
Stochastic Depletion Problems: Effective Myopic Policies for a class
of Dynamic Optimization Problems

Carri W. Chan
Department of Electrical Engineering, Stanford University, Stanford, CA

email: cwchan@stanford.edu

Vivek F. Farias
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology,

Cambridge, MA

email: vivekf@mit.edu

This paper presents a general class of dynamic stochastic optimization problems we refer to as Stochastic Depletion
Problems. A number of challenging dynamic optimization problems of practical interest are stochastic depletion
problems. Optimal solutions for such problems are difficult to obtain, both from a pragmatic computational
perspective as also from a theoretical perspective. As such, simple heuristics are desirable. We isolate two simple
properties that, if satisfied by a problem within this class, guarantee that a myopic policy incurs a performance loss
of at most 50 % relative to the optimal adaptive control policy for that problem. We are able to verify that these
two properties are satisfied for several interesting families of stochastic depletion problems and as a consequence
identify computationally efficient approximations to optimal control policies for a number of interesting dynamic
stochastic optimization problems.

Key words: Stochastic Optimization; Scheduling; Approximations

MSC2000 Subject Classification: Primary: 93E20 , 90C39 ; Secondary: 90C59, 90B36, 90B22

OR/MS subject classification: Primary: Optimal Control, Approximations ; Secondary: Stochastic Model Appli-
cations

1. Introduction This paper presents a general class of dynamic stochastic optimization problems
we refer to as Stochastic Depletion Problems. Our study of this general class of problems is motivated by
the fact that a number of dynamic optimization problems of practical interest are stochastic depletion
problems. In fact, certain deterministic optimization problems that have been the focus of a good amount
of recent research are also special cases of stochastic depletion problems.

Informally, a stochastic depletion problem is specified by item types and activity sets. The use of an
activity results in the depletion of items of various types. In particular, the number of items of a partic-
ular type depleted at any point in time are randomly distributed according to a distribution specified by
a set of parameters specific to the activity employed at that time and the number of items of that type
available. The parameters specifying these distributions are themselves given by exogenous stochastic
processes. New items of a given type may appear and existing items depart according to exogenous
stochastic processes. Item depletion generates rewards, and activities must be selected adaptively over
time to accomplish such depletion. An adaptive activity selection policy in this framework has knowledge
of system dynamics and at any given time must select an activity. An optimal such policy generates max-
imum total expected reward. We will subsequently see that a number of difficult dynamic optimization
problems ranging from optimal control of parallel server queueing models to optimal ad-words allocation
can be cast as stochastic depletion problems. It is not surprising then, that finding an optimal control
policy for a stochastic depletion problem is, in general, difficult.

We identify two simple properties we refer to as Value Function Monotonicity (VFM) and the Imme-
diate Rewards (IR) property, that if satisfied by a stochastic depletion problem guarantee that a myopic
policy generates expected reward within a factor of 1/2 of the optimal adaptive policy for that problem;
that is, the myopic policy is a 2-approximation algorithm for that problem. This policy is allowed to
use all the information available up to the current point in time and maximizes expected reward earned
over the following time step. Both properties are intuitive: the VFM property states that the optimal
total expected reward (or value) accrued in the future starting from a particular state of the system is
non-decreasing in the vector of available items at that state. In the other direction, the IR property
states that the additional value gained by making available additional items at a particular state of the
system is at most the reward earned for the depletion of those items.

We are able to verify both the VFM and IR properties for large families of stochastic depletion
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problems. These include stochastic depletion problems for which the total reward for items depleted over
time is given by a non-decreasing submodular function of the vector of items depleted. An available item
of a given type is depleted independent of all other items in the system with a probability that depends
on time, the item type and the activity employed. We refer to these as Submodular Stochastic Depletion
Problems. We are also able to address families of problems where the reward earned for depleting an
item is a non-increasing function of the time of depletion, specific to that item’s type. We refer to these
as Linear Decaying Stochastic Depletion Problems. Our performance analysis of the myopic heuristic is
sharp for both these families of stochastic depletion problems.

Our systematic study of the general class of problems presented in this paper results in several contri-
butions which we now outline:

Stochastic Control Problems: Our framework lets us easily recognize and analyze simple effective
heuristic policies for several high-dimensional stochastic control problems for which finding optimal control
policies is difficult.

For instance, control problems pertaining to several interesting discrete-time queueing models with
general arrival processes and geometric service times may be reduced to stochastic depletion problems
provided one allows for service disciplines with pre-emption. As an example, we consider a discrete
time equivalent of a well studied parallel server queueing model that has been an important subject of
recent research (see for instance [16, 3, 2]). Finding optimal service policies for such problems is typically
challenging. We identify a simple myopic policy that is a constant factor approximation algorithm for a
broad class of performance metrics. Our policy bears similarities to the so-called ‘c− µ’ scheduling rules
(see for instance, [29]).

As another example we consider problems of dynamic ‘product line design’. These are problems where
a firm must dynamically adjust the assortment of products it offers for sale so as to maximize expected
revenues. Sales of a given product are influenced by the entire assortment of products offered as well as
the prevailing market sizes for various customer segments. In addition to generating revenues, sales in
a given period impact market sizes in subsequent periods. This represents an important generalization
of static product line design problems of the type considered by [30]. Our analysis yields an effective
heuristic that simply calls for the solution of a sequence of static product line design problems that in
effect account for system dynamics only to a limited extent.

Online algorithms for stochastic variants of well studied deterministic problems: We show
that a myopic policy earns expected rewards that are within a constant factor of the optimal adaptive
policy for what we believe to be important online stochastic generalizations of a number of problems
studied typically in deterministic settings. The stochastic generalizations we present go beyond what
may be modeled in the traditional online versions of these problems and incorporate features we view as
desirable from a modeling perspective. We present approximation guarantees for these generalizations
that are typically no worse (and sometimes, better) than the best known guarantees for their deterministic
counterparts.

For instance, we are able to provide an efficient myopic policy that is a 2-approximation algorithm for a
stochastic broadcast scheduling problem. Successful data transmission in our broadcast scheduling model
is stochastic which makes it naturally applicable in several communications engineering contexts. With a
bound on the maximal number of simultaneous broadcasts the best known scheme for the deterministic
broadcast scheduling problem (where page transmission is successful with probability 1) is an offline 4-
approximation ([1]). With no constraints on the maximal number of simultaneous broadcasts, the best
known offline algorithm for the deterministic broadcast scheduling problem is a 4/3-approximation due
to [14] and the best known online algorithm for the same scenario is a 2-approximation due to [20]. Our
contribution to this body of work is to demonstrate that even with stochasticity in data transmission one
can still achieve good constant factor performance guarantees via an adaptive myopic algorithm.

As another example, we consider a stochastic generalization to the AdWords Assignment problem
([12]) where revenues are generated via stochastic clicks on placed ads as opposed to simply via the
placement of an ad as in the deterministic version of the problem. Using an appropriate approximation
algorithm as a subroutine for the myopic problem we demonstrate an efficient 3 + ε myopic scheme which
matches the best known 3 + ε-approximation algorithm for the deterministic version of the AdWords
Assignment problem due to [15].
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A unified framework: We provide an elegant, unified framework for the design and analysis of
stochastic optimization problems that is analogous to that for submodular maximization over simple
matroids. In particular, submodular maximization problems over several simple matroids (such as the
cardinality and partition matroid) can be captured as submodular stochastic depletion problems. A
number of interesting problems (such as the AdWords Assignment problem) are known to be examples
of such submodular optimization problems (see [15] for example). The stochastic depletion framework
provides a natural vehicle for the analysis of stochastic variants of such problems wherein the notion of
selecting a set element translates to an attempt at selection; the success of such an attempt is specified
by an exogenous stochastic process.

We anticipate that the characterization of dynamic stochastic optimization problems that admit simple
control policies with constant factor guarantees provided in the present work, is likely to allow for the
analysis of simple heuristics for a number of problems beyond the handful of examples we have alluded to
above. In particular, the two abstract properties that guarantee the effectiveness of a myopic policy are
typically not hard to recognize and could potentially be established for families of problems outside those
discussed here. The remainder of this paper is organized as follows: In Section 2 we formally specify
the class of stochastic depletion problems. Section 3 presents a myopic heuristic for stochastic depletion
problems and identifies two simple properties - the VFM and IR properties - that if satisfied by a stochastic
depletion problem guarantee that a myopic policy is a 2-approximation algorithm for that problem.
Section 4 verifies the VFM and IR properties for two general families of stochastic depletion problems -
Submodular Stochastic Depletion problems and Linear Decaying Stochastic Depletion problems while the
following two sections discuss a number of applications that lie within these families. Section 7 concludes
with a perspective on interesting directions for further work.

2. Model We are given a collection of items, each of which belongs to one of M types indexed by m.
There can be at most x̄m items of type m available at any time. Items are depleted via the execution of a
suitable activity from a set of feasible activities A, and depletion of a set of items garners a non-negative
reward we will formalize shortly. Time is discrete (indexed by t ∈ [0, T ]) and in each time step one must
choose to employ some activity from A; we let T denote the length of the time horizon. We let i index the
elements of A and denote a general element of A by A. Let xt,m denote the number of items of type m
that remain at the start of the tth time-step. Assuming one chooses action A ∈ A in the tth time-step, the
number of items of each type m depleted within that time-step is given by a ×Mm=1{0, . . . , xt,m}-valued
random vector, XA

t . The distribution of the random vector XA
t is specified by a parameter Pt(A) which

itself is given by an exogenous stochastic process {Pt(A)}, specified for all A and taking values in some
compact set R. XA

t is assumed independent of the past and Pt′(A′) for all A′, t′ > t, given Pt(A) and the
vector of non-depleted items xt. For example, we may have that {Pt(A)} is a [0, 1]M -valued stochastic
process and assuming one chooses action A at time t, XA

t,m is an independent Binomial-(xt,m, Pt,m(A))
random variable. In what follows we drop the superscript A from XA

t for economy, as the dependence
on A will be clear from context. We have xt+1,m = xt,m −Xt,m for all m, and receive a total reward of
g(xt, xt+1, t) where g : ZM+ × ZM+ × [0, T ]→ R+ satisfies:

Assumption 2.1 For all x, x′ ∈ ZM+ , g(x, x′, ·) is a non-increasing, non-negative function. In addition,
we assume g(x, x′, T ) = 0 for all x, x′ ∈ ZM+ .

Our objective is to design an adaptive scheduling policy that maximizes total expected reward earned
within the first T time-steps. We define as our state-space the set

S =
{

(x, t, p1, p2, . . . , p|A|) : x ∈ ×m{0, 1, . . . , x̄m}, 0 ≤ t ≤ T, pi ∈ Rt+1 ∀i
}
.

In particular, a state is associated with a vector of items remaining to be depleted, time and a history
of the Pt processes. We denote by x(s) the projection of s onto its first co-ordinate and similarly employ
the notation t(s), and pi(s) for i = 1, 2, . . . , |A|. We let the random variable St ∈ S denote state in
the tth epoch. We digress briefly to note that if the Pt processes were assumed to be given a-priori – a
scenario that will become relevant to our theoretical analysis in what follows – then the description of
the state space may be significantly simplified. In particular, we may in this case consider as our state
space the set



4 :
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

S =
{

(x, t) : x ∈ ×m{0, 1, . . . , x̄m}, 0 ≤ t ≤ T
}
,

where a state is associated with a vector of items remaining to be depleted and time.

Finally, we define the random reward function R : S ×A → R+ according to R(s,A) = g(x(s), x(s)−
Xt(s), t(s)), where Xt(s) = XA

t(s). We note that since at time t, the realization of Xt from taking a
particular action is unknown, any control policy is a-priori unaware of the exact reward accrued from
a particular action; only the distribution of this reward is known. We define a control policy π as a
mapping from S to the set of feasible activities A, and we denote by Π the set of all such policies. Define
the expected total reward-to-go under a policy π starting at state s according to:

Jπ(s) = E

 T−1∑
t′=t(s)

R(St′ , π(St′))|St(s) = s

 .
We let J∗(s) = supπ∈Π J

π(s) denote the maximum expected total reward-to-go under any policy. The
supremum in the definition of J∗ is achieved and we denote by π∗ the corresponding optimal policy i.e.
π∗(s) ∈ argsupπ∈Π J

π(s). We will refer to the problem of finding such an optimal policy π∗ as a Stochastic
Depletion Problem.

We remark that our formulation permits modeling exogenous item arrivals and deadlines on the latest
permissible time of depletion for a given item. In particular, assuming without loss that x̄m = 1, that is,
a given item type can have at most a single item (otherwise, we could simply refine the definition of a
type), we associate with each type an arrival time τm and a deadline dm ≥ τm. One may then assume
that the Pt processes are such that Xt,m = 0 a.s. for all A ∈ A if t /∈ [τm, dm] in order to model the
fact that item type m arrives at time τm and may not be depleted beyond time dm; see Section 5.2 for
a concrete illustrative example. Such a formulation succinctly assumes a (known) bound on the total
number of arrivals in any given period.

The optimal reward-to-go function (or value function) J∗ and the optimal scheduling policy π∗ can
in principle be computed via dynamic programming: In particular, letting S(s,A) denote the random
next state encountered upon employing activity A in state s define the dynamic programming operator
H according to:

(HJ)(s) = max
A∈A

E [R(s,A) + J(S(s,A))] . (1)

for all s ∈ S with t(s) ≤ T − 1. J∗ may then be found as the solution to the Bellman equation HJ = J ,
with the boundary condition J(s′) = 0 for all s′ with t(s′) = T . The optimal policy π∗ may be found as the
greedy maximizer with respect to J∗ in (1). Of course, this approach is computationally intractable: even
in the event that the Pt processes are known a-priori, the state space (the set of all (x, t)) is exponentially
large. As such, this makes solution of a general stochastic depletion problem pragmatically difficult.

In addition to the above informal description for why we might expect finding an optimal solution
to be a difficult task, one may easily see that special classes of stochastic depletion problems are NP-
hard. We consider one such class here for completeness: Consider ‘rational clairvoyant’ stochastic de-
pletion problems where the Pt sequences are rational valued deterministic sequences in [0, 1]M . XA

t,m

is a Binomial-(xt,m, Pt,m(A)) random variable for all t,m,A, independent of the past and XA′

t,m′ for all
A′,m′ 6= m, given xt,m. We assume g(xt, xt+1, t) =

∑
m wm(xt,m−xt+1,m) where wm ≥ 0 for all m. The

input to such a problem consists of |A| rational-valued sequences of length T , and 2M rational numbers
representing the initial number of jobs of each type and the reward constants, wm, for each type. One may
then construct a polynomial time reduction from the set-cover decision problem (which is NP-complete)
to the rational clairvoyant stochastic depletion problem. This is formalized in the following result:

Theorem 2.1 The rational clairvoyant Stochastic Depletion problem is NP-hard.

Proof. We reduce the Set-Cover decision problem to the rational clairvoyant Stochastic Depletion
problem. An instance of the Set-Cover decision problem is specified by a ground set U , cover set B ⊆ 2U

and an integer k (where k ≤ |U| without loss) and we must decide whether a cover (that is a subset of B
whose union is a superset of U) of size ≤ k exists. We reduce this question to the optimal solution of the
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following rational clairvoyant stochastic depletion instance: We consider a problem with |U| item-types,
and assume we have a single item of each type. We let each set in B correspond to a feasible activity in
the sense that the use of that activity results in the depletion of all items in that set with probability
1 and the depletion of items outside that set with probability 0 in any time slot. We let the depletion
of a single item result in unit reward, wm = 1, and assume that the time horizon for scheduling is k.
Assuming a polynomial time algorithm for rational clairvoyant stochastic depletion, the reduced problem
would require time that is poly(|U|, |B|, k) = O(poly(|U|, |B|)). If the optimal solution to this instance of
the stochastic depletion problem has total reward |U| we know that there exists a set cover of size ≤ k.
Conversely, if there exists a set-cover of size ≤ k, then there exists a depletion policy with total reward
|U|. Our reduction is thus many-one and polynomial in the size of the input. This completes the proof.
�

We remark that the above reduction can also be used to reduce an interesting optimization problem
related to set covering - namely that of maximum set coverage where one may pick at most k elements
of B so as to cover as many elements of U as possible - to a stochastic depletion instance. In fact, this
reduction is a special class of a useful set of reductions we will explore in Section 6.

We have, in this section, introduced a general class of dynamic stochastic optimization problems that as
we shall see in later sections admit a number of interesting applications. Computing optimal solutions for
such problems is evidently hard; the next section will present and analyze a natural, simple to implement
heuristic for such problems.

3. A Myopic Heuristic for Stochastic Depletion A natural heuristic policy one may consider
for a stochastic depletion problem is given by the myopic policy which in state s chooses an activity set
A that maximizes expected reward earned over the following time-step. That is

πg(s) ∈ argmaxA∈AE[R(s,A)].

Such a policy is adaptive but ignores the evolution of the system and the impact of the present choice of
activity on rewards in future states. The set A in the myopic problem above is potentially exponentially
large. In many cases however, this set has an implicit polynomial sized representation (for instance, A
may correspond to a set of matchings) and the myopic maximization problem is efficiently solved. We
will later also address the case where the myopic maximization problem is difficult but one has access to
an appropriate near-optimal oracle.

3.1 The Myopic Heuristic is an online 2-Approximation Algorithm: Sufficient Conditions
Our objective in this section will be to identify stochastic depletion problems for which the myopic
heuristic is guaranteed to be within a constant factor to optimal. In particular, we will identify stochastic
depletion problems for which we will have for any state s ∈ S, J∗(s) ≤ 2Jπ

g

(s).

Note that the myopic heuristic does not utilize any information about the evolution of the Pt processes.
In particular, the immediate reward incurred in choosing activity A at some state s is independent of the
past and Pt′(A′) for all A′, t′ > t(s), given x(s) and Pt(·). We will thus assume that the Pt processes are
a-priori given sequences; the expected total reward earned under the myopic heuristic in this clairvoyant
scenario is equal to the expected total reward earned under the myopic heuristic for the corresponding
sample path of the Pt processes. We will compare the performance of the myopic heuristic to that
of an optimal clairvoyant algorithm that knows the realizations of the Pt processes a-priori. Since an
optimal clairvoyant policy must dominate the optimal policy, it will suffice to demonstrate performance
guarantees relative to the optimal clairvoyant policy. Recall that such an optimal clairvoyant policy may
be computed over a reduced state-space:

S =
{

(x, t) : x ∈ ×m{0, 1, . . . , x̄m}, 0 ≤ t ≤ T
}
.

In the sequel, we will only consider such clairvoyant optimal policies; any reference to an optimal policy
or value function in the sequel will pertain to an optimal policy or value function for the clairvoyant
problem. Comparing performance to a clairvoyant policy yields performance guarantees that are valid
over individual sample paths of the Pt processes. In particular, our guarantees will imply that the
myopic heuristic is a 2-competitive online algorithm where the optimal scheme is allowed knowledge of
entire sample-paths of the Pt processes but does not know the realization of Xt until time t + 1 (which
is somewhat different from the typical competitive analysis setting).
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We now identify two properties that if satisfied by the optimal clairvoyant value function J∗, will imply
our desired approximation guarantee.

Property 1 Value Function Monotonicity: Consider states s, s′ satisfying x(s) ≥ x(s′), t(s) =
t(s′). The VFM property requires that J∗(s) ≥ J∗(s′). In words, all else being equal, it is advantageous
to start at a state with a greater number of items available.

Before we describe the second property we find it convenient to introduce some notation. For α ∈ ZM+ ,
define a mapping S̃α : S → S according to S̃α(s) = s′ with t(s′) = t(s) and x(s′)m = (x(s)m − αm)+

for all m. S̃α(s) is thus the state obtained if one were permitted to employ some set of activities (which
presumably resulted in Xt = α) but without incurring the use of a time-step.

Property 2 Immediate Rewards: For all s̄ ∈ S and α ∈ ×m{0, 1, . . . , x(s̄)m},

J∗(s̄) ≤ g (x(s̄), x(s̄)− α, t(s̄)) + J∗
(
S̃α(s̄)

)
.

This property states that it is advantageous if one were able to deplete items without incurring the
use of a time-step. In particular, if instead of starting at some state s̄ ∈ S, one started at state S̃α(s̄)
and was in addition given reward for the depletion of α items, this property requires that the value of
the second scenario be at least as large as the first.

The two properties we have developed thus far for the optimal value function J∗ are essentially all we
need to prove an approximation guarantee for the myopic heuristic. We now present the proof of our
main approximation guarantee which assumes the VFM and IR properties.

We first introduce relevant notation: For α ∈ ZM+ , define a mapping Ŝα : S → S that specifies the
next state obtained if one employed an activity set in state s which resulted in Xt,m = αm ∧x(s)m for all
m. In particular, we define Ŝα according to Ŝα(s) = s′ with t(s′) = t(s) + 1 and x(s′)m = (x(s)m−αm)+

for all m.

Theorem 3.1 Assuming J∗ satisfies Properties 1 and 2, we have for all s ∈ S, J∗(s) ≤ 2Jπ
g

(s).

Proof. The proof proceeds by induction on the number of time steps that remain in the horizon,
T − t(s). The claim is trivially true if t(s) = T − 1 since both the myopic and optimal policies coincide in
this case. Consider a state s with t(s) < T −1 and assume the claim true for all states s′ with t(s′) > t(s).

Now if π∗(s) = πg(s) then the next states encountered in both systems are identically distributed
so that the induction hypothesis immediately yields the result for state s. Consider the case where
π∗(s) 6= πg(s). Denote by X∗t(s) and Xg

t(s) random vectors of depleted items in period t(s) under optimal
and myopic policies respectively at state s. Let 0 be an M dimensional 0 vector. We have:

J∗(s|X∗t(s), X
g
t(s)) = E[R(s, π∗(s))|X∗t(s)] + J∗(ŜX∗

t(s)
(s))

≤ E[R(s, π∗(s))|X∗t(s)] + J∗(Ŝ0(s))

≤ E[R(s, π∗(s))|X∗t(s)] + g(x(s), x(s)−Xg
t(s), t(s) + 1) + J∗(S̃Xg

t(s)
(Ŝ0(s)))

≤ E[R(s, π∗(s))|X∗t(s)] + g(x(s), x(s)−Xg
t(s), t(s)) + J∗(S̃Xg

t(s)
(Ŝ0(s)))

= E[R(s, π∗(s))|X∗t(s)] + E[R(s, πg(s))|Xg
t(s)] + J∗(S̃Xg

t(s)
(Ŝ0(s)))

= E[R(s, π∗(s))|X∗t(s)] + E[R(s, πg(s))|Xg
t(s)] + J∗(ŜXg

t(s)
(s))

≤ E[R(s, π∗(s))|X∗t(s)] + E[R(s, πg(s))|Xg
t(s)] + 2Jπ

g

(ŜXg
t(s)

(s))

(2)

where the first inequality follows from the assumed VFM property for J∗ upon noting that
x(ŜX∗

t(s)
(s)) ≤ x(Ŝ0(s)). The second inequality follows from the IR property assumed of J∗ upon taking

s̄ = Ŝ0(s) and α = Xg
t(s). The third inequality follows from Assumption 2.1 since g was assumed non-

increasing in time. The third equality follows from the identity S̃Xg
t(s)

(Ŝ0(s)) = ŜXg
t(s)

(s) which in turn
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is simply a consequence of the definitions of S̃α and Ŝα. The final inequality follows from the induction
hypothesis.

Now,
Jπ

g

(s) = E
[
R(s, πg(s)) + Jπ

g

(ŜXg
t(s)

(s))
]

and E[R(s, πg(s))] ≥ E[R(s, π∗(s))] by the definition of the myopic policy πg so that taking expectations
in (2), we have:

J∗(s) = E[J∗(s|X∗t(s), X
g
t(s))]

≤ E[R(s, π∗(s))] + E[R(s, πg(s))] + 2E[Jπ
g

(ŜXg
t(s)

(s))]

≤ 2Jπ
g

(s)

This concludes the proof. �

3.1.1 Performance with an approximate Myopic Oracle: We will subsequently encounter a
number of examples for which the set A is exponentially large, but admits some implicit polynomial
representation allowing for efficient solutions to the myopic problem

max
A∈A

E[R(s,A)].

Sometimes, however, this problem may itself be difficult to solve. In such scenarios the use of an oracle
that is an α-approximation to this subproblem is in fact a 1 +α-approximation to the original stochastic
depletion problem. In particular, assume πapprox : S → A satisfies

E[R(s, πapprox(s))] ≥ 1
α

max
A∈A

E[R(s,A)].

for all s ∈ S. One may then establish the following result whose proof is omitted but entirely analogous
to Theorem 3.1 above:

Theorem 3.2 Assuming J∗ satisfies Properties 1 and 2, we have ∀ s ∈ S, J∗(s) ≤ (1 + α) Jπ
approx

(s)

4. Families Satisfying the VFM and IR Properties The previous section identified two abstract
properties - namely, the VFM and IR properties, that if satisfied yield uniform performance loss guarantees
for the myopic heuristic, via Theorems 3.1 and 3.2. These properties are in general difficult to check.
We establish in this section two simple yet fairly general families of stochastic depletion problems that
satisfy Properties 1 and 2 thereby guaranteeing that the myopic heuristic is a 2-approximation algorithm
for those families. Although, there may certainly be other families of problems satisfying the VFM and
IR properties, the families we identify in this section accommodate a number of interesting applications
which will be the focus of Sections 5 and 6.

4.1 Submodular Stochastic Depletion Problems We consider problems for which {Pt(A)} is
a [0, 1]M -valued stochastic process for all A ∈ A. Assuming one chooses action A at time t, Xt,m is a
Binomial-(xt,m, Pt,m(A)) random variable that given xt,m and Pt,m(A), is independent of the past, Xt,m′

for m′ 6= m and Pt′(A′) for all A′, t′ > t. We assume submodular rewards. In particular, we assume
g(xt, xt+1, t) = w(x̄− xt+1)− w(x̄− xt), where w : ZM+ → R satisfies:

Assumption 4.1 w : ZM+ → R satisfies:

(i) (Monotonicity) w(y) ≥ w(y′) for y ≥ y′.

(ii) (Submodularity) For e ∈ ZM+ , w(y + e)− w(y) ≤ w(y′ + e)− w(y′) if y ≥ y′.

Such a class of functions clearly satisfies Assumption 2.1. We need to demonstrate the VFM and
IR properties. Recall that we will consider a clairvoyant optimal algorithm that knows a-priori the
realizations of the sample paths of the Pt processes. We first demonstrate the IR property. It turns
out that doing so requires only the monotonicity of w; the sub-modularity of w is not required for this
property to hold.
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Lemma 4.1 (Immediate Rewards) We have for submodular stochastic depletion problems, for all s̄ ∈ S
and α ∈ ×m{0, 1, . . . , x(s̄)m},

J∗(s̄) ≤ w (x̄− x(s̄) + α)− w (x̄− x(s̄)) + J∗
(
S̃α(s̄)

)
.

Proof. Consider using the optimal policy starting at state s̄, and let S∗T be the random state under
this policy at the end of the time horizon (that is, at time T ), so that:

J∗(s̄) = E [w(x̄− x(S∗T ))]− w(x̄− x(s̄)) (3)

where the expectation is over the randomness in the system - namely, the random item depletion defined
by the Pt sequences and chosen activities. Similarly, let S̃∗T be the random state under the optimal policy
at the end of the time horizon upon starting in state S̃α(s̄) and as above, we note:

J∗
(
S̃α(s̄)

)
= E

[
w(x̄− x(S̃∗T ))

]
− w(x̄− x(s̄) + α)

Let us re-consider the optimal policy starting at state s̄ and in particular, let us partition the initial
set of items into a set of fictitious and real items; we assume that we begin with αm fictitious items of
type m and x(s̄)m − αm real items of type m. This partitioning serves purely as a labeling of items and
does not impact the evolution of the system in any fashion. In particular, if at some point in time t, we
have xft,m and xrt,m fictitious and real items of type m respectively, then using activity set A results in the
depletion of Xf

t,m and Xr
t,m fictitious and real items respectively where Xf

t,m is a Binomial-(xft,m, Pt,m(A))

random variable and Xr
t,m is a Binomial-(xrt,m, Pt,m(A)) random variable (so that Xf

t,m +Xr
t,m

d=Xt,m),
and we are left with xft,m − X

f
t,m and xrt,m − Xr

t,m fictitious and real items respectively. Let
∑
tX

f
t,m

(
∑
tX

r
t,m) denote the number of fictitious (real) items of type m depleted at the end of the time horizon

by the optimal policy starting in state s̄.

We now make two critical observations:

(i) We observe that
∑
tX

f
t,m ≤ αm for all m by construction.

(ii) Due to the fact that given s and a choice of activity, the depletion of a given item of type m
at time t is independent of the past and the depletion of any other item in the system at that
time,

∑
tX

r
t,m may be viewed as the number of items of type m depleted under some induced

randomized sub-optimal policy, say π′, starting at state S̃α(s̄). This induced policy π′ assumes
in state S̃α(s̄) the existence of an additional αm items of each type m and simulates depletion
of those items without garnering any reward for them. It operates like the optimal policy would
but on this modified state. More specifically, letting s0 = S̃α(s̄) and α0 = α, we have:

π′(s0) = π∗((x(s0) + α0, t(s0)))

Defining α1 = x(S((α0, t(s0)), π′(s0))) and s1 = S(s0, π
′(s0)),

π′(s1) = π∗((x(s1) + α1, t(s1)))

In general, defining αt = x(S((αt−1, t(st−1)), π′(st−1))) and st = S(st−1, π
′(st−1)),

π′(st) = π∗((x(st) + αt, t(st)))

It is worth noting that α0 − αt =
∑t
t′=t(s̄)X

f
t′ while x(s0)− x(st) =

∑t
t′=t(s̄)X

r
t′ .

We consequently have:

J∗
(
S̃α(s̄)

)
≥ Jπ

′
(
S̃α(s̄)

)
= E

[
w

(
x̄− x(s̄) + α+

∑
t

Xr
t

)]
− w (x̄− x(s̄) + α)

≥ E

[
w

(
x̄− x(s̄) +

∑
t

Xf
t +

∑
t

Xr
t

)]
− w (x̄− x(s̄) + α)

= E [w(x̄− x(S∗T ))]− w (x̄− x(s̄) + α)
= J∗(s̄) + w(x̄− x(s̄))− w (x̄− x(s̄) + α)
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where the first inequality follows from the optimality of π∗ among all non-anticipatory policies. The first
equality follows from our definition of the policy π′ in Observation 2 and from the definition of S̃α(s̄).
The second inequality follows from the monotonicity of the function w and Observation 1:

∑
tX

f
t ≤ α.

The second equality is again by our construction of the Xf
t and Xr

t processes. The final equality follows
from (3). This completes the proof. �

While the IR property required only the monotonicity of w, the VFM property requires both the
monotonicity of w as also its submodularity. This result is intuitive: a controller that starts at state s
may simply assume that it starts at state s′ and track state evolution accordingly. Assuming submodular
rewards, applying the optimal policy to this (incorrectly tracked) state trajectory guarantees the policy
a total expected reward of at least J∗(s′), so the optimal policy must certainly do at least as well. The
submodularity required is somewhat subtle, but it is simple to construct counterexamples in the absence
of submodularity. We have:

Lemma 4.2 (Value Function Monotonicity) We have for Submodular Stochastic Depletion problems, for
all s, s′ ∈ S s.t. x(s) ≥ x(s′), t(s) = t(s′), J∗(s) ≥ J∗(s′).

Proof. Consider a coupling of the systems starting at state s and s′ wherein both systems witness
identical sample paths for the item depletion processes defined by the Pt sequences. More precisely,
assuming that at time t, the systems are in states st and s′t respectively, then given Pt, the number of
items depleted in both systems are coupled so that if x(st) ≥ x(s′t), and we employ activity set A in
both systems, then, for all m, the number of successfully depleted items of type m in the st system,
Xt,m (∼ Binomial(xt,m, Pt,m(A))) and the number of successfully depleted items of type m in the s′t
system, X ′t,m (∼ Binomial(x′t,m, Pt,m(A))) satisfy Xt,m = X ′t,m + Yt,m where Yt,m is an independent
Binomial-(x(st)m−x(s′t)m, Pt,m(A)) random variable. A symmetric situation must hold if x(s′t) ≥ x(st).

Now assume that the system starting at s′ uses an optimal policy whereas the system starting at state
s mimics the actions of the s′ system (call this policy π̄). It is simple to see that π̄ is an admissible
non-anticipatory policy.

Under our coupling, we have at t = t(s), that the number of items of type m depleted in the system
starting at state s is greater than the number of items depleted in the system starting at state s′. That
is, Xt,m ≥ X ′t,m. It then follows that,

R(s, π̄(s)) = w(x̄− x(s) +Xt)− w(x̄− x(s))
≥ w(x̄− x(s) +X ′t)− w(x̄− x(s))
≥ w(x̄− x(s′) +X ′t)− w(x̄− x(s′))
= R(s′, π∗(s′)).

That is, the reward earned in the system starting at state s is higher than that in the system starting
at state s′; the first inequality above uses the monotonicity of w, the second inequality employs the
submodularity of w. Now in addition, by our coupling, both systems transition to states St(s)+1 and
S′t(s)+1 respectively satisfying x(St(s)+1) = x(s)−Xt = (x(s′)−X ′t) + (x(s)− x(s′)− Yt) ≥ x(s′)−X ′t =
x(S′t(s)+1), so that we may repeat the above argument for time t(s) + 1. Continuing in this fashion we
see that in every time step, the π̄ controlled system starting at state s earns at least as large a reward as
the π∗ controlled system starting in state s′. Taking expectations over the random item depletions (i.e.
the Xt and X ′t processes), we have J π̄(s) ≥ J∗(s′). Since J∗(s) ≥ J π̄(s), we are done. �

In light of Lemmas 4.1 and 4.2, Theorem 3.1 lets us conclude that the myopic heuristic is a 2-
approximation algorithm for Submodular Stochastic Depletion problems.

4.2 Linear Decaying Stochastic Depletion Problems We consider here a family of stochastic
depletion problems closely related to the family just considered that also admit the VFM and IR properties
and are particularly useful for many applications. As before, we consider problems for which {Pt(A)}
is a [0, 1]M -valued stochastic process for all A ∈ A. Assuming one chooses action A at time t, Xt,m

is a Binomial-(xt,m, Pt,m(A)) random variable that given xt,m and Pt,m(A), is independent of the past,
Xt,m′ for m′ 6= m, and Pt′(A′) for all A′, t′ > t. We assume linear rewards that are non-increasing in
time. In particular, we assume g(xt, xt+1, t) =

∑
m wm,t(xt,m − xt+1,m) where wm,t is a non-negative,
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non-increasing function of t for all m (for the special case where wt,m = wm ≥ 0 for all t this is merely a
special case of a submodular stochastic depletion problem model we have considered). We can verify the
immediate rewards property for such systems via a proof that closely follows Lemma 4.1 and that may
be found in the appendix; again recall that the following results apply to the clairvoyant optimal policy.

Lemma 4.3 (Immediate Rewards) We have for Linear Decaying Stochastic Depletion problems, for all
s̄ ∈ S and α ∈ ×m{0, 1, . . . , x(s̄)m},

J∗(s̄) ≤
∑
m

αmwt(s̄),m + J∗
(
S̃α(s̄)

)
,

In addition, we may verify the the VFM property. The proof of the following Lemma is essentially
identical to that of Lemma 4.2 and is omitted.

Lemma 4.4 (Value Function Monotonicity) We have for Linear Decaying Stochastic Depletion problems,
for all s, s′ ∈ S s.t. x(s) ≥ x(s′), t(s) = t(s′), J∗(s) ≥ J∗(s′).

In light of Lemmas 4.3 and 4.4, Theorem 3.1 lets us conclude that the myopic heuristic is a 2-
approximation algorithm for Linear Decaying Stochastic Depletion problems.

4.3 A Worst Case Example Having established the VFM and IR properties for the two families
of stochastic depletion problems just discussed, we immediately have that the myopic policy has expected
value within a factor of 1/2 of the optimal policy for problems from either family. This analysis is sharp.
In particular, we now present a problem instance that is in fact a member of both problem families and
for which we have that the optimal policy has expected value that is a factor of 2 − ε better than the
myopic policy; ε > 0 can be made arbitrarily small.

Example 4.1 (Myopic Sub-Optimality) Consider the case where M = 2 and T = 2, g(x, x′, t) = (x1 −
x′1) + (1 − ε)(x2 − x′2). Assume that x̄1 = x̄2 = 1 and that x0,1 = x0,2 = 1. Let A = {1, 2}. The
(deterministic) Pt processes are defined as:

For A = 1 : P0,1(1) = 1, P0,2(1) = 0, P1,1(1) = 1, P1,2(1) = 0.
For A = 2 : P0,1(2) = 0, P0,2(2) = 1, P1,1(2) = 0, P1,2(2) = 0.

In words, the item of type m = 1 may be depleted in either time step via the use of A = 1, whereas the
item of type m = 2 may be depleted only in the first time-step via A = 2. Only one of activity 1 or 2 may
be employed within a given time-step. The myopic heuristic will first choose activity set {1} (which earns
a reward of 1 via the depletion of the m = 1 type item) over activity set {2} (which earns a reward of 1−ε
via the depletion of the m = 2 type job). Consequently, under the myopic heuristic, x1,1 = 0, x1,2 = 1
and the heuristic is unable to complete the one remaining job in the second time step, earning a total
reward of 1. An optimal schedule would first choose activity set {2} (which earns a reward of 1 − ε via
the completion of the m = 2 type job). Consequently, under the optimal schedule, x1,1 = 1, x1,2 = 0 and
the schedule is able to complete the one remaining job in the second time step via the use of activity set
{1} earning a total reward of 2− ε. We thus see that J∗(s0) = (2− ε)Jπg

(s0) here.

5. Applications: Stochastic Control In the previous section, we presented two families of
stochastic depletion problems for which the myopic heuristic is a 2-approximation algorithm. We now
consider several problems of stochastic control that are easily seen to be members of these families.
We thereby establish uniform performance guarantees for myopic policies for these stochastic control
problems.

5.1 Service Policies for Simple Queueing Models The following is a discrete time version of
a parallel-server queueing model that has received a good deal of attention: We have I buffers and J
servers. Each buffer sees a general discrete time arrival process with the restriction that a given buffer
can see at most a single arrival in a given time slot. For example, each buffer i, may see an independent
Bernoulli(λi) arrival process. A given server j may be used to service any single job in the system in a
given time slot. In particular, should server j be used to service a job arriving to buffer i, the service
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time is assumed to be an independent geometric random variable with mean µi,j (possibly∞). We allow
for pre-emption in our service discipline. While allowing for pre-emption is unrealistic in some scenarios -
for instance, in a call-center - it is quite realistic for many other applications of the parallel server model
such as parallel or distributed computing. Consider the following natural objective: completion of a job
that arrives at buffer i earns a non-negative reward ri,d where d is the time that job has remained in the
system (that is, the delay experienced by that job). We assume ri,d is non-increasing in d. At every point
in time one must decide on a matching between servers and available jobs with a view to maximizing the
expected reward earned over T periods.

It is not difficult to see that the above problem is an example of a Linear Decaying Stochastic Depletion
Problem. In particular, we define an item type for every tuple (i, τ) where i = 1, 2, . . . , I and τ =
0, 1, . . . , T − 1. Thus an item type m is associated with an arrival buffer im and an arrival time τm. We
can have at most a single item of a given type, i.e. x̄m = 1. The set of feasible activities A is simply the
set of all matching of servers to item types. Given a particular matching, the probability of depletion for a
given item type (or job), is determined by the server matched to that job or 0 if no server is matched to it.
Of course, a job may not be depleted prior to arrival. In particular, we have for item type m = (im, τm)

Pt,m(A) = 1t≥τm

∑
j

1(i,j)∈A1/µi,j


We define our reward function g according to g(xt, xt+1, t) =

∑
m wm,t(xt,m − xt+1,m) where we as-

sume wm,t = rim,(t−τm)+ . In particular, the reward generated in the tth time step is given by∑I
i=1

∑t
t′=0 ri,t−t′Xi,t−t′ where Xi,t−t′ = 1 if a job arriving to buffer i at the start of time step t′

was completed at time t, and is 0 otherwise. Since both the VFM and IR properties hold for this family
of stochastic depletion problems, we have via Lemmas 4.3 and 4.4, and Theorem 3.1 that the myopic
policy generates total expected rewards that are within a factor of 1/2 of the optimal policy. In fact, we
have shown that this performance guarantee holds relative to an optimal policy that has full knowledge
of the entire job-arrival process!

Continuous time variants of the problem above have been the subject of much study and results on
optimal control policies in various asymptotic parameter regimes are available (for example, see [3]); the
formulation we have discussed focuses on a different objective and a non-asymptotic parameter regime
thus complementing that body of work. Although distinct, it is interesting to note the similarity of our
myopic policy with the so-called c−µ scheduling rules (see for instance, [29]) for scheduling jobs arriving
to multiple buffers served by a single server with a view to minimizing total delay cost (every job incurs
a buffer dependent, typically linear, delay cost). In another example, still closer to our work, [4] consider
scheduling jobs arriving to multiple buffers served by a single server in discrete time and show the c− µ
rule to be optimal for arbitrary arrival processes and geometric service times if the service discipline
permits pre-emption. Relative to [4], we consider in our model the situation with multiple servers, each
of which can serve some subset of buffers. However, we maximize reward as opposed to minimizing cost.
Rewards decrease with delay incurred in a piece wise linear fashion, eventually decreasing to zero; our
model cannot accommodate negative rewards. In contrast, in the c−µ setting (necessarily non-negative)
costs increase linearly with delay.

5.2 Stochastic Broadcast Scheduling We consider a broadcast communication system where a
single data item may be simultaneously transmitted to multiple users. In particular, we consider the
following problem: we have a set of U users (indexed by u) and a finite set of data items or ‘pages’,
P = {1, . . . , n}, indexed by i. In every time slot τ ∈ {1, . . . , T − 1}, any given user may generate a
request for some page (or pages) he has not requested in the past. We assume that every request for a
page is associated with a deadline d ∈ {1, . . . , T −1}. Should a request for page i by user u be successfully
satisfied prior to its deadline, the transmitter earns non-negative reward rui . We assume that the arrival
process governing requests from users, as also the deadlines associated with those requests are exogenous
stochastic processes and further assume a (known) bound on the number of requests that may arrive in
any given time slot. In each time slot, a single page can be transmitted (although in what follows we could
as well consider allowing up to b pages). Due to the broadcast nature of the system, this transmitted
page may be transmitted simultaneously to up to k ≥ 1 users. The communication channel to users is
stochastic, so that should a page be transmitted to a particular user u in time t, that user receives the
page with some channel dependent probability Put which is itself an exogenous stochastic process. In
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each time slot, one must decide which page to transmit and to which k users in order to maximize the
expected reward accrued over T time slots.

Approximation algorithms for deterministic broadcast scheduling (where transmissions are successful
with probability 1 so that Put = 1 for all t, u) have received quite a bit of attention. The best known
approximation algorithm is a 4-approximation due to [1]. Without any constraints on the number of
requests which can be satisfied by a single broadcast (i.e. k = ∞), the best known algorithm is a 4/3-
approximation algorithm due to [14]. The best known online algorithm for the same is a 2-approximation
due to [20]. Specializing to this deterministic case, our myopic online algorithm improves upon the offline
results for ‘finite batching’ in [1] albeit for uniform item sizes. Modeling stochasticity in communication
channels to users is important since in real world systems, congestion and various physical phenomena
cause significant uncertainty in the successful transmission of pages. Scheduling communications over
stochastic channels is, of course, the focus of a substantial body of work in communications engineering.
See, for instance, [10, 27, 25] for models closely related to the broadcast scheduling model we have
presented. Most of that body of work is either simulation driven or else focuses on coarser performance
metrics (such as throughput optimality). A recent push in packetized multimedia scheduling has examined
the case of utility maximization in lossy networks (see [6] and related work). In this stream of work,
each packet is associated with a weight which represents the reduction in distortion achieved with the
reception of that packet, much like our formulation. Many of these formulations call for the solution of
intractable optimization problems and heuristics such as the greedy heuristic, or heuristics with limited
look-ahead become essential.

The stochastic broadcast scheduling problem we have presented may be cast as a Linear Decaying
Stochastic Depletion Problem. Every request is associated with four parameters (u, i, τ, d) representing
the user, page, time of request and request deadline respectively. We associate an item type with each
such request. Thus an item type m is identified by a request by user um for page im, with an arrival
time, τm, and deadline, dm. An activity A ∈ A is simply an assignment of a given page to k users. Given
a particular choice of activity A, the probability of depletion of a particular item type is simply given
by the quality of the channel to the user corresponding to that type, Put , provided that user u is served
under activity A; else it is 0. Of course a request may not be satisfied prior to its arrival or following the
expiration of its deadline, so that for item type m = (um, im, τm, dm):

Pt,m(A) = 1dm>t≥τm
1(im,um)∈AP

um
t

We define our reward function g according to g(xt, xt+1, t) =
∑
m wm(xt,m − xt+1,m) where we assume

wm = rum
im

. This is a Linear Decaying Stochastic Depletion Problem and since both the VFM and
IR properties hold for this family of stochastic depletion problems, we have via Theorem 3.1 that the
myopic policy generates expected value that is within a factor of 1/2 of the optimal policy. Moreover, the
complexity of the heuristic is essentially the lowest we may expect for this problem, i.e. computational
complexity grows linearly with the number of requests to be considered and the horizon. This is also
substantially lower than some of the tailored approximation methods (such as [14]) that require solving
linear programs with a number of variables that grows linearly with the number of requests and the
length of the horizon.

It is interesting to consider a special case of the stochastic broadcast scheduling problem we have
presented: In particular, assuming that all requests are known at time t = 0 and further that all these
requests have deadline T , the myopic policy is in fact optimal if the channel to each user is ‘static’, i.e.,
Put = Cu, for all u and if at most a single packet may be broadcast to all (or up to k) users in any time
step. This is established via an interchange argument; the proof of the following Lemma may be found in
the appendix. The result for the case where k < ∞ may be established via an essentially identical (but
notationally cumbersome) interchange argument.

Lemma 5.1 Suppose all requests are available at t = 0 and share deadline T . Then, if Put is constant
(= Cu) for all u, and at most a single packet may be broadcast to all users in a given time step (i.e. b = 1
and k =∞), then, Jπ

g

(s0) = J∗(s0) for all s0 ∈ S.

Lemma 5.1 allows one to interpret the myopic heuristic for the general stochastic broadcast scheduling
problem as one that at every time-step t, makes the simplifying assumption that all channels are static
with success probabilities given by Put and that no further arrivals will be observed. This is, in fact, a
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common engineering design principle for scheduling over dynamic channels. For instance, [28, 7, 9, 18, 8, 6]
all derive optimal scheduling policies for problems similar to the broadcast scheduling problem here under
the assumption of a static channel and other simplifying assumptions. The hope is that in conjunction
with frequent channel state re-estimation (that is, frequent re-estimation of channel success probabilities),
the use of scheduling schemes so derived may prove to be a very effective heuristic. In addition to being
simple to implement and typically fast in practice, such an approach is robust to errors in specifying
channel dynamics. Lemma 5.1 and Theorem 3.1 thus lend theoretical support to this popular design
principle. In particular, one may simply design a scheduling scheme assuming a static channel; one then
employs this scheme in tandem with repeated channel re-estimation. Put another way, simply accounting
for channel state suffices to obtain levels of performance within 50 % to optimal.

5.3 Dynamic Product Line Design Consider a firm that is capable of producing an array of
related products that may potentially be sold to one or more customer segments, each distinguished by
its willingness to pay for various product features. For a variety of reasons (manufacturing capacity and
cost, marketing capabilities, etc.), the firm may be constrained in the number of different products it
is capable of simultaneously offering for sale. Further, external competition may impose limitations on
the prices the firm can post for a given product. Faced with these restrictions, the firm must decide on
a product line to offer with a view to maximizing revenues. This is the essence of product line ‘design’
problems that have been extensively considered in the operations research and marketing literature. For
instance, the classic third degree price discrimination model of [24] forms the basis of design principles
that center on explicit market segmentation (see [13]). Alternatively, assuming a model of customer
preference for various product attributes, one may consider optimizing the attributes of products offered
for sale so as to maximize revenues; customers ‘self-select’ product types that are of greatest appeal in
this case. A number of product line design problems of this type have been considered in past literature;
[22, 21, 30, 17] are a few examples. A common thread to this work, however, is their consideration of
static models. In reality, demand shocks and demand seasonality make the optimal product line design
problem an inherently dynamic one. For instance, consider the following example that illustrates the
potential importance of accounting for seasonality in demand:

Example 5.1 A firm may offer at most one of two products (‘outdated’ or ‘new’) for sale at any epoch
(over two successive sales epochs) to two distinct consumer segments - ‘bargain hunters’ and ‘early
adopters’. Bargain hunters will purchase only the outdated product for 1 dollar in the first period with
probability 1 and will make no purchase in period 2. ‘Early adopters’ will purchase only the new product
with probability 1 in either epoch for 1+ε dollars. Assume we begin with an equal number of consumers in
both segments. It is clear that a product line selection strategy that accounts for seasonality (by delaying
the introduction of the new product to the second period) will earn about twice the revenues earned by a
myopic strategy over two sales epochs.

How does one interpret the above example and to what extent must one account for seasonality and
demand shocks in designing product lines? Motivated by this question, we consider the following dynamic
product line design problem: a firm is capable of offering products from some set P and must at any
point in time offer a subset of products A ⊂ P with |A| ≤ k. The firm’s products are purchased by I
consumer segments and we let xt,i denote the size of the ith segment in the tth sales epoch. Assuming
that the product line offered at time t is A, any segment i consumer present in the market at that time
t will purchase a product in A with known probability Pt,i(A). Such a sale garners the seller revenue
pi and the consumer is lost to the system so that the size of the ith segment after sales in that epoch
become xt,i −XA

t,i where XA
t,i is a Binomial-(xt,i, Pt,i(A)) random variable. We assume that the firm has

modeled the dynamics of the Pt processes and wishes to maximize expected revenues over T sales epochs.

It is worthwhile discussing some of the salient features of our model

(i) We model the fact that a customer from a given segment may satisfy his requirement by the
purchase of one of several product types (a purchasing customer may substitute between products
in A), and that the probability of a particular segment purchasing a product is influenced by the
entire array of product types offered (Pt,i is a function of A). Such a model permits customer
self-selection but under the restriction that all substitutes (all products in P) are offered at the
same price to every segment; this is precisely the type of model considered by [30]. Alternatively,
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one may view the model as assuming that the seller has a means of directly segmenting customers
(as in [13]) and allowing for segment specific prices i.e. prices pi that depend on the segment i.

(ii) We allow for general models of demand seasonality. In particular, we make no assumptions on
the dynamics of the Pt processes. Further, we explicitly model the impact of current sales on
future demands (‘market saturation’). In particular, the number of sales in a given epoch are
influenced by the sizes of the various customer segments xt,i in that epoch; sales in a given period
cause a reduction in these sizes thereby lowering potential sales to those segments in subsequent
periods.

(iii) We assume that the product line designer has available an estimate of market size within each
consumer segment, i.e. he can estimate xt,i over time. Such an assumption is potentially valid
in several industries; see [31] for a practical discussion of this issue.

(iv) Prices for each consumer segment are fixed. That is, a sale to a segment i customer must be at a
price pi that is independent of the product variant purchased. In reality fixed prices may arise,
for example, due to the need to align with prices offered by competitors.

(v) Finally, we assume no limitations to inventories of a given product so that all realized demand
in a period can be met. This is a simplification relative to models such as those considered by
[30]. Nonetheless, for high margin products where the cost of a lost sale is far higher than that
of an unsold unit of inventory, this is likely to be a relatively mild simplification.

It is simple to cast the above model as a Linear Decaying Stochastic Depletion Problem. In particular
we associate with each customer segment i an item type m. Our set of activitiesA = {A : A ∈ P, |A| ≤ k},
and depletion probabilities for item type m are specified according to Pt,m(A) = Pt,im(A). We define our
reward function g according to g(xt, xt+1, t) =

∑
m wm,t(xt,m − xt+1,m) where we assume wm,t = pim .

This is a Linear Decaying Stochastic Depletion Problem, so that Lemmas 4.3 and 4.4 with Theorem 3.1
immediately tell us that a myopic policy generates expected revenues within a factor of 1/2 of the optimal
policy.

From a managerial perspective, this suggests a robust recipe for dealing with demand shocks and
seasonality: at every opportunity for product line update, one simply solves a static product line design
problem with suitably revised estimates of the relevant customer demand model and market sizes. That
is, optimization that entirely ignores contingencies for future demand shocks or seasonality but accounts
for the current demand environment is already likely to be quite good and in particular, will provide
expected revenues at least within 50% of an optimal scheme in the context of the dynamic product line
design model considered here.

6. Applications: Stochastic variants of submodular maximization problems over Matroids
In this section, we turn our attention to the use of the stochastic depletion framework as a useful stochastic
analogue to submodular maximization problems over simple matroids such as the cardinality matroid and
the partition matroid. A number of hard deterministic optimization problems can frequently be reduced
to problems of this nature and in doing so, finding good approximation algorithms for these problems
is reduced to the task of finding a good oracle for the myopic sub-problem (for a number of recently
considered problems of this type, see for instance, [15]). Our hope is to produce good approximation
algorithms for useful stochastic variants of such problems. As an illustration, we will later consider an
important stochastic generalization of the AdWords Assignment problem considered by [12] and [15].

Given a set E, let U = 2E . A cardinality matroid is a subset of U of the typeM = {F ⊂ E : |F | ≤ k},
where k is an integer. A partition matroid is a subset of U of the type M = {F ⊂ E : |F

⋂
Ei| ≤ ki ∀i}

where we assume E =
d⋃
n
i=0Ei and that integers ki for i = 0, 1, . . . , n are given.

Consider optimization problems of the form

max
A∈M

f(A) (4)

where f : 2E → R+ is a non-decreasing, submodular function. A number of interesting combinatorial
optimization problems are reduced to such maximization problems whereM is a cardinality or partition
matroid. We begin with establishing how such deterministic optimization problems are captured within
the stochastic depletion framework.



:
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 15

M is a cardinality matroid: We reduce (4) to a submodular stochastic depletion instance assuming
M is a cardinality matroid: We are given M = |E| item types and assume that we begin with a single
item of each type; i.e. x̄m = x0,m = 1. Let A = {1, 2, . . . .|E|} where Pt,m(j) = 1 if m = j and 0
otherwise. That is, we define an item type for each element of E and in every time step we are allowed
to deplete at most one item. We select as our reward function g(xt, xt+1, t) = f(x̄ − xt+1) − f(x̄ − xt)
and set T = k. Observe that the value of an optimal solution to this problem is precisely J∗(x̄, 0). With
Lemmas 4.1 and 4.2, Theorem 3.1 then immediately yields:

Corollary 6.1 The myopic heuristic is a 2-approximation algorithm for maximizing a non-decreasing
submodular function f over a cardinality matroid.

We remark that this is a weaker result than the well known optimal approximation ratio of e
e−1 due

to [23]. The analysis of Theorem 3.1, applies to a far broader class of problems, and in light of Example
4.1, we can not expect a tighter guarantee for the greedy heuristic via that general line of analysis.

M is a partition matroid: We reduce (4) to a submodular stochastic depletion instance assuming
M is a partition matroid: We are given M = |E| item types and set A = {1, 2, . . . .|E|}. We index the
elements of E by m which identifies a particular element of E with a particular item type and assume
that the first |E0| elements correspond to the elements of E0, the next |E1| elements to the elements of
|E1| and so forth. We set the time horizon T =

∑
i ki and define n+1 partitions of this horizon according

to Tj = [
∑j−1
l=0 kl,

∑j
l=0 kl − 1]. We assume Pt,m(j) = 1 iff m = j and t ∈ {Tj : m ∈ Tj}. We select as

our reward function g(xt, xt+1, t) = f(x̄ − xt+1) − f(x̄ − xt). In words, we define an item type for each
element of E and identify each subset Ei with a partition of time. At any point in time t ∈ Ti, we are
allowed to deplete at most one available item from the partition Ei. Observe that the value of an optimal
solution to this problem is precisely J∗(x̄, 0). The myopic heuristic for this stochastic depletion problem
corresponds precisely to the ‘local greedy’ heuristic introduced by [11], and we re-capture their result,
namely:

Corollary 6.2 The local greedy heuristic is a 2-approximation for maximizing a non-decreasing sub-
modular function f over a partition matroid.

Both classes of problems alluded to above have natural stochastic generalizations. As a simple ex-
ample, one may consider a stochastic generalization to the problem of submodular maximization over a
cardinality matroid which we refer to as the ‘stochastic selection problem’; as opposed to selecting at
most k elements from E, one is allowed k attempts at selecting elements of E. If at the tth selection
attempt one attempts to select element e ∈ E, the attempt is successful with probability P et where {P et }
is an arbitrary [0, 1] valued sequence specified for every e ∈ E. We would like to find an adaptive item
selection policy that maximizes the expected value of the set of successfully selected items. It is easy to
see that the stochastic selection problem includes as special cases appropriate stochastic generalizations
of problems such as the maximum coverage problem. The problem of adaptively selecting items so as to
maximize the expected value of the set of successfully selected items is seen to be a submodular stochastic
depletion problem using precisely the reduction for the cardinality matroid above and one immediately
has the following result.

Lemma 6.1 The myopic heuristic is a 2-approximation for the stochastic selection problem.

As an aside we note that if in addition, one assumes that P et = C, a constant for all t and e, it is simple
to demonstrate that the myopic heuristic is, in fact, an e

e−1 approximation. This may be demonstrated
as a corollary to the original result of [23]: one simply considers coupling the optimal and myopic schemes
so that on each sample path, both schemes have an identical number of successful placements.

We now consider in some detail, a practically relevant stochastic generalization of the AdWords Assign-
ment problem ([12]). The deterministic problem may be reduced to the maximization of a submodular
function over a partition matroid (see [15]). We reduce our stochastic generalization to a submodular
stochastic depletion problem.
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6.1 Cost-per-Click AdWords Assignment Consider the following optimization problem faced
by firms that serve ads on the internet. We are given a set of N advertisers (indexed by i) and K keywords
(indexed by k). The ith advertiser has a budget Bi(≥ 0) and submits to the firm a valuation vi,k for
every keyword k. In every one of T periods, a keyword from the set of K keywords arrives according to
some exogenous stochastic process. We assume that at most C advertisers’ ads can be assigned to the
arriving keyword. We denote by kt the index of the keyword arriving at time t. Should an advertiser i
be assigned to an arriving keyword, kt, at time t and if in addition his ad is clicked on, he pays the firm
the minimum of vi,kt

and his remaining budget at time t; this payment is subtracted from his available
budget. If the ad is not clicked on then no payments are made. We assume that should advertiser i
be assigned to keyword kt at time t, his ad is clicked on with probability P i,kt

t . Letting Vt,i denote the
random payment thus made by an advertiser in the tth period, we are interested in devising an adaptive
ad-to-keyword assignment scheme that maximizes E

[∑N
i=1(Bi ∧

∑
t Vt,i)

]
, that is, the expected revenues

earned by the firm.

The above problem was considered in a deterministic offline setting by [12] where it was assumed
that P i,kt = 1 for all t, i, k and in addition the sequence {kt} of arriving keywords was specified a-priori;
the variant we consider here is an important generalization to that model since in practice advertisers
make payments only if their displayed ads are clicked on, which happens with some positive, but small,
probability. In addition, our formulation also allows us to capture exogenous advertiser arrivals and
departures from the system - in particular, we simply assume P i,kt = 0 for all times t prior to a customers
arrival to the system and following his departure from the system.

This problem is easily cast as a submodular stochastic depletion problem: In particular, we define an
item type m for every advertiser-keyword-time triple (im, km, tm), and assume a single item of each type,
i.e. x0,m = x̄m = 1 for all m. The set of feasible activities, A, is the set of all subsets of item types, such
that each subset has cardinality at most C and contains at most one type specific to a given user i. The
probability that an item of type m is depleted at time t assuming one selects activity A is given by,

Pt,m(A) = 1{(im,km,tm)∈A,t=tm,kt=km}P
im,km

t .

Finally, the reward function, g(xt, xt+1, t) = w(x̄ − xt+1) − w(x̄ − xt) where w : ZM → R+ is defined
according to

w(x) =
∑
i

(
Bi ∧

∑
m:im=i

vim,km
xm

)
and thus satisfies Assumption 4.1. We finally note that the myopic sub-problem is trivial; it corresponds to
choosing the C highest expected revenue advertisers so that our heuristic is essentially the computationally
simplest heuristic one may consider for this problem with complexity that grows linearly in the number
of keywords and ads served over the horizon. With Lemmas 4.2 and 4.1, Theorem 3.1 yields:

Corollary 6.3 The myopic heuristic is a 2-approximation to Cost-per-Click AdWords Assignment

In our formulation, a feasible ads-to-keyword assignment was subject to a simple cardinality constraint:
an arriving keyword could have at most C ads assigned to it. We could instead consider using other,
more complex constraints: in particular, in the formulation of [12], every ad is associated with a rectangle
of a specific height and width, and every arriving keyword with an available rectangular display area; a
feasible assignment of ads to keywords is determined by a feasible packing of ad rectangles within the
display rectangle. Using the max-weight rectangle packing 2 + ε-approximation algorithm of [19] for the
myopic subproblem yields via Theorem 3.2, a 3 + ε-approximation guarantee for the myopic heuristic
which matches the best known approximation guarantee available for the original deterministic problem
(see [15]). In the deterministic case, our heuristic coincides precisely with that of [15]; the stochastic
generalization entails essentially no increase in computational complexity.

7. Concluding Remarks We have in the present work introduced a general class of dynamic
stochastic optimization problems - Stochastic Depletion problems. We believe this to be an interest-
ing class of problems: in spite of being fairly general, stochastic depletion problems frequently admit a
simple, myopic control policy which is at most a factor of 1/2 to optimal. This paper presented gen-
eral conditions under which a myopic control policy is a constant factor approximation algorithm for
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a stochastic depletion problem and went on to verify these properties for broad families of stochastic
depletion problems. This in turn yielded myopic approximation algorithms for a number of interesting
dynamic optimization applications.

There are several directions that deserve continued study. From an algorithmic perspective, one may
consider k-step lookahead policies as a generalization of the myopic (1-step lookahead) policies analyzed
here. Such policies select, at every point in time, an action that is optimal for a problem with a horizon
precisely k time steps ahead. It would be interesting to understand whether, or under what conditions,
such policies may be expected to dominate the myopic policy.

In addition to the applications in Section 5 and 6, it would be interesting to explore other dynamic
stochastic optimization problems that may be studied either within our framework or perhaps slight
modifications to it. For instance, the generalized assignment problem ([26]) is known to reduce to the
maximization of a submodular function over a partition matroid. An interesting stochastic generalization
of this problem that would allow for a number of interesting applications would involve making the
successful placement of an item in a bin stochastic. Unfortunately, this particular stochastic generalization
does not reduce to a stochastic depletion problem but is nonetheless very similar to one.

Another broad issue is identifying other families of stochastic depletion problems that satisfy the VFM
and IR properties, or in another direction, identifying conditions under which we may not expect one of
those properties to be satisfied. Yet another issue is the optimality of our approximation schemes: for
deterministic variants of several of the application problems considered in this work such as the submod-
ular maximization problems over matroids, there exist (typically, fairly complex) offline algorithms that
admit an approximation ratio of e

e−1 (see [5]). This guarantee is known to be optimal. That is, no effi-
cient approximation algorithm with a superior guarantee exists, unless P = NP . It would be interesting
to understand whether an approximation ratio of 2 is optimal in some sense for either of the families of
problems for which we have established that guarantee in this paper. In any case, given that the best
approximation guarantee we may expect is a factor of e

e−1 , it is remarkable that a simple myopic scheme
comes so close to achieving that guarantee and that this guarantee may be established in the generality
of the stochastic depletion framework.

Acknowledgments. The authors are grateful to Retsef Levi for valuable discussions, particularly in
relation to Section 6. Section 5.1 was motivated in part by discussions the second author had with Ben Van
Roy several years ago. The second author thanks Andreas Schulz for pointing out his interesting work on
submodular maximization. Finally, the authors thank two anonymous referees for useful comments that
improved the exposition of this work. The first author was supported by a STMicroelectronics Stanford
Graduate Fellowship. This research was supported in part by the Solomon Buchsbaum Research Fund.

References

[1] A. Bar-Noy, S. Guha, Y Katz, J. Naor, B. Schieber, and H. Shachnai, Throughput maximization of
real-time scheduling with batching, Proc. SODA, 2002, pp. 742–751.

[2] A Bassamboo, J.M. Harrison, and A. Zeevi, Design and control of a large call center: Asymptotic
analysis of an lp-based method, Operations Research 54 (2006), 419–435.

[3] , Dynamic routing and admission control in high volume service systems: Asymptotic analysis
via multi-scale fluid limits, Queueing Systems Theory and Applications 51 (2006), 249–285.

[4] P. Varaiya C. Buyukkoc and J. Walrand, The c− µ rule revisited, Advances in Applied Probability
17 (1985), 237–238.

[5] G. Calinescu, G. Chekuri, M. Pál, and J. Vondrák, Maximizing a submodular set function sub-
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Appendix A. Miscellaneous Technical Proofs Proof of Lemma 4.3. Consider using an
optimal policy starting at state s̄. Let us partition the initial set of jobs into a set of ‘fictitious’ and ‘real’
jobs; we assume that we begin with αm fictitious jobs of type m and x(s̄)m − αm real jobs of type m.
This partitioning serves purely as a labeling of jobs and does not impact the system in any fashion. In
particular, if at some point in time t, we have xft,m and xrt,m fictitious and real jobs of type m respectively,
then using activity set A results in the completion of Xf

t,m and Xr
t,m fictitious and real jobs respectively

where Xf
t,m is a Bernoulli-(xft,m, Pt,m(A)) random variable and Xr

t,m is a Bernoulli-(xrt,m, Pt,m(A)) random
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variable (so that Xf
t,m + Xr

t,m
d=Xt,m). The revenues earned are

∑
mX

f
t,mwt,m and

∑
mX

r
t,mwt,m and

we are left with xft,m −X
f
t,m and xrt,m −Xr

t,m fictitious and real jobs respectively.

Denote by Jf,∗(s̄) the expected reward-to-go under an optimal policy starting at state s̄ earned from the
completion of fictitious jobs. Likewise, we define Jr,∗(s̄) as the expected reward-to-go under an optimal
policy starting at state s̄ earned from the completion of real jobs. Now, by construction, Jf,∗(s̄)+Jr,∗(s̄) =
J∗(s̄). Since at best our scheduling policy can exhaust all fictitious jobs and since wt,m is non-increasing
in t for all m, Jf,∗(s̄) ≤

∑
m αmwt(s̄),m. Now, Jr,∗(s̄) may be viewed as the reward-to-go under some

admissible policy π starting at state S̃α(s̄)). Noting that x(S̃α(s̄))m is precisely the initial number of
‘real’ jobs of type m, we then have: Jr,∗(s̄) = Jπ(S̃α(s̄))) ≤ J∗(S̃α(s̄))). Consequently, we have,

J∗(s̄) = Jf,∗(s̄) + Jr,∗(s̄) ≤
∑
m

αmwt(s̄),m + J∗(S̃α(s̄))),

which is the result. �

Proof of Lemma 5.1. Note that since the processes Put are deterministic here, we may without
loss restrict attention to policies that are functions of only time t, and (x1, x2, . . . , xU ). Here xu(s)i is
equal to 1 if in state s user u has not yet received page i. Let wui = rm for item m = (i, u, τm, dm). Recall
by assumption that all packets are known a priori and share a common deadline of T , so that τm = 0 and
dm = T for all m. We define the set of myopic packets as P∗0 = argmaxi

∑
u Cuw

u
i x

u(s0)i. Let us assume
for the sake of contradiction that in state s0, no optimal policy transmits a packet in P∗0 . Let π∗ be an
optimal policy; π∗(s0) /∈ P∗0 . Without loss of generality, we can assume that t(s0) = 0. In particular, if
t(s0) 6= 0, we may consider a problem with time indexed by t′ = t− t(s0) and horizon T ′ = T − t(s0).

Define a policy π̄ according to:

π̄(s) = πg(s) ∀s s.t. t(s) = 0.
π̄(s) = π∗(f(s)) ∀s s.t. t(s) > 0.

where f : S → S is defined according to x(f(s))πg(s0) = x(s0)πg(s0), x(f(s))i = x(s)i ∀i 6= πg(s0), and
t(f(s)) = t(s)− 1.

Letting S∗t denote the random state at time t under π∗, let τ = min{t < T : π∗(S∗t ) ∈ P∗0} (set τ to
∞ if the set is empty). Since Put = Cu for all t, we may, for an arbitrary alternative policy π, couple the
sample paths under π and π∗, such that Y πi,k = Y π

∗

i,k for all k, i, where Y πi,k and Y π
∗

i,k denote respectively
the random vector of successful transmissions of packet i at the kth transmission of that packet under
policy π and π∗ respectively. Consider using policy π̄ for t ≤ τ and policy π∗ thereafter. We call this
policy π′. π′ may be constructed as an admissible randomized policy. Letting S′t denote the random
state in time slot t under π′, we have under this coupling that S′t = S∗t for all t ≥ τ + 1. For t < τ + 1,
x(S′t+1)k = x(S∗t )k for all k 6= πg(s0). x(S′t)πg(s0) = x(s0)πg(s0) − Y π

′

πg(s0),1 for 0 < t < τ + 1, while
x(S∗t )πg(s0) = x(s0)πg(s0) for 0 < t < τ .

Denote by Rπ
′

t and Rπ
∗

t the random rewards earned in the tth time step under the π′ and π∗ policies re-
spectively, so that J∗(s0) = E[

∑
tR

π∗

t ] and Jπ
′
(s0) = E[

∑
tR

π′

t ]. Now observe that by our construction,
the following facts are true.

(i) E[Rπ
′

0 ] ≥ E[Rπ
∗

τ∧T−1]. Recall that since there are no arrivals in this system x(S∗τ∧T−1)i ≤ x(s0)i
for all i. We have:

E[Rπ
∗

τ∧T−1] ≤ E
[
max
i
E
[
R(S∗τ∧T−1, i)|S∗τ∧T−1

]]
= E

[
max
i

∑
u

Cuw
u
i x

u(S∗τ∧T−1)i

]

≤ E

[
max
i

∑
u

Cuw
u
i x

u(s0)i

]
= max

i

∑
u

Cuw
u
i x

u(s0)i

= max
i
E[R(s0, i)]

= E[Rπ
′

0 ]
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where the first equality follows from the fact that τ∧T−1 is a stopping time w.r.t. σ(S∗0 , . . . , S
∗
t ).

(ii) Rπ
′

t = Rπ
∗

t−1 for 0 < t ≤ τ by the definition of π′ which uses policy π̄ for 0 < t ≤ τ and by our
coupling.

(iii) Rπ
′

t = Rπ
∗

t for t > τ because by our coupling and the definition of π′, Sπ
′

τ+1 = Sπ
∗

τ+1. Then for
t > τ , π′ and π∗ coincide.

We thus have:

T−1∑
t=0

Rπ
′

t = Rπ
′

0 +
T−1∑
t=1

[
1t≤τRπ

∗

t−1 + 1t>τRπ
∗

t

]
= Rπ

′

0 +
T−1∑
t=1

[
1t≤τ (Rπ

∗

t−1 −Rπ
∗

t ) +Rπ
∗

t

]
= Rπ

′

0 − 1T−1<τR
π∗

T−1 − 1T−1≥τR
π∗

τ +
T−1∑
t=0

Rπ
∗

t

= Rπ
′

0 −Rπ
∗

T−1∧τ +
T−1∑
t=0

Rπ
∗

t

where the first equality follows from points (2) and (3). Taking expectations, yields

Jπ
′
(s0) = E[

T−1∑
t=0

Rπ
′

t ] = E[Rπ
′

0 ]− E[Rπ
∗

T−1∧τ ] + E[
T−1∑
t=0

Rπ
∗

t ]

≥ E[
T−1∑
t=0

Rπ
∗

t ]

= J∗(s0)

where the inequality follows from point (1). Thus, π′ is an optimal policy as well. This contradicts our
assumption that no optimal policy transmits a packet in P∗0 in state s0. We may thus assume without
loss that for all states s0 ∈ S an optimal policy transmits a packet in P∗0 . This suffices for the proof. �


