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This paper considers the multiarmed bandit problem with multiple simultaneous arm pulls and the additional restriction that
we do not allow recourse to arms that were pulled at some point in the past but then discarded. This additional restriction
is highly desirable from an operational perspective, and we refer to this problem as the “irrevocable multiarmed bandit”
problem. We observe that natural modifications to well-known heuristics for multiarmed bandit problems that satisfy this
irrevocability constraint have unsatisfactory performance and, thus motivated, introduce a new heuristic: the “packing”
heuristic. We establish through numerical experiments that the packing heuristic offers excellent performance, even relative
to heuristics that are not constrained to be irrevocable. We also provide a theoretical analysis that studies the “price” of
irrevocability, i.e., the performance loss incurred in imposing the constraint we propose on the multiarmed bandit model.
We show that this performance loss is uniformly bounded for a general class of multiarmed bandit problems and indicate its
dependence on various problem parameters. Finally, we obtain a computationally fast algorithm to implement the packing
heuristic; the algorithm renders the packing heuristic computationally cheaper than methods that rely on the computation
of Gittins indices.
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1. Introduction
Consider the operations of a “fast-fashion” retailer such as
Zara or H&M. Such retailers have developed and invested
in merchandise procurement strategies that permit lead
times for new fashions as short as two weeks. As a con-
sequence of this flexibility, such retailers are able to adjust
the assortment of products offered on sale at their stores to
quickly adapt to popular fashion trends. In particular, such
retailers use weekly sales data to refine their estimates of an
item’s popularity, and based on such revised estimates weed
out unpopular items, or else restock demonstrably popular
ones on a week-by-week basis. In view of the great deal of
a priori uncertainty in the popularity of a new fashion and
the speed at which fashion trends evolve, the fast-fashion
operations model is highly desirable and emerging as the
de facto operations model for large fashion retailers.

Among other things, the fast-fashion model relies cru-
cially on an effective technology to learn from purchase
data and adjust product assortments based on such data.
Such a technology must strike a balance between “ex-
ploring” potentially successful products and “exploiting”
products that are demonstrably popular. A convenient math-
ematical model within which to design algorithms capable
of accomplishing such a task is that of the multiarmed ban-
dit. Although we defer a precise mathematical discussion
to a later section, a multiarmed bandit consists of multi-
ple (say n) “arms,” each corresponding to a Markov deci-

sion process (MDP). As a special case, one may think of
each arm as an independent Bernoulli random variable with
an uncertain bias specified via some prior distribution. At
each point in time, one may “pull” up to a certain number
of arms (say k < n) simultaneously. For each arm pulled,
we modify our estimate of its bias based on its realization
and earn a reward proportional to its realization. We nei-
ther learn about, nor earn rewards from, arms that are not
pulled. The multiarmed bandit problem requires finding a
policy that adaptively selects k arms to pull at every point in
time with an objective of maximizing total expected reward
earned over some finite time horizon or, alternatively, dis-
counted rewards earned over an infinite horizon or perhaps
even long-term average rewards.
The multiarmed bandit model, although general and im-

mensely useful, fails to capture an important restriction one
faces in several applications. In particular, in a number
of applications, the act of “pulling” an arm that has been
pulled in the past but discarded in favor of another arm
is undesirable or unacceptable. Ignoring references to the
extant literature for now, examples include the following:
Fast Fashion: The fixed costs associated with the intro-

duction of a new product make frequent changes in the
assortment of products offered undesirable. More impor-
tantly, fast-fashion retailers rely heavily on discouraging
their customers from delaying/strategizing on the timing of
their purchase decisions. They accomplish this by adhering
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to strict restocking policies; reintroduction of an old prod-
uct is undesirable from this viewpoint.

Call-Center Hiring: Given the rich variety of tasks call-
center workers might face, recent research has raised the
possibility of “data-driven” hiring/staff allocation decisions
at call centers. In this setting, the act of discarding an arm
is equivalent to a firing or reassignment decision; it is clear
that such decisions are difficult to reverse.

Clinical Trials: A classical application of the bandit
model, the act of discarding an arm in this setting is equiva-
lent to the discontinuation of trials on a particular treatment.
The ethical objections to administering treatments that may
be viewed as inferior play a critical role in the design of
such trials, and it is reasonable to expect that restarting tri-
als on a procedure after a hiatus might well raise ethical
concerns.

This paper considers the multiarmed bandit problem
with an additional restriction: we require that decisions to
remove an arm from the set of arms currently being pulled
be “irrevocable.” That is, we do not allow recourse to arms
that were pulled at some point in the past but then dis-
carded. We refer to this problem as the irrevocable multi-
armed bandit problem. We introduce a novel heuristic we
call the “packing” heuristic for this problem. The pack-
ing heuristic establishes a static ranking of bandit arms
based on a measure of their potential value relative to the
time required to realize that value and pulls arms in the
order prescribed by this ranking. For an arm currently being
pulled, the heuristic may either choose to continue pulling
that arm in the next time step or else discard the arm in
favor of the next-highest ranked arm not currently being
pulled. Once discarded, an arm will never be chosen again,
hence satisfying the irrevocability constraint. We demon-
strate via computational experiments that the use of the
packing heuristic incurs a small performance loss relative
to an optimal bandit policy without the irrevocability con-
straint. In greater detail, the present work makes the fol-
lowing contributions.

We introduce the irrevocable multiarmed bandit problem
and develop a heuristic for its solution, motivated by recent
advances in the study of stochastic packing. We present a
computational study that demonstrates that the performance
of the packing heuristic compares favorably with a com-
putable upper bound on the performance of any (potentially
nonirreovocable) multiarmed bandit policy. Our policy also
compares favorably with a bandit heuristic proposed by
Whittle (1998) that is not irrevocable.

We present a theoretical analysis to bound the perfor-
mance loss incurred relative to an optimal policy with
no restrictions on irrevocability. We characterize a gen-
eral class of bandits for which this “price of irrevocability”
is uniformly bounded. We show that this class of bandits
admits the “learning” applications we have alluded to thus
far. For bandits within this class, we show that the packing
heuristic earns expected rewards that are at last within a

factor of 1/8 of an optimal policy for the classical multi-
armed bandit. We also present stronger performance guar-
antees in an asymptotic parameter regime first studied by
Whittle.
In the interest of practical applicability, we develop a

fast, essentially combinatorial implementation of the pack-
ing heuristic. Assuming that an individual arm has O���
states, and given a time horizon of T steps, our imple-
mentation requires a total of O�n�2 logT � computations
per time step amortized over the time horizon. In contrast,
Whittle’s heuristic requires O�n�2T logT � computations
per time step.

1.1. Relevant Literature

The multiarmed bandit problem has a rich history, and a
number of excellent references (such as Gittins 1989) pro-
vide a thorough treatment of the subject. Our considera-
tion of the “irrevocable” multiarmed bandit problem stems
from a number of applications of the bandit framework
alluded to earlier. Caro and Gallien (2007) have consid-
ered using the multiarmed bandit for the assortment design
problem faced by fast-fashion retailers. Pich and Van der
Heyden (2002) emphasize the importance of not allow-
ing for “repeat” products in an assortment in that setting.
Arlotto et al. (2010) consider the application of the multi-
armed bandit model in the context of ascertaining the suit-
ability of individuals for a given task at a call center. The
methodology suggested by the authors respects the irrevo-
cability constraint studied here and is similar to an irrevo-
cable version of Whittle’s heuristic that we will examine
later. This constraint is quite natural to their setting because
firing decisions are difficult to reverse. Finally, there is a
very large and varied literature on the design of clinical tri-
als, and we make no attempt to review that here. “Ethical”
experimentation policies are an overriding theme of much
of the work in this area; see Anscombe (1963) for an early
treatment of the subject and Armitage et al. (2002) for a
more recent overview.
There has been a great deal of work on heuristics for

the multiarmed bandit problem. In the case where k = 1,
that is, allowing for a single arm to be pulled in a given
time step, Gittins and Jones (1974) developed an elegant
index-based policy that was shown to be optimal for the
problem of maximizing discounted rewards over an infinite
horizon. Their index policy is known to be suboptimal if
one is allowed to pull more than a single arm in a given
time step. Whittle (1988) developed a simple index-based
heuristic for a more general bandit problem (the “restless”
bandit problem) allowing for multiple arms to be pulled in
a given time step. Although his original paper was con-
cerned with maximizing long-term average rewards, his
heuristic is easily adapted to other objectives such as dis-
counted infinite-horizon rewards or expected rewards over
a finite horizon (see, for instance, Bertsimas and Niño-
Mora 2000, Caro and Gallien 2007). It is important to note,
however, that much of the extant performance analysis for
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bandit problems (beyond the initial work of Gittins and
Jones 1974) in general, and Whittle’s heuristic in particu-
lar, focuses on bandits with a single recurrent class and the
average cost/reward criterion. In that setting, Weber and
Weiss (1990) presented a set of technical conditions that
guarantee that Whittle’s heuristic is asymptotically optimal
(in a regime where n and k go to infinity keeping n/k con-
stant) for the general restless bandit problem and further,
that Whittle’s heuristic is not optimal in general. The con-
ditions proposed by Weber and Weiss (1990) are nontrivial
to verify because they require checking the global stability
of a system of nonlinear differential equations. In addition,
there is a vast amount of work that analyzes special appli-
cations of the bandit model (for instance in scheduling, or
queueing problems) that we do not review here.

Although the assumption of a single recurrent class and
the average reward criterion permits performance analysis
(via certain mean-field approximation techniques), such a
setting immediately rules out a vast number of interesting
bandit problems, including most learning applications. In
addition to the fact that the assumption of a single recur-
rent class does not hold, the average reward criterion is too
coarse for such applications: very crudely, optimal poli-
cies for this criterion do not face the problem of carefully
allocating an “exploration budget” across arms. More pre-
cisely, any policy with “vanishing regret” (Lai and Robbins
1985) is optimal for the average reward criterion. A rel-
atively recent paper by Glazebrook and Wilkinson (2000)
establishes that a Whittle-like heuristic for irreducibile mul-
tiarmed bandits and the discounted infinite-horizon crite-
rion approaches the optimal policy at a uniform rate as the
discount factor approaches unity; this is a regime where
the average cost and discounted cost criteria effectively co-
incide. Moreover, the requirement of irreducibility again
rules out Bayesian learning applications. Because the pack-
ing heuristic is certainly feasible for the multiarmed ban-
dit problem, we believe that the present work offers the
first performance bounds for an important general class
of multiarmed bandit problems with the finite time hori-
zon criterion and multiple simultaneous arm plays. The
packing heuristic policy builds upon recent insights on the
“adaptivity” gap for stochastic packing problems. In par-
ticular, Dean et al. (2008) recently established that a sim-
ple static rule (Smith’s rule) for packing a knapsack with
items of fixed reward (known a priori), but whose sizes
were stochastic and unknown a priori, was within a con-
stant factor of the optimal adaptive packing policy. Guha
and Munagala (2007) used this insight to establish a sim-
ilar static rule for “budgeted learning problems.” In such
a problem one is interested in finding a coin with highest
bias from a set of coins of uncertain bias, assuming that
one is allowed to toss a single coin in a given time step and
that one has a finite budget on the number of such experi-
mental tosses allowed. Our work parallels that work in that
we draw on the insights of the stochastic packing results of

Dean et al. (2008). In addition, we must address two signif-
icant hurdles—correlations between the total reward earned
from pulls of a given arm and the total number of pulls of
that arm (these turn out not to matter in the budgeted learn-
ing setting, but are crucial to our setting), and secondly,
the fact that multiple arms may be pulled simultaneously
(only a single arm may be pulled at any time in the bud-
geted learning setting). Finally, a paper (Goel et al. 2009)
brought to our attention by the authors of that work consid-
ers a variant of the budgeted learning problem of Guha and
Munagala (2007), wherein one is allowed to toss multiple
coins simultaneously. Although it is conceivable that their
heuristic may be modified to apply to the multiarmed ban-
dit problem we address, the heuristic they develop is also
not irrevocable.
Restricted to learning applications, our work takes

an inherently Bayesian view of the multiarmed bandit
problem. It is worth mentioning that there are a number of
nonparametric formulations to such problems with a vast
associated literature. Most relevant to the present model are
the papers by Anantharam et al. (1987a, b) that develop
simple “regret-optimal” strategies for multiarmed bandit
problems with multiple simultaneous plays. One could eas-
ily imagine imposing a similar “irrevocability” restriction
in that setting, and it would be interesting to design algo-
rithms for such a problem.
The remainder of this paper is organized as follows: Sec-

tion 2 presents the irrevocable multiarmed bandit model.
Section 3 develops the packing heuristic. Section 4 intro-
duces a structural property for bandit arms that we call
the “decreasing returns” property. It is shown that ban-
dits for learning applications possess this property. That
section then establishes that the price of irrevocability for
bandits possessing the decreasing returns property is uni-
formly bounded and develops stronger performance bounds
in interesting asymptotic parameter regimes. Section 5
presents very encouraging computational experiments for
large-scale bandit problems drawn from an interesting gen-
erative family. In the interest of implementability, §6 devel-
ops a combinatorial algorithm for the fast computation of
packing heuristic policies for multiarmed bandits. Section 7
concludes with a perspective on interesting directions for
future work.

2. The Irrevocable Multiarmed
Bandit Model

We consider a multiarmed bandit problem with multiple
simultaneous “pulls” permitted at every time step and “irre-
vocability” restrictions. A single bandit arm (indexed by i)
is a MDP specified by a state space � i, an action space,
�i, a reward function ri� � i ×�i → �+, and a transition
kernel Pi� � i ×�i ×� i → �0�1�; Pi�xi�ai�yi� is thus the
probability that employing action ai on arm i while it is
in state xi will lead to a transition to state yi. Given the
state and action for an arm i at some time t, the evolution
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of the state for that arm over the subsequent time step is
independent of the other arms.

Every bandit arm is endowed with a distinguished “idle”
action �i. Should a bandit be idled in some time period, it
yields no rewards in that period and transitions to the same
state with probability 1 in the next period. More precisely,

ri�si��i�= 0� ∀ si ∈� i�

Pi�si��i� si�= 1� ∀ si ∈� i�

We consider a bandit problem with n arms. The only
action available at arms that were idled in the prior time
step but pulled at some point in the past is the idle action;
that is, the decision to idle an arm pulled in the previous
time step is “irrevocable.” Should an action other than the
idle action be selected at an arm, we refer to such a selec-
tion as a “pull” of that arm. That is, any action ai ∈�i\��i�
would be considered a pull of the ith arm. In each time step
one must select a subset of up to k�� n� arms to pull. One
is forced to pick the idle action for the remaining n − k
arms. We wish to find an action selection (or control) pol-
icy that maximizes expected rewards earned over T time
periods. Our problem may be cast as an optimal control
problem. In particular, we define as our state space the
set � =�

i� i and as our action space the set �=�
i�i.

We let � = �0�1� � � � �T − 1�. We understand by si, the ith
component of s ∈ � , and similarly let ai denote the ith
component of a ∈�.

We define a reward function r � � ×�→ �+, given by
r�s�a�=�

i ri�si�ai� and a system transition kernel P � �×
�×� → �0�1�, given by P �s�a� s��=�iPi�si�ai� s

�
i�.

We now formally develop what we mean by a feasible
control policy. Let X0 be a random variable that encapsu-
lates any endogenous randomization in selecting an action,
and define the filtration generated by X0 and the history of
visited states and actions by

� t = ��X0� �s
0�� �s1�a0�� � � � � �st�at−1���

where st and at denote the state and action at time t, respec-
tively. We assume that ��st+1 = s� � st = s�at = a�Ht =
ht�= P �s�a� s�� for all s� s� ∈� , a ∈�, t ∈� and any � t-
measurable random variable Ht . A feasible policy simply
specifies a sequence of �-valued actions �at� adapted to
� t and satisfying

at
i =�i if at−1

i =�i and

∃t� < t with at�
i �=�i (irrevocability)

�

i

1�ati �=�i�
� k (at most k simultaneous pulls)�

In particular, such a policy may be specified by a col-
lection of ��X0� measurable, �-valued random variables,
���s0� � � � � st�a0� � � � �at−1� t��, one for each possible state-
action history of the system. We let M denote the set of all

such policies �, and denote by J ��s�0� the expected value
of using policy � starting in state s at time 0; in particular,

J ��s�0�=E

� T−1�

t=0

r�st�at�

���� s
0 = s�

�
�

where at = ��s0� � � � � st�a0� � � � �at−1� t�. Our goal is to
compute an optimal feasible policy. In particular, we
would like to find a policy �∗ that achieves J �∗

�s�0� =
sup�∈M J ��s�0�.

3. The Packing Heuristic
The irrevocable multiarmed bandit problem defined above
does not appear to admit a tractable optimal solution. As
such, this section focuses on developing a heuristic for
the problem that we will subsequently demonstrate offers
excellent performance and admits uniform performance
guarantees. We begin this section with an overview of our
proposed heuristic: Assume that we are given some set of
policies, one for each individual arm, �̄i� � i →��i

(where
��i

is the ��i� dimensional unit simplex). Notice that unlike
the optimal policy for the (irrevocable) multiarmed bandit
problem, this set is a tractable object because each policy
is specified as a function of the state of a single arm. Con-
sider applying policy �̄i to the ith arm in isolation over
T time periods. Let �i��̄i� be the expected reward garnered
from the arm, and let �i��̄i� be the expected number of
times the arm was pulled over this T -period horizon. Next,
consider the problem of finding individual arm policies �̄i

to solve the following problem:

max
�̄i� i=1�2�����n

�

i

�i��̄i�

s� t�
�

i

�i��̄i�� kT �

The above program can be expressed as a linear program
with a tractable number of variables and constraints. The
value of this program provides an upper bound on the per-
formance of an optimal policy for the classical multiarmed
bandit problem. In fact, we will derive this program by
considering a natural relaxation of the classical multiarmed
bandit problem. Although we do not show it, Whittle’s
heuristic may be viewed as a policy motivated by the dual
of this program. Given a solution, �̄∗, to the above pro-
gram, the “packing heuristic” we propose operates roughly
as follows:
• Sort the arms in decreasing order of the ratio �i��̄

∗
i �/

�i��̄
∗
i �.

• Select the top k arms according to this ranking, and
select actions for these arms according to their respective
policies �̄∗

i . Should the policy for a specific arm choose not
to pull that arm, discard it, and replace it with the highest-
ranked arm from the set of arms that have not been selected
yet. Once all arms are set to be pulled, let time advance.
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• In the tth time step, repeat the above proce-
dure starting with the set of arms pulled in the �t−1�st
time step. If an arm is discarded, its place is taken by the
highest-ranked arm according to our initial ranking from
among the arms not selected yet; discarded arms can thus
never be reintroduced.

In the remainder of this section, we rigorously develop
the heuristic described above. We begin by considering the
classical multiarmed bandit problem, which may be viewed
as a relaxation of the irrevocable problem, and we describe
a (standard) linear program for its solution.

3.1. Computing an Optimal Policy Without
Restrictions on Irrevocability

It is useful to consider the classical multiarmed bandit
problem (without the irrevocability constraint) in designing
policies for the irrevocable multiarmed bandit problem. In
finding an optimal policy for the classical multiarmed ban-
dit problem, it suffices to restrict attention to Markovian
policies. A Markovian policy in this case is specified as
a collection of independent � valued random variables
���s� t��, each measurable with respect to ��X0�, satisfy-
ing

�
i 1���s� t�i �=�i�

� k, for all s� t. In particular, assuming
the system is in state s at time t, such a policy selects an
action at as the random variable ��s� t�, independent of
past states and actions.

We denote an optimal Markovian policy for the classical
bandit problem by �∗

UB and let J ∗
UB�s�0� denote the value

garnered under this policy starting in state s at time t. Now,
J ∗
UB�s�0�� J ∗�s�0� because a feasible policy for the irre-
vocable bandit problem is clearly feasible for the classical
bandit problem. The policy �∗

UB may be found via the solu-
tion of the following linear program, LP� ��0�, specified by
a parameter ��0 ∈�� that determines the distribution of arm
states at time t = 0. Here, �feas = �a ∈��

�
i 1�ai �=�i�

� k�.

max
�

t

�

s�a

��s�a� t�r�s�a��

s� t�
�

a

��s�a� t�=
�

s��a�
P �s��a�� s���s��a�� t− 1��

∀ t > 0� s ∈� �

��s�a� t�= 0� ∀ s� t�a��feas

�

a

��s�a�0�= ��0�s�� ∀ s ∈� �

� � 0�

where the variables are the state-action frequencies
��s�a� t�, which give the probability of being in state s at
time t and choosing action a. The first set of constraints
in the above program simply enforces the dynamics of the
system, whereas the second set of constraints enforces the
requirement that at most k arms are simultaneously pulled
at any point in time. An optimal solution to the program
above may be used to construct a policy �∗

UB that attains

expected value J ∗
UB�s�0� starting at any state s for which

��0�s�> 0. In particular, given an optimal solution �opt to
LP� ��0�, one obtains such a policy by defining �∗

UB�s� t�
as a random variable that takes value a ∈� with probabil-
ity �opt�s�a� t�/

�
a�

opt�s�a� t�. By construction, we have
E�J ∗

UB�s�0� � s ∼ ��0�=OPT�LP� ��0��. Efficient solution of
the above program is not a tractable task, and we next con-
sider making a further relaxation: instead of allowing up to
k pulls in a given time step, we require that this constraint
only be met in expectation.

3.2. A Further Relaxation

Consider the following relaxation of the program LP� ��0�,
RLP� ��0�:

max
�

i

�

t

�

si�ai

�i�si�ai� t�ri�si�ai��

s� t�
�

ai

�i�si�ai� t�=
�

s�i �a
�
i

Pi�s
�
i�a

�
i� si��i�s

�
i�a

�
i� t− 1��

∀ t > 0� si ∈� i� i�

�

i

�
T −

�

si

�

t

�i�si��i� t�

�
� kT �

�

ai

�i�si�ai�0�=
�

s̄ � s̄i=si

��0�s̄��

� � 0�

where �i�si�ai� t� is the probability of the ith bandit being
in state si at time t and choosing action ai. The pro-
gram above relaxes the requirement that up to k arms be
pulled in a given time step; instead, we now require that
over the entire horizon at most kT arms are pulled in
expectation, where the expectation is over policy random-
ization and state evolution. The first set of equality con-
straints enforces individual arm dynamics, whereas the first
inequality constraint enforces the requirement that at most
kT arms be pulled in expectation over the entire time hori-
zon. Lemma 1 makes the notion of a relaxation to LP� ��0�
precise; the proof may be found in the electronic compan-
ion, which is part of the online version that can be found
at http://or.journal.informs.org/.

Lemma 1. OPT�RLP� ��0���OPT�LP� ��0��.

Given an optimal solution �� to RLP� ��0�, one may con-
sider the policy �R, that, assuming we are in state s at
time t, selects a random action �R�s� t�, where �R�s� t�= a
with probability

�
i� ��i�si�ai� t�/

�
ai
��i�si�ai� t�� indepen-

dent of the past. Noting that the action for each arm i is
chosen independently of all other arms, we use �R

i �si� t�
to denote the induced policy for arm i. Assume for conve-
nience that ��0 is degenerate and puts mass 1 on a single
starting state, say s, we have by construction J �R

�s�0� =
OPT�RLP� ��0��. Moreover, we have that �R satisfies

E

� T−1�

t=0

�

i

1��R
i �s

t
i � t��=�i�

����s
0 = s

�
� kT �
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where the expectation is over random state transitions and
endogenous policy randomization. Note that �R is not nec-
essarily feasible; we ultimately require a policy that entails
at most k arm pulls in any time step and is irrevocable. We
will next use �R to construct such a feasible policy.

3.3. The Packing Heuristic

We now construct our heuristic for the irrevocable bandit
problem. In what follows, we will assume for convenience
that ��0 is degenerate and puts mass 1 on a single starting
state. That is, ��0�si�= 1 for some si ∈� i for all i. We first
introduce some relevant notation. Given an optimal solution
�� to RLP� ��0�, define the value generated by arm i as the
random variable

Ri =
T−1�

t=0

ri�s
t
i ��

R
i �s

t
i � t���

and the “active time” of arm i, Ti as the total number of
pulls of arm i entailed under that policy

Ti =
T−1�

t=0

1��R
i �s

t
i � t��=�i�

�

The expected value of arm i, E�Ri� =
�

si�ai� t
��i�si�ai� t�

ri�si�ai�, and the expected active time E�Ti� =�
si�ai� t� ai �=�i

��i�si�ai� t�. We will assume in what follows
that E�Ti� > 0 for all i; otherwise, we simply consider
eliminating those i for which E�Ti� = 0. We will also
assume for analytical convenience that

�
i E�Ti� = kT .

Neither assumption results in a loss of generality.

Algorithm 1 (The packing heuristic)
1: Renumber bandits so that E�R1�/E�T1�
�E�R2�/E�T2� · · ·�E�Rn�/E�Tn�. Index bandits
by variable i.

2: li ← 0�ai ←�i for all i, s ∼ ��0� · � {The “local
time” of every arm is set to 0 and its designated
action to the idle action. An initial state is drawn
according to the initial state distribution ��0.}

3: J ← 0 {Total reward earned is initialized to 0.}
4: �← �1�2� � � � �k���← k+ 1� � � � �n���=�.
{Initialize the set of active (�), available (�), and
discarded (�) arms.}

5: for t = 0 to T − 1 do

6: while there exists an arm i ∈� with ai =�i do

{Select up to k arms to pull.}
7: Select an i ∈� with ai =�i {In what follows,

either select an action for arm i or else
discard it.}

8: while ai =�i and li < T do {Attempt to select
a pull action for arm i.}

9: Select ai ∝ ��i�si� ·� li� {Select an action
according to the solution to RLP� ���.}

10: li ← li + 1 {Increment arm i’s local time.}
11: end while

12: if li = T and ai =�i {Discard arm i and activate
next highest-ranked arm available.}

13: �←�\�i���←�∪ �i� {Discard arm i.}
14: if � �=� then {There are available arms.}
15: j ←min� {Select highest-ranked

available arm.}
16: �←�∪ �j���←�\�j� {Add arm to

active set.}
17: end if

18: end if

19: end while

20: for every i ∈� do {Pull selected arms.}
21: si ∼ P �si�ai� ·� {Pull arm i;

select next arm i state according to its
transition kernel assuming the use of
action ai.}

22: J ← J + ri�si�ai� {Earn rewards.}
23: ai ←�i

24: end for

25: end for

Algorithm 1 presents the packing heuristic described
loosely at the start of this section. In the event that we
placed no restriction on the time horizon (i.e., we ignored
the upper limit on t in line 5 of the algorithm), we have by
construction that the expected total reward earned under the
above policy is precisely OPT�RLP� ��0��; subsequent anal-
ysis will, in a sense, quantify the loss due to the fact that
we do not count rewards earned by the algorithm beyond
t = T −1. In essence, RLP� ��0� prescribes a policy wherein
each arm generates a total reward with mean E�Ri� using
an expected total number of pulls E�Ti�, independent of
other arms. Our algorithm may be visualized as one that
“packs” as many of the pulls of various arms possible in a
manner to meet feasibility constraints. In the next section,
we present a theoretical analysis of the performance loss
incurred in using the packing heuristic.

4. The Price of Irrevocability
This section establishes upper bounds on the performance
loss incurred in using the irrevocable packing heuristic rel-
ative to an upper bound on the performance of an opti-
mal policy for the classical multiarmed bandit problem.
We restrict attention to a class of bandits whose arms sat-
isfy a certain “decreasing returns” property; as we will
subsequently discuss, this class subsumes an important
canonical family of bandit problems related to learning
applications. We establish that the packing heuristic always
earns expected rewards that are within a factor of 1/8 of an
optimal scheme for such problems. We sharpen our anal-
ysis for problems in an asymptotic regime first proposed
by Whittle, where the number of bandits n is increased
while keeping the ratio k/n constant. In that regime, we
present a performance guarantee that depend on the “degree
of parallelism” in the problem, i.e., the ratio k/n and also
a substantially improved uniform guarantee. We begin with
a description of the decreasing returns property.
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4.1. The Decreasing Returns Property

Define for every i and l < T , the random variable

Li�l�=
l�

t=0

1��R
i �s

t
i � t��=�i�

�

Li�l� tracks the number of times a given arm i has been
pulled under policy �R among the first l+1 steps of select-
ing an action for that arm. Further, define

Rm
i =

T−1�

l=0

1�Li�l��m�ri�s
l
i ��

R
i �s

l
i � l���

Rm
i is the random reward earned within the first m pulls of

arm i under the policy �R. The decreasing returns property
roughly states that the expected incremental returns from
allowing an additional pull of a bandit arm are, on average,
decreasing. More precisely, we have

Property 1 (Decreasing Returns). E�Rm+1
i �−E�Rm

i ��
E�Rm

i �−E�Rm−1
i � for all 0<m<T .

One useful class of bandits from a modeling perspective
that satisfy this property are bandits whose arms yield iden-
tically and independently distributed (i.i.d.) rewards of an
a priori unknown, arm-specific mean. We refer to these as
“learning problems.” The following discussion makes this
notion more precise.

4.1.1. Learning Problems and the Decreasing Ret-

urns Property. We consider the following generic class
of “learning” problems: We have n bandit arms. A pull
of the ith arm yields an independent, random, nonnegative
reward Xi having density (or p.m.f.) f�i� · � where �i is an
unknown parameter in some set �i. We may also assume
that the reward earned is h�Xi�, where h is a known, non-
negative, concave function. We assume that �i is drawn
randomly at time 0 according to the density (or p.m.f) gi,
and is independent of all �j with j �= i. Our objective is to
arrive at an arm selection policy that adaptively selects a
subset of k arms to pull at each point in time with a view to
maximizing total expected reward earned over T periods.
In the interest of tractability, we assume that gi belongs to
some parametric class of functions �i, a member of which
is specified by parameter si ∈� i; we make this dependence
precise with the notation gsii . Moreover, we assume that gsii
is a conjugate prior for f�i for all si ∈� i. That is, our poste-
rior on �i given an observation Xi remains in �i. Learning
problems of this type are rather common and fit a number
of modeling needs including, for instance, the fast-fashion
and call-center staffing examples described in the introduc-
tion (see Caro and Gallien 2007, Arlotto et al. 2010, and
also §5 for concrete examples within this framework). In
addition, these problems are in a sense the canonical appli-
cation of the bandit model (see Bellman 1956, Gittins and
Wang 1992). For further applications, see the books by
Bergman and Gittins (1985) and Berry and Fristedt (1985).

It is not hard to see that the learning problem we have
posed can be cast as a multiarmed bandit problem in the
sense of the model in §3. In particular, the state space for
each arm is simply � i, with action space �i = �pi��i� con-
sisting of two actions—pull and idle. The transition kernel
Pi is specified implicitly by Bayes’ rule, and the reward
function is defined according to

ri�si�pi�=
�

x� �
xf�i�x�g

si
i ��i�d�i dx�

By Bayes’ rule, rewards from a given arm (as defined
above) will then satisfy the following intuitive property
reflecting the consistency of our estimate of the mean
reward from a bandit arm:

ri�si�pi�=
�

s�i∈� i

Pi�si�p� s
�
i�ri�s

�
i�pi�� ∀ si ∈� i�

In light of the following lemma, this broad class of learn-
ing problems satisfies the decreasing returns property. In
particular, we have the following result, whose proof may
be found in the appendix:

Lemma 2. Given a multiarmed bandit problem with �i =
�pi��i� ∀ i, and

ri�si�pi��
�

s�i∈� i

Pi�si�pi� s
�
i�ri�s

�
i�pi�� ∀ i� si ∈� i�

we must have E�Rm+1
i �−E�Rm

i ��E�Rm
i �−E�Rm−1

i � for all
0<m<T .

4.2. A Uniform Bound on the Price of
Irrevocability

For convenience of exposition we assume that T is even;
addressing the odd case requires essentially identical proofs
but cumbersome notation. We reorder the bandits in decreas-
ing order of E�Ri�/E�Ti� as in the packing heuristic. Let us
define H∗ = min�j�

�j
i=1E�Ti� � kT /2�� Thus, H∗ is the

set of bandits that take up approximately half the budget
on total expected pulls. Next, let us define for all i � H∗,
random variables �Ri and �Ti according to �Ri = Ri� �Ti = Ti
for all i < H∗ and �RH∗ = �RH∗ and �TH∗ = �TH∗ , where
� = �kT /2−�H∗−1

i=1 E�Ti��/E�TH∗ �. We begin with a pre-
liminary lemma whose proof may be found in the appendix:

Lemma 3.
�H∗

i=1E� �Ri�� 1
2OPT�RLP� ��0���

We next compare the expected reward earned by a cer-
tain subset of bandits with indices no larger than H∗. The
significance of the subset of bandits we define will be seen
later in the proof of Lemma 6—we will see there that all
bandits in this subset will begin operation prior to time
T /2 in a run of the packing heuristic. In particular, define
R1/2 =

�H∗
i=1 1�

�i−1
j=1 Tj<kT /2�Ri� We have

Lemma 4. E�R1/2�� 1
4OPT�RLP� ��0���
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Before moving on to our main lemma, which translates
the above guarantees to a guarantee on the performance of
the packing heuristic, we need to establish one additional
technical fact. Recall that Rm

i is the reward earned by ban-
dit i in the first m pulls of this bandit under policy �R.
Also, note that RT

i = Ri. Exploiting the assumed decreas-
ing returns property, we have the following lemma whose
proof may be found in the appendix:

Lemma 5. For bandits satisfying the decreasing returns
property (Property 1),

E

� H∗�

i=1

1�
�i−1

j=1 Tj<kT /2�R
T /2
i

�
� 1

2
E�R1/2��

We have thus far established estimates for total expected
rewards earned assuming implicitly that bandits are pulled
in a serial fashion in order of their rank. The following
lemma connects these estimates to the expected reward
earned under the �packing policy (given by the packing
heuristic) using a simple sample-path argument. In par-
ticular, the following lemma shows that the expected
rewards under the �packing policy are at least as large as
E�

�H∗
i=1 1�

�i−1
j=1 Tj<kT /2�R

T /2
i �.

Lemma 6. Assuming ��0�s�= 1, we have

J �packing
�s�0��E

� H∗�

i=1

1�
�i−1

j=1 Tj<kT /2�R
T /2
i

�
�

Proof. For a given sample path of the system define h=
�H∗� ∧ min�i�

�i
j=1 Tj � kT /2�� On this sample path, it

must be that

H∗�

i=1

1�
�i−1

j=1 Tj<kT /2�R
T /2
i =

h�

i=1

RT /2
i � (1)

We claim that arms 1�2� � � � �h are all first pulled at times
t < T /2 under �packing. Assume to the contrary that this
were not the case and recall that arms are considered in
order of index under �packing, so that an arm with index i is
pulled for the first time no later than the first time arm l is
pulled for l > i. Let h� be the highest arm index among the
arms pulled at time t = T /2− 1, so that h� <h. It must be
that

�h�
j=1 Tj � kT /2. However, then,

H∗ ∧min
�
i�

i�

j=1

Tj � kT /2
�
� h��

which is a contradiction. Thus, because every one of the
arms 1�2� � � � �h is first pulled at times t < T /2, each such
arm may be pulled for at least T /2 time steps prior to
time T (the horizon). Consequently, we have that the total
rewards earned on this sample path under policy �packing

are at least
�h

i=1R
T /2
i . Using identity (1) and taking an

expectation over sample paths yields the result.

We are ready to establish our main theorem, which pro-
vides a uniform bound on the performance loss incurred
in using the packing heuristic policy relative to an optimal
policy with no restrictions on exploration. In particular, we
have that the price of irrevocability is uniformly bounded
for bandits satisfying the decreasing returns property.

Theorem 1. For multiarmed bandits satisfying the decre-
asing returns property (Property 1), we have

J �packing
�s�0�� 1

8J
∗�s�0��

Proof. We have from Lemmas 4–6 that J �packing
�s�0� �

�1/8�OPT�RLP� ��0��� where ��0�s� = 1. We know from
Lemma 1 that OPT�RLP� ��0��� OPT�LP� ��0��= J ∗�s�0�
from which the result follows.

4.3. The Price of Irrevocability in Whittle’s
Asymptotic Regime

This section considers an asymptotic parameter regime
where one may establish a stronger bound than that in The-
orem 1. In order to describe this regime we begin with an
“unscaled” problem with n0 arms in which we are allowed
up to k0 simultaneous plays over a time horizon of T . We
will assume that these n0 arms have identical specifications
and start in identical states; we make this assumption for
convenience of exposition (i.e., both Theorems 2 and 3 hold
without making such an assumption). We next consider a
sequence of problems indexed by N , where the N th prob-
lem has N copies of each of the n0 arms in the unscaled
problem, and we allow Nk0 simultaneous plays over T time
periods. Our goal is to understand the price of irrevocabil-
ity as N gets large. Notice that this regime is still relevant
for learning problems because we are not scaling the time
horizon, T , and are not restricting the kernels Pi in any way.
One concrete setting where this regime is relevant is that
of a catalogue marketeer that must dynamically decide on
mailing policies for a very large number of potential cus-
tomers (see Bertsimas and Mersereau 2007). This regime is
analogous to one considered by Whittle (1988) and Weber
and Weiss (1990) for irreducible bandit problems and the
average reward criterion. The finite-horizon criterion and
the fact that the bandits we consider may be (and, for learn-
ing applications, will be) non-irreducible rule out the mean-
field analysis techniques of Weber and Weiss (1990).
Letting Ri�N and Ti�N denote the value generated by arm i

and its active time (as defined in the previous section) for
the N th problem, the following facts are apparent by our
assumption that each bandit is identical:
1. Ri�N

d= Ri�N � , and Ti�N
d= Ti�N � for all N �N � and i �

min�n0N �n0N
��.

2. For every N , the collection of random variables
R1�N �R2�N � � � � �Rn0N �N are i.i.d., as are the random vari-
ables T1�N �T2�N � � � � �Tn0N �N .
3. E�Ti�N �= k0T /n0 for all N and i� n0N .
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In light of the above facts, we will eliminate the subscript N
from Ri�N and Ti�N . We note then, that for the N th problem,
OPT�RLP� ��0��=

�Nn0
i=1 E�Ri�.

We prove two main bounds in this section. We first
present a performance guarantee that illustrates a depen-
dence on the ratio k0/n0. This ratio may be interpreted
as the “degree of parallelism” inherent in the multiarmed
bandit problem at hand. We then prove a performance guar-
antee that holds in an asymptotic regime where N gets
large (but is otherwise uniform over problem parame-
ters). This bound improves the bound in Theorem 1 by a
factor of 2.

4.3.1. Impact of the “Degree of Parallelism” (k0/n0).

Let us define the random variable �N = min�j�
�j

i=1 Ti �
k0NT �. We have

Lemma 7. In the N th system, all arms with indices smaller
than or equal to �N ∧n0N begin operation prior to time T .
Moreover, for any � > 0 and almost all � ∈ �, ∃N ����,
such that

�N �Nn0 − �1+ ��
�
Nn0 log logNn0

for all N �N ����.

The above lemma is proved in the appendix. The lemma
is remarkable in that it states that for large-scale problems
(i.e., large N ), almost all bandits begin operation prior to
the end of the time horizon. We next translate this fact to a
bound on performance. To this end, for every N , let �N � · �
denote a (random) permutation of �1� � � � �Nn0� satisfying
Ri > Rjd =⇒ ��i� < ��j�. Further, for every l � Nn0,
define the random variable MN �l�=

�
i � ��i��l Ri. MN �l� is

thus the realized reward of the top l arms, assuming the
packing heuristic was not terminated at the end of the time
horizon. Define for � ∈ �0�1�,

�N ���=E�MN ��Nn0����/E
� Nn0�

i=1

Ri

�
�

Define lim supN→� �N ���� ����; this quantity is naturally
interpreted as the ratio between the expected contribution
of an arm restricted to realizations that are in the top �
fractile and the expected contribution of an arm. We then
have the following theorem, which indicates the impact of
the “degree of parallelism”:

Theorem 2.

lim inf
N→�

J �packing

N �s� 0�
J ∗
N �s�0�

� 1−��min�k0/n0�1− k0/n0���

The above bound (which is established in the electronic
companion) provides an indication of the role played by
the ratio k0/n0. Loosely, it may be interpreted as stating
that the performance loss incurred by the packing heuris-
tic is no more than the relative contribution from the top
k0/n0 percent of arms. Although one may characterize the
� function given the distribution of rewards from a given
arm Ri, a fair criticism of this bound is that it is difficult to
characterize � given only primitive problem data; we next

provide a uniform performance bound valid for Whittle’s
regime.

4.3.2. A Uniform Guarantee for Whittle’s Regime.

The program we will follow in order to establish a uniform
performance guarantee for Whittle’s regime is essentially
identical to that used in the proof of Theorem 1. However,
in place of Lemma 4 we will use the following sharper esti-
mate (obtained in the electronic companion) that is valid
for Whittle’s regime:

Lemma 8. For the N th bandit problem, we have

E�R1/2�� 1
2 �1−��N ��OPT�RLP� ��0���

where ��N �=O�N−1/2+d� and d > 0 is arbitrary.

Lemmas 8, 5, and 6 together yield the following theorem.

Theorem 3. For the N th multiarmed bandit problem,

J �packing
�s�0�� 1

4 �1−��N ��J ∗�s�0��

where ��N � = O�N−1/2+d� for arbitrary d > 0 and we
assume si = sj ∀ i� j .
Together, Theorems 2 and 3 indicate that the packing

heuristic is likely to perform well in Whittle’s asymptotic
regime.

5. Computational Experiments
This section presents a computational investigation of the
performance of the packing heuristic for the irrevocable
multiarmed bandit problem with a view to gauge its prac-
tical efficacy. We also examine as an alternative heuristic
for the irrevocable bandit problem a natural modification
to Whittle’s heuristic. Finally, we examine the performance
of Whittle’s (nonirrevocable) heuristic itself, paying special
attention to the number of arm “revocations” under that
heuristic. In addition, we benchmark the performance of
all of these schemes against a computable upper bound on
the expected reward for any policy (with no restrictions on
revocability); specifically, the bound is given by the objec-
tive function of problem LP� ��0� in §3.2 for an optimal
solution. The problem LP� ��0� for both computation of the
upper bound and the packing heuristic is solved with a tol-
erance of 10−6; the computational algorithm is described
in the next section. We consider a number of large-scale
bandit problems drawn from a generative family of prob-
lems to be discussed shortly and demonstrate the following
points: First, we show that the packing heuristic consis-
tently demonstrates performance within about 10% to 20%
of an upper bound on the performance of an optimal pol-
icy for the classical multiarmed bandit problem. This upper
bound is also an upper bound to the performance of any
irrevocable scheme. The number of “revocations” under
Whittle’s heuristic can be large in a variety of operating
regimes. A natural modification to Whittle’s heuristic mak-
ing it feasible for the irrevocable bandit problem typically
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performs 15% to 20% worse than Whittle’s heuristic in
these regimes. The packing heuristic can recover a substan-
tial portion of the above gap (between 50% and 100%) in
most cases.

The Generative Model. We consider multiarmed ban-
dit problems with n arms, up to k of which may be
pulled simultaneously at any time. The ith arm corresponds
to a binomial �m�Pi� random variable where m is fixed
and known, and Pi is unknown but drawn from a beta
��i��i� prior distribution. Assuming we choose to “pull”
arm i at some point, we realize a random outcome Mi ∈
�0�1� � � � �m�. Mi is a binomial �m�Pi� random variable
where Pi is itself a beta ��i��i� random variable. We
receive a reward of riMi and update the prior distribution
parameters according to �i ← �i +Mi, �i ← �i +m−Mi.
By selecting the initial values of �i and �i for each arm
appropriately, we can control for the initial level of uncer-
tainty in the value of Pi; by “level of uncertainty” we mean
the coefficient of variation of Pi, which is defined according
to ��Pi�/E�Pi�. This model is applicable to the dynamic
assortment selection problem studied in Caro and Gallien
(2007), with each arm representing a product of uncertain
popularity and Mi representing the uncertain number of
product i sales over a single period in which that product
is offered for sale; the only difference with that work is
that as opposed to assuming binomial demand, the authors
there assume Poisson demand.

5.1. I.I.D. Bandits

We consider bandits with �n�k� ∈ ��500�75�� �500�125��
�100�15�� �100�25��. These dimensions are representative
of large-scale applications such as the dynamic assort-
ment problem (see Caro and Gallien 2007). For each value
of �n�k� we consider time horizons T = 40�25, and 10
(again, horizon lengths of 40 and 25 reflect the dynamic
assortment applications, assuming weekly restocking deci-
sions). We consider three different values for the coeffi-
cient of variation in arm bias: cv= �1�2�5�4�. These coef-
ficients of variation represent, respectively, a low, moder-
ate, and high degree of a priori uncertainty in arm bias
(or in the context of the dynamic assortment applica-
tion, for example, product popularity). For each combi-
nation of the parameters above, we evaluate the pack-
ing heuristic, Whittle’s heuristic, and a natural “irrevo-
cable” modification to Whittle’s heuristic. In particular,
this irrevocable modification selects, at every point in
time, to pull the k arms with the highest Gittin’s index
among all arms that are currently active or else have never
been pulled (as opposed to all arms, as would Whittle’s
heuristic).

The results are summarized in Table 1. We make the
following observations:

Impact of Initial Coefficient of Variation �cv). Higher
coefficients of variation in initial arm bias result in a degra-
dation of performance relative to an upper bound on achiev-
able performance under any (potentially nonirrevocable)

policy. The degradation is mild and not surprising given
that this represents a regime where one can potentially gain
from exploring a large number of arms before making a
decision on the arms to pull for longer periods of time. On
a separate note, the gap in performance between the irre-
vocable modification to Whittle’s heuristic and Whittle’s
heuristic itself grows with increasing coefficients of vari-
ation in initial arm bias, as do the number of revocations
under Whittle’s heuristic. The packing heuristic recovers a
significant portion of this gap.
Impact of Time Horizon �T ). For longer time horizons

(T = 25 and T = 40), it is again reasonable to expect that
Whittle’s heuristic would entail a large number of revoca-
tions (because one may effectively explore all arms before
settling on the best). We expect the irrevocable modifica-
tion to Whittle’s heuristic to perform poorly here, as indeed
it does. The performance of the packing heuristic is sur-
prisingly consistent, providing a significant advantage over
the irrevocable modification to Whittle’s heuristic, while
losing little in performance relative to Whittle’s heuristic.
For short time horizons �T = 10), all three heuristics are
within a few percent of each other with the packing heuris-
tic being dominated by Whittle’s heuristic and its irrevoca-
ble modification.
To summarize, the packing heuristic provides excellent

performance across regimes characterized by a moderate
to high degree of uncertainty in initial arm bias and a
relatively longer time horizon; it provides a significant
improvement over a natural irrevocable modification to
Whittle’s heuristic in these regimes while being almost
competitive with Whittle’s heuristic itself. At low levels of
uncertainty and/or short time horizons, the packing heuris-
tic is inferior to both Whittle’s heuristic and also its irrevo-
cable modification, albeit by a small margin.

5.2. Non-I.I.D. Bandit Arms

We now consider a model with an equal number of three
different categories of bandits: each category has a distinct
cv, but the ratio ��/�� is equal across categories. The max-
imum number of arrivals in a given time slot is m = 1.
The results are summarized in Table 2. We see that for
moderate to long time horizons, the packing heuristic is
effectively competitive with Whittle’s heuristic even though
the latter resorts to a very large number of arm revoca-
tions! For these time horizons, the irrevocable modification
to Whittle’s heuristic is substantially inferior to both the
packing heuristic and Whittle’s heuristic; this is intuitive
given the large number or revocations incurred by Whittle’s
heuristic for these time horizons. For short time horizons,
all three heuristics are quite close, with the packing heuris-
tic being marginally inferior to Whittle’s heuristic and its
irrevocable modification. We thus see the same merits for
the packing heuristic when the bandit arms are not i.i.d.
In fact, the advantages of the packing heuristic are further
accentuated in this setting: the heuristic appears to pro-
vide levels of performance essentially identical to Whittle’s
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Table 1. Computational summary for I.I.D. bandits.

Performance: J �/J ∗
CV Horizon Arms Simultaneous Revocations
�cv) (T � (n� pulls �k� Packing Whittle irrev Whittle Whittle

High �4� 40 500 125 0�81 0�64 0�89 1�685
40 100 25 0�80 0�64 0�88 340
40 500 75 0�79 0�68 0�87 723
40 100 15 0�79 0�68 0�86 149
25 500 125 0�80 0�68 0�86 1�190
25 100 25 0�80 0�68 0�86 237
25 500 75 0�78 0�73 0�84 474
25 100 15 0�78 0�73 0�84 95
10 500 125 0�79 0�78 0�83 431
10 100 25 0�79 0�77 0�84 86
10 500 75 0�78 0�79 0�80 48
10 100 15 0�78 0�78 0�80 11

Moderate �2�5� 40 500 125 0�87 0�79 0�94 519
40 100 25 0�85 0�78 0�94 103
40 500 75 0�86 0�82 0�93 112
40 100 15 0�85 0�81 0�92 25
25 500 125 0�85 0�80 0�92 336
25 100 25 0�84 0�79 0�92 67
25 500 75 0�83 0�84 0�91 72
25 100 15 0�82 0�83 0�89 15
10 500 125 0�82 0�81 0�85 84
10 100 25 0�82 0�82 0�85 20
10 500 75 0�80 0�86 0�86 26
10 100 15 0�80 0�86 0�86 4

Low �1� 40 500 125 0�93 0�95 0�99 60
40 100 25 0�91 0�93 0�98 14
40 500 75 0�92 0�99 0�99 17
40 100 15 0�90 0�99 0�99 3
25 500 125 0�91 0�97 0�98 34
25 100 25 0�91 0�95 0�98
25 500 75 0�92 0�98 0�98 19
25 100 15 0�90 0�98 0�98 3
10 500 125 0�89 0�95 0�96 19
10 100 25 0�89 0�95 0�96 3
10 500 75 0�90 0�96 0�96 11
10 100 15 0�89 0�96 0�96 2

Notes. Each row represents the performance of three different heuristics for � = 0�2, m = 2, and � chosen to satisfy the corresponding
coefficient of variation. Performance for each instance was computed from 3,000 simulations of that instance (resulting in 95% confidence
intervals under 4%). Performance is measured relative to an upper bound on J∗ without irrevocability restrictions.

Table 2. Computational summary for non-I.I.D. bandits.

Performance: J �/J ∗
Horizon Arms Simultaneous Revocations
(T � (n� pulls (k� Packing Whittle irrev Whittle Whittle

40 501 125 0�91 0�80 0�92 1�983
40 99 25 0�91 0�80 0�92 389
40 501 75 0�88 0�80 0�91 1�055
40 99 15 0�88 0�79 0�90 214
25 501 125 0�90 0�83 0�92 1�376
25 99 25 0�88 0�82 0�92 264
25 501 75 0�87 0�83 0�90 699
25 99 15 0�88 0�83 0�89 142
10 501 125 0�89 0�90 0�92 322
10 99 25 0�88 0�90 0�91 59
10 501 75 0�85 0�86 0�87 120
10 99 15 0�83 0�88 0�88 26

Notes. Each row represents the performance of three different heuristics for M = 2, �/�= 0�05. Each instance consisted of an equal number
of bandits with CVs of 1, 2.5, 4.0. Performance for each instance was computed from 3,000 simulations of that instance (resulting in 95%
confidence intervals under 4%).
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heuristic, although the latter entails a large number of arm
revocations.

6. Fast Computation
This section considers the computational effort required to
implement the packing heuristic. We develop a computa-
tional scheme that makes the packing heuristic substantially
easier to implement than popular index heuristics such as
Whittle’s heuristic and thus establish that the heuristic is
viable from a computational perspective.

The key computational step in implementing the pack-
ing heuristic is the solution of the linear program RLP� ��0�.
Assuming that �� i�=O��� and ��i�=O�A� for all i, this
linear program has O�nTA�� variables, and each Newton
iteration of a general-purpose interior point method will
require O��nTA��3� steps. An interior point method that
exploits the fact that bandit arms are coupled via a single
constraint will require O�n�TA��3� computational steps at
each iteration. We develop a combinatorial scheme to solve
this linear program that is in spirit similar to the classical
Dantzig-Wolfe dual decomposition algorithm. In contrast
with Dantzig-Wolfe decomposition, our scheme is efficient.
In particular, the scheme requires O�nTA�2 log�kT �� com-
putational steps to solve RLP� ��0�, making it a significantly
faster solution alternative to the schemes alluded to above.
Equipped with this fast scheme, it is notable that using the
packing heuristic requires O�nA�2 log�kT �� computations
per time step amortized over the time horizon, which will
typically be substantially less than the O�nA�2T � compu-
tations required per time step for index policy heuristics
such as Whittle’s heuristic.

Our scheme employs a “dual decomposition” of RLP
� ��0�. The key technical difficulty we must overcome in
developing our computational scheme for the solution of
RLP� ��0� is the nondifferentiability of the dual function cor-
responding to RLP� ��0� at an optimal-dual solution, which
prevents us from recovering an optimal or near-optimal pol-
icy by direct minimization of the dual function.

6.1. An Overview of the Scheme

For each bandit arm i, define the polytope Di� ��0� ∈
��� i ���i �T of permissible state-action frequencies for that
bandit arm specified via the constraints of RLP� ��0� rele-
vant to that arm.

A point within this polytope, �i, corresponds to a set of
valid state-action frequencies for the ith bandit arm. With
some abuse of notation, we denote the expected reward
from this arm under �i by the “value” function

Ri��i�=
T−1�

t=0

�i�si�ai� t�ri�si�ai��

In addition, denote the expected number of pulls of bandit
arm i under �i by

Ti��i�= T −
�

si

�

t

�i�si��i� t��

We understand that both Ri� · � and Ti� · � are defined over
the domain Di� ��0�.
Thus we may rewrite RLP� ��0� in the following form:

max
�

i

Ri��i��

s� t�
�

i

Ti��i�� kT � (2)

The Lagrangian dual of this program is DRLP� ��0�:

min �kT +
�

i

max
�i

�Ri��i�−�Ti��i���

s� t� �� 0�

The above program is convex. In particular, the objective
is a convex function of �. We will show that strong dual-
ity applies to the dual pair of programs above, so that the
optimal solutions to the two programs have identical value.
Next, we will observe that for a given value of �, it is sim-
ple to compute max�i

�Ri��i�−�Ti��i�� via the solution of
a dynamic program over the state space of arm i (a fast pro-
cedure). Finally, it is simple to derive useful a priori lower
and upper bounds on the optimal dual solution �∗. Thus, in
order to solve the dual program, one may simply employ
a bisection search over �. Because for a given value of �,
the objective may be evaluated via the solution of n sim-
ple dynamic programs, the overall procedure of solving the
dual program DRLP� ��0� is fast.
What we ultimately require is the optimal solution to the

primal program RLP� ��0�. One natural way we might hope
to do this (that ultimately will not work) is the following:
Having computed an optimal-dual solution �∗, one may
hope to recover an optimal-primal solution, �∗ (which is
what we ultimately want), via the solution of the problem

max
�i

�Ri��i�−�∗Ti��i�� (3)

for each i. This is the typical dual decomposition proce-
dure. Unfortunately, this last step need not necessarily yield
a feasible solution to RLP� ��0�. In particular, solving (3) for
�= �∗ + � may result in an arbitrarily suboptimal solution
for any �> 0, whereas solving (3) for a �� �∗ may yield
an infeasible solution to RLP� ��0�. The technical reason for
this is that the Lagrangian dual function for RLP� ��� may
be nondifferentiable at �∗. These difficulties are far from
pathological, and Example 1 illustrates how they may arise
in a very simple example.

Example 1. This example illustrates that the dual function
may be nondifferentiable at an optimal solution and that it
is not sufficient to solve (3) for �� �∗ or �= �∗ + � for
an � > 0 arbitrarily small. Specifically, consider the case
where we have n= 2 identical bandits, T = 1 and K = 1.
Each bandit starts in state s, and two actions can be chosen
for it, namely, a and the idling action �. The rewards are
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r�s�a�= 1 and r�s���= 0. Thus, RLP� ��0� for this specific
case is given by

max �1�s�a�0�+�2�s�a�0��

s� t� �1�s�a�0�+�2�s�a�0�� 1�

where �i ∈Di� ��0�, i= 1�2. Clearly, the optimal objective
function value for the above optimization problem is 1. The
Lagrangian dual function for the above problem is

g���= �+ max
�1�s�a�0�

�1�s�a�0��1−��

+ max
�2�s�a�0�

�2�s�a�0��1−��

=






2−� �� 1

� �> 1�

Note that the dual function is minimized at �∗ = 1, which
is a point of nondifferentiability. Moreover, solving (3) at
�∗ + � for any � > 0 gives �1�s�a�0� = �2�s�a�0� = 0,
which is clearly suboptimal. Also, a solution for 0� �� �∗

is �1�s�a�0�=�2�s�a�0�= 1, which is clearly infeasible.

Notice that in the above example, the average of the
solutions to problem (3) for � = �∗ − � and � = �∗ + �
does yield a feasible, optimal-primal solution, �1�s�a�0�=
�2�s�a�0� = 1/2. We overcome the difficulties presented
by the nondifferentiability of the dual function by comput-
ing both upper and lower approximations to �∗ and com-
puting solutions to (3) for both of these approximations.
We then consider as our candidate solution to RLP� ��0� a
certain convex combination of the two solutions. In par-
ticular, we propose Algorithm 2, which takes as input the
specification of the bandit and a tolerance parameter �. The
algorithm produces a feasible solution to RLP� ��0� that is
within an additive factor of 2� of optimal.

Algorithm 2 (RLPsolver)
1: �feas ← rmax + �� for any �> 0��infeas ← 0.
2: For all i, � feas

i ←�i ∈ argmax�i
�Ri��i�

−�feasTi��i��, � infeas
i ←�i ∈ argmax�i

�Ri��i�
−�infeasTi��i��.

3: while �feas −�infeas > �/kT do

4: �← �feas +�infeas

2
5: for i= 1 to n do

6: �∗
i ←�i ∈ argmax�i

�Ri��i�−�Ti��i��.
7: end for

8: if
�n

i=1 T ��
∗
i �> kT then

9: �infeas ← �� � infeas
i ←�∗

i � ∀ i
10: else

11: �feas ← �� � feas
i ←�∗

i � ∀ i
12: end if

13: end while

14: if
�

i Ti��
infeas
i �− Ti��

feas
i �> 0 then

15: �← kT −�
i Ti��

feas
i �

�
i Ti��

infeas
i �− Ti��

feas
i �

∧ 1

16: else

17: �← 0
18: end if

19: for i= 1 to n do

20: �RLP
i ← �� infeas

i + �1−��� feas
i

21: end for

It is clear that the bisection search above will require
O�log�rmaxkT /��� steps (where rmax = maxi� si�ai r�si�ai�).
At each step in this search, we solve n problems of the
type in (3), i.e., max�i

�Ri��i�− �Ti��i��. These subprob-
lems may be reduced to a dynamic program over the state
space of a single arm. In particular, we define a reward
function �Ri� � i →�+ according to �Ri�si�ai�= ri�si�ai�−
�1ai �=�i

and compute the value of an optimal policy start-
ing at state s0�i (where s0 is that state on which ��0 places
mass 1) assuming �Ri as the reward function. This requires
O�S2AT � steps per arm. Thus, the RLP Solver algorithm
requires a total of O�nS2AT log�rmaxkT /��� computational
steps prior to termination. The following theorem, proved
in the appendix, establishes the quality of the solution pro-
duced by the RLP Solver algorithm:

Theorem 4. RLP Solver produces a feasible solution to
RLP� ��0� of value at least OPT�RLP� ��0��− 2�.

The RLP Solver scheme was used for all computational
experiments in the previous section. Using this scheme, the
largest problem instances we considered were solved in a
few minutes on a laptop computer.

7. Concluding Remarks
This paper introduced the “irrevocable” multiarmed bandit
problem as a practical model to design policies for a num-
ber of interesting learning applications. We have developed
a new algorithm for this problem—the packing heuristic—
that we have shown performs quite well and is practical
for large-scale deployment. In particular, we have presented
a thorough performance analysis that has yielded uniform
approximation performance guarantees as well as guaran-
tees that illustrate a dependence on problem parameters.
We have also presented an extensive computational study
to support what the theory suggests. In the interest of per-
formance, we have presented a fast implementation of the
packing heuristic that is faster than schemes that rely on
the computation of Gittins indices.
Perhaps the single most useful outcome of this work

has been to show that irrevocability is not necessarily an
expensive constraint. This fact is supported by both our
theory and computational experiments for a general class
of learning applications. Whereas natural “irrevocable”
modifications to schemes that perform well for the clas-
sical multiarmed bandit problem (such as Whittles heuris-
tic) may not necessarily achieve this goal, the scheme we
provide—the packing heuristic—does.
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In addition, the theoretical analysis we provide has indi-
rectly yielded the first performance bounds for an impor-
tant general class of multiarmed bandit problems that to
this point have had surprisingly little theoretical attention.
More importantly, the new mode of analysis for these prob-
lems reveals a tantalizing connection with stochastic pack-
ing problems. This paper has furthered that connection.

Moving forward, we anticipate two research directions
emerging from the present work. First, it would be interest-
ing to further explore the connection with stochastic pack-
ing problems. There exists a vast body of algorithmic work
for such problems, and it would be interesting to see what
this yields for multiarmed bandit problems. A second direc-
tion is exploring the requirement of irrevocability in the
nonparametric bandit setting; it is clear that an irrevoca-
ble scheme can never be regret optimal. The question to
ask is, how suboptimal from a regret perspective can an
irrevocable scheme be made in the nonparametric setting?

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Appendix A. Proofs for §4
Proof of Lemma 2. We first introduce some notation. It is
clear that the policy �R

i induces a Markov process on the
state space � i. We expand this state space to track the total
number of arm pulls so that our state space now becomes
� i × � ∪ �T �. The policy �R

i induces a distribution over
arm i states for every time t < T , which we denote by the
variable ��. Thus, ���si�m� t�ai� will denote the probability
of being in state �si�m� at time t and taking action ai.

Now,

E�Rm+1
i −Rm

i �=
�

si� t<T

���si� m� t� pi�ri�si�pi�

and similarly, for E�Rm
i −Rm−1

i �.
However,

�

si� t<T

���si�m� t�pi�ri�si�pi�

=
�

si� t<T−1

���si�m− 1� t�pi�

��

s�i

Pi�si�pi� s
�
i�h�s

�
i� t+ 1�

· ri�s�i�pi�

�

�
�

si� t<T−1

���si�m− 1� t�pi�

��

s�i

Pi�si�pi� s
�
i�ri�s

�
i�pi�

�

�
�

si� t<T−1

���si�m− 1� t�pi�ri�si�pi�

�
�

si� t<T

���si�m− 1� t�pi�ri�si�pi�

=E�Rm
i −Rm−1

i ��

where h�si� t�= 1−�T−1
t�=t Pr��

R
i �si� t

��= �i�. Here
�T−1

t�=t ·
Pr��R

i �si� t
�� = �i� is the probability of never pulling the

arm after reaching state si at time t so that h�si� t� rep-
resents the probability of eventually pulling arm i after
reaching state si at time t. The second inequality follows
from the assumption on reward structure in the statement
of the lemma. Thus we see that coins satisfy the decreasing
returns property.

Proof of Lemma 3. For t � 0, define a function

f �t�=
n�

i=1

E�Ri�

E�Ti�

��
t−

i−1�

j=1

E�Ti�

�+
∧E�Ti�

�
�

where �a ∧ b� = min�a�b� and �x�+ = x if x � 0, and
0 otherwise. By construction (i.e., because E�Ri�/E�Ti� is
nonincreasing in i), we have that f is a concave function
on �0�kT �� Now observe that

H∗�

i=1

E� �Ri�=
H∗−1�

i=1

E�Ri�

E�Ti�
E�Ti�+

E�RH∗ �

E�TH∗ �

�
kT /2−

H∗−1�

j=1

E�Ti�

�

=f �kT /2��

Next, observe that

OPT�RLP� ��0��=
n�

i=1

E�Ri�

E�Ti�
E�Ti�= f �kT ��

By the concavity of f and because f �0�= 0, we have that
f �kT /2�� 1/2f �kT �, which yields the result.

Proof of Lemma 4. We have

E�R1/2�
�a�=

H∗�

i=1

Pr
� i−1�

j=1

Tj < kT /2
�
E�Ri�

�b�

�
H∗�

i=1

Pr
� i−1�

j=1

Tj < kT /2
�
E� �Ri�

�c�=
H∗�

i=1

Pr
� i−1�

j=1

�Tj < kT /2
�
E� �Ri�

�d�

�
H∗�

i=1

�
1−

�i−1
j=1E� �Tj �
kT /2

�
E� �Ri�

=
H∗�

i=1

E� �Ri�−
H∗�

i=1

�i−1
j=1E� �Tj �
kT /2

E� �Ri�

�e�

�
H∗�

i=1

E� �Ri�−
1
2

H∗�

i=1

�H∗
j=1�j �=i E� �Tj �
kT /2

E� �Ri�

�f �

� 1
2

H∗�

i=1

E� �Ri�

�g�

� 1
4OPT�RLP� ��0���

Equality (a) follows from the fact that under policy �R, Ri

is independent of Tj for j < i. Inequality (b) follows from
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our definition of �Ri� �Ri �Ri. Equality (c) follows from the
fact that by definition �Ti = Ti for all i < H∗. Inequality (d)
invokes Markov’s inequality.

Inequality (e) is the critical step in establishing the
result and uses the simple symmetrization idea exploited
by Dean et al. (2008): In particular, we observe that
because E�Ri�/E�Ti� � E�Rj �/E�Tj � for i > j , it follows
that E�Ri�E�Tj �� 1/2�E�Ri�E�Tj �+E�Rj �E�Ti�� for i > j .
Replacing every term of the form E�Ri�E�Tj � (with i > j)
in the expression preceding inequality (e) with the upper
bound 1/2�E�Ri�E�Tj �+E�Rj �E�Ti�� yields inequality (e).
Inequality (f) follows from the fact that

�H∗
i=1E� �Ti�= kT /2

and since E�Ri�� 0. Inequality (g) follows from Lemma 3.

Proof of Lemma 5. We note that assuming Property 1
implies that E�RT /2

i �� 1/2E�Ri� for all i. The assertion of
the lemma is then evident; in particular,

E�R1/2�=
H∗�

i=1

Pr
� i−1�

j=1

Tj < kT /2
�
E�Ri�

�
H∗�

i=1

Pr
� i−1�

j=1

Tj < kT /2
�
2E�RT /2

i �

= 2E
� H∗�

i=1

1�
�i−1

j=1 Tj<kT /2�R
T /2
i

�
�

where the first and second equality use the fact that Ri and
RT /2

i are each independent of Tj for j �= i.

Proof of Lemma 7. We begin with noting that for any
�> 0 and almost all � ∈�, ∃N ����, such that
m�

i=1

Ti �mk0T /n0 + �1+ ��
�
m log logmk0T /n0 (A1)

for all m�N ����. This is immediate from the Law of the
Iterated Logarithm for i.i.d. random variables. Now, let us
denote m�N �=Nn0−�1+��

√
Nn0 log logNn0. Notice that

m�N �k0T /n0+�1+��
�
m�N �loglogm�N �k0T /n0�Nk0T �

Thus, by (A1), it follows that
m�N ��

i=1

Ti �Nk0T

eventually. However, then it must be that

�n �m�N �

eventually, which yields the second part of the lemma.
Now, for the first part of the lemma, assume for the sake
of contradiction that the highest indexed arm pulled up to
time T − 1 has an index (say, l) smaller than �N ∧ n0N .
That is, this assumption would imply that there exists an
l < �N ∧ n0N satisfying
l�

i=1

Ti �Nk0T �

However, then �N � l, which yields a contradiction and thus
the result.

Remark 1. We remark that in the event that the n0 arms in
the unscaled system were not assumed identical, one proves
that �N � Nn0 − �1+ ��n0�Tmax/Tmin�

√
N log logN where

Tmax and Tmin are, respectively, the largest and smallest
expected active times in the solution of the unscaled prob-
lem (i.e., when N = 1). This remains sufficient to establish
Theorem 2 for that case.

Appendix B. Proof of Theorem 4
The following lemma shows that the optimal objective
function value of the dual is equal to OPT�RLP� ��0��. In
particular, it shows that Slater’s constraint qualification con-
dition holds (see, for example, Boyd and Vandenberghe
2004).

Lemma 9. OPT�RLP� ��0�� = OPT�DRLP� ��0��. That is,
strong duality holds.

Proof. To show this, it is sufficient to show that there is a
strictly feasible solution to (2), i.e., the inequality is satis-
fied strictly. This is straightforward—in particular, for each
bandit i, set �i�si��i� t� = ��0� i�si� for all si and t, where
��0� i�si� is the probability of bandit i starting in state si. Set
�i�si�ai� t�= 0 for ai �= �i for all si� t. These state action
frequencies belong to Di� ��0�, and also give Ti��i�= 0.

We denote R∗ = OPT�RLP� ��0�� = OPT�DRLP� ��0��.
Also, define the following set of total running times for all
bandits corresponding to a dual variable �:

� ���=
��

i

Ti��i�

�����i ∈ argmax
�i

�Ri��i�−�Ti��i���� ∀ i
�
�

Lemma 10. If 0� �1 < �2, then

min� ��1��max� ��2��

Proof. We denote the objective function in DRLP� ��0�,
i.e., the dual function by

g���= �kT +
�

i

max
�i

�Ri��i�−�Ti��i���

The slack in the total running time constraint
�

i Ti��i��
kT , i.e., kT −�

i T ��i�, is a subgradient of g for any �
such that �i ∈ argmax�i

�Ri��i�−�Ti��i�� (see Shor 1985).
Thus, the set of subgradients of the dual function g at �
are given by

�g���= �kT − t� t ∈� �����

Then, because g is a convex function, it follows that for
0� �1 < �2,

kT − t1 � kT − t2� ∀ t1 ∈� ��1�� t2 ∈� ��2��

The lemma then follows.



Farias and Madan: The Irrevocable Multiarmed Bandit Problem
398 Operations Research 59(2), pp. 383–399, © 2011 INFORMS

The primal and dual have an optimal solution ��∗��∗�
if and only if (see, for example, Boyd and Vanden-
berghe 2004)

�∗
i ∈ argmax

�i

�Ri��i�−�∗Ti��i��� either �∗ > 0 and

�

i

Ti��
∗
i �= kT � or �∗ = 0 and

�

i

Ti��
∗
i �� kT � (B1)

We prove the correctness of the RLP Solver algorithm sep-
arately for the cases when �∗ = 0 is optimal and when
any optimal solution satisfies �∗ > 0. We denote the values
of the bounds on the dual variable that are computed by
the last iteration of the RLP solver algorithm by �feas and
�infeas. Recall that,

� feas
i ∈ argmax

�i

�Ri��i�−�feasTi��i���

� infeas
i ∈ argmax

�i

�Ri��i�−�infeasTi��i���

We introduce some additional notation:

T feas =
�

i

Ti��
feas
i �� Rfeas =

�

i

Ri��
feas
i ��

T infeas =
�

i

Ti��
infeas
i �� Rinfeas =

�

i

Ri��
infeas
i ��

Thus,

g��feas�= �feaskT +Rfeas −�feasT feas�

g��infeas�= �infeaskT +Rinfeas −�feasT infeas� (B2)

Lemma 11. If ��∗��∗� is a solution to (B1) with �∗ = 0,
then

R∗ − ��Rinfeas + �1−��Rfeas�� ��

Proof. If �∗ = 0, it follows from (B1) that there is
some t ∈ � �0� such that t � kT . Hence, it follows from
Lemma 10 that for any � > 0, max� ��� � kT . Hence,
line 11 of the RLP solver algorithm is always invoked, and
so the RLP solver algorithm converges to

�infeas = 0 and 0< �feas < �/�kT ��

Hence, � infeas
i ∈ argmax�i

�Ri��i��. Also, g��� is minimized
at �∗ = 0. Hence, it follows from Lemma 9 that

R∗ = g�0�=
�

i

max
�i

Ri��i�=Rinfeas� (B3)

Because, �feas > 0, it follows from T feas � kT . Hence, we
now consider the following three cases:

• Case 1: T infeas � kT .
Here, �= 1, and hence, using (B3) it follows that

R∗ − ��Rinfeas + �1−��Rfeas�= 0�

• Case 2: T feas = kT .
In this case, �� feas��feas� satisfy the optimality conditions

in (B1). Thus, Rfeas = R∗, and so (because Rinfeas = R∗ by
(B3))

R∗ − ��Rinfeas + �1−��Rfeas�= 0�

• Case 3: T infeas > kT > T feas.
Because g��� is minimized at �= 0,

R∗ = g�0�� g��feas�= �feaskT +Rfeas −�feasT feas

⇒R∗ −Rfeas � �feas�kT − T feas��

Because R∗ = Rinfeas (from (B3)), and using the fact that
0< �< 1 when T infeas > kT > T feas, we have

R∗ −�Rinfeas − �1−��Rfeas = �1−���R∗ −Rfeas�

� �1−���kT − T feas��feas

� kT�feas � �� (B4)

Lemma 12. If every solution to (B1) satisfies �∗ > 0, then

R∗ − ��Rinfeas + �1−��Rfeas�� 2��

Proof. The RLP solver algorithm is initialized with
�infeas = 0. Because �∗ > 0 and �kT � ∈ � ��∗� ((B1)), it
follows from Lemma 10 that min� �0� � kT . However,
�kT � � � �0�, else there would be a solution to (B1)
that satisfies �∗ = 0, leading to a contradiction. Thus,
min� �0�> kT , and so lines 8–12 of the RLP solver algo-
rithm guarantee that

T infeas > kT � (B5)

Using an appropriate modification of the optimality con-
ditions in (B1) for the case where the horizon is T infeas

(instead of kT ), we see that Rinfeas is the maximum reward
earned by any policy in ���

�
i Ti��i�� T infeas�. Because

R∗ is the maximum reward earned by any policy in
���

�
i Ti��i�� kT < T infeas�,

Rinfeas �R∗� (B6)

We now argue that T feas � kT . The RLP solver algo-
rithm is initialized with �feas > rmax. Because � feas

i ∈
argmax�i

�Ri��i�−�feasTi��i��, initially, the optimal policy
is to idle at all times. Thus, T feas � kT at initialization; at
all other iterations, lines 8–12 of the algorithm ensure that
T feas � kT .
We now consider the following two cases separately:
• Case 1: T feas = kT .
In this case, �� feas��feas� satisfy the optimality conditions

in (B1), and so Rfeas =R∗. Now, using (B6)

��Rinfeas + �1−��Rfeas��R∗�
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• Case 2: T feas < kT .
Note that the RLP solver algorithm terminates when

�feas −�infeas < �/�kT �� (B7)

Now T feas < kT and �kT � ∈ � ��∗�. If �feas < �∗, it follows
from Lemma 10 that

T feas �min� ��feas��max� ��∗�� kT �

which is a contradiction. Hence,

�feas � �∗� (B8)

Also, because �kT � ∈� ��∗�, it follows from Lemma 10
that for any � > �∗, max� ��� � kT . Therefore, (B5)
implies that

�infeas � �∗� (B9)

It follows from (B7), (B8), and (B9) that

max
�
0��∗ − �

kT

�
� �infeas and �feas � �∗ + �

kT
�

Because g��� is minimized at �∗, it follows from (B2) and
strong duality proved in Lemma 9 that

g��∗�=R∗ � g��feas�=Rfeas +�feas�kT − T feas�

�Rfeas + ��∗ + ���kT − T feas��

g��∗�=R∗ � g��infeas�=Rinfeas +�infeas�kT − T infeas�

�Rinfeas + ��∗ − ���kT − T infeas��

where �= �/�kT �. Note that the above inequalities also use
T feas < kT (by assumption) and T infeas > kT (from (B5)).
Thus,

R∗ −�Rinfeas − �1−��Rfeas

= ��R∗ −Rinfeas�+ �1−���R∗ −Rfeas�

� ���−�∗��T infeas − kT �+ �1−����∗ + ���kT − T feas�

= 2
��T infeas − kT ��kT − T feas�

T infeas − T feas

� 2�kT = 2��

Proof of Theorem 4 The result follows from Lemmas 11
and 12 and the fact that �∗ � 0 (from (B1)).
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