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(Bernoulli) Multi-Armed Bandits

N arms, each of which gives a Bernoulli
reward when activated

Can activate one arm at a time

If probabilities known, always choose
arm with highest reward

Setting of interest: learning the best
arm without knowing probabilities a-
priori

Reward

Bernoulli(p,)

Arm 1, py

Arm 2, p,

Arm 3, p3

Arm N, py



(Markov) Multi-Armed Bandits

Arm [ is a Markov chain over state space S; with S B
law P; and rewards R;: S; — [0,1] 11 R

Arm state only evolves when activated, at rest

otherwise / (S2, Py, Ry)
R, (s2)

Setting of interest: optimal policy to activate *
arms, all information about arms is known .
Gittins (1970s) — optimal policy can be

computed efficiently using an index structure (Sn, P, Rw)



(Restless) Multi-Armed Bandits

Arm [ is a Markov chain over state space S; with (S0, P2, PL, Ry)
1, ) AN |
two laws P and P} and rewards R;: S; — [0,1] o

Arm state evolves using P} when activated, and

0 pl
using P when at rest / (S2, P2, P3, R;)
R>(s2)

Setting of interest: optimal policy to activate .
arms, all information known .

Papadimitriou and Tsitsiklis (1994): RMAB are .
PSPACE complete (Sn» P, Py, Rw)



Indexability and the Whittle Index

Whittle (1980s) — near-optimal policy can be computed efficiently, given special
indexability property

Indexability of Arm i: Given activation cost C > 0, the set of states for which it is
optimal to activate the arm decreases monotonically as C increases

Compute index functions W;: S; — R, which denote how “valuable” it is to activate arm
[ at state s;

Whittle Index policy 7(t) = argmax {W; (Si(t))}
l



RMAB: An Online Learning Formulation

Choose Arm Choose Arm Choose Arm
Activation Policy Activation Policy Activation Policy
"\ \ N
! e —— .
Episode 1 \4 Episode 2 \ Episode 3
Receive feedback Receive feedback
about reward about reward
functions functions

A

»
»

M time-slots

» Episodes of length M, each episode involves solving a RMAB problem
 Arms’ state-spaces and transition laws remain fixed

 Reward functions change across episodes in an unknown manner while
maintaining indexability



RMAB: An Online Learning Formulation

Choose Arm Choose Arm Choose Arm
Activation Policy Activation Policy Activation Policy
T \ \7:2 \723
Episode 1 \4 Episode 2 \ Episode 3
Receive feedback Receive feedback
about reward about reward
functions functions
< »

M time-slots

* Q: Can we design a scheme that learns the best scheduling policy in an
online manner?

 Answer: Yes!



Follow The Perturbed Leader

* Viewing arm activation policies as experts:
1. Maintain the sum of rewards observed in the past

2. Perturb i.i.d. the history of rewards for each scheduling policy
3. Find the best policy using this perturbed history

* The number of policies scales exponentially in the length of the epoch @(NM)

* Thus traditional online learning methods are infeasible



Follow The Perturbed Whittle Index

An Alternative:

1. Accumulate the history of reward functions observed
Ri = Ri + T'i(t)
2. Perturb these reward functions while maintaining indexability
R =R;+mn;
3. Compute the Whittle-Index Policy
m(t + 1) = Whittle(Ry, Ry, ...,Ry)



Follow The Perturbed Whittle Index

Key Idea 1: Whittle Index acts like a low complexity optimization oracle for the RMAB
problem, so incorporate it in FTPL

Key Idea 2: Instead of perturbing the costs of policies, perturb the reward functions
themselves

New Challenges introduced:
1. Create perturbations to maintain indexability structure
2. Perturbations are no longer i.i.d. per expert/policy

3. Whittle Index is an approximate but not exact maximizer

Our Contribution: resolving these challenges!



Algorithm 2: Follow the Perturbed Whittle Leader
Input :parameter e > 0

1 Set FLV(j) = j,Vi € {1,...N},Vj € {1,... M}
2 while t € 1,....T do
3 | SetAW, ., AN =1

1 (Sarnple 6;” (j) ~ uniform in [0, 1/€], i.i.d. Vi c)
{1,..,N}and Vj € {1,.., M}

s [\ Compute " (j) = 21 _ 8" (k), Vi, j

J
6 Choose scheduling policy
[ et = /_JD (1) (N (N\\ A
m = Whittle{ F " +y, 0 B 4y |
. J
7 Incur loss = C;(ry) over epoch t and observe feedback

(1) (N)
1 1
8 In case of bandit feedback, construct cost estimates

ft(i), Vi € {1,..., N} using linear interpolation
9 Update

) _ FY+ £ vie {1,.., N}, if full feedback
U FY + £ vie {1,.., N}, if bandit feedback.

10 end

Monotone
Perturbation

Whittle Index
Scheduling

Accumulate
Cost Functions



Regret of FTPL

Given N sources, T epochs, M time-slots per epoch and
upper-bound D on cost

E[Regret+(FPWL)] < aT +2DV2MNT

 a measures how close the Whittle-index solution is to optimality in the offline problem
 Specifically, for any two sets of cost functions f;, f5, ..., fy and g1, 95, ..., gy assume

Ce (Whittle(f)) — Cg(Opt(f)) | < «



Application to Wireless Scheduling

Monitoring sources, with time-varying
relative importance, over a wireless network,
e.g. - mobility tracking

Cost of stale information changes with time

= 5

The static problem is an indexable RMAB . _ ase
o - Station

Sources



Application to Wireless Scheduling
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The End
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Indexable Restless Multi-
Armed Bandits

Whittle Index

Follow the Perturbed
Whittle Index

An Extension
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Combinatorial Optimization
Problem

Approximate Low-
Complexity Optimization
Oracle

Follow the Perturbed
Oracle



Restless Multi-Armed Bandits

Restless Bandits: Activity Allocation in
a Changing World

P. WHITTLE

Abstract

We consider a population of n projects which in general continue to evolve whether in operation
or not (although by different rules). It is desired to choose the projects in operation at each instant
of time so as to maximise the expected rate of reward, under a constraint upon the expected
number of projects in operation. The Lagrange multiplier associated with this constraint defines an
index which reduces to the Gittins index when projects not being operated are static. If one is
constrained to operate m projects exactly then arguments are advanced to support the conjecture




