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Abstract

We present the first result for kernel regression where the procedure adapts locally
at a point x to both the unknown local dimension of the metric space X and the
unknown Hölder-continuity of the regression function at x. The result holds with
high probability simultaneously at all points x in a general metric space X of
unknown structure.

1 Introduction

Contemporary statistical procedures are making inroads into a diverse range of applications in the
natural sciences and engineering. However it is difficult to use those procedures ”off-the-shelf”
because they have to be properly tuned to the particular application. Without proper tuning their
prediction performance can suffer greatly. This is true in nonparametric regression (e.g. tree-based,
k-NN and kernel regression) where regression performance is particularly sensitive to how well the
method is tuned to the unknown problem parameters.

In this work, we present an adaptive kernel regression procedure, i.e. a procedure which self-tunes,
optimally, to the unknown parameters of the problem at hand.

We consider regression on a general metric space X of unknown metric dimension, where the output
Y is given as f(x) + noise. We are interested in adaptivity at any input point x ∈ X : the algorithm
must self-tune to the unknown local parameters of the problem at x. The most important such
parameters (see e.g. [1, 2]), are (1) the unknown smoothness of f , and (2) the unknown intrinsic
dimension, both defined over a neighborhood of x. Existing results on adaptivity have typically
treated these two problem parameters separately, resulting in methods that solve only part of the
self-tuning problem.

In kernel regression, the main algorithmic parameter to tune is the bandwidth h of the kernel. The
problem of (local) bandwidth selection at a point x ∈ X has received considerable attention in both
the theoretical and applied literature (see e.g. [3, 4, 5]). In this paper we present the first method
which provably adapts to both the unknown local intrinsic dimension and the unknown Hölder-
continuity of the regression function f at any point x in a metric space of unknown structure. The
intrinsic dimension and Hölder-continuity are allowed to vary with x in the space, and the algorithm
must thus choose the bandwidth h as a function of the query x, for all possible x ∈ X .

It is unclear how to extend global bandwidth selection methods such as cross-validation to the local
bandwidth selection problem at x. The main difficulty is that of evaluating the regression error at x
since the ouput Y at x is unobserved. We do have the labeled training sample to guide us in selecting
h(x), and we will show an approach that guarantees a regression rate optimal in terms of the local
problem complexity at x.
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The result combines various insights from previous work on regression. In particular, to adapt to
Hölder-continuity, we build on acclaimed results of Lepski et al. [6, 7, 8]. In particular some such
Lepski’s adaptive methods consist of monitoring the change in regression estimates fn,h(x) as the
bandwidth h is varied. The selected estimate has to meet some stability criteria. The stability criteria
is designed to ensure that the selected fn,h(x) is sufficiently close to a target estimate fn,h̃(x) for
a bandwidth h̃ known to yield an optimal regression rate. These methods however are generally
instantiated for regression in R, but extend to high-dimensional regression if the dimension of the
input space X is known. In this work however the dimension of X is unknown, and in fact X is
allowed to be a general metric space with significantly less regularity than usual Euclidean spaces.

To adapt to local dimension we build on recent insights of [9] where a k-NN procedure is shown to
adapt locally to intrinsic dimension. The general idea for selecting k = k(x) is to balance surrogates
of the unknown bias and variance of the estimate. As a surrogate for the bias, nearest neighbor
distances are used, assuming f is globally Lipschitz. Since Lipschitz-continuity is a special case of
Hölder-continuity, the work of [9] corresponds in the present context to knowing the smoothness of
f everywhere. In this work we do not assume knowledge of the smoothness of f , but simply that f
is locally Hölder-continuous with unknown Hölder parameters.

Suppose we knew the smoothness of f at x, then we can derive an approach for selecting h(x),
similar to that of [9], by balancing the proper surrogates for the bias and variance of a kernel estimate.
Let h̄ be the hypothetical bandwidth so-obtained. Since we don’t actually know the local smoothness
of f , our approach, similar to Lepski’s, is to monitor the change in estimates fn,h(x) as h varies, and
pick the estimate fn,ĥ(x) which is deemed close to the hypothetical estimate fn,h̄(x) under some
stability condition.

We prove nearly optimal local rates Õ
(
λ2d/(2α+d)n−2α/(2α+d)

)
in terms of the local dimension d

at any point x and Hölder parameters λ, α depending also on x. Furthermore, the result holds with
high probability, simultaneously at all x ∈ X , for n sufficiently large. Note that we cannot union-
bound over all x ∈ X , so the uniform result relies on proper conditioning on particular events in our
variance bounds on estimates fn,h(·).
We start with definitions and theoretical setup in Section 2. The procedure is given in Section 3,
followed by a technical overview of the result in Section 4. The analysis follows in Section 5.

2 Setup and Notation

2.1 Distribution and sample

We assume the input X belongs to a metric space (X , ρ) of bounded diameter ∆X ≥ 1. The output
Y belongs to a space Y of bounded diameter ∆Y . We let µ denote the marginal measure on X and
µn denote the corresponding empirical distribution on an i.i.d. sample of size n. We assume for
simplicity that ∆X and ∆Y are known.

The algorithm runs on an i.i.d training sample {(Xi, Yi)}ni=1 of size n. We use the notation X
.
=

{Xi}n1 and Y = {Yi}n1 .

Regression function

We assume the regression function f(x) .
= E [Y |x] satisfies local Hölder assumptions: for every

x ∈ X and r > 0, there exists λ, α > 0 depending on x and r, such that f is (λ, α)-Hölder at x on
B(x, r):

∀x′ ∈ B(x, r) |f(x)− f(x′)| ≤ λρ(x, x′)α.

We note that the α parameter is usually assumed to be in the interval (0, 1] for global definitions
of Hölder continuity, since a global α > 1 implies that f is constant (for differentiable f ). Here
however, the definition being given relative to x, we can simply assume α > 0. For instance the
function f(x) = xα is clearly locally α-Hölder at x = 0 with constant λ = 1 for any α > 0. With
higher α = α(x), f gets flatter locally at x, and regression gets easier.
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Notion of dimension

We use the following notion of metric-dimension, also employed in [9]. This notion extends some
global notions of metric dimension to local regions of space . Thus it allows for the intrinsic dimen-
sion of the data to vary over space. As argued in [9] (see also [10] for a more general theory) it often
coincides with other natural measures of dimension such as manifold dimension.
Definition 1. Fix x ∈ X , and r > 0. Let C ≥ 1 and d ≥ 1. The marginal µ is (C, d)-homogeneous
on B(x, r) if we have µ(B(x, r′)) ≤ Cε−dµ(B(x, εr′)) for all r′ ≤ r and 0 < ε < 1.

In the above definition, d will be viewed as the local dimension at x. We will require a general
upper-bound d0 on the local dimension d(x) over any x in the space. This is defined below and can
be viewed as the worst-case intrinsic dimension over regions of space.
Assumption 1. The marginal µ is (C0, d0)-maximally-homogeneous for someC0 ≥ 1 and d0 ≥ 1,
i.e. the following holds for all x ∈ X and r > 0: suppose there exists C ≥ 1 and d ≥ 1 such that µ
is (C, d)-homogeneous on B(x, r), then µ is (C0, d0)-homogeneous on B(x, r).

Notice that if µ is (C, d)-homogeneous on some B(x, r), then it is (C0, d0)-homogeneous on
B(x, r) for any C0 > C and d0 > d. Thus, C0, d0 can be viewed as global upper-bounds on
the local homogeneity constants. By the definition, it can be the case that µ is (C0, d0)-maximally-
homogeneous without being (C0, d0)-homogeneous on the entire space X .

The algorithm is assumed to know the upper-bound d0. This is a minor assumption: in many situa-
tions where X is a subset of a Euclidean space RD,D can be used in place of d0; more generally, the
global metric entropy (log of covering numbers) of X can be used in the place of d0 (using known
relations between the present notion of dimension and metric entropies [9, 10]). The metric entropy
is relatively easy to estimate since it is a global quantity independent of any particular query x.

Finally we require that the local dimension is tight in small regions. This is captured by the following
assumption.
Assumption 2. There exists rµ > 0, C ′ > 0 such that if µ is (C, d)-homogeneous on some B(x, r)
where r < rµ, then for any r′ ≤ r, µ(B(x, r′)) ≤ C ′r′d.

This last assumption extends (to local regions of space) the common assumption that µ has an upper-
bounded density (relative to Lebesgue). This is however more general in that µ is not required to
have a density.

2.2 Kernel Regression

We consider a positive kernel K on [0, 1] highest at 0, decreasing on [0, 1], and 0 outside [0, 1]. The
kernel estimate is defined as follows: if B(x, h) ∩X 6= ∅,

fn,h(x) =
∑
i

wi(x)Yi, where wi(x) =
K(ρ(x,Xi)/h)∑
j K(ρ(x,Xj)/h)

.

We set wi(x) = 1/n, ∀i ∈ [n] if B(x, h) ∩X = ∅.

3 Procedure for Bandwidth Selection at x

Definition 2. (Global cover size) Let ε > 0. Let Nρ(ε) denote an upper-bound on the size of the
smallest ε-cover of (X , ρ).

We assume the global quantity Nρ(ε) is known or pre-estimated. Recall that, as discussed in Section
2, d0 can be picked to satisfy ln(Nρ(ε)) = O(d0 log(∆X /ε)), in other words the procedure requires
only knowledge of upper-bounds Nρ(ε) on global cover sizes.

The procedure is given as follows:

Fix ε = ∆X
n . For any x ∈ X , the set of admissible bandwidths is given as

Ĥx =

{
h ≥ 16ε : µn(B(x, h/32)) ≥ 32 ln(Nρ(ε/2)/δ)

n

}⋂{
∆X

2i

}dlog(∆X/ε)e

i=0

.
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Let Cn,δ ≥ 2K(0)
K(1)

(
4 ln (Nρ(ε/2)/δ) + 9C04

d0
)
. For any h ∈ Ĥx, define

σ̂h = 2
∆2

YCn,δ

n · µn(B(x, h/2))
and Dh =

[
fn,h(x)−

√
2σ̂h, fn,h(x) +

√
2σ̂h

]
.

At every x ∈ X select the bandwidth:

ĥ = max

h ∈ Ĥx :
⋂

h′∈Ĥx:h′<h

Dh′ 6= ∅

 .

The main difference with Lepski’s-type methods is in the parameter σ̂h. In Lepski’s method, since
d is assumed known, a better surrogate depending on d will be used.

4 Discussion of Results

We have the following main theorem.

Theorem 1. Let 0 < δ < 1/e. Fix ε = ∆X /n. Let Cn,δ ≥ 2K(0)
K(1)

(
9C04

d0 + 4 ln (Nρ(ε/2)/δ)
)
.

Define C2 =
4−d0

6C0
. There exists N such that, for n > N , the following holds with probability at

least 1− 2δ over the choice of (X,Y), simultaneously for all x ∈ X and all r satisfying

rµ > r > rn , 2

(
2d0C2

0∆
d0

X
C2λ2

)1/(2α+d0)(
∆2

YCn,δ

n

)1/(2α+d0)

.

Let x ∈ X , and suppose f is (λ, α)-Hölder at x on B(x, r). Suppose µ is (C, d)-homogeneous on
B(x, r). Let Cr

.
= 1

CC0∆
d0
X
rd0−d. We have

∣∣fĥ(x)− f(x)
∣∣2 ≤ 96C02

d0 · λ2d/(2α+d)

(
2d∆2

YCn,δ

C2Crλ2n

)2α/(2α+d)

.

The result holds with high probability for all x ∈ X , and for all rµ > r > rn, where rn
n→∞−−−−→ 0.

Thus, as n grows, the procedure is eventually adaptive to the Hölder parameters in any neighborhood
of x. Note that the dimension d is the same for all r < rµ by definition of rµ. As previously
discussed, the definition of rµ corresponds to a requirement that the intrinsic dimension is tight in
small enough regions. We believe this is a technical requirement due to our proof technique. We
hope this requirement might be removed in a longer version of the paper.

Notice that r is a factor of n in the upper-bound. Since the result holds simultaneously for all
rµ > r > rn, the best tradeoff in terms of smoothness and size of r is achieved. A similar tradeoff
is observed in the result of [9].

As previously mentioned, the main idea behind the proof is to introduce hypothetical bandwidths h̄
and and h̃ which balance respectively, σ̂h and λ2h2α, and O(∆2

Y/(nh
d)) and λ2h2α (see Figure 1).

In the figure, d and α are the unknown parameters in some neighborhood of point x.

The first part of the proof consists in showing that the variance of the estimate using a bandwidth
h is at most σ̂h. With high probability σ̂h is bounded above by O(∆2

Y/(nh
d). Thus by balancing

O(∆2
Y/(nh

d) and λ2h2α, using h̃ we would achieve a rate of n−2α/(2α+d). We then have to show
that the error of fn,h̄ cannot be too far from that fn,h̃.

Finally the error of fn,ĥ, ĥ being selected by the procedure, will be related to that of fn,h̄.

The argument is a bit more nuanced that just described above and in Figure 1: the respective curves
O(∆2

Y/(nh
d) and λ2h2α are changing with h since dimension and smoothness at x depend on the

size of the region considered. Special care has to be taken in the analysis to handle this technicality.
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Figure 1: (Left) The proof argues over h̄, h̃ which balance respectively, σ̂h and λ2h2α, and
O(∆2

Y/(nh
d)) and λ2h2α. The estimates under ĥ selected by the procedure is shown to be close to

that of h̄, which in turn is shown to be close to that of h̃ which is of the right adaptive form.

(Right) Simulation results comparing the error of the proposed method to that of a global h
selected by cross-validation. The test size is 1000 for all experiments. X ⊂ R70 has diameter
1, and is a collection of 3 disjoint flats (clusters) of dimension d1 = 2, d2 = 5, d3 = 10, and
equal mass 1/3. For each x from cluster i we have the output Y = (sin ‖x‖)ki + N (0, 1)
where k1 = 0.8, k2 = 0.6, k3 = 0.4. For the implementation of the proposed method, we set
σ̂h(x) = v̂arY /nµn(B(x, h)), where v̂arY is the variance of Y on the training sample. For both our
method and cross-validation, we use a box-kernel, and we vary h on an equidistant 100-knots grid
on the interval from the smallest to largest interpoint distance on the training sample.

5 Analysis

We will make use of the the following bias-variance decomposition throughout the analysis. For any
x ∈ X and bandwidth h, define the expected regression estimate

f̃n,h(x)
.
= EY|Xfn,h(x) =

∑
i

wif(Xi).

We have
|fn,h(x)− f(x)|2 ≤ 2

∣∣∣fn,h(x)− f̃n,h(x)
∣∣∣2 + 2

∣∣∣f̃n,h(x)− f(x)
∣∣∣2 . (1)

The bias term above is easily bounded in a standard way. This is stated in the Lemma below.
Lemma 1 (Bias). Let x ∈ X , and suppose f is (λ, α)-Hölder at x on B(x, h). For any h > 0, we

have
∣∣∣f̃n,h(x)− f(x)

∣∣∣2 ≤ λ2h2α.

Proof. We have
∣∣∣f̃n,h(x)− f(x)

∣∣∣ ≤∑i wi(x) |f(Xi)− f(x)| ≤ λhα.

The rest of this section is dedicated to the analysis of the variance term of (1). We will need various
supporting Lemmas relating the empirical mass of balls to their true mass. This is done in the next
subsection. The variance results follow in the subsequent subsection.

5.1 Supporting Lemmas

We often argue over the following distributional counterpart to Ĥx(ε).
Definition 3. Let x ∈ X and ε > 0. Define

Hx(ε) =

{
h ≥ 8ε : µ(B(x, h/8)) ≥ 12 ln(Nρ(ε/2)/δ)

n

}⋂{
∆X

2i

}dlog(∆X/ε)e

i=0

.
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Lemma 2. Fix ε > 0 and let Z denote an ε/2-cover of X , and let Sε =

{
∆X

2i

}dlog(∆X/ε)e

i=0

. Define

γn
.
=

4 ln(Nρ(ε/2)/δ)

n
. With probability at least 1− δ, for all z ∈ Z and h ∈ Sε we have

µn(B(z, h)) ≤ µ(B(z, h)) +
√
γn · µ(B(z, h)) + γn/3, (2)

µ(B(z, h)) ≤ µn(B(z, h)) +
√
γn · µn(B(z, h)) + γn/3. (3)

Idea. Apply Bernstein’s inequality followed by a union bound on Z and Sε.

The following two lemmas result from the above Lemma 2.
Lemma 3. Fix ε > 0 and 0 < δ < 1. With probability at least 1− δ, for all x ∈ X and h ∈ Hx(ε),

we have for C1 = 3C04
d0 and C2 =

4−d0

6C0
,

C2µ(B(x, h/2)) ≤ µn(B(x, h/2)) ≤ C1µ(B(x, h/2)).

Lemma 4. Let 0 < δ < 1, and ε > 0. With probability at least 1−δ, for all x ∈ X , Ĥx(ε) ⊂ Hx(ε).

Proof. Again, let Z be an ε/2 cover and define Sε and γn as in Lemma 2. Assume (2) in the
statement of Lemma 2. Let h > 16ε, we have for any z ∈ Z and x within ε/2 of z,

µn(B(x, h/32)) ≤ µn(B(z, h/16)) ≤ 2µ(B(z, h/16)) + 2γn ≤ 2µ(B(x, h/8)) + 2γn,

and we therefore have µ(B(x, h/8)) ≥ 1
2µn(B(x, h/32))− γn. Pick h ∈ Ĥx and conclude.

5.2 Bound on the variance

The following two results of Lemma 5 to 6 serve to bound the variance of the kernel estimate.
These results are standard and included here for completion. The main result of this section is the
variance bound of Lemma 7. This last lemma bounds the variance term of (1) with high probability
simultaneously for all x ∈ X and for values of h relevant to the algorithm.
Lemma 5. For any x ∈ X and h > 0:

EY|X

∣∣∣fn,h(x)− f̃n,h(x)
∣∣∣2 ≤

∑
i

w2
i (x)∆

2
Y .

Lemma 6. Suppose that for some x ∈ X and h > 0, µn(B(x, h)) 6= 0. We then have:∑
i w

2
i (x) ≤ maxi wi(x) ≤

K(0)

K(1) · nµn(B(x, h))
.

Lemma 7 (Variance bound). Let 0 < δ < 1/2 and ε > 0. Define Cn,δ
.
=

2K(0)
K(1)

(
9C04

d0 + 4 ln (Nρ(ε/2)/δ)
)
, With probability at least 1 − 3δ over the choice of (X,Y),

for all x ∈ X and all h ∈ Ĥx(ε),
∣∣∣fn,h(x)− f̃n,h(x)

∣∣∣2 ≤
∆2

YCn,δ

nµn(B(x, h/2))
.

Proof. We prove the lemma statement for h ∈ Hx(ε). The result then follows for h ∈ Ĥx(ε) with
the same probability since, by Lemma 4, Ĥx(ε) ⊂ Hx(ε) under the same event of Lemma 2.

Consider any ε/2-cover Z of X . Define γn as in Lemma 2 and assume statement (3). Let x ∈ X
and z ∈ Z within distance ε/2 of x. Let h ∈ Hx(ε). We have

µ(B(x, h/8)) ≤ µ(B(z, h/4)) ≤ 2µn(B(z, h/4)) + 2γn ≤ 2µn(B(x, h/2)) + 2γn,

and we therefore have µn(B(x, h/2)) ≥ 1
2µ(B(x, h/8)) − γn ≥ 1

2γn. Thus define Hz denote the
union of Hx(ε) for x ∈ B(z, ε/2). With probability at least 1− δ, for all z ∈ Z, and x ∈ B(z, ε/2),
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and h ∈ Hz the setsB(z, h)∩X,B(x, h)∩X are all non empty since they all containB(x′, h/2)∩X
for some x′ such that h ∈ Hx′(ε) . The corresponding kernel estimates are therefore well defined.
Assume w.l.o.g. that Z is a minimal cover, i.e. all B(z, ε/2) contain some x ∈ X .

We first condition on X fixed and argue over the randomness in Y. For any x ∈ X and h > 0,
let Yx,h denote the subset of Y corresponding to points from X falling in B(x, h). We define

φ(Yx,h)
.
=
∣∣∣fn,h(x)− f̃n,h(x)

∣∣∣.
We note that changing any Yi value changes φ(Yz,h) by at most ∆Ywi(z). Applying McDiarmid’s
inequality and taking a union bound over z ∈ Z and h ∈ Hz , we get

P(∃z ∈ Z,∃h ∈ Sε, φ(Yz,h) > Eφ(Yz,h) + t) ≤ N 2
ρ (ε/2) exp

− 2t2

∆2
Y

∑
i

w2
i (z)

 .

We then have with probability at least 1− 2δ, for all z ∈ Z and h ∈ Hz ,∣∣∣fn,h(z)− f̃n,h(z)
∣∣∣2 ≤ 2EY |X

(∣∣∣fn,h(z)− f̃n,h(z)
∣∣∣)2 + 2 ln

(
Nρ(ε/2)

δ

)
∆2

Y ·
∑
i

w2
i (z)

≤
(
4 ln

(
Nρ(ε/2)

δ

))
·

K(0)∆2
Y

K(1) · nµn(B(z, h))
, (4)

where we apply Lemma 5 and 6 for the last inequality.

Now fix any z ∈ Z, h ∈ Hz and x ∈ B(z, ε/2). We have |φ(Yx,h)− φ(Yz,h)| ≤
max {φ(Yx,h), φ(Yz,h)} since both quantities are positive. Thus |φ(Yx,h)− φ(Yz,h)| changes by
at most maxi,j {wi(z), wj(x)} ·∆Y if we change any Yi value out of the contributing Y values. By

Lemma 6, maxi,j {wi(z), wj(x)} ≤ βn,h(x, z)
.
=

K(0)

nK(1)min(µn(B(x, h)), µn(B(z, h)))
. Thus

define ψh(x, z)
.
=

1

βn,h(x, z)
|φ(Yx,h)− φ(Yz,h))| and ψh(z)

.
= sup

x:ρ(x,z)≤ε/2

ψh(x, z). By what we

just argued, changing any Yi makes ψh(z) vary by at most ∆Y . We can therefore apply McDiarmid’s
inequality to have that, with probability at least 1− 3δ, for all z ∈ Z and h ∈ Hz ,

ψh(z) ≤ EY|Xψh(z) + ∆Y

√
2 ln(Nρ(ε/2)/δ)

2n
. (5)

To bound the above expectation for any z and h ∈ Hz , consider a sequence {xi}∞1 , xi ∈ B(z, ε/2)

such that ψh(xi, z)
i→∞−−−→ ψh(z). Fix any such xi. Using Holder’s inequality and invoking Lemma

5 and Lemma 6, we have

EY|Xψh(xi, z) =
1

βn,h(xi, z)
EY|X |φ(Yxi,h)− φ(Yz,h)| ≤

√
EY|X(φ(Yxi,h)− φ(Yz,h)2)

βn,h(xi, z)

≤
√
2EY|Xφ(Yxi,h)

2 + 2EY|Xφ(Yz,h)2

βn,h(xi, z)
≤

√
4∆2

Yβn,h(xi, z)

βn,h(xi, z)

=
2∆Y√

βn,h(xi, z)
≤ 2∆Y

√
nK(1)µn(B(z, h))

K(0)
.

Since ψh(xi, z) is bounded for all xi ∈ B(z, ε), the Dominated Convergence Theorem yields

EY|Xψh(z) = lim
i→∞

EY|Xψh(xi, z) ≤ 2∆Y

√
nK(1)µn(B(z, h))

K(0)
.

Therefore, using (5), we have for any z ∈ Z, any h ∈ Hz , and any x ∈ B(z, ε/2) that, with
probability at least 1− 3δ

|φ(Yx,h)− φ(Yz,h))| ≤ ∆Yβn,h(x, z)

(
2

√
nK(1)µn(B(z, h))

K(0)
+

√
2 ln(Nρ(ε/2)/δ)

2n

)
. (6)
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Figure 2: Illustration of the selection procedure. The intervals Dh are shown containing f(x). We
will argue that fn,ĥ(x) cannot be too far from fn,h̄(x).

Now notice that βn,h(x, z) ≤
K(0)

nK(1)µn(B(x, h/2))
, so by Lemma 3,

µn(B(z, h)) ≤ µn(B(x, 2h)) ≤ C1µ(B(x, 2h)) ≤ C1C04
d0µ(B(x, h/2))

≤ C2C1C04
d0µn(B(x, h/2)) ≤ C04

d0µn(B(x, h/2)).

Hence, (6) becomes |φ(Yx,h)− φ(Yz,h))| ≤ 3∆Y

√
C04d0K(0)

nK(1)µn(B(x,h/2)) .

Combine with (4), using again the fact that µn(B(z, h)) ≥ µn(B(x, h/2)) to obtain∣∣∣fn,h(x)− f̃n,h(x)
∣∣∣2 ≤ 2

∣∣∣fn,h(z)− f̃n,h(z)
∣∣∣2 + 2 |φ(Yx,h)− φ(Yz,h))|2

≤
2∆2

Y
nµn(B(x, h/2))

·
(
9C04

d0 + 4 ln (Nρ(ε/2)/δ)
)
.

5.3 Adaptivity

The proof of Theorem 1 is given in the appendix. As previously discussed, the main part of the
argument consists of relating the error of fn,h̄(x) to that of fn,h̃(x) which is of the right form for
B(x, r) appropriately defined as in the theorem statement.

To relate the error of fn,ĥ(x) to that fn,h̄(x), we employ a simple argument inspired by Lepski’s

adaptivity work. Notice that, by definition of ĥ (see Figure 1 (Left)), for any h ≤ h̄ σ̂h ≥ λ2h2α.
Therefore by Lemma 1 and 7 that, for any h < h̄, ‖fn,h − f‖2 ≤ 2σ̂h so the intervals Dh must
all contain f(x) and therefore must intersect. By the same argument ĥ ≥ h̄ and Dĥ and Dh̄ must
intersect. Now since σ̂h is decreasing, we can infer that fn,ĥ(x) cannot be too far from fn,h̄(x), so
their errors must be similar. This is illustrated in Figure 2.
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A Supporting Lemmas

Proof of Lemma 3. Let Z be an ε/2-cover of X , and define Sε and γn as in Lemma 2. Assume the
statement of Lemma 2.

Fix z ∈ Z and consider x ∈ X within distance ε/2 from z. Notice that for any h > ε we have

B(x, h/2) ⊂ (B(z, h)) ⊂ (B(x, 2h)).

Let h ∈ Hx(ε). We have from (2):

µn(B(x, h/2)) ≤ µn(B(z, h)) ≤ µ(B(z, h)) +
√
γn · µ(B(z, h)) +

γn
3

≤ 2µ(B(x, 2h)) +
1

3
µ(B(x, h/2)) ≤ 3C04

d0µ(B(x, h/2)).

From (3) we have for the other direction

µ(B(z, h/4)) ≤ 2µn(B(z, h/4)) + 2γn ≤ 2µn(B(z, h/4)) +
2

3
µ(B(x, h/8)),

implying

µn(B(x, h/2)) ≥ µn(B(z, h/4)) ≥ 1

2
µ(B(z, h/4))− 1

3
µ(B(x, h/8))

≥ 1

6
µ(B(x, h/8)) ≥ 4−d0

6C0
µ(B(x, h/2)).

Proof of Lemma 6. Write
∑

i w
2
i (x) ≤ maxi∈[n] wi(x) ≤ K(0)∑

j K(ρ(x, xj)/h)
≤

K(0)

K(1) · nµn(B(x, h))
.

Proof of 5. For mean zero i.i.d. random variables zi, E |
∑

i zi|
2
=
∑

i E |zi|2. Therefore

EY|X

∣∣∣fn,h(x)− f̃n,h(x)
∣∣∣2 =

∑
i

w2
i (x)EY|X |Yi − f(Xi)|2 ≤

∑
i

w2
i (x)∆

2
Y .

B Proof of Theorem 1

Proof of Theorem 1. Assume the statement of Lemma 7. Let C1 = 3C04
d0 and C2 =

4−d0

6C0
, so

that by Lemma 3 and 4, we have with probability at least 1 − δ for all h ∈ Ĥx(ε), and x ∈ X that
C2µ(B(x, h/2)) ≤ µn(B(x, h/2)) ≤ C1µ(B(x, h/2)). Fix x ∈ X . The theoretical bandwidths
h̃ and h̄ below are crucial to the proof. Recall the definition of σ̂h from the procedure. Let Cr

.
=

1

CC0∆
d0
X
rd0−d. Notice that Cr ≤ 1 for ∆X ≥ 1. Define

h̃ = argmin
h>0

R̃(h)
.
= argmin

h>0

(
2
2d∆2

YCn,δ

C2Crnhd
+ 2λ2h2α

)
, and h̄ .

= max
{
h ∈ Ĥx : σ̂h > 2λ2h2α

}
.

As we will see, R̃(h̃) will serve as the approximate target bound on error (in terms of the parameters
d, λ, α on B(x, r)). The main idea of the proof is to first relate the error of fh̄ to R̃(h̃), and then
relate the error of fh̄ to that of fĥ.
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Step 0. Properties of h̃:

Notice that h̃ is obtained as

h̃ =

(
2d∆2

YCn,δ

C2Crλ2n

)1/(2α+d)

implying that 2λ2h̃2α = 2
2d∆2

YCn,δ

C2Crnh̃d
=
R̃(h̃)

2
.

Now, it is easy to verify that h̃ < r/2 for r as specified. It follows that for any 0 < τ ≤ 1, we have

µ(B(x, τ h̃)) ≥ 1
Cµ(B(x, r)) ·

(
τ h̃/r

)d
≥ Cr ·

(
τ h̃
)d

.

Using the above properties of h̃ = h̃(x, r) the following useful inequality holds with high probability
for all x and r defined as above:

2
∆2

YCn,δ

C2nµ(B(x, h̃/2))
≤ 2

2d∆2
YCn,δ

C2Crnh̃d
=
R̃(h̃)

2
. (7)

Step 1. Analysis for h̄:

First we have to check that h̄ is well defined (for sufficiently large n), i.e. the set{
h ∈ Ĥx : σ̂h > 2λ2h2α

}
is non-empty. The argument relies on the same ideas employed in

Lemma 4 and Lemma 7 to relate empirical and true masses. Define γn as in Lemma 2. Pick
0 < τ < 1 and h = τ h̃, h ≥ 64ε, and µ(B(x, h/128)) ≥ 18γn (here µ(B(x, h/128) is lower-
bounded as Ω(hd) since h < h̃ < r). These two conditions hold for any τ , for sufficiently large n.
It follows that µn(B(x, h/32)) ≥ 8γn. In other words h ∈ Ĥx(ε). Finally τ can be picked indepen-
dent of x such that, for sufficiently large n, σ̂h > 2λ2h2α, using the upper-bound on µ(B(x, h/2))
provided by Assumption 2.

Next, we check that h̄ < r: since 2h̃ < r, there exists h ∈
{
∆X

2i

}dlog(∆X/ε)e

i=0

such that h̃ < h < r.

Now for any such h > h̃ it is easy to very that, by the above properties of h̃,

2λ2h2α ≥ 2
2d∆2

YCn,δ

C2Crnhd
≥ σ̂h,

where the second inequality uses the fact that h < r and the homogeneity of µ on B(x, r).

By Lemma 1 and Lemma 7, we have
∣∣fn,h̄(x)− f(x)

∣∣2 ≤ σ̂h̄ + 2λ2h̄2α ≤ 2σ̂h̄.

Notice that, by definition, both h̄ and (2h̄) belong to Ĥx. Therefore we have the relation

σ̂h̄ ≤ 2
∆2

YCn,δ

C2nµ(B(x, h̄/2))
≤ 2

C02
d0∆2

YCn,δ

C2nµ(B(x, h̄))
≤ 2

C02
d0∆2

YCn,δ

C1C2nµn(B(x, h̄))
=
C02

d0

C1C2
σ̂2h̄. (8)

We now consider the possible ways h̄ and 2h̄ relate to h̃ and bound the error accordingly.

[Case 1: h̃ ≥ 2h̄] We have by definition of h̄ that σ̂2h̄ ≤ 2λ2(2h̄)2α ≤ 2λ2h̃2α = 1
2 R̃(h̃). Hence∣∣fn,h̄(x)− f(x)

∣∣2 ≤ 2σ̂h̄ ≤ 2
C02

d0

C1C2
σ̂2h̄ ≤ 2C02

d0R̃(h̃).

[Case 2: h̃ < h̄] We have by the first inequality of equation (8) combined with (7), that∣∣fn,h̄(x)− f(x)
∣∣2 ≤ 2σ̂h̄ ≤ 4

∆2
YCn,δ

C2nµ(B(x, h̃/2))
≤ 2

Cr

2d
R̃(h̃) ≤ 2R̃(h̃).

[Case 3: h̄ ≤ h̃ < 2h̄] Using the last inequality of (8) combined with (7), we have that∣∣fn,h̄(x)− f(x)
∣∣2 ≤ 2σ̂h̄ ≤ 2

C02
d0

C1C2
σ̂2h̄ ≤ 4C02

d0 ·
∆2

YCn,δ

C2nµ(B(x, h̃/2))
≤ 2C02

(d0−d)R̃(h̃).

In all cases we have
∣∣fn,h̄(x)− f(x)

∣∣2 ≤ 2σ̂h̄ ≤ 2C02
d0R̃(h̃).
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Step 2: Analysis for ĥ

Note that for any h ∈ Ĥx such that h < h̄, we have σ̂h > λ2h2α. Therefore, for any such h,
|fn,h(x)− f(x)|2 ≤ 2σ̂h, which implies f(x) ∈ [fn,h(x) −

√
2σ̂h, fn,h(x) +

√
2σ̂h] = Dh. It

follows that f(x) ∈
⋂
h<h̄

Dh. Therefore, by definition of ĥ, ĥ ≥ h̄ which implies σ̂ĥ ≤ σ̂h̄. Thus

by construction, Dĥ

⋂
Dh̄ 6= ∅. We therefore have

∣∣fĥ(x)− f(x)
∣∣2 ≤ 2

∣∣fn,h̄(x)− f(x)
∣∣2 +

2
∣∣fĥ(x)− fn,h̄(x)

∣∣2 ≤ 4σ̂h̄ + 2(2σ̂h̄ + 2σ̂ĥ) ≤ 12σ̂h̄ ≤ 24C02
d0R̃(h̃). The theorem follows

since all the events discussed hold simultaneously with high probability for all x ∈ X and r as
defined.
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