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T
he vision of miniaturized computers, decked with tiny batteries, sensors, and radios,
organizing themselves tetherlessly to efficiently and reliably perform complex tasks,
considered unimaginable a few years ago, is no longer just a vision. It is rapidly
evolving into the reality of sensor networks. Today, we are asking these networks to
help us in innumerable ways. These range from detecting chemical leaks to tracking

children in Disneyland, from monitoring factory inventories and managing company assets to
even probing the ecosystem at unprecedented spatial scales. The rich application space addressed
by these so-called first-generation sensor networks has understandably gotten us excited. The
ability to throw a bunch of lightweight sensing devices into an arena of interest, and to reliably
and efficiently monitor (and sometimes even control) sensing modalities like light intensity,
temperature, pressure, chemical concentration, and magnetization, is indeed of great value.

Most of these sensing modalities correspond to low data-rate signals. Indeed, this is tough
enough given the daunting challenges posed by energy management, wireless interference,
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and ad hoc networking. However, there is a growing base of
compelling applications that demand supporting communica-
tion of high data-rate visual information over wireless net-
works. In scenarios where we have little or no prior
knowledge of what information in an environment may prove
critical, it is essential to have access to “raw” visual data for
more informed real-time decision making and postevent data
analysis. For example, while pressure and magnetic sensors
can register the presence or absence of a car in a parking lot,
they cannot help identify the drivers, accident victims, wit-
nesses, and vehicle license plates in unexpected accident situ-
ations. In such situations, the data gathered by a network of
video sensors becomes indispensable.

The deployment of high-speed, wired and wireless networks
such as 802.16, 802.16a, and 802.11b/g and the explosion of dig-
ital camera equipped cellular phones has already provided basic
infrastructure for supporting communications in high data-rate
wireless video sensor networks [1]. These networks can find
their way into many real-time applications needing video-based
active monitoring of telemetry data in such diverse indoor and
outdoor environments as hospitals, hotels, parking lots, high-
ways, airports, and international borders. Typical video sensor
networks are made up of multiple cameras with varying degrees
of spatially and temporally overlapping coverage, generating
correlated signals that need to be processed, compressed, and
exchanged in a loss-prone wireless environment to facilitate
real-time decisions. However, the sheer volume of visual data
involved, with video signals ranging from a few hundreds of
kilobits per second to a few megabits per second and more,
poses new and unique challenges.

This forms the motivational background for this article. Can
we make progress towards a second generation of broadband
sensor networks that cover applications like video? There are
numerous challenges to be addressed to take this to reality. At
the very least, we need to address the first-generation challenges
that get amplified by the increased data rate and energy require-
ments. Further, interdisciplinary research involving tools from
diverse areas such as computer vision, video processing, distrib-
uted computing, and broadband wireless networks is in order. 

In this article, we address the important aspect of compress-
ing and transmitting the video signals generated by these broad-
band networks while heeding the architectural demands
imposed by these networks in terms of energy constraints (com-
munication and computation) as well as the channel uncertainty
related to the wireless communication medium. (For issues
related to the interaction of signal processing and networking,
see, for example, [2].) To take an even smaller and manageable
bite out of this daunting challenge, we concentrate here on the
exemplary case of a single video camera and use it as a platform
to describe the theoretical principles and practical aspects
underlying distributed video coding. The extension of these con-
cepts to the general multicamera video sensor network environ-
ment remains an ongoing challenge for the video networking
community at large at this time, with promising preliminary
efforts by several R&D groups [3]–[6]. The first step involves a

thorough understanding of the fundamental issues underlying a
simple single-camera point-to-point setup. We argue that the
key concepts of distributed video coding for networks can be
extracted even from this setup and are largely independent of
the number of nodes in the system. The primary intent of this
article is to expose these concepts in a fundamental way. The
networked multicamera case will be addressed more tersely later
in the article, with the tacit acknowledgment that this is very
much a fledgling area of research that will need to build a criti-
cal mass in the coming years to bring to fruition.

A broadband network of wireless video sensors is subjected to
three principal constraints:

1) limited processing capabilities and diverse display reso-
lutions due in part to inexpensive device designs and limited
battery power. These call for lightweight signal processing
and compression algorithms at the individual sensor nodes
and an architecture that can adapt to the differing process-
ing capabilities of the encoding and decoding nodes.
2) limited power/energy budget requiring careful manage-
ment for maximizing network lifetime, the quality of the
acquired data, and the accuracy of the decisions.
Communication is often the dominant power-consuming
activity. Power management requires efficient compression
algorithms that maximize the power utilization per bit
communicated and controlled dormancy cycles in inter-
sensor communication that preclude frequent intersensor
communication. This motivates the need for distributed
coding and processing.
3) information loss that is endemic to the harsh, loss-prone,
wireless communication environment. This calls for robust
coding algorithms, communication and networking proto-
cols, and architectures that are immune to single points of
failure. It is important to proactively build in robustness con-
siderations into the architectural foundation rather than as
after-thought bandage fixes.

With the above constraints, the traditional views of video coding
and transmission as being confined to a “downlink” scenario
(such as television broadcast or download from a video server)
need to be relaxed. In the prevalent video coding architectures
such as MPEG-x and H.26x [7]–[10], video encoding is the pri-
mary computationally intensive task with the complexity domi-
nated by the motion-search operation. Conventional video
decoding, on the other hand, has significantly lower complexity.
This skewed, somewhat rigid, complexity compartmentalization
conflicts with the heterogeneous processing capability require-
ments of video sensor networks where the encoding units might
be able to do only “lightweight” processing but the relay or
decoding units might be more capable. The prevalent video cod-
ing architectures are also built upon the principle of (determin-
istic) predictive coding from which they derive their
compression efficiency. However, as clarified later in the article,
predictive coding architectures are prone to encoder-decoder
drift due to dependency chains and are therefore fragile to trans-
mission losses. Drift recovery requires bandwidth-expensive
(intraframe mode) resets. The use of forward error correction
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codes (FECs) can delay but not stem the onset of drift. Further,
generalizing these deterministic predictive coding architectures
to the multicamera setting is not easy without fairly elaborate
intercamera communication, which can be expensive and com-
plicated. Clearly, this does not scale well to large-scale distrib-
uted camera networks. In summary, the traditional video coding
architectures are inherently mismatched to the challenging
requirements imposed by the emerging class of video sensor
network applications.

This article conducts a study of broadband video-based sen-
sor networks including: i) the fundamental requirements
imposed by these networks, ii) the theoretical foundations and
architectural paradigm shifts needed to address these require-
ments effectively, iii) real-world experimental validation of the
proposed architecture and algorithms, and iv) the wide spec-
trum of possible applications.

There is a high degree of spatiotemporal correlation in the
data gathered by a broadband video camera network, and dis-
tributed source coding principles [11], [12] provide useful tools
for efficiently exploiting this correlation. We will explore these
aspects at theoretical, system-design, and algorithmic levels in
the context of wireless video sensor networks. As motivated ear-
lier, we will focus primarily on a single-camera setup to illus-
trate our ideas, highlighting the key differentiating attributes of
distributed video coding that cannot be supported by existing
video coding methods. As will become clear in what follows, the
single camera setup constitutes a key building block of the video
sensor network with direct applications to scenarios such as
wireless networks of video camera equipped cell phones.
Further, the proposed methods scale naturally to the multiple-
camera scenario.

We would like to point to the recent heightened interest and
spate of research activity in the area of video coding with side
information (distributed video coding) as in [13]–[14]. We will
confine ourselves here to the PRISM codec of [13], which lever-

ages the power of distributed compression methods [12] to
achieve superior robustness to frame drops at very low delays
with low encoding complexity (of the order of still image com-
pression) and competitive compression performance (see [16]
for details).

This article is organized as follows. The next section
overviews the conventional interframe predictive video coding
architecture. That is followed by a description of the architectur-
al goals and the basic philosophy underlying the proposed PRISM
framework. Then information-theoretic performance limits of
prediction-based and side-information based video codecs under
tractable semirealistic models for the source and channel impair-
ments are presented. Analysis of pure compression performance
reveals the novel feasibility of moving the high-complexity pre-
dictive motion search task from the encoder to the decoder.
Analysis of channel impairments reveals the fundamental unsuit-
ability of predictive coding in loss-prone environments. These
theoretical insights guide the experimental results presented.
Finally, we conclude this article with a look into the multicamera
setup, and some exciting directions for the future.

MPEG: A PROTOTYPICAL ARCHITECTURE 
FOR PREDICTIVE VIDEO CODING
This section quickly overviews the conventional video inter-
frame predictive coding architecture that underlies current
video coding standards such as the MPEG-x and H.26x. Video is
a temporal sequence of two-dimensional images (also called
frames). For the purpose of encoding, each of these frames is
partitioned into regular spatial blocks. These blocks are encoded
primarily in the following two modes. 

1)  Intracoding (I) mode: The intracoding mode exploits the
spatial correlation in the frame that contains the current
block by using a block transform such as the discrete cosine
transform (DCT). It typically achieves poor compression,
since it does not exploit the temporal redundancies in video. 
2)  Intercoding or motion compensated predictive (P)
mode: This mode exploits both the spatial and temporal
correlation present in the video sequence resulting in high
compression. The high-complexity motion estimation
operation uses the frame memory to infer the best predic-
tor block for the block being encoded. Motion compensa-
tion provides the residue between the predictor block and
the block in question, which is then transformed and
encoded. Intercoding is illustrated in Figure 1.
Typically, the video sequence is grouped into a group of

frames (GOF) (see Figure 2) where the first frame in the group
is coded in intramode only while the remaining frames in the
group are usually coded in intermode.

Intracoding has low encoding complexity and high robust-
ness (being a self-contained description of the block being
encoded) but has poor compression efficiency. To offset this, the
MPEG-x and H.26x standards use motion compensated predic-
tive coding to achieve the compression needed to communicate
over bandwidth-constrained networks. However, motion com-
pensated predictive coding suffers from two major drawbacks:
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[FIG1] P-Frame coding (motion-compensated predictive video
coding): The current frame is divided up into blocks of n pixels. X
is the current block being encoded. Y1, . . . , YM are M candidate
predictor blocks for X in the previous decoded frame within a
search range. YT is the best predictor for X. Z corresponds to the
prediction error (or innovations noise).
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a) Fragility to synchronization or “drift” between encoder and
decoder in the face of prediction mismatch, primarily, due to
channel loss, is a major drawback of the current paradigms.
(Difference in frame memories at the encoder and the decoder
results in the residue error being encoded at the encoder off
some predictor and decoded at the decoder off some other pre-
dictor causing drift. This is a major problem in wireless com-
munication environments that are characterized by noise and
deep fades. Scenarios such as transmission losses can lead to
nonidentical encoder and decoder frame memories.)
b) These frameworks are hampered by a rigid computational
complexity partition between encoder (heavy) and decoder
(light) where the encoding complexity is dominated by the
motion search operation, whereas the decoder is a light-
weight device operating in a “slave” mode to the encoder. (A
“full-search” block motion estimation algorithm incurs
approximately 65,000 operations per pixel per second for a
30 frames per second video and can consume nearly 75% of
CPU time. Motion estimation is also extremely demanding on
the I/O transfer between CPU and memory.)

PRISM: A NEW ARCHITECTURE FOR 
DISTRIBUTED VIDEO CODING
As discussed earlier, wireless video sensor networks are charac-
terized by devices with limited processing capabilities and bat-
tery power constraints, harsh loss-prone wireless channels, and
(comparatively) low bandwidths. Consequently, a video codec
designed for a wireless video sensor network is desired to have

■ inbuilt robustness to “drift” caused by loss of synchroniza-
tion between encoder and decoder (e.g., due to channel loss)
■ flexibility in the distribution of computational complexity
between encoder and decoder
■ high compression efficiency.
In addition, some applications impose very stringent delay

requirements. Conventional video codecs, such as MPEG-x
and H.26x, fail to meet all these requirements simultaneous-
ly. In the sequel, we will describe the architectural and algo-
rithmic aspects of PRISM, which is grounded on the
framework of source coding with side information (also
called distributed source coding). We illustrate this concept
in “Illustrative Example for Coding with Side Information”

[FIG2] A GOF. Here I = intracoded frames and P = motion-
compensated intercoded frames.

I IPPP

ILLUSTRATIVE EXAMPLE FOR CODING WITH SIDE INFORMATION

To see how source coding with side information (Wyner-Ziv coding) works in practice, it is instructive to examine the following exam-
ple. Here X is a real-valued observation at the encoder that has to be communicated to the decoder with a certain fidelity. The
decoder has access to correlated side-information Y which is not available at the encoder.

The encoder will first quantize X to X̂ with a scalar quantizer with step size δ (Figure 3). Clearly, the distance between X and X̂ is
bounded as |X − X̂| ≤ δ/2. We can think of the quantizer as consisting of three interleaved quantizers (cosets), each of step size 3δ.
In Figure 3 we have labeled the reconstruction levels of the three quantizers as A, B, and C, respectively. The encoder, after quantiz-
ing X, will note the label of X̂ and send it to the decoder, which requires log2(3) bits.

The decoder has access to the label transmitted by the encoder and the side information Y. In this example, we assume that X and
Y are correlated such that |Y − X| < δ. Thus, we can bound the distance between X̂ and Y as

|X̂ − Y | ≤ |X̂ − X| + |X − Y | <
δ

2
+ δ = 3δ

2
.

Because X̂ and Y are within a distance of (3δ)/2 of each
other and the reconstruction levels with the same label are
separated by 3δ, the decoder can correctly find X̂ by selecting
the reconstruction level with the label sent by the encoder
that is closest to Y. This can be seen in Figure 3, which shows
one realization of X and Y.

In this example, the encoder has transmitted only log2(3) bits
per sample, and the decoder can correctly reconstruct X̂, an
estimate within δ/2 of the source X. In the absence of Y at the
decoder, the encoder would need to quantize X on an m-level
quantizer of step size δ. Thus, by exploiting the presence of Y at
the decoder, the encoder saves (log2(m) − log2(3))+ bits—this
can be quite large if m is large, which should be the case if the variance of X is large.

[FIG3] Distributed compression example: The encoder
quantizes X to X̂ and transmits the coset-label “A” of X̂. The
decoder finds the coset-A reconstruction level closest to the
side information Y as X̂.
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and will discuss the three major architectural goals of PRISM
in detail in the context of the example.

COMPRESSION PERFORMANCE
An intuitive explanation of the example in “Illustrative Example
for Coding with Side Information” is that the source quantizer
is partitioned into cosets of a channel code [17], [18] (the three
interleaved quantizers A, B, and C). The side-information Y can
be viewed as a free (but noisy) version of the source X available
at the decoder. The decoder decodes this noisy version of X in a
channel codebook (the specific codebook used will be the coset
specified by the encoder). In the example, we have used a chan-
nel code that is “matched” to the correlation distance (equiva-
lently, noise) between X̂ and Y to partition the source
code-word space of X. This provides a side information codec
with high compression performance. In theory, for many inter-
esting scenarios, the performance of side-information coding
system can match that of one based on predictive coding (where
both the encoder and the decoder have access to Y ) [11], [12].

FLEXIBLE DISTRIBUTION OF COMPLEXITY
A second goal is to allow for the complexity burden between
encoder and decoder to be shared in any desirable ratio as
demanded by prevailing channel conditions and the constraints
of the encoding and decoding devices, without loss of perform-
ance. Since the predominant complexity component in current
state-of-the-art video encoders is the motion estimation func-
tion, PRISM facilitates the above goal by allowing for moving
the expensive motion search component to the decoder. (Here
we focus primarily on the two extremes: the entire motion
search operation being performed either at the encoder or the
decoder. However, the PRISM framework accommodates arbi-
trary sharing of the motion search space between the encoder
and the decoder. For instance, the encoder can perform a
coarse-level motion search and reveal the outcome to the
decoder. The decoder can then limit its search to the comple-
ment of the encoder search set thereby reducing its search cost.)
This is based on a generalization of the source coding with side
information framework where there is uncertainty in the state
of side information at the receiver [19].

We note that, while in theory, it can be possible to move
motion search complexity between encoder and decoder with
no loss of performance; in practice, the correlation structure
between the current data and the predictor information isn’t
known a priori and the encoder needs to expend work to find
this out. In terms of the example in “Illustrative Example for
Coding with Side Information,” the encoder would need to
invest some resources to find out that X̂ and Y differ by at most
3δ/2. Hence, the well-known complexity-compression tradeoff
(the richer the motion model, the better the compression) wit-
nessed in conventional video codecs is also observed in the
PRISM framework with a low-complexity PRISM encoder tak-
ing a hit in compression performance relative to an interframe
codec (about 1 − 1.5 dB as in our simulation results).

Interestingly, the amount of motion search needed at
encoder and decoder also depends on channel conditions.
Specifically, as the channel noise increases, doing a full-
motion search at the encoder gives diminishing marginal utili-
ty over doing a coarse-grained motion search. On the other
hand, as the channel degrades, the decoder will need to search
more among the list of available predictors to find one that
enables successful decoding. 

ROBUSTNESS
A major goal of PRISM is to allow for far greater robustness to
packet and frame drops than is possible with today’s video
codecs. PRISM targets this by using the “universally robust”
side-information based coding framework. The partitioning 
of X in “Illustrative Example for Coding with Side Information”
is universal in the sense that the same partitioning of X works
for all Y regardless of the value of Y as long as both X and Y sat-
isfy the correlation structure s.t. |X̂ − Y| < 3δ/2. 

Essentially, in the predictive coding framework the encoding
for the current unit hinges on a single deterministic predictor,
the loss of which results in erroneous decoding and error propa-
gation. On the other hand, a side-information coding based par-
adigm encodes the current unit, in principle, with respect to the
correlation statistics between the current unit and the predictor
only. At the decoder, the availability of any predictor that satisfies
the correlation statistics enables correct decoding.

PRISM IN A NETWORK CONFIGURATION
In a video sensor network, it is possible that both the encoding
and decoding devices have limited processing capabilities. In
this case, using the flexible complexity partitioning feature of
PRISM, it is possible to move the computational burden to an
intermediate network node by using a transcoding proxy as
shown in Figure 4.

TOWARDS AN INFORMATION THEORY 
FOR DISTRIBUTED VIDEO CODING
Earlier, a distributed compression paradigm was proposed as a
promising approach for meeting the challenging requirements
imposed by wireless video sensor networks. This section presents
theoretical constructions and related analytic studies that serve to
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[FIG4] System-level diagram for a network scenario with low-
complexity encoding and decoding devices.
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clarify, quantify, and demonstrate the theoretical feasibility of
meeting the proposed objectives. These theoretical results employ
tools from multiuser information theory [20] together with mod-
els that aim to strike a balance between analytical tractability and
the realism of real-world video signals. In this context, it should
be noted that there is a disconnect between video coding practice
and the information-theory prescriptions described in this section
in terms of a) the stringent delay and complexity requirements of
the former and the asymptotically large coding delays permitted
by the latter and  b) the use of relatively simple models that do
not capture the rich and complex video phenomena in their
entirety. Even so, the proposed models and information-theoretic
analysis capture the essence of the problem at hand and offer
valuable insights that can be directly translated to implementable
practical algorithms. An information-theoretic analysis also pro-
vides quantitative performance bounds.

MOTION-COMPENSATED PREDICTIVE VIDEO CODING
The existing video coding architectures like MPEG-x and H.26x
have been optimized to operate in practically error-free commu-
nication environments with maximum compression efficiency
and low decoding complexity. The high compression efficiency
is achieved primarily by exploiting the strong temporal correla-
tion between successive video frames through motion-
compensated predictive coding (MCPC) illustrated in Figures 1
and 5. A block of n pixels X in the current frame is approximated
using the best mean squared error (MSE) matching predictor
block YT (out of M candidate predictors Y1, . . . , YM) inside a
search region that is spatially close to the location of X but in
the previous decoded frame. The parameter T ∈ {1, . . . , M},
called motion index, represents an ambiguous state of nature
that accounts for motion between consecutive frames. The esti-
mated T is first sent to the decoder using log2(M)/n bits per
pixel (b/p). If the encoder and decoder are synchronized (no pre-
vious transmission losses), the decoder will have the same previ-
ous decoded blocks Y1, . . . , YM as the encoder. Once the
decoder knows T, the video coding problem is reduced to the
problem of compressing the “source” X using the correlated
side-information YT now available to both the encoder and the
decoder. The optimum solution to this problem is well known:
In the second step, the prediction error (or innovations noise) Z,

which is roughly independent of YT , should be quantized to the
nearest code word Ẑ in a shared rate-R(D) optimum rate-distor-
tion codebook for Z and sent to the decoder. The decoder upon
receiving the quantized code word should reconstruct the
source block as X̂pred = YT + Ẑ and thereby achieve a distortion
D. The total rate needed is (log(M)/n) + R(D) b/p. This gives
the optimum rate versus distortion performance [19], [21].
Specifically, if the components of Z have independent and iden-
tically distributed Gaussian statistics with variance σ 2

z , R(D) is
given by [20]

R(D) = min
(

0, 0.5 log
(
σ 2

z /D
))

. (1)

(With video coders moving towards increasingly sophisticat-
ed motion models, if motion compensation was perfect, Z will
truly appear as white noise. Gaussian statistics for Z and a
block-motion model is often assumed to simplify analysis and
gain insight and also because the performance under
Gaussian statistics often bounds the performance under
other statistics having the same mean and variance.
Sophisticated motion models, example, affine motion and
optical flow, can also be handled within the scope of ideas
described here.) For independent, white, Gaussian Z , maxi-
mum likelihood (ML) estimation of T from X and {Y}M

i=1 coin-
cides with the standard block-matching procedure of finding
the MSE-optimal match for X among the Yis. The ML esti-
mate will be correct with high probability for large block-size
n and “well-behaved” joint statistics of X and the Yis. 

Despite its excellent compression performance, MCPC suffers
from the fragility to mis-synchronization or “drift” between
encoder and decoder and a rigid skewed computational com-
plexity partition between encoder (heavy) and decoder (light)
that make it unsuitable for network-scaling in distributed envi-
ronments. When the encoder is incapable of doing motion-
estimation and compensation but the decoder/intermediate
relay nodes having access to correlated side information Yi s can
“pick up the slack” (flexible distribution of computational com-
plexity), how significant is the loss of rate-distortion coding per-
formance over contemporary MCPC-based video codecs where
encoders have the resources to make use of the correlated Yis to
encode X? A surprising result is that the performance in both

[FIG5] (a) Motion-indexed additive-innovations model for video. (b) Motion-compensated predictive coding with a heavy encoder and
a light decoder in the synchronized scenario. T is estimated and sent using log(M)/n b/p. The prediction error Z is quantized to Ẑ using
R(D) b/p and sent. X̂pred = YT + Ẑ. The mean squared error is D = E||X − X̂pred||2/n.
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scenarios is identical when the innovations process has
Gaussian statistics and is independent of the correlated side
information Yis.

SHARING MOTION-COMPLEXITY BETWEEN 
ENCODER AND DECODER

NEW THEORETICAL FRAMEWORK FOR 
DISTRIBUTED VIDEO CODING
If an encoding node is incapable of performing the complex
motion estimation, this is in effect pretending that the
encoder does not have access to the previous decoded blocks
Y1, . . . , YM only the decoder has. The blocks Y1, . . . , YM avail-
able only at the decoder represent side-information that is
statistically correlated to the source X at the encoder. (In the
unsynchronized case, the decoder’s side-information would be
corrupted.) This situation is temptingly similar to the famous
problem of rate-distortion source coding with correlated side-
information present only at the decoder [Figure 6(a)] which
was completely solved by Wyner and Ziv [12]; but there is a
catch. The joint statistics of the source and side-information
is dependent on a state of nature T that is unknown to both
the encoder and the decoder, that is, the underlying correla-
tion is itself uncertain [Figure 6(b)]. This introduces a new
dimension to the distributed source coding problem.
Distributed compression has to be done jointly with inference
unlike the situation in the classical problems of distributed
source coding [11], [12] where the statistical models are
assumed to be known perfectly. We dub this new coding
framework as SEASON (Source Encoding with side-
information under Ambiguous State of Nature) [19].

HELP FROM A GENIE OR WYNER-ZIV 
ENCODING-DECODING
Classical Wyner-Ziv coding exploits knowledge of the statistical
correlation between the source and side-information to attain
optimum rate-distortion performance. In the video context,
the classical Wyner-Ziv coding situation corresponds to the
encoder not having access to the Yis and the decoder (and not
the encoder) getting help from a Genie [19] who reveals the

hidden state of nature T (and hence the joint statistics) as
shown in Figure 6(a). For this Genie-assisted Wyner-Ziv cod-
ing situation of Figure 6(a) it turns out that if the prediction
error Z is independent of the Yis, is white and has Gaussian
statistics, then the information-theoretic rate-MSE perform-
ance in the coding with side information situation is identical
to the case when YT is also available to the encoder as in the
previous subsection, that is, the minimum bitrate needed to
achieve an MSE D is given by (1). Thus the Genie-aided Wyner-
Ziv coding can essentially match the MSE performance of pre-
dictive coding using R(D) b/p. Encoding proceeds by first
designing a rate-distortion codebook of rate R ′ (containing
2nR ′

code words) constituting the space of quantized code
words for X. Each n-length block of source samples X is first
quantized to the “nearest” code word in the codebook. As in
“Illustrative Example for Coding with Side Information,” the
quantized code-word space (of size 2nR ′

code words) is further
partitioned into 2nR cosets or bins (R < R ′) so that each bin
contains 2n(R ′−R) code words. This can be achieved by the
information theoretic operation of random binning. The
encoder only transmits the index of the bin in which the quan-
tized code word lies and thereby only needs R bits/sample. The
decoder receives the bin index and disambiguates the correct
code word in this bin by exploiting the correlation between the
code word and the matching n-length block of side-informa-
tion samples YT . Recovering the code word, it forms the mini-
mum MSE estimate of X to achieve an MSE of D.

SEASON ENCODING-DECODING
However, the “real” situation is shown in Figure 6(b). In the
Wyner-Ziv setup, upon receiving a bin-index, the decoder used
the side-information YT to remove the uncertainty about the
identity of the correct code word in the bin. However, in the
absence of the Genie, T is not available to the decoder and repre-
sents an additional source of uncertainty [see Figure 6(b)].
However, it turns out that this additional uncertainty can be
overcome by decreasing the size of the bins, that is, by having
more bins. This incurs an additional bit-budget of log(M)/n b/p,
the precise bit budget needed to convey the motion-index T to
the decoder in the first step of predictive video coding. Encoding

IEEE SIGNAL PROCESSING MAGAZINE [100] JULY 2006

[FIG6] (a) Genie-assisted classical Wyner-Ziv coding. The Genie reveals YT only to the decoder. The encoder does not have access to or is
constrained from using Y1, . . . , YM . (b) New distributed source coding framework under ambiguous state of nature with light encoder
and heavy decoder. The rate-MSE performance matches optimal predictive coding and T̂ = T with probability one for n large.
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is relatively light and uses a Wyner-Ziv rate-distortion codebook
as in the earlier Genie-assisted codec. But whereas earlier each
bin contained 2n(R ′−R) code words, now each bin will contain
2n(R ′−R−log(M)/n) code words. Upon receiving a bin index, the
decoder is now faced with the task of discovering the code word
sent by the encoder, without knowing T. The decoder tries each
Yi in turn and stops as soon as it has found a code word in the
bin with which it is “sufficiently strongly correlated” according to
the joint component statistics expected of YT and the quantized
representation of X . This heavy decoding procedure is like a
“block-matching” motion-estimation operation but done at the
decoding node [19], an unexplored notion in the traditional
video community. (This is only to be consistent with the block-
matching motion model for video that we have assumed for ease
of illustration. Richer motion models involving complicated
weighted combinations of intensities from multiple blocks from
the previous frames can also be handled in a similar manner
under the SEASON framework.) It can be demonstrated that
this algorithm not only finds the correct quantized code word of
X, thereby matching the optimum rate-MSE performance of
predictive codecs (for Gaussian innovations), but also recovers
the correct motion-index T with high probability (for large block
size n) [19]. This simple information-theoretic example reveals
the potential for shifting the motion-complexity from the
encoder to the decoder (without loss of coding performance) or
absorbing it at capable intermediate relay nodes performing
SEASON-decoding and predictive reencoding to support less
capable origin and destination nodes.

ROBUSTNESS TO TRANSMISSION ERRORS
We shall now outline an information-theoretical analysis for a
very simple mismatched side-information problem that clarifies
the nature of the drift problem associated with predictive cod-
ing and will also highlight the superior robustness properties of
distributed video coding. Consider the simplified Genie-assisted
situation shown in Figure 7. Here, X = YT + Z is the data
source that needs to be transmitted (the Genie has revealed T to
the decoder), YT = predictor for X available at the encoder with
associated (almost) independent innovations Z, and
Y ′

T = YT + W is the predictor for X available at the destination.
W �= 0 represents the accumulated drift noise unobservable at
the encoder. The encoder and decoder are synchronized, and
there is no drift if W = 0. If Y, Z, and W are mutually independ-
ent and Z is Gaussian, it turns out that [22], [23] the optimum
rate-distortion coding scheme is to completely ignore YT at the
encoder, even though it is correlated to X and Y ′

T and code in the
Wyner-Ziv mode with X as source and Y ′

T as correlated decoder
side information. A predictive approach can first (phase 1) code
the innovations Z to an MSE D as usual pretending that there is
no side-information mismatch, that is, the decoder has YT and
later (phase 2) spend additional bit rate to compensate for the
resulting error due to nonzero drift (Y ′

T �= YT) or first (phase 2)
spend rate trying to resynchronize the encoder and decoder
side-information and then (phase-1) code Z. This idea forms the
basis of several practical distributed source-coding algorithms

for correcting drift in the recent distributed video coding litera-
ture [15], [24], [25]. Since the encoder does not know W, it can
be shown that the only way to achieve the information-theoreti-
cally optimal performance in phase 2 of the coding (the post-
coding error compensation or precoding synchronization) is to
use a distributed source coding approach to convey the missing
information. Even when the purely predictive approach utilizes
the optimal (necessarily) distributed approach in phase 2 to cor-
rectly decode X, it incurs significant performance loss relative to
the strategy that uses a single phase of purely distributed source
coding which exploits the statistical correlation between X and
Y ′

T . Specifically, if YT, Z, and W are independent, white, and
jointly Gaussian, and Rpred(D) and Rdistb(D) respectively denote
the rates for the predictive (with phase 2 distributed coding) and
single-phase purely distributed approach for meeting a target
MSE D (D < σ 2

z ) then (see [22] and [23]) 

Rdistb(D) = 1
2

log
σ 2

z + σ 2
y σ 2

w

σ 2
y +σ 2

w

D
(2)

where σ 2
y , σ 2

z , and σ 2
w are the component variances of YT, Z,

and W, respectively, and 

Rpred(D) = 1
2

log
σ 2

z

(
D + σ 2

y σ 2
w

σ 2
y +σ 2

w

)
D2 .

The rate penalty for target MSE D is given by

Rpred − Rdistb = 1
2

log
1 + A/D

1 + A/σ 2
z
,

where A = σ 2
yσ 2

w/(σ 2
y + σ 2

w). Since D < σ 2
z , the difference is

strictly positive. (Note that D < σ 2
z = variance of Z else the

predictive coding system can choose to skip encoding the
innovations in the first step: if the decoder in fact had
Y ′

T = YT, X is recovered to within an MSE D without sending
anything by setting X̂ = YT.) In the high-quality regime, that
is, D is very nearly but not quite zero, the percentage rate
penalty over Rdistb given by (Rpred − Rdistb)/Rdistb is very near-
ly equal to one [22], [23]. In plain words, a predictive coding
system requires nearly double the rate (100% penalty) over a
distributed coding system at high qualities. Figure 10 shows
what this translates to visually in our preliminary implementa-
tion of the PRISM distributed video codec [13], [16], [22], [23].
Its operational rate-MSE performance is close to predictive

[FIG7] Robustness analysis problem setup. A Genie has revealed
T to the decoder. W �= 0 models accumulated drift noise at the
decoder.
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coding in the synchronized scenario and is substantially better
in the mis-synchronized case [22], [23]. Other recent distrib-
uted video codec building efforts include [14] and [26].

COMPLEXITY-PERFORMANCE TRADEOFFS
The previous two subsections assumed perfect knowledge of the
innovation statistics σ 2

z (statistics of the correlation between X
and YT ) at both the encoder and the decoder but ambiguity of
the motion-index T. Real-world video encoding algorithms
involve an “online” learning of the correlation statistics through
the process of motion-estimation. Typically, the more the com-
plexity invested in the motion-estimation process the greater
the accuracy of the estimates of T and the statistics σ 2

z leading
to better compression performance. However, for video coding
over a lossy channel, the marginal value of accurately learning
the correlation statistics at the encoder diminishes as the chan-
nel noise σ 2

w increases as discussed below. For this discussion,
suppose that the component variance of (Yi − Y ′

i) is roughly the
same for all i and is equal to σ 2

w. Suppose the encoder only does
a little motion search and settles on the best predictor it has
found so far, say Yi, which may or may not be equal to YT . The
encoder observes the correlation noise between X and Yi to be
Zi with component variance σ 2

i . As in (2), the rate required by a
distributed encoder banking on Yi as side information (with a
Genie informing the decoder the value of i) is no more than

Rdistb(D) = 1
2

log
σ 2

i + σ 2
y σ 2

w

σ 2
y +σ 2

w

D
.

(Note that Z = ZT is roughly independent of all the Yis but the
same cannot be said of Zi for i �= T. If the joint correlation is
known, one can potentially use a lower rate.) On the other hand,
if the encoder had done full motion search and found YT and
σ 2

T = σ 2
z , the minimum rate required would have been exactly

Rmin
distb(D) = 1

2
log

σ 2
z + σ 2

y σ 2
w

σ 2
y +σ 2

w

D
.

The rate reduction obtained from full motion search would be

�R = Rdistb − Rmin
distb = 1

2
log

σ 2
i + σ 2

y σ 2
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σ 2
y +σ 2

w

σ 2
z + σ 2

y σ 2
w

σ 2
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It can be verified that d(�R)/dσ 2
w < 0 if σ 2

z < σ 2
i . So, the rate

rebate obtained by finding the correlation noise accurately,
diminishes as channel noise increases.

To summarize, the main take-away messages of this section
are: a) “complexity” can be flexibly distributed among sensor
nodes with “no significant performance loss” even in synchro-
nized scenarios, b) predictive source coding is “fundamentally
mismatched” to information lossy transmission environments,
c) the value of correlation knowledge and motion search
diminishes with increasing information loss, and d) distributed
source coding is a promising alternative for video coding in
wireless environments.

PRISM: A PRACTICAL IMPLEMENTATION
So far we have focused on the analysis of distributed source-cod-
ing methods for distributed video compression in a sensor net-
work setting. In this section we describe real-world practical
modules that emulate the theoretical and architectural princi-
ples discussed above. In this context, we present a brief descrip-
tion of a block-motion block-DCT based implementation of the
PRISM [16] video coding system.

The video frame to be encoded is divided into regular spatial
blocks. Using notation similar to previous sections, let X denote the
current block to be encoded. Let Y denote the best (motion-com-
pensated) predictor for X in the previous frame and let X = Y + Z.
We now describe the PRISM encoding and decoding process.

ENCODING
Figure 8(a) shows the encoder block diagram.

CLASSIFICATION
The classification step estimates the correlation noise (Z) of the
current video block being encoded. As was discussed earlier,
this enables the choice of the appropriate channel code. This
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[FIG8] (a) PRISM encoder and (b) PRISM decoder.
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step is vital since real video sources exhibit spatiotemporal
correlation structures whose statistics are highly spatially
varying. Within the same frame, different blocks exhibit differ-
ent degrees of correlation with their temporal predictors. We
use the motion search operation (as in predictive codecs) in
combination with offline statistical training to estimate the
correlation noise Z. As was discussed, the amount of motion
search to be done at the encoder depends upon both the com-
plexity constraints of the encoding and decoding devices as
well as the prevailing channel conditions. For instance, the
encoder can perform a coarse-level motion search and reveal
the outcome to the decoder.

TRANSFORM AND QUANTIZATION
Each block is transformed using the two-dimensional DCT. The
transformed coefficients are then scalar quantized with a target
quantization step size to come up with the quantized coeffi-
cients X̂. The step size is chosen based on the desired recon-
struction quality.

SYNDROME ENCODING
As in the illustrative example in “Illustrative Example for
Coding with Side Information,” the space of quantized code
words is partitioned into cosets of a channel code. The number
of partitions depends on the strength of the correlation noise
Z—the more the correlation (i.e., smaller Z) the less the num-
ber of partitions required. Specifically, in our implementation,
we partition the quantized code-word space into cosets of a
multilevel code [27]. After partitioning the quantized code-
word space, the encoder outputs the index of the coset (syn-
drome) containing X̂.

HASH GENERATOR
While at the encoder, we generate a syndrome for the current
block based on estimate of the “best” motion predictor Y and
correlation noise Z, at the decoder, all that is available is the
frame memory. As discussed below, the encoder needs to trans-
mit a hash (of sufficient strength) for X̂ in order to facilitate
motion estimation at the decoder.

DECODING
Figure 8(b) shows the main decoder modules.

MOTION ESTIMATION AND SYNDROME DECODING
In this framework, the decoder shares the task of motion search
with the encoder. As in the SEASON theoretical framework, for
each candidate predictor in its list, the decoder performs syn-
drome decoding to obtain a quantized code word. The decoder
then computes the hash of the decoded code word. If the hash of
the decoded code word matches the transmitted hash, a success
is declared; else the decoder moves on to the next predictor. In
case the encoder has performed a partial motion search, the
decoder can use that to limit its search list to contain the out-
come revealed by the encoder plus the complement of the list
used by the encoder.

ESTIMATION AND RECONSTRUCTION
Once the quantized code-word sequence is recovered, it is used
along with the predictor to obtain the best reconstruction of the
source. Any of the sophisticated postprocessing mechanisms can
be deployed here to improve the overall performance.

REPRESENTATIVE RESULTS
We now present some experimental results that illustrate the vari-
ous features of the PRISM video coding framework. Since we use
the same coding primitives as the H.263+ [9] video compression
standard, we use it as a reference system for our comparisons.

Figure 9(a) compares the compression performance of
PRISM and H.263+ for the football (352 × 240, 15f/s) video
sequence. Both the systems use the same motion search strategy

[FIG9] (a) Lossless channel: Comparison of proposed distributed
video coding algorithm and H.263+ for the football sequence
(352 × 240, 15 f/s) over different encoding rates. (b) Lossy
channel: Comparison of PRISM, H.263+ and H.263+ protected
with forward error correcting (FEC) codes (Reed-Solomon codes
used, 20% of total rate used for parity bits) over a simulated
CDMA2000 1X channel for the Football sequence (352 × 240, 15
f/s, 1,700 kb/s).
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(full search) at the encoder. As can be seen from Figure 9(a), the
performance of the proposed scheme nearly matches that of
H.263+. This highlights the fact that distributed source coding
based video codecs can approach the performance of prediction
based coders when they esti-
mate the correlation struc-
ture accurately through the
use of good motion models.

We also present the
results of some robustness
tests conducted on the
PRISM system. For these, a
wireless channel simulator
obtained from Qualcomm
Inc. was used. This simulator
adds packet errors to multimedia data streams transmitted over
wireless networks conforming to the CDMA2000 1X standard
[28]. (The packet error rates are determined by computing the
carrier to interference ratio of the cellular system.) We tested
PRISM, H.263+ and H.263+ protected with FECs (Reed-
Solomon codes used, 20% of total rate used for parity bits) over
this simulated wireless channel. Here the PRISM system does
not do any motion search at the encoder while the H.263+
codec does a full motion search at the encoder. Figure 9(b)
shows the performance comparison of these three schemes over
a range of error rates for the football (352 × 240, 15 f/s, 1,700
kb/s) sequence. Figure 10 shows the decoded visual quality for
the three schemes for the football sequence at 8% average error
rate. (Note that 8% is merely the average error rate; the channel
is not an independent erasure channel and is in fact quite

bursty.) As can be seen in Figure 10, PRISM is able to recover
from past errors while error propagation continues to occur for
both H.263+ and H.263+ protected with FECs resulting in a
better decoded quality. This happens because the FEC-based

error resiliency scheme also
suffers from drift propagation
once the number of packet
erasures exceeds the correc-
tion capability of the FEC. In
contrast, the PRISM scheme
is able to correct most of the
errors, leading to better
decoded video quality.

Note that in this setting,
PRISM does not do any

motion search at the encoder and so loses to H.263+ at 0% loss
rate due to inaccurate modeling of the correlation noise statis-
tics. However, as channel noise increases, the importance of
such accurate modeling diminishes and the robustness advan-
tages of distributed video coding starts to dominate leading to
significant performance gains (over even H.263+ protected with
FEC) as highlighted in Figure 9(b).

CONCLUDING REMARKS AND FUTURE DIRECTIONS
In this article, motivated by the stringent requirements imposed
by the emergence of video sensor networks, we have argued for
an architectural paradigm shift in video compression and trans-
mission. Specifically, driven by the need to develop light, robust,
energy-efficient, and low delay video delivery schemes, we have
described a distributed video coding based framework dubbed
PRISM that addresses the wireless video sensor network require-
ments far more effectively than current state-of-the-art stan-
dards like MPEG. We have described the architectural platform,
the theoretical foundations, as well as the bridge from theory to
video practice, and presented promising experimental evidence
based on real-world video sequences that validate the efficacy of
our proposed solution.

While our treatment has been primarily confined to a single-
camera setup, our proposed paradigm scales naturally to the
multiple-camera scenario that we believe will form the corner-
stone of emerging video sensor networks (See “Scene Super
Resolution Through the Network” for an exciting application of
the multiple-camera scenario). The fundamental architectural
traits of PRISM, which include robustness, light-encoder archi-
tecture, as well as the flexibility in distributing the computation-
al burden of motion estimation between transmitter and
receiver, are extremely well suited to the generalization from the
single-camera to the multicamera regime. Indeed, as the scale of
the network increases in the future, the architectural benefits of
PRISM will be magnified. The full potential of large-scale ubiq-
uitous video sensor networks of the future will require an inter-
disciplinary approach involving signal and video processing,
computer vision, multiterminal information theory, and wire-
less networking. The work presented here represents an impor-
tant first step towards this goal.
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[FIG10] Decoded visual quality of the ninth frame of the football
sequence  (352x240, 15 f/s, 1700 kb/s) encoded using (a) H.263+,
(b) H.263+ protected with Forward Error Correcting (FEC) codes
(Reed-Solomon codes used, 20% of total rate used for parity
bits), and (c) PRISM. In each case 15 frames were encoded and
then sent over a simulated CDMA2000 1X channel. Note the very
annoying drift artifacts in both H.263+ and H.263+ protected
with FECs. PRISM has  been able to gracefully recover from past
errors.
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Imagine a dense configuration of cameras conducting surveil-
lance in the parking lot of your office building. These cameras
have overlapping coverages, and each of these individual cam-
eras is an inexpensive low-resolution device. For instance, each
of these cameras can offer a low frame rate (low temporal reso-
lution). An interesting question that arises here is whether all
these low-resolution observations can be synergistically com-
bined providing a “virtual super-resolution’’ system that allows
for enhanced capabilities ranging from novel spatiotemporal
viewpoint generation/rendering with robustness to individual
camera failures? This is indeed feasible, as is demonstrated by
Figure 11, which shows three consecutive video frames from two
adjacent cameras A and B. Even though the middle frame in
stream A (a2) is missing (for example when A operates at half
the frame-rate of B), sophisticated processing based on camera-
motion (between A and B) as well as object-motion modeling
enables a near-perfect reconstruction of the missing scene (a4).

Additionally, we can also
ask if these correlated data
can be efficiently compressed
for the purpose of archiving/
storage. The increasing rele-
vance of this problem can be
gauged from the fact that an
industry-wide initiative [5]
has been launched recently in
the International Standards
Organization (ISO) MPEG
group with the purpose of
addressing this question.

The caveat here is that our
sophisticated processing/
compression algorithms
require all the frames to be
present at one central loca-
tion. While this is easy to

resolve in the high-bandwidth wired network case, where the
individual cameras can communicate their respective streams
(uncompressed or marginally compressed) to the central pro-
cessing location, this can be a real daunting task in the low-
bandwidth, harsh transmission environment wireless network
case. It is here that we can use distributed compression algo-
rithms to reduce our transmission bandwidth as well as pro-
vide natural robustness to the vagaries of the wireless
transmission environment.

We realize that this problem requires an interdisciplinary
approach leveraging the latest advances in the areas of sig-
nal and video processing, computer vision as well as wireless
networking. However, the fundamental architectural fea-
tures of PRISM, that include robustness as well as ability to
share computational complexity between different network
nodes, offer the necessary building blocks that form the core
of the solution for this problem.

[FIG11] (a) Video stream from camera A including the “original” middle frame (a2) and the
reconstructed missing middle frame (a4). (b) Video stream from camera B. 
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