

where the expectation is taken over the distribution of x.

Proof. Define
Z , 1

n

nÿ

k=1

Z
k

, �
n

, Z€Z/n,

so that (using Lemma 2)
Z€Z = n�

n

, Z
€�≠1

n

Z = 1.

Then,

E
x

Ë
Loss

1
◊̂

x

2È
= E

x

Ë
x€Z(Z€Z)≠1Zx

È

= E
x

S

U
A

nÿ

k=1

x
k

Z
k

B€

(n�
n

)≠1

A
nÿ

k=1

x
k

Z
k

BT

V

= 1
n

nÿ

k=1

nÿ

¸=1

E
x

[x
k

x
¸

] Z€
k

�≠1

n

Z
¸

= 1
n

Q

a
nÿ

k=1

Z€
k

�≠1

n

Z
k

+ –
nÿ

k=1

ÿ

¸ ”=k

Z€
k

�≠1

n

Z
¸

R

b

= 1 ≠ –

n

nÿ

k=1

Z€
k

�≠1

n

Z
k

+ –

n

A
nÿ

k=1

Z
k

B€

�≠1

n

A
nÿ

k=1

Z
k

B

= 1 ≠ –

n

nÿ

k=1

tr
1
�≠1

n

Z
k

Z€
k

2
+ –nZ

€�≠1

n

Z

= (1 ≠ –) tr
A

�≠1

n

1
n

nÿ

k=1

Z
k

Z€
k

B

+ –n

= (1 ≠ –)p + –n.

⌅

Proof of Theorem 2. We can directly apply Lemma 3, with the observation that, under the pro-
posed randomized allocation, if 1 Æ i < j Æ n,

– , E
x

[x
i

x
j

] = n/2 ≠ 1
n ≠ 1 ≠ n/2

n ≠ 1 = ≠ 1
n ≠ 1 .

⌅

C. Asymptotic Performance of the Optimal Design

In this section, we will prove Theorem 3. The theorem relies on Assumption 2 with � = fl2I. In
particular, we assume that Z

i,1

= 1 and Z
i,j

≥ N(0, fl2) for j > 1. Further it is assumed that all
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entries of Z are independent.
We will place a sequence of problems of dimensions 1 Æ p < n on the same probability space

(�, F , P). To make the dependence on the dimension clear, we will denote the data matrix by
Zn,p. In this sequence of data matrices, Zn,p is formed by adding a column to Zn,p. The additional
column has the distribution N(0, fl2I

n

). Let {Zn,n≠1}
n

be an independent sequence. Note that the
sequence of matrices {Zn,pn}

n

defined using this generative model satisfy the assumptions laid out
in Theorem 3.

Before we proceed let us set up some notation. Let Gr(k,Rn) be the Grassmannian of dimension
k in the vector space Rn. In other words, it is the set of all subspaces of dimension k in Rn.
Let Sn,p œ

t
n

k=n≠p

Gr(k,Rn) be the null space of Zn,p

€. In other words, it the the orthogonal
complement of the span of Zn,p. In the following Lemma we show that the Zn,p is full rank.

Lemma 4. The rank of Zn,p is p with probability 1. Thus, Sn,p œ Gr(n ≠ p,Rn) almost surely.

Proof. We can prove this inductively. Since Zn,1 = 1, the statement is trivially true for p = 1.
Assume that Zn,p≠1 is rank p≠1. It implies that the span of Zn,p≠1 is a p≠1 dimensional subspace,
let us call it span(Zn,p≠1). The pth column of Zn,p is non-degenerate Gaussian vector independent
of span(Zn,p≠1), call it Z ,p. P(Z ,p œ span(Zn,p≠1)) = 0. Thus, almost surely, Zn,p is of rank p. ⌅

From the preceding lemma we can conclude that Sn,n≠1 is a 1 dimensional subspace, with
probability 1. Now we derive an expression for the precision of the optimal estimator for p = n ≠ 1
in terms of Sn,n≠1. Let A = {Ê œ � : Sn≠1(Ê) œ Gr(1,Rn)}. From now on, we assume � = A and
all subsequent statements hold with probability one.

Consider a function h : Gr(1,Rn) æ R
+

, such that h(S) , ÎyÎ
1

/ÎyÎ
2

for some non-zero y œ S.
It is trivial to check that this value is unique for any non-zero y in S œ Gr(1,Rn).

Lemma 5. Then precision of the optimal estimator for p = n ≠ 1 is given by ‡≠2h(Sn,n≠1)2, almost
surely.

Proof. We know that the optimal precision for n = p ≠ 1 is given by ‡≠2xú€P
Z

n,n≠1‹xú, where xú

is the assignment that maximizes (P1). Now note that, P
Z

n,n≠1‹ can be given by yy€/ÎyÎ2

2

, for
any non-zero y œ Sn,n≠1. Thus the optimization problem (P1) is,

maximize x€ yy€

ÎyÎ2

2

x = (x€y)2

ÎyÎ2

2

subject to x œ {±1}n.

But the optimal x is such that x
i

= sgn(yn

i

). With this assignment, the optimal value is ÎyÎ2

1

/ÎyÎ2

2

.
Thus the optimal precision for a given Ê is given by ÎyÎ2

1

/‡2ÎyÎ2

2

= h(Sn,n≠1)2/‡2. Thus,

Precn,n≠1

ú = h(Sn,n≠1)2

‡2

,

almost surely. ⌅
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Using the fact that we have all the Zn,ps on the same probability space, it is easy to show that
the precision monotonically decreases as p grows, for a fixed n.

Lemma 6. For a fixed n, Precn,p

ú is a decreasing sequence in p. Thus,

inf
1Æp<n

Precn,p

ú
n

= Precn,n≠1

ú
n

Proof. We will prove that Precn,p

ú (Ê) is a decreasing sequence in p for a fixed n. By construction,
Sn,p(Ê) µ Sn,p≠1(Ê). Note that objective value of (P1) can be written as x€PSn,px, where PSn,p is
the projection matrix for the subspace Sn,p. For each x œ {±1}n in the constraint set this value
will monotonically decrease in p. Thus the optimal value will also decrease with p. This proves
that Precn,p

ú is monotonically decreasing in p. ⌅

In the light of the preceding lemma we have that,

inf
1Æp<n

Precn,p

ú
n

= Precn,n≠1

ú
n

= h(Sn,n≠1)2

n‡2

. (19)

In the last step we find the distribution of Sn,n≠1. For this purpose let us setup some more notation.
Let Q1 µ Rn◊n be the group of orthonormal matrices that leaves 1 invariant. In other words, it is
a collection of matrices Q œ Rn◊n that satisfy,

QQ€ = Q€Q = I,

and
Q1 = Q€

1 = 1.

For any S œ Gr(k,Rn), let QS = {Qx | x œ S}. Let us also define G1 = {g œ Gr(1,Rn) | 1

€P
g

1 =
0}.

Lemma 7. QSn,n≠1 is distributed as Sn,n≠1, for any Q œ Q1. There is a unique distribution
on G1 that has this invariance property. Further it has the same distribution as span(÷n ≠ 1÷̄n)
with ÷n ≥ N(0, I

n

) and ÷̄n = n≠1

1

€÷n. Finally h(Sn,n≠1) has the same distribution as Î÷n ≠
1÷̄nÎ

1

/Î÷n ≠ 1÷̄nÎ
2

Proof. We first show that there is a unique probability distribution on G1, say µ, such that S has
the same distribution as QS for any Q œ Q1, if S is distributed as µ. For this purpose we use
Theorem 4.1 of James (1954). Q1 is a transitive compact topological group of transformations of
G1 to itself. Thus by the aforementioned theorem, there exists a unique measure that is invariant
under transformations by Q œ Q1.

Now we prove that span(÷n ≠ 1÷̄n) has the specified invariance property. First note that the
covariance matrix of ÷n ≠ 1÷̄n is of the form cI + d11

€ for some c, d œ R. Thus the covariance
matrix of Q(÷n ≠ 1

n

1

€÷n) is Q(cI + d11

€)Q€ = cI + d11

€. Since both of them are mean 0 and
the same covariance matrix, span(÷n ≠ 1÷̄n) and span(Q(÷n ≠ 1÷̄n)) have the same distribution.

43



By the uniqueness of this distribution µ, we have that span(÷n ≠ 1÷̄n) is indeed distributed as
Sn,n≠1. ⌅

The previous lemma explicitly gives the distribution of h(Sn,n≠1). Using this, we prove an
asymptotic property about h(Sn,n≠1)2/n.

Lemma 8.
h(Sn,n≠1)2

n
æ 1

8fi
,

in distribution.

Proof. From Lemma 7 we have that, h(Sn,n≠1)2 has the same distribution as Î÷

n≠1 ¯

÷

nÎ2
1

Î÷

n≠1 ¯

÷

nÎ2
2
, with

÷n ≥ N(0, I
n

). Further,

Î÷n ≠ 1÷̄nÎ2

2

n
= 1

n

nÿ

i=1

(÷n

i

≠ ÷̄n)2

= 1
n

nÿ

i=1

((÷n

i

)2 ≠ 2÷n

i

÷̄n + ÷̄n

2)

= 1
n

nÿ

i=1

(÷n

i

)2 ≠ 2
n

nÿ

i=1

÷n

i

÷̄n + (÷̄n)2

= 1
n

nÿ

i=1

(÷n

i

)2 ≠ (÷̄n)2

By strong law of large numbers we have that,

1
n

nÿ

i=1

(÷n

i

)2 æ 1, almost surely,

and,
(÷̄n)2 æ 0, almost surely.

Thus,
1Ô
n

Î÷n ≠ 1÷̄nÎ
2

æ 1, a.s. (20)

Now we look at 1

n

Î÷n ≠ 1÷̄nÎ
1

. By triangle inequality,

1
n

Î÷nÎ + 1
n

Î1÷̄nÎ
1

Ø 1
n

Î÷n ≠ 1÷̄nÎ
1

Ø 1
n

Î÷nÎ
1

≠ 1
n

Î1÷̄nÎ
1

Now by the strong law of large numbers,

1
n

Î1÷̄nÎ
1

= |÷̄n| æ 0, a.s.

Thus, 1

n

Î÷n ≠ 1÷̄nÎ
1

and 1

n

Î÷nÎ
1

must have the same limit (if it exists). Again by, strong law of
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large numbers that,
1
n

nÿ

i=1

|÷n

i

| æ E|›| = 1
2
Ô

2fi
,

where › is standard normal. Thus,

1
n

Î÷n ≠ 1÷̄nÎ
1

æ 1
2
Ô

2fi
. (21)

From (20) and (21) and using Slutsky’s lemma we have that,

Î÷n ≠ 1÷̄nÎ
1Ô

nÎ÷n ≠ 1÷̄nÎ
2

æ 1
2
Ô

2fi
, almost surely.

By continuity of x ‘æ x2,
Î÷n ≠ 1÷̄nÎ2

1

nÎ÷n ≠ 1÷̄nÎ2

2

æ 1
8fi

, almost surely. (22)

Finally by Equation (22) and the fact that h(Sn,n≠1)2 has the same distribution as Î÷

n≠1 ¯

÷

nÎ2
1

Î÷

n≠1 ¯

÷

nÎ2
2
,

h(Sn,n≠1)2

n
æ 1

8fi
,

in distribution. ⌅

Proof of Theorem 3. Using Lemmas 5 and 6, we have,

Precn,pn
ú

n
Ø Precn,n≠1

ú
n

= h(Sn≠1)2

n‡2

.

Finally using Lemma 8 we have,
h(Sn≠1)2

n‡2

æ 1
8fi‡2

,

in distribution. Thus for any ‘ > 0,

P
A-----

Precn,n≠1

ú
n

≠ 1
8fi‡2

----- > ‘

B

æ 0.

Therefore,

P
A

Precn,n≠1

ú
n

≠ 1
8fi‡2

< ≠‘

B

æ 0.

Finally,
P

3Precn,pn
ú

n
≠ 1

8fi‡2

< ≠‘

4
æ 0.

⌅
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D. Approximation Guarantee for the Surrogate Problem

We assume without loss that � = I and begin by establishing a corollary to a basic theorem from
the non-asymptotic analysis of random matrices. Let us denote by �

n

the matrix 1

n

Z€Z. Then we
have the following approximation result:

Lemma 9. Provided n Ø L

‘

2 max(p
n

, l log 2/“
n

), then with probability at least 1 ≠ “
n

, we have

Î�
n

≠ IÎ Æ ‘

where L and l are universal constants.

Proof. Let Z€
i

be a generic row of Z. We first observe that for any x satisfying ÎxÎ2

2

= 1, we have

E
1
x€Z

i

2
2

= 1

so that the rows of Z are isotropic. Moreover, the sub-Gaussian norm of x€Z
i

is bounded, uniformly
over all x of unit norm, by a universal constant (say, K). This fact follows from a calculation
identical to that in equation 5.6 of Vershynin (2012). Consequently, we may apply Theorem 5.39
(specifically see equation 5.23) in Vershynin (2012), so that we have that with probability at least
1 ≠ 2 exp(≠c

K

s2),

Î�
n

≠ IÎ Æ C
K

Ú
p

n

n
+ sÔ

n

where C
K

(, C) and c
K

(, c) depend only on K, and can thus be taken as universal constants.
Consequently, if n Ø max

1
4C

2
pn

‘

2 , 4 log 2/“n

c‘

2

2
, then we immediately have the result of the lemma by

taking s =
Ò

log 2/“n

c

, L = 4C2 and l = 1

C

2
c

. ⌅

Lemma 9 implies using Lemma 5.36 of Vershynin (2012) (or basic linear algebraic manipulations)
that

1 ≠ ‘ Æ ‡
min

3
ZÔ
n

4
Æ ‡

max

3
ZÔ
n

4
Æ 1 + ‘ (23)

with probability at least 1 ≠ “
n

. Here, ‡
max

and ‡
min

are, respectively, minimum and maximum
singular values. Now, let us denote by µ̂ the measure over the sequence x

k

induced by an optimal
solution for the control problem (P3Õ) and let µú denote the measure induced by an optimal policy
for our original dynamic optimization problem, (P3). We will demonstrate that an optimal solution
to (P3Õ) is a near optimal solution to (P3). Before doing so, we establish some convenient notation:
Denote

�̄
n

=
C

”
n

�
n

D

and recall
�

n

, 1
n

nÿ

k=1

Z
k,2:pnZ€

k,2:pn
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Proof of Theorem 4. Now, (23) is equivalently stated as:

1 ≠ ‘ Æ
Ò

⁄
min

(�
n

) Æ
Ò

⁄
max

(�
n

) Æ 1 + ‘,

with probability at least 1 ≠ “
n

. This, in turn, implies that,

1
1 + ‘

Æ
Ú

⁄
min

1
�≠1

n

2
Æ

Ú
⁄

max

1
�≠1

n

2
Æ 1

1 ≠ ‘
,

with probability at least 1 ≠ “
n

. By the Courant-Fisher theorem (see, e.g., Horn and Johnson,
2012) we consequently have that,

Î�̄Î2

2

(1 + ‘)2

Æ �̄€�≠1

n

�̄ Æ Î�̄Î2

2

(1 ≠ ‘)2

, ’ �̄ œ Rpn , (24)

with probability at least 1 ≠ “
n

.
Now note that

�̄€�≠1

n

�̄ = Î�̄Î2

�

≠1
n

Æ n2, (25)

for all feasible values of �̄ œ Rpn . This follows from the non-negativity of the objective of (P2),
which yields the inequality,

n ≠
Î�̄Î2

�

≠1
n

n
Ø 0.

Let A be the set of sample paths such that (24) holds. We have that,

E
µ̂

5...�̄
n

...
2

�

≠1
n

6
= E

µ̂

5...�̄
n

...
2

�

≠1
n

I
A

+
...�̄

n

...
2

�

≠1
n

I
A

c

6

Æ
E

µ̂

5...�̄
n

...
2

2

6

(1 ≠ ‘)2

+ n2E
µ̂

[I
A

c ]

Æ
E

µ̂

5...�̄
n

...
2

2

6

(1 ≠ ‘)2

+ “
n

n2

Æ
E

µ

ú

5...�̄
n

...
2

2

6

(1 ≠ ‘)2

+ “
n

n2

where the first inequality follows from the right hand side of (24) applied to each sample path in
A and (25) applied to sample paths in Ac. The final inequality follows from the optimality of µ̂ for
(P3Õ). We will now show that

E
µ

ú

5...�̄
n

...
2

2

6
Æ (1 + ‘)2E

µ

ú

5...�̄
n

...
2

�

≠1
n

6
+ n2p

n

“
n

+ O

3Ú
n

p
n

≠ 1

4

together with the inequality above, this will yield the theorem. To prove this inequality, we first
observe (as we did earlier) that on the set where (24) holds, i.e., the set A,

...�̄
n

...
2

2

Æ (1+‘)2

...�̄
n

...
2

�

≠1
n

.
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Thus,
E

µ

ú

5...�̄
n

...
2

2

6
Æ (1 + ‘)2E

µ

ú

5...�̄
n

...
2

�

≠1
n

6
+ E

µ

ú

5...�̄
n

...
2

2

I
A

c .

6

Now note that, ...�̄
n

...
2

2

= ”2

n

+ Î�
n

Î2

2

Æ n2 + Î�
n

Î2

2

.

The inequality follows since |”
n

| Æ n. Thus,

E
µ

ú

5...�̄
n

...
2

2

I
A

c

6
= n2“

n

+ E
µ

ú

Ë
Î�

n

Î2

2

I
A

c

È

Æ n2“
n

+ E
µ

ú

Ë
Î�

n

Î2

2

I{Î�nÎ2
2Ø–n(“n)}

È
.

where –
n

(“
n

) satisfies P
µ

ú

1
Î�

n

Î2 Ø –
n

(“
n

)
2

= “
n

. Applying Lemma 12 yields

E
µ

ú

Ë
Î�

n

Î2

2

1Î�nÎ2
2Ø–n(“n)

È
Æ n2(p

n

≠ 1)“
n

+ O

3Ú
n

p
n

≠ 1

4
.

which yields the result. ⌅

To complete our proof of the theorem above, we must provide an upper bound on the quantity

E
µ

ú

Ë
Î�

n

Î2

1Î�nÎ2Ø–n(“n)

È

where –
n

(“
n

) satisfies P
µ

ú

1
Î�

n

Î2 Ø –
n

(“
n

)
2

= “
n

. In other words –
n

(“
n

) is the “
n

percentile of
Î�

n

Î2. Let Z̄
n

be a Gamma(n(p
n

≠ 1)/2, 1) random variable, and let –̂
n

(“
n

) satisfy

P
1
Z̄

n

Ø –̂
n

(“
n

)
2

= fl.

We have

Lemma 10.
E

µ

ú

Ë
Î�

n

Î2

2

1Î�nÎ2
2Ø–n(“n)

È
Æ 2nE

Ë
Z̄

n

1

¯

ZnØ–̂n(“n)

È

Proof. Observe that

Î�
n

Î2

2

=
.....

nÿ

k=1

x
k

Z
k,2:pn

.....

2

2

Æ
A

nÿ

k=1

ÎZ
k,2:pnÎ

2

B
2

Æ n
nÿ

k=1

ÎZ
k,2:pnÎ2

2

.

where the first inequality follows from the triangle inequality and the second from Cauchy-Schwartz.
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We then immediately have that

E
µ

ú

Ë
Î�

n

Î2

2

1Î�nÎ2
2Ø–n(“n)

È
Æ nE

CA
nÿ

k=1

ÎZ
k,2:pnÎ2

2

B

1

qn

k=1 ÎZk,2:pn Î2
2Ø–̂n(“n)

D

.

But 1

2

q
n

k=1

ÎZ
k,2:pnÎ2

2

, Z̄ is distributed as a Gamma(n(p
n

≠ 1)/2, 1) random variable and the
claim follows. ⌅

Now Gamma random variables enjoy the following property on their tails:

Lemma 11. If Z̄ ≥ Gamma(k, 1) and z(“
k

) is its flth quantile (i.e., z(“
k

) satisfies P(Z̄ Ø z(“
k

)) =
“

k

), then as k æ Œ,
E

Ë
Z̄1

¯

ZØz(“k)

È
Æ k“

k

+ O

3 1Ô
k

4
.

Proof. We have:

E
Ë
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È
=
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z
zk≠1 exp(≠z)
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⁄ Œ
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= k
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)
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C

“
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)k exp(≠z(“
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where �(·, ·) is the right incomplete Gamma function. The final equality uses the fact that

�(k, z(“
k

))
�(k) = “

k

by the definition of z(“
k

). But zk exp(≠z)/
!
k�(k)

"
is maximized at z = k, so that

z(“
k

)k exp(≠z(“
k

))
k�(k) Æ kk exp(≠k)

k�(k) = O

3 1
k3/2

4

where we have used Stirling’s approximation for �(k). The result follows. ⌅

We anticipate that tighter control on the big-oh error term is possible in the above proof, but
this level of crudeness su�ces. Using the preceding two lemmas now immediately yields:

Lemma 12.
E

µ

ú

Ë
Î�

n

Î2

1Î�nÎ2Ø–n(“n)

È
Æ n2(p

n

≠ 1)fl + O

3Ú
n

p
n

≠ 1

4
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E. Dynamic Programming Formulation

Proof of Proposition 2. Consider the following n step Markov decision process (MDP):

1. The state at time k, S
k

= (”
k≠1

, �
k≠1

, Z
k

). The terminal state S
n

= (”
n

, �
n

). The state
space is X

k

= R2p for non terminal time periods and is X
n

= Rp for the terminal time period.

2. The set of actions available to us is {±1}.

3. At state S
k

if action a
k

is chosen, the state S
k+1

is given by (”
k≠1

+a
k

, �
k≠1

+a
k

Z
k,2:p

, Z
k+1

).
After n actions, the terminal state is S

n+1

= (”
n

, �
n

).

4. There is no per step reward and the terminal reward is S
n+1

‘æ ”2

n

+ Î�
n

Î2

�

≠1 .

Note that the MDP is finite horizon and the set of actions available at any point of time is finite,
in particular 2. The problem (P3Õ) is just a terminal cost minimization MDP. It follows from
Proposition 4.2.1 in Bertsekas (2013) that a policy xú that achieves the minimum expected cost.
Further there exists a set of functions Jú

k

: X
k

æ R such that Jú
k

(s
k

) is the cost conditioned on
S

k

= s
k

. Trivially,
Jú

n+1

(”
n

, �
n

) = ”2

n

+ Î�
n

Î2

�

≠
1

.

These functions follow the recursion,

Jú
k

(”
k≠1

, �
k≠1

, Z
k

) = min
uœ{±1}

E[Jú
k+1

(”
k≠1

+ u, �
k≠1

+ uZ
k,2:p

, Z
k+1

)]. (26)

Further xú
k

, the optimal policy, has the property that,

xú
k

œ argmin
uœ{±1}

E[Jú
k+1

(”
k≠1

+ u, �
k≠1

+ uZ
k,2:p

, Z
k+1

)]. (27)

Let,
Q

k

(”
k

, �
k

) , E #
Jú

k+1

(”
k

, �
k

, Z
k+1

)
$
. (28)

Using (26) and (28),

Q
k

(”
k

, �
k

) = E
C

min
uœ{±1}

Q
k+1

(”
k≠1

+ u, �
k≠1

+ uZ
k,2:p

)
D

.

Further using (27) and (28),

xú
k

œ argmin
uœ{±1}

Q
k

(”
k≠1

+ u, �
k≠1

+ uZ
k,2:p

).

This proves the dynamic programming proposition. ⌅
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