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Abstract

In this paper we study inference for a conditional model with a jump in

the conditional density, where the location and size of the jump are described

by regression lines. This interesting structure is shared by several structural

econometric models. Two prominent examples are the standard auction model

where density jumps from zero to a positive value, and the equilibrium job

search model, where the density jumps from one level to another, inducing

kinks in the cumulative distribution function. This paper develops the asymp-

totic inference theory for likelihood based estimators of these models{ the Bayes

and maximum likelihood estimators. Bayes and ML estimators are useful clas-

sical procedures. While MLE is transformation invariant, Bayes estimators

o�er some theoretic and computational advantages. They also have desirable

eÆciency properties. We characterize the limit likelihood as a function of a

Poisson process that tracks the near-to-jump events and depends on regres-

sors. The approach is applied to an empirical model of a highway procurement

auction. We estimated a pareto model of Paarsch (1992) and an alternative


exible parametric model.
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1 Introduction

In this paper we consider a conditional model with a jump in the conditional density,

whose location and size are described by regression lines. This model was �rst proposed

by Aigner, Amemiya, and Poirier (1976) in the context of production analysis. Many

recent econometric models also share this interesting structure. For example, in standard

auction models, cf. Donald and Paarsch (1993a), the conditional density jumps from

zero to a positive value; in equilibrium job search models (Bowlus, Neumann, and Kiefer

(2001)), the density jumps from one level to another, inducing kinks in the distribution

function. In what follows, the former model is referred to as the one-sided or boundary

model, while the latter model is the two-sided. It is typical in these models that the location

of jump is indispensably related to the parameters of the underlying structural economic

model. Learning the parameters of location is thus crucial for learning the parameters of

the underlying economic model.

Several important, fundamental papers developed inference methods for such models,

including Aigner, Amemiya, and Poirier (1976), Ibragimov and Has'minskii (1981), Flinn

and Heckman (1982), Christensen and Kiefer (1991), Donald and Paarsch (1996), Donald

and Paarsch (1993b), Donald and Paarsch (1993a), Bowlus, Neumann, and Kiefer (2001).

Ibragimov and Has'minskii (1981)(IH afterwards) obtained the limit distributions of Bayes

and maximum likelihood estimators(MLE) without covariates. Donald and Paarsch (1996)

dealt with MLE in the one-sided (boundary) models with discrete covariates.

Nevertheless, the general inference problem posed by Aigner, Amemiya, and Poirier

(1976) has remained unresolved. The basic asymptotic properties of Bayes and ML es-

timators in the general two-sided regression model are still unknown. The properties

of Bayes estimators in the one-sided model and the properties of MLE in the one-sided

model with general regressors are also open questions. Without understanding these basic

properties, using classical estimation principles in these econometric applications may be

questionable.

In this paper, we develop the asymptotic theory of Bayes and Maximum Likelihood

estimators for a general conditional model of a density jump, including one-sided and

two-sided models with arbitrary covariates. Bayes estimators and MLE are attractive

estimation procedures. While MLE is transformation invariant, the Bayes estimators o�er

some theoretic and computational advantages, and are convenient in practice. They also

have desirable eÆciency properties.

Further details may be summarized as follows. We will show that the limit of the likeli-

hood process is a stochastic integral of a Poisson point process that tracks the conditional

near-to-jump events. The result is analogous in spirit to that of Chernozhukov (2000),

obtained for the extremal quantile regression.

It will be shown that Bayes estimators behave asymptotically as functions of the likeli-

hood limit. Unlike the usual case of regular parametric models, Bayes estimators are not

asymptotically equivalent to ML. In fact, Bayes estimators are eÆcient in terms of �nite-

sample average risk optimality and asymptotic average-risk optimality, which strongly

justi�es their use.1 We do not study the minimax criteria. Recent contribution by Hirano

1MLE is not optimal for loss functions in conventional sense, but it may be shown to be optimal for a
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and Porter (2001) o�er a substantive analysis in this interesting direction in the context

of one-sided discrete covariate models.

We will also demonstrate that the MLE behaves asymptotically as a function of the

likelihood limit. Our proof uses the concept of stochastic equi-semicontinuity of Knight

(1999). In our opinion, the result makes a convincing case for its further applications in

econometrics and statistics.

Finally, we will study these methods in simulations and apply them to estimate models

of a highway procurement auction. The �rst model we estimate is a stylized pareto model of

Paarsch (1992). The second one is a 
exible parametric alternative to the non-parametric

model of Guerre, Perrigne, and Vuong (2000). We also implemented computer programs

with Monte Carlo Markov Chain methods for the estimators. These programs are available

from the authors.

The paper is organized as follows. Section 2 describes a basic linear model. Section

3 develops the asymptotic theory for this model. Section 4 considers a more general

nonlinear model with nuisance parameters. Section 5 discusses eÆciency issues. Section

6 discusses practical aspects of inference and estimation. Throughout the paper, c and

C denote generic positive constants;
p�! and

d�! denote convergence in probability and

distribution, respectively; and j � j denotes the supremum norm of a vector.

2 The Basic Model

This section begins with a basic linear model, which helps establish the main results clearly.

Extensions to general nonlinear models are given in section 4.

2.1 Assumptions

The basic model, denoted R, takes the following form

Yi � X
0
i� + �i; (1)

where the error �i has the conditional density f (�jXi; �), parameterized by � belonging

to the set B, a compact, convex subset of Rd . We denote the reference parameter as �0,

and assume �0 2 interiorB. The conditional density has a jump at zero:

lim
�"0

f (�jx; �) = q (x; �) ;

lim
�#0

f (�jx; �) = p (x; �) ;

p (x; �) > q(x; �) + Æ; Æ > 0; 8x 2 X;8� 2 B:

(2)

In other words, the conditional density of Y given X jumps at the location X 0
�, which

depends on the parameter � and covariate X . The shape of the density may also depend

on the parameter �. In section 4, it will be made dependent on other parameters as well,

and X
0
� will be generalized to a nonlinear function.

generalized Dirac loss function.
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We have two models to consider: the one-sided model and the two-sided model. The

one-sided model has its conditional density jumping from zero to a positive constant. The

two-sided model has its conditional density jumping from one positive value to another

positive value. Figure 1 illustrates the two models. The one-sided model is a special case

of the two-sided model. In addition, as suggested by Aigner, Amemiya, and Poirier (1976),

the two-sided model may be applied to one-sided models, using the lower density region

to account for outliers. More generally, the two-sided model approximates models with a

sharp increase in the density, whose location depends on parameters and regressors. The

�nite sample distribution of parameter estimates in such a model are approximated by

that in the model with density jump.

It is typical in these models that the location of jump is indispensably related to the

parameters of the underlying structural economic model. Learning the parameters of

location is thus crucial for learning the parameters of the underlying economic model.

We maintain the following additional assumptions for model R.

Assumption 1 The following statements apply to x in X and � in B:

(C.1) (Yi; Xi) is an i.i.d. sequence of vectors in R�Rd , de�ned on (
;F ; P�). Xt has c.d.f

FX , with compact support X, that does not depend on �, V ar(X) > 0.

(C.2) in addition to (1)-(2), uniformly in � and x

i. q (x; �) > c > 0 or

ii. f (ujx; �) = q (x; �) = 0; for u < 0:

(C.3) Except at � = 0, f(�jx; �) has continuous derivatives in � and �, that are bounded

uniformly in u; x; �. W.l.o.g. f(�jx; �) is upper-semicontinuous at 0; its derivative is
dominated: sup�2B EX

R
j @@�f (y �X

0
�jX ;�) jdy <1:

(C.4) There exist K > 0; C > 0; Æ � 0, such that uniformly in x and �: in case C.2.i, for

all c; � 2 R, jcj � K,

j @
@� ln f(�+ cjx; �)j � C(�; x) � Cj @@� ln f(�jx; �)j1+Æ ;

in case C.2.ii this apply only to c; � : �+ c > 0. Moreover, sup� EP�
C(�t; Xt) <1.

Assumption C.2 allows for the boundary case, where density is zero to the left side of the

jump and is positive on the right side. It also allows for the two-sided case, where density

is positive on both sides. We distinguish these two cases to organize the proofs better.

C.3 and C.4 are needed for uniform convergence of a continuous part of the likelihood

ratio. It will be satis�ed as long as the derivative of the density is not ill-behaved in the

tails. Finally, the linearity of the regression function eases the exposition. Section 4 will

consider a more general non-linear model with nuisance parameters.

2.2 De�nition and Motivation of Bayes and ML Estimators

The likelihood function for the model is given by

Ln(�) �
Y
i�n

f(Yi �X
0
i
�jXi;�)dFX (Xi):

3
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Figure 1: Panels B. correspond to the one-sided model. Panel A. corresponds to the two-sided

model, which arises in equilibrium job search models and translates into kinks of cumulative

distribution functions, see Bowlus et al (2001). The two-sided model also arises from one-sided

models, when with a low probability we draw an outlier which ends up below the boundary of

the support. This model was initially proposed by Aigner et al (1976). See also Bajari (1999)

for a robustness critique of the one-sided model in the auction context. Note that the location

of the density jump depends on parameters and regressors. Additional shape parameters will be

introduced in section 4.
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and the ML estimator2 is de�ned as

�̂ML � argmin
�2B

� Ln(�):

On the other hand, the Bayes estimator minimizes the posterior expected loss

�̂ � arg inf
b2B

Z
B

�n(b� �)
Ln(�)q(�)d�R
B
Ln(�)q(�)

d�;

whhere �n (x) � �(nx) is a loss function, and q(�) is the prior density or weight function on
B. In the above expression, Ln(�)q(�)=

R
B
Ln(�)q(�)d� is the posterior density conditional

on the data (Yt; Xt; t � n). It does not depend on dFX (Xi). We impose the standard

assumptions on � (�) and q (�), cf. IH(1982).

Assumption 2

(D.1) q (�) > 0 is continous on B,
(D.2) � (�) > 0 is convex, and is majorized by a polynomial of juj as juj �! 1.

Examples of conventional loss functions, satisfying condition (D.2), include the quadratic

loss � (z) = z
0
Wz for positive de�nite W and the absolute deviation loss � (z) = �

0abs(z);

where � > 0 and abs(z) � fjzjg.
For symmetric and bowl-shaped loss functions, the ML and Bayes estimators are ef-

�cient and asymptotically equivalent under asymptotic normality. If normality does not

apply, as in our case, the Bayes estimators and MLE are typically not asymptotically

equivalent. Therefore, MLE does not inherit the eÆciency of Bayes estimators; Bayes

estimators are average-risk eÆcient under conventional loss functions, while MLE is not.3

3 Asymptotic Theory for The Basic Model

We begin with the asymptotic behavior of the likelihood process, and then proceed to

asymptotic distributions of Bayes and ML estimators.

3.1 Likelihood Limit

In modern asymptotic analysis, a common �rst step is to �nd the �nite-dimensional or

marginal limit of the likelihood ratio process. The limit eventually serves to describe the

asymptotic distribution of Bayes and ML estimators. Such an initial step is called the

convergence of experiments, see van der Vaart and Wellner (1996).

Consider the local likelihood ratio function

`n(z) � Ln(�n + z=n)=Ln(�n);

2dFX(Xi) does not depend on � and is hence irrelevant.
3See for example van der Vaart (1999). EÆciency for MLE could be claimed for the \delta loss" but

not for quadratic or absolute deviation loss.
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where �n = �0 + Æ=n, Æ 2 Rd denotes the true parameter sequence. This is needed to

study asymptotic eÆciency later. Finite-dimensional (�-di) weak convergence means that

for any �nite J �
`n(zj); j � J

� d�!
�
`1(zj); j � J

�
; (3)

and `1(�) is called a �-di limit. In this section, d�! denotes convergence under P�n . De�ne

p (X) = p (X; �0) and q (X) = q (X; �0).

Theorem 1 Given assumption 1, the �-di weak limit of likelihood ratio `n(z) equals

`1(z) � expfz0EX [p(X)� q(X)]g

� exp

�Z
E

lz(j; x)dN(j; x)

�
; where

lz(j; x) � ln
q(x)

p(x)
1 [0 < j < x

0
z] + ln

p(x)

q(x)
1 [0 > j > x

0
z] ;

N is a Poisson random measure N(�) �
P1

i=1 1 [(Ji;Xi) 2 �] +
P1

i=1 1 [(J
0
i
;X 0

i
) 2 �], where

fXig are i.i.d. with d.f. FX , and fX 0
i
g is an independent copy of fXig,

Ji � �i=p(Xi); �i � E1 + :::+ Ei;
J
0
i
� �0

i
=q(X 0

i
); �0

i
� �(E 01 + :::+ E 0

i
);

(4)

fEig and fE 0
i
g are two i.i.d., mutually independent sequences of standard exponential ran-

dom variables that are also independent of fXig and fX 0
i
g.

The result has an intuitive appeal. The limit likelihood `1(z) has two informative

parts. The deterministic \outer" part,

`1(z) � expfz0EX [p(X)� q(X)]g;

can be regarded as information created by the far-from-jump data. The \inner" stochastic

part,

`2(z) � exp

�Z
E

lz(j; x)dN(j; x)

�
� exp

"
1X
t=1

lz(Ji;Xi) +
1X
t=1

lz(J
0
i ;X 0

i )

#
;

can be interpreted as information created by near-to-jump data.

N is an asymptotic model of the near-to-jump data. As equation (4) shows, the points

of N, (Ji;Xi) and (J 0
i
;X 0

i
), depend on regressors Xi in a complex way. N is the limit of

the point process

bN(�) �
X
i:�i>0

1 [(n�i; Xi) 2 �] +
X
i:�i<0

1 [n�i; Xi) 2 �] :

The measure bN(A) counts the number of points in any given set A. For any bounded set A,

the limit behavior of bN(A) depends only on near-to-jump errors n�i and the corresponding
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covariate values. The smallest j�ij0s are the ones that matter and they converge in law

to mutually dependent gamma variables. Furthermore, in large samples the likelihood is

driven mainly by near-to-jump data, revealing � at Op(n
�1) rate. The fast convergence

rate is not surprising. In a simplest one-sided case with no covariates, MLE is the minimal

order statistic that converges to the end-point of the support at Op(n
�1) rate.

Note also an important simpli�cation of the formulae in the one-sided case. Since

q(x) = 0

`1(z) � expfz0EXp(X)g;

`2(z) �
�

1 if Ji � X 0
i
z;8i

0 otherwise.

The inner part `2 is very informative in assigning the zero likelihood to certain values of

z. Otherwise, `2(z) is 
at. Once `2(z) equals 1, the outer part `1(z) further shapes the

likelihood. In the two-sided model, when q(x) > 0, no z is assigned a zero inner likelihood.

Both the `1 and `2 shape the limit likelihood.

3.2 Large Sample Properties of Bayes Estimators

The normalized Bayes estimator Zn = n(�̂ � �n) is related to the likelihood ratio process

by minimizing the posterior loss:

�n (z) =

Z
Un

� (z � u)�n(u)du:

where �n (u) is the posterior density on the rescaled parameter space Un = n(B � �n).

�n(u) = `n (u) q (�n + u=n) =

Z
Un

`n (u) q (�n + u=n) du:

� (z) is the loss function. `n (z) is the likelihood ratio process de�ned in the previous

section and q (�) is the prior density function.

As n ! 1, Un approaches Rd and the posterior �n(z) approaches the limit �1(u) �
`1 (u) =

R
Rd
`1 (u) du. The limit posterior �1 is a function of the likelihood limit only; it

is free from prior information. The result is thus simple to conjecture.

Theorem 2 Suppose assumptions 1 and 2, also de�ne for `1 (�) speci�ed in Theorem 1:

�1(z) �
Z
Rd

� (z � u)
`1 (u)R

Rd
`1 (u) du

du:

Suppose that Z1 � argmin
z2Rd�1 (z) is uniquely de�ned in Rd a.s. (*), then

Zn
d�! Z1:

Remark 3.1 The condition (*) is automatic for strictly convex functions �(z) with unique

minimum at z = 0, since `1(z) is positive a.s. on a subset of Rd with positive Lebesgue

measure by the assumed non-degeneracy of X .
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3.3 Maximum Likelihood

MLE Zn = n(�̂ML � �n) maximizes the local likelihood ratio process:4

Zn � argminz2Un � `n (z)

Because `n(�) is a highly non-regular function, the standard uniform convergence argu-

ments are not applicable. One approach, taken by IH(1982), treats `n(�) as an element

of a Skorohod space. There are substantive diÆculties with this approach in the regres-

sion case where there is more than one parameter. Instead, we employ Knight's stochastic

equisemicontinuity, which converts the �nite-dimensional convergence of discontinuous ob-

jective functions into convergence of argmins.5 Appendix A provides a brief discussion of

this new concept.

Theorem 3 Suppose assumption 1, and that �`1(z) attains a unique minimum in Rd

a.s., then

Zn
d�! Z1 � argminz2Rd � `1(z):

Remark 3.2 The condition that �`1(z) attains a unique minimum a.s. is needed, oth-

erwise the limit distribution may fail to exist.

The important special case of MLE with discrete covariates in the one-sided model has

been studied in the remarkable pioneering work of Donald and Paarsch (1996) and Donald

and Paarsch (1993a). The results obtained here extend to continuous covariates and,

importantly, also two-sided cases.

4 Nonlinear Model with Nuisance Parameters

In this section we consider a more general nonlinear model and also introduce nuisance

parameters. While the linear model conveys the basic 
avor and allows for a better expla-

nation of the proofs, the nonlinear setup conforms with the economic models described in

the introduction. The generalized model, denoted �R, is given by

Yi = g (Xi; �) + �i;

where the error �i has conditional density f (�jXi; �; �), parameterized by � 2 B � R
d1

and � 2 A � R
d2 . We assume that the set G = B � A is compact and convex and that

the reference parameter 
0 = (�0; �0) belongs to the interior of this set.

4If Zn is set-valued, we may choose any measurable solution. Alternatively, de�ne Zn as any measurable

�n-approximate argmin:Zn is s.t. � `n(Zn) � infz2Rd�`n(z) + �n; �n & 0: Allowing approximate

solutions is useful for situations in which it may be diÆcult to �nd the exact optimum.
5MLE is a special Bayes estimator minimizing the posterior loss �n(z) �

R
Æz(u)`n(u) du � `n(z);

where Æz(�) is the delta function, which is too irregular to be a subject of the previous section.
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The size of the jump of the conditional density of �i at 0, given Xi, may depend on

both � and �:

lim
�"0

f (�jx; �; �) = q (x; �; �) ;

lim
�#0

f (�jx; �; �) = p (x; �; �) ;

p (x; �; �) > q(x; �; �) + Æ; Æ > 0; 8x 2 X; (�; �) 2 Rd ; d = d1 + d2:

(5)

In other words, the conditional density of Y given X jumps at the location g(X; �),

which depends nonlinearly on the parameter � and covariate X . The shape of the density

depends on the parameters �, � and covariates X . The additional shape parameter � is

not related to the parameter of the location function. This model is therefore considerably

more 
exible than the basic linear model.

The assumptions and results for the non-linear model are very similar to the linear

model. However, the presence of nuisance parameters adds to the complexity of exposition.

We make the following additional technical assumptions:

Assumption 3 The following statements apply to x in X and 
 = (�; �) in G:

(E.1) (Yi; Xi) is an i.i.d. sequence of vectors in R�Rd , de�ned on (
;F ; P
). Xi has c.d.f

FX , with compact support X. (5) holds, and uniformly in �; �; and x

i. q (x; �; �) > c > 0 or ii. f (�jx; �) = q (x; �; �) = 0; for � < 0:

(E.2) Density f(�jx; 
) has continuous derivatives in �; 
 for each �; x and 
, except at � = 0,

and is bounded uniformly in �; x; 
; has continuous and bounded second derivative

in �, uniformly in �; x; 
. W.l.o.g. f(�jx; 
) is upper-semicontinuous at � = 0 for

each x and 
; and sup
2G EX

R
j@f
@


(y � g(X; �)jX ; 
) jdy <1:

(E.3) g (x; �) has two continuous and bounded derivatives w.r.t. �, uniformly in x and �.

V ar

h
@g(X;�)

@�

i
is positive de�nite uniformly in �.

(E.4) Let li (

0) � ln f (Yi � g (Xi; t) ;Xi; 


0). For 
0 = (t; s) in an open ball at 
 = (�; �),

either (a) EP


h
@

@

li (


0)
i h

@

@

li (


0)
i0

is uniformly nonsingular and bounded, or (b)

@f

@t
(y � g (x; t) ;x; 
) � 0 and EP


�
@

@�
li (


0)
� �

@

@�
li (


0)
�0

is uniformly nonsingular

and bounded; (a) and (b) hold uniformly in 
.

(E.5) There exist K > 0; C > 0; Æ � 0, such that for any x and 
: in case E.1.i, for all

c; � 2 R, jcj � K, j @@� ln f(�+ cjx; 
)j � C(�; x) and in case E.1.ii this only needs to

hold for all c; � : �+ c > 0. Moreover, sup
 EP
C(�i; Xi) <1.

(E.6) Under the same conditions, second derivatives are dominated: j @2

@�@�0
ln f (�+ cjx; 
) j

� C
00 (�; x) and sup
 EP
C

00(�i; Xi) <1

The parameters include location parameters � and shape parameters �. If � is known,

the inference about � is regular. Thus, the assumptions E.1-E.6 re
ect a mixture of non-

regular assumptions like in section 3 and in IH(1982) and regular ones like in van der

Vaart and Wellner (1996), chapter 7 (mean-square di�erentiability). Conditions E.2-E.3

9



impose reasonable smoothness on the location function and the density function. E.4

imposes a standard mean-square di�erentiability and �nite information matrix for the

shape parameter �. E.5 and E.6 impose a standard domination on the score function and

its derivative.

We next derive the limit likelihood process, followed by the asymptotics of Bayes and

ML estimators.

4.1 Limits of Likelihood

The likelihood for this model is of the form:

Ln(
) �
Y
i�n

f(Yi � g(Xi; �)jXi; 
)dFX (Xi);

where dFX(Xi) does not depend on 
 and factors out. ML and Bayes estimators, 
̂ML and


̂Bayes, are de�ned as in section 2. The convergence rates needed to obtain a nondegenerate

limiting likelihood ratio process are given by n and
p
n, for � and � respectively. De�ne

Hn as a diagonal matrix with 1=n in the �rst dim(�) diagonal entries and 1=
p
n in the

remaining diagonal entries. Let 
n(z) � 
n+Hnz for z � (u; v) 2 Rd . The local likelihood
ratio process is given by `n (z) = Ln(
n(z))=Ln(
n):

In this section,
d�! denotes convergence in distribution under P
n , where 
n � (�n; �n) =


0 +HnÆ for given Æ 2 Rd .

Theorem 4 In model �R, given assumption 3, the �nite-dimensional weak limit of the

localized likelihood ratio `n (z) takes the following form: for �(x) � @g(x; �0)=@�

`1 (z) �`11(v)� `21(u);

`11(v) � exp

�
W

0
v � 1

2
v
0J
0v

�
`21(u) � exp [u0E�(X)[p(X)� q(X)]

� exp

�Z
E

lu(j; x)dN(j; x)

�
J
0 �EP
0

�
@

@�
li (
0)

��
@

@�
li (
0)

�0
where lu(j; x) � ln

q(x)

p(x)
1 [0 < j < �(x)0u] + ln

p(x)

q(x)
1 [0 > j > �(x)0u] ; N is the Poisson

process in Theorem 1. W is normally distributed N (0;J
0) and independent of N.

The result di�ers from that in section 3. First, �(X) = @g(x; �0)=@� replaces X ,

as expected. Second, we have a new term `11(v), the log of which is a normal random

variable with its variance inversely related to the information matrix. Thus, `11(v) is a

standard term for regular likelihood inference, e.g. van der Vaart and Wellner (1996), ch.

7. Note that if the parameter � were known, we would end up only with the standard term

`11(v). Since � needs to be estimated, we have the mixture of \regular" information about

the shape parameters � and the \non-regular" information about the location parameters

�. Moreover, these information components are asymptotically independent.
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4.2 Asymptotic Behavior of Bayesian and ML Estimators

Next consider the normalized Bayes estimator Zn � (Zb
n
; Z

s
n
) � (n(�̂ � �n);

p
n(�̂� �n)).

Theorem 5 (Bayesian Asymptotics for Nonlinear Models) Assume model �R, as-

sumptions 2 and 3, and that �(z) = �1(u) + �2(v). For `1 (�) in Theorem 4 de�ne:

�1 (z) �
Z
Rd

� (z � z
0)

`1 (z0)R
Rd
`1 (z0) dz0

dz
0

1. Suppose also that Z1 � argminz2Rd�1 (z) is uniquely de�ned in Rd a.s. (*), then

Zn
d�! Z1

2. Z
b
n

d�! Z
b
1 = argminu

R
Rd1

�1 (u� u
0) `11 (u0) du0 and Z

s
n

d�! Z
s
1 � argminv

R
Rd2

�2 (v � v
0) `21 (v0) dv0. Zb

1 and Z
s
1 are independent.

Note that the independence is due to multiplicative separability of `1(z) in `11(u) and

`21(v) and additive separability of �(z). If the additive separability does not hold, part

1 of the Theorem 4 is still applies, while part 2 does not. Consider next the normalized

MLE Zn � (Zb
n
; Z

s
n
) = (n(�̂ � �);

p
n(�̂ � �)) .

Theorem 6 (MLE Asymptotics for Nonlinear Models) Under model �R, assump-

tion 3, and assuming that `1(z) attains a unique minimum a.s,

Zn
d�! Z1 � argminz2Rd � `1(z)

By multiplicative additive separability of `1(z), we have Zs
n

d�! Z
s
1 = J �1

W = N(0;J�1)

and Z
b
n

d�! Z
b
1 = argmin

z2Rd � `21(z). Zb
1 and Z

s
1 are independent.

These results generalize Theorems 2 and 3. In view of asymptotic independence be-

tween the shape information and location information, the estimators for these parameters

are asymptotically independent. Also, the limit distribution of the Bayes estimator of

shape parameter � coincides with that of MLE, if the loss function �2 is symmetric (by

Anderson's lemma). This is not the case for the estimators of the location parameter �.

5 EÆciency

The Bayes estimators are exactly �nite-sample average-risk eÆcient(ARE) under particular

loss functions. This is an instance of a well known result, formally stated in Theorem 7.

Theorem 8 makes this statement an asymptotic one. These results justify one of the main

e�orts of this paper { the study of Bayes estimators. The ML estimators of location

parameters are not equivalent to Bayes estimators even asymptotically and, unlike the

usual case, do not share the optimality of Bayes estimators in large samples.

Average risk eÆciency is one of the classic eÆciency concepts developed by Wald,

Lehmann, and others. Before writing it down formally for our case, it is helpful to review

11



the basic idea. Given a parameter 
, an estimator 
̂, and a loss function �n (x) = �
�
H
�1
n
x
�
,

we can compute the expected risk as EP
�n(
̂ � 
 ). The average risk takes the formR
G
EP
�n(
̂ � 
 )q(
)d
 where q is a weight function (e.g. q(
) = 1).

To address the asymptotic results, consider the following notation, de�ne Hn as in

section 4, and let 
n(Æ) � 
0+HnÆ. Consider all statistics (measurable mappings of data)

fn � fn((Yi; Xi)
n

i=1), and denote the set of all such mappings as Fn.

De�ne the (exact) average risk criterion (ARC) as

R�;q(f;K) =

�Z
K

EP
n(Æ)

�
�
�
H
�1
n

[fn � 
n(Æ)]
� �
q(
n(Æ))dÆ

�
=Leb(K);

where q is the weight or prior measure (e.g. uniform) and � is the loss function, de�ned

earlier. Division by Leb(K) is immaterial at this point.

Theorem 7 (Finite-Sample ARE) Suppose model �R and conditions E.1-E.6 hold.

For fBayes 2 Fn, de�ned by loss function � and prior weight q:

fBayes 2 arg inf
f2Fn

R�;q(f; Un):

We next de�ne asymptotic average risk (AARC) as

R�(ffng;K) = lim sup
n!1

R�;Leb(fn;K);

for a compact cube K of Rd with center 0, and sequence of estimators ffng in fFng. To
extend this de�nition to entire Rd , de�ne

R�(ffng;Rd) = lim sup
K"Rd

�
R�(ffng; K)

�
;

where K " Rd denotes an increasing sequence of cubes converging to Rd .

Theorem 8 (Asymptotic ARE) Suppose model �R and conditions E.1-E.6 hold. For

ffBayesg 2 fFng, de�ned by loss � and prior (weight) q:

inf
ffng2fFng

R�(fn;R
d) = R�(ffBayesg;Rd)

Because Bayes and ML estimators of location parameters are not asymptotically equiv-

alent (equivalence holds for the shape parameter � under symmetric loss function �2), the

ML estimators are not optimal under the convex loss functions considered here. This is in

contrast to the usual case where, for a large class of loss functions, MLE is asymptotically

equivalent to the Bayes estimator and shares its optimality.

We next examine whether theoretical eÆciency translates into actual eÆciency gains

with a simple monte carlo example. We consider simple one and two sided models with

two covariates. In the one-sided case we generate data as

Y0 � Uniform [�c=m+ (1� 1=m) c; �c]

c = �c� �1X1 � �2X2; Xj � Uniform (a; b) ; j = 1; 2

12



Table 1: Mean Squared Error For Two Simulation Experiments

MLE Bayes

�1 �2 �1 �2

One-sided Model 0.8769 2.2030 0.0473 0.0395

Two-sided Model 0.1761 0.1244 0.0587 0.0502

The distribution in this example can be rationalized by a simple procurement auction

model, in which there are n auctions. In each auction there are m bidders. Each bidder

draws a random cost C from the uniform distribution on (c; �c). We only observe the

submitted bids, which depend on C through the Bayesian Nash equilibrium bid function:

Y = �c=m+ (1� 1=m)C, resulting in the model above.

The two-sided example is a contaminated version of the �rst example. In particular,

the data is generated from:

Y = Y0 with prob. � and Y = Uniform (L; �c=m+ (1� 1=m) c) with prob. 1� �

where we chose � = 0:9 and L = 2. We simulate the above two models, using �1 = �2 = 0:5

for n = 200. Table 1 reports the sum of mean square errors across 300 simulations. The

Bayes estimator has a substantively smaller mean square error than MLE.

6 Con�dence Intervals and Some Practical Questions

The obtained results enable the construction of con�dence sets.

Con�dence Intervals. We must distinguish between the estimates of the shape

parameter � and the estimates of the location parameters �.

Inference about � parameters is fully regular. The limit distribution of either MLE and

Bayes (for symmetric loss function �1) is given by N(0;J�1

0

). To facilitate inference we

need to estimate J �1

0

. This can be done by conventional methods, taking the parameter

estimate �̂ as given.

Corollary 1 Under assumption 3, for Bayes or MLE �̂; �̂

Ĵ � � 1

n

nX
i=1

@2

@��0
lnf(Yi � g(Xi; �̂)jXi; �̂; �̂)

p�! J
0

An alternative is the familiar outer product of scores in �, which we do not state for

brevity. The resampling methods available for inference about �̂ include subsampling and

bootstrap. Although the bootstrap is not investigated formally, we can conjecture it works

due to Mammen's theorem and asymptotic normality (see Horowitz (2000)).

Inference about the parameter � poses more diÆculties. Neither Bayes nor ML estima-

tors have a standard limit distribution. The nonparametric bootstrap is not consistent in

the present setting. A simple counterexample is the boundary model without covariates,
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in which case both Bayes and MLE are functions of the minimum order statistics. The

nonparametric bootstrap is known to fail in this case (e.g. Horowitz (2000)).

We discuss a subsampling and an analytical approach to con�dence intervals. We

believe subsampling is a more practical and computationally simpler method. Following

Politis, Romano, and Wolf (1999), let W1; :::;WNn
be equal to the Nn = (

n
b) subsets of

size b of f(Yi; Xi); i � ng, ordered in any fashion. Let I1; :::IB be chosen randomly with or

without replacement from f1; 2; :::Nng. Now, let �̂n;b;i be equal to the statistic of interest
�̂b evaluated at the data set Wi. The approximation to the limit distribution function of

�n(�̂� �), where �n = n for the location parameters or �n =
p
n for the shape parameters,

is given by

Ln;b(x) =
1

B

BX
i=1

1f�b(�̂n;b;Ii � �̂n) � xg:

By inverting Ln;b(x), we obtain various �-quantiles cn;b(�) = L
�1
n;b
(�): The level 1 � �

two-sided con�dence interval is obtained as [�̂n � �
�1
n

cn;b(1 � �=2); �̂n � �
�1
n

cn;b(�=2)].

Similarly, the empirical distribution of �bj�̂n;b;Ii � �̂nj can be used to construct symmetric

con�dence intervals.

Corollary 2 The subsampling method of estimating the limit distribution of �n(�̂ � �),

where �̂ is Bayes or MLE, is consistent in the sense of Politis, Romano, and Wolf (1999)

(Theorem 2.2.1(i)-(iii)), and the asymptotic coverage probability of the con�dence intervals

achieves the correct nominal value, as long as b!1, b=n! 0, and B !1, as n!1.

The choice of the block size b is discussed in detailed in chapter 9 of Politis, Romano, and

Wolf (1999). They provide the calibration and the minimum volatility methods. In the

empirical section, we use 1=10 of the sample size. The con�dence intervals are not sensitive

to block size variation. This is probably due to the fast rate of convergence to the limiting

distribution. The insensitivity principle underlies the minimum volatility method.

An alternative is an analytical method, based on simulating the distribution of a poisson

process N, taking the estimated parameters as given, then obtaining `1 and computing

the solutions Z1. This method is detailed in Chernozhukov (1999). In the present context,

subsampling is preferable on computational grounds.

Computational Methods. Modern computational methods are important for making

the inference and estimation methods available to practitioners. It used to be that the

Bayes computations were cumbersome and hampered the applicability for many years.

Since approximately 1990, this problem has been overcome by Markov Chain Monte-

Carlo (MCMC). This technique allows the simulation of a markov chain Z1; :::ZJ whose

marginal distributions are approximately the posterior distribution. The method allows

eÆcient and numerically stable computation of the Bayes estimates. Detailed discussion

can be found e.g. in Robert and Casella (1998).

We implement these computational methods for the models considered in this paper.

The programs are available from the authors. Our implementation is fast since the main

subroutines are coded in C. Our program uses uninformative (
at over Rd ) prior. To com-

pute the MLE, we use simulated annealing, an algorithm that handles general nonsmooth

14



Table 2: Summary Statistics

Worktype #auctions Avg. Stdev., Avg #.

winning bid winning bid bidders

(1989$, mil)

2 141 1.006 1.149 5.91

3 181 1.500 1.870 8.59

4 405 5.015 9.497 7.46

objective functions. Therefore, we provide not only the theory, but also the tools and

computer programs needed for implementation.

7 Empirical Illustration

We consider a data set of bids submitted in a procurement contract auctions conducted by

the New Jersey department of transportation (NJDOT) in the years 1989-1997. Over this

period, the NJDOT conducted 1025 low-price, sealed-bid auctions of contracts to procure

various types of services such as highway work, bridge construction and maintenance, and

road paving. Most of the services procured had few auctions conducted. In the following,

we consider only three types of services. See table (2) for the summary statistics. Hong

and Shum (2000) give a detailed description of the data.

We focus on the independent private value model formulated in Paarsch (1992). In par-

ticular we assume that the construction cost follows independent pareto distributions, as

studied by Paarsch (1992) and Donald and Paarsch (2000). Precisely, the cost distribution

for construction companies is given by, for � = (�1; �2):

h (c) =
�2�

�2
1

c�2+1
0 < �1 � c; 0 < �2:

Paarsch (1992) and Donald and Paarsch (2000) showed that this implies the following

density function of the winning bids, conditional on the number of bidders m and other

covariates that a�ect the distribution parameters �:

f (yjm; �) =

�
�2mf�1�2(m�1)=[�2(m�1)�1]g�2m

y�2m+1 if y >
�1�2(m�1)

�2(m�1)�1

0 otherwise

Table 3 reports the ML estimates and the Bayesian posterior mean estimates for this

model. The variation in the summary statistics of the winning bid across types of contracts

indicate that the jobs de�ned in these contracts are very di�erent. Hence we present

separate parameter estimates for each type of contract. Also, we give the 95% equal tailed

and 95% symmetric con�dence intervals constructed using subsampling method described

earlier.
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Table 3: One sided Pareto Estimates

MLE Bayes

worktype �1 �2 log L �1 �2

2 0.0160483 0.57543 -1341.05 0.0789063 0.706494

equal tail -0.0140822 0.562586 0.0455028 0.541959

0.0154688 0.598813 0.0839134 0.73919

symmetric -0.00578062 0.552359 0.0620981 0.669373

0.0378773 0.598501 0.0957144 0.743614

3 0.0593045 0.568535 -1955.05 0.0465869 0.356914

equal tail 0.0377357 0.56294 0.017097 0.268854

0.060384 0.589204 0.0493621 0.357122

symmetric 0.0396208 0.55182 0.0264918 0.291758

0.0789883 0.58525 0.066682 0.42207

4 0.0222681 0.646935 -7975.9 0.146176 0.555795

equal tail 0.00208421 0.627295 0.131181 0.329598

0.0223695 0.666575 0.157989 0.566001

symmetric 0.00392716 0.627295 0.13406 0.368623

0.040609 0.666575 0.158291 0.742967

Table 4 reports the parameter estimates from an alternative two sided model:

f (yjm; �) =

�
(1� �)

�2mf�1�2(m�1)=[�2(m�1)�1]g�2m

y�2m+1 if y >
�1�2(m�1)

�2(m�1)�1

�

�
1=

�1�2(m�1)

�2(m�1)�1

�
if 0 < y <

�1�2(m�1)

�2(m�1)�1

;

and 0 otherwise. We chose � = 0:02, which accommodates outliers that do not conform

to the theoretical model.

In table 5 we introduce a continuous covariate for the traÆc volume. This covariate is

only available for work type 4. We parameterize �1 = exp (�1 + �3 �X) and �2 = exp (�2),

where X denotes traÆc volume. The coeÆcient appears to be signi�cant, although there

are large discrepancies depending on the estimation method and the model. This is in-

dicative of misspeci�cation.

An alternative approach to direct parametric inference for independent private value

auction model is the indirect inference approach of Guerre, Perrigne, and Vuong (2000).

Their insight is based on examing the �rst order condition of the optimization problem of

a representative bidder i in the equilibrium:

max
b

Z 1

b

g�i (x) (b� c) dx ) �g�i (b) (b� c) + �G�i (b) = 0

where �G�i and g�i denotes the survival function and the density function of the distribu-

tion of the minimum bid among bidder i's competitors. Therefore, a two step procedure

can be used. In the �rst step, �G�i and g�i are estimated using the bid data. In the second
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Table 4: Two sided Pareto Estimates

MLE Bayes

worktype �1 �2 log L �1 �2

2 0.259243 0.55482 -372.445 0.22572 0.810755

equal tail 0.180359 0.498768 0.149349 0.776126

0.272495 0.569737 0.236047 0.85172

symmetric 0.188709 0.498771 0.154353 0.297086

0.329778 0.61087 0.770756 0.850753

3 0.418519 0.512854 -656.18 0.3074 0.361401

equal tail 0.316776 0.453844 0.203662 0.336442

0.439423 0.529476 0.31702 0.36304

symmetric 0.320138 0.491592 0.208184 0.344999

0.516895 0.534106 0.406617 0.377803

4 2.87942 0.535876 -2375.17 1.84626 0.549167

equal tail 2.46807 0.529865 1.35817 0.53917

3.1199 0.553112 1.98644 0.569452

symmetric 2.55317 0.518958 1.42778 0.530891

3.20566 0.552793 2.26474 0.567443

Table 5: Model with TraÆc Volume (Type 4)

MLE Bayes

�1 �2 �3 log L �1 �2 �3

one-side -3.812 -0.436 -0.000 -6996.4 -1.096 -0.488 -0.697

equal tail -3.833 -0.440 -0.001 -1.637 -1.092 -0.941

-3.810 -0.409 0.006 0.137 -0.453 -0.557

symmetric -3.830 -0.453 -0.006 -2.160 -0.615 -0.911

-3.793 -0.419 0.005 -0.032 -0.362 -0.484

two-side -1.131 -0.652 0.547 -1984 -0.540 -0.639 0.091

equal tail -2.150 -0.655 0.544 -0.842 -0.670 0.058

-1.114 -0.634 0.645 -0.461 -0.588 0.138

symmetric -1.820 -0.670 0.451 -0.812 -0.681 0.049

-0.441 -0.634 0.642 -0.269 -0.596 0.134
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step, the pseudo-cost values

c = b�
�G�i (b)

g�i (b)

are constructed for each bid in each auction. Then the distribution of these pseudo-values

can be used to infer the latent distribution of the cost parameter. �G�i and g�i can be

easily inferred from the data for any symmetric aÆliated private value model. It suÆces

to observe the winning bid, since

�G�i (x) =
�
�F (x)

�m�1
m and g�i (x) =

�
m� 1

m

�
�F (x)

� 1
m f (x)

where �F (�) and f (�) are the survival and density function of the whining bid, respectively.

The indirect inference approach of Guerre, Perrigne, and Vuong (2000) uses a non-

parametric method to estimate �F (x) and f (x). Here we consider a 
exible parametric

approach. We used the truncated normal distribution parameterized as:

f (x) =
1

�
�

�
x� �

�

�
���

�
b� �

�

�
where we take ln b = �1+�4�m, ln� = �2+�5�m, ln� = �3+�6�m: Table 6 reports

the results for worktype 4.

First, we notice that the new model is an improvement over the pareto model in terms

of the log likelihood value, suggesting a signi�cant improvement in the �t. Although we

did not develop a formal testing procedure for the nonstandard likelihood, the principle

of Vuong (1989) suggests that the model with the higher likelihood is closer to the data

in the information-theoretic sense.

Second, we note that the Bayes posterior mean estimates di�er from the maximum

likelihood estimates, although none of the slope coeÆcient reverse its sign. This is not

surprising, since the likelihood surface has many more modes when the number of parame-

ters is greater. Based on the computational experiments, theoretical eÆciency properties,

and the fact that the Bayes estimators (posterior means) minimize the globally convex

objective function, they may be preferred.

We did not report the results for the case with the traÆc volume covariate. Adding this

covariate produced a tiny improvement of the log likelihood and did not change the original

coeÆcients. The estimates for the traÆc volume coeÆcients were highly insigni�cant. Both

methods yielded agreeable results concerning that covariate.

Overall, the two-sided models �t data better that one-sided ones, indicating that con-

trolling outliers that do not conform the model is important. We also observe that the

parametric variant of the indirect inference approach of Guerre, Perrigne, and Vuong

(2000) is quite valuable and allows to �t the particular data better than the Pareto model.

Conclusion

We studied a general model in which the conditional density of the dependent variable

jumps at a location that is parameter dependent. This includes a variety of the boundary-

dependent model discussed in the recent literature of structural estimation. We derive
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Table 6: Truncated Normal Model for Worktype 4

MLE

worktype 4 �1 �2 �3 �4 �5 �6

logL = �694:854
-2.38883 0.404125 0.628959 -0.0702671 -2.58986 0.207458

equal tail -2.56234 -2.39153 -0.23598 -0.14270 -2.61471 0.167639

-2.3802 0.54492 0.80567 -0.04021 -2.5829 0.23593

symmetric -2.55203 -2.07808 0.15484 -0.12891 -2.60658 0.168674

-2.22562 2.88633 1.10308 -0.01162 -2.57313 0.24624

Bayes

�1 �2 �3 �4 �5 �6

4.40077 -2.41695 0.643259 -2.38707 -2.26628 0.211352

equal tail 3.84919 -2.93896 0.462919 -2.60164 -2.56957 0.172165

4.87133 -1.88786 1.047 -1.8852 -1.77164 0.23446

symmetric 3.88809 -2.94462 0.347846 -2.8686 -2.72846 0.182684

4.91346 -1.88929 0.938672 -1.90554 -1.80411 0.24002

asymptotic distributions of Bayes and ML estimators under general conditions, and o�er

practical computation and inference methods. The results provide a solution to a long-

standing econometric problem.

Our results extend previous work in several directions: (1) handling general regression

models; (2) inclusion of Bayes estimators, which enjoy the small and large sample eÆ-

ciency; (3) considering the two sided model as a robust alternative to the one-sided model;

and (4) using the point process methods to give a precise characterization of large sample

distributions. Bayes estimators are important alternatives to MLE due to eÆciency prop-

erties which the MLE does not share. The methodology in this paper also provides new

insights into the analysis of asymptotic distributions for models that cannot be studied

using the conventional tools of locally asymptotically normal models.

The empirical application presented illustrates the usefulness of the results. We esti-

mated some key auction models. The �rst model was a stylized pareto model of Paarsch

(1992). The second auction model represented a 
exible parametric alternative to the non-

parametric approach of Guerre, Perrigne, and Vuong (2000). We �nd that the two-sided

models �t data better than one-sided ones, indicating that controlling for outliers that do

not conform the model is important. We also �nd that a parametric variant of the indirect

inference approach of Guerre, Perrigne, and Vuong (2000) is quite valuable and may allow

to �t data better than the direct parametric approach.
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A Useful Background De�nitions

A.1 Point Processes

De�nition 1 (Point Measures, Mp(E), cf. Resnick (1987)) LetE be a locally compact topo-

logical space with a countable basis, and E to be the Borel �-algebra of subsets of E. A point

measure (p.m.) p on (E; E) is a measure of the following form: for fxi; i � 1g, a countable col-

lection of points (called points of p), and any set A 2 E : p(A) � Pi 1(xi 2 A): If p(K) < 1,

for any K � E compact, then p is said to be Radon. A p.m. p is simple if p(x) � 1 8x 2 E,

and is compound otherwise. Let Mp(E) be the collection of all Radon point measures. Sequence

fpng �Mp(E) converges vaguely to p, if
R
fdpn !

R
fdp for all functions f 2 CK(E) [continuous,

real-valued, and vanishing outside a compact set] (cf. Leadbetter, Lindgren, and Rootzen (1983)).

Vague convergence induces vague topology on Mp(E). Topological space Mp(E) is metrizable as

complete separable metric space. Mp(E) denotes such metric space hereafter. De�ne Mp(E) to

be �-algebra generated by open sets.

De�nition 2 (Point Processes: Convergence in Distribution.) "A point process inMp(E)"

is a measurable map N : (
;F ; P )! (Mp (E) ;Mp(E)) ; i.e. for every elementary event w 2 
,

the realization of the point process Nn(w) is some point measure in Mp(E). Weak conver-

gence of the point process Nn taking values in Mp(E) is the same as for any metric space, cf.

Resnick (1987): we shall write Nn ) N in Mp(E) if EPh(Nn) ! EPh(N) for all continu-

ous and bounded functions h mapping Mp(E) to R. Note that if Nn ) N in Mp(E), thenR
E
f(x)dNn(x)

d�! R
E
f(x)dN(x) for any f 2 CK(E) by continuous mapping theorem.

De�nition 3 (Poisson Point Process or Random Measure (PRM)) Point process N is a

PRM with mean intensity measure m (de�ned on (E;E)), if
(a) for any F 2 E , and any non-negative integer k

P (N(F ) = k) =

�
e�m(F )m(F )k=k! if m(F ) <1

0 if m(F ) =1;

(b) if (Fi; i � k) are disjoint sets in E , then (N(Fi); i � k) are independent random variables.

A.2 Convex Objectives

The result can be found in Knight (1999). It is a generalization of earlier convexity lemmas by

Knight and Pollard. It allows discontinuities and �R - valued objective functions.

Lemma 1 (Guyer) Suppose fQT g is a sequence of lower-semi-continuous (lsc) convex �R-valued

random functions, de�ned on R
d
, and let D be a countable dense subset of R

d
. If QT �di-converges

to Q1 in �R on D where Q1 is lsc convex and �nite on an open non-empty set a.s., then

argmin

z2Rd
QT (z)

d�! argmin

z2Rd
Q1(z);

provided the latter is uniquely de�ned a.s. in R
d
.

A.3 Stochastic Equisemicontinuity

The remarkable concepts of this section were recently developed by Knight (1999). The following

summarizes some essential elements we need.
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Epi-Convergence. Suppose the sequence of objectives fQng are random lower semi-continuous

(l-sc) functions (i.e. Qn(x) � lim infxj!xQn(xj); 8x;8xj ! x). Let L be the space of l-sc

functions f : Rd ! �R, s.t. f 6� 1. L can be made into a complete separable metric space by con-

sidering a special metric, convergence in which is equivalent to epi-convergence (cf. Knight(2000),

Rockafellar and Wets (1998)). Hence one can metrize the weak convergence in L: Qn is said to

epi-converge in distribution to Q if for any closed rectangles R1; :::; Rk in Rd with open interiors

Ro
1; :::; R

o
k, and any real r1; :::; rk:

P
� \kj=1 f inf

x2Rj
Q(x) > rjg

� � lim inf
n

P
� \kj=1 f inf

x2Rj
Qn(x) > rjg

�
� lim sup

n

P
� \kj=1 f inf

x2Ro
j

Qn(x) � rjg
� � P

� \kj=1 f inf
x2Ro

j

Q(x) � rjg
�
:

Epi-convergence is a weak condition that leads to the convergence of argmins.

Lemma 2 (Knight, Theorem 1) Suppose that

i. Zn is s.t. Qn(Zn) � infz2RdQn(z) + �n, �n & 0; Zn = Op(1)

ii. Z1 � argminz2RdQ1(z) is uniquely de�ned in R
d
a.s.

iii. Qn(�) epi-converges in distribution to Q1(�), then
Zn

d�! Z1

Epi-convergence is more general than uniform convergence, because it allows for rather general

discontinuities. In our case, (lots of) non-vanishing discontinuities make the uniform convergence

of the likelihood function impossible.

Provided the �nite dimensional distributional (�di) limit exists, the necessary and suÆcient

condition for epi-convergence in distribution is stochastic equi-lower-semi-continuity (s. e-l-sc.),

developed by Knight (1999).

Stochastic equi-semi-continuity. Sequence fQng 2 L is s. e-sc. if for each bounded set B,

� > 0, and Æ > 0, there exist u1; :::; uk 2 B and some open sets V (u1); :::; V (uk) covering B and

containing u1; :::; uk s.t.

lim sup
n

P
� [kj=1 f inf

x2V (uj)
Qn(x) � min(�

�1
; Qn(uj)� �)g� < Æ:

Lemma 3 (Knight, Thm 2) Suppose Qn is s.e-lsc. Then fQng converges to Q1 in distribu-

tion in �nite-dimensional sense if and only if fQng epi-converges in distribution to Q1(�).

The s-esc condition amounts to the possibility of approximating the distribution of the in�mum

(and hence of argmin) of Qn over bounded set B by an approximate minimum of Qn over a

carefully chosen grid fui; :::ukg, with given precision (�; Æ). It is worth emphasizing that the naive

uniform grids will not do the job in our case. The application of stochastic equisemi-continuity

leads to a simple proof even in the no-covariate case, which could improve (in terms of length)

over the arguments of Ibragimov and Hasminskii.

B Proofs for the Linear Model

In the proof we set the local parameter sequence �n = �0. Putting through the general local

sequence �n does not change the arguments but introduces a lot of notational complexity.
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B.1 Proof of Theorem 1.

Consider the local log likelihood ratio process Qn (z) = lnLn(�0 + z=n)=Ln(�0)

Qn (z) =

nX
i=1

qin(z)�
�
1(�i > X

0
iz=n _ 0) + 1(�i < X

0
iz=n ^ 0)

�
+

nX
i=1

qin(z)�
�
1(0 < �i � X

0
iz=n) + 1(0 > �i � X

0
iz=n)

�
� Q1n (z) +Q2n (z) ; where

qin(z) � ln
�
f(Yi �X

0
i(�0 + z=n))jXi; �0 + z=n)

Æ
f(Yi �X

0
i�0jXi; �0)

�
:

Q1n(z) and Q2n(z) behave very di�erently.

I. Limit of Q1n(z) is analyzed by techniques similar to those in IH (1982). fQ1n(z)g is an average

like statistic. By C1, C4 and LLN, it converges in probability for each z:

Q1n(z)
p�! Q11(z) � �z0EX f 0 (�tjX; �0)

f (�tjX; �0) (6)

For a density function f that has a dominated derivative everywhere except at 0:
R
R
f 0(u)du =

�f(0+) + f(0�): Thus applying this to the conditional density f (�jX; �0), we have:

Q11(z) � z
0
EX[p(X)� q(X)]:

Next we use stochastic equi-continuity to convert pointwise convergence to uniform convergence

in z. It suÆces to show that for any jz1 � z2j p�! 0, the term��� nX
i=1

qin(z1)� 1(�i > X 0
iz1=n _ 0)�

nX
i=1

qin(z2)� 1(�i > X 0
iz2=n _ 0)

��� p�! 0; (7)

as well as other similar terms in Qn (z). The left hand side of (7) is bounded by

nX
i=1

1
�
�i >

X0
iz1
n

_
X0
iz2
n

_ 0
�
�

���� ln f
�
�i �

X0
iz1
n
j�0 + z1=n

�
� ln f

�
�i �

X0
iz2
n
j�0 + z2=n

� ����

+

nX
i=1

1
�
�i 2 (0;

X0
iz1
n

_
X0
iz2
n

]
�
� max
j=1;2

��� ln
f

�
�i �

X0
izj
n
j�0 + zj=n

�

f(�ij�0)

���:
(8)

By C.4, the �rst sum in (8) is bounded by, for z� in the convex hull of z1 and z2

nX
i=1

1(�i > X
0
iz1=n _X 0

iz2=n _ 0)�
���f 0(�i �X 0

iz
�=nj�0 + z�=n)

f(�i �X 0
iz
�=nj�0 + z�=n)

���� ���X 0
i(z1 � z2)

n

���
� 1

n

nX
i=1

1(�i > 0) � const �
���f 0(�ij�0)
f(�ij�0)

���1+Æ � jz1 � z2j = Op(1)� jz1 � z2j
(9)

The second sum in (8) is bounded by, for some C;C0; C00 > 0

sup
z1;z22Z

nX
i=1

1
�
�i 2 (0; X

0
iz1
n

_ X0
iz2
n

]
�
� C �

���f 0(�ij�0)
f(�ij�0)

���1+Æ � ��X 0
iz1
�� _ ��X 0

iz2
��

n

� sup
z1;z22Z

1

n

nX
i=1

1
�
�i 2 (0; C

0
=n]
� �C

00
= op(1)
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since f 0(�jx) is uniformly bounded above and f(ujx) uniformly bounded below when � > u > 0

by C.2-C.3, and X has a compact support. Thus (7) follows. Other terms are similarly checked.

II. Limit of Q2n(z). Q2n is driven by the \rare" occurrences of the near-to-jump observations

and can be modeled as an integral w.r.t. to the point process that measures these occurrences.

We split the proof into two parts: step 1 constructs the key point process and derives its limit

representation. Step 2 shows that (Q2n(zj); j � J) is a continuous transformation of the point

process.

Step 1: The Key Point Process. De�ne E � (�1; 0) [ (0;+1)�X. The topological space on

E is taken to be a product of standard topologies of R n f0g and Rd \X. So that, e.g., [a; b]�X

is a compact subset of E. E is the Borel �-algebra of subsets of E.

The key point process is a random measure taking the following form:

bN(A) =

nX
i=1

1 [(n�i; Xi) 2 A] ;

for any set A in E . bN is a random element of Mp(E), the metric space of nonnegative point

measures on E, with the metric generated by the topology of vague convergence. Appendix A

gives de�nitions. We will show that

bN) N in Mp(E)

where N is de�ned in the proposition 1. This is done in steps (a) and (b).

(a) By C.1 and C.3, for any F 2 T , the basis of relatively compact open sets inE (�nite unions and

intersections of open bounded rectangles in E), limn!1E bN(F ) � limn!1 nP (fn�;Xg 2 F ) =Z
F

[p(x)1(u > 0)du+ q(x)1(u < 0)du]� dFX(x) = m(F ) <1

where measure m is de�ned in the proposition. Since the events f(nei; Xi) 2 Fg are independent
across i by C.1, by the Meyer's Lemma ( Meyer (1973) ) we also have:

lim
n!1

P ( bN(F ) = 0) = e
�m(F )

;

which by Kallenberg's Theorem6 [ bN is clearly simple a.s.] and the de�nition of the Poisson

process ( Appendix A) implies that bN ) N in Mp(E), where N is a Poisson point process with

the mean measure m(�).
(b). Next we show that N has the same distribution as the process N, stated in the proposition.

First, de�ne canonical homogeneous PRMs N0 and N
0
0 with points f�ig and f�0ig, de�ned in the

proposition. N0 has the mean measure m0(du) = du on (0;1), and N0
0 has the mean measure

m0
0(du) = du on (�1; 0). Now because N0 and N

0
0 are independent,

N1(�) � N0(�) +N0(�)0

is the Poisson point process with the mean measure

m1(du) = 1(u > 0)du+ 1(u < 0)du on R n f0g:

Because fXi;X 0
ig are i.i.d. and independent of f�i;�0ig, by the Composition Lemma(cf. Proposi-

tion 3.8 in Resnick (1987)), the composed PRM N2 with points�f�i;Xig; f�0j ;X 0
jg; i � 1; j � 1

�
in R

d

6For example, Resnick (1987), Prop. 3.22
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has the product mean intensity measure given by

m2(du; dx) = [1(u > 0)du+ 1(u < 0)du]� FX(dx) on R n f0g �X:

Finally, N with the transformed points fT(�i;Xi);T(�0i;X 0
i )g, where

T : (u; x) 7!
�
1(u > 0)

u

p(x)
+ 1(u < 0)

u

q(x)
; x

�
has the desired mean measure on E

m(dj; dx) = m2 ÆT�1
(dj; dx) = [p(x)1(j > 0) + q(x)1(j < 0)] dj � FX(dx);

by the Transformation Theorem for Poisson Processes( Proposition 3.7 in Resnick (1987)).

Step 2: The Functional of the Key Point Process. Here we distinguish two cases (a) X � fx 2
X : q(x) > Æ > 0g and (b) X � fx 2 X : q(x) = 0g. Note that by assumption C.3, for any

compact set Z, as n!1,

ln

�
f(Æ � x0z=njx; �0 + z=n)

f(Æjx; �0)
�
= ln

�
q(x)

p(x)

�
(1 +O(n�1)) (10)

uniformly in fÆ; z; x 2 R+ �Z�X : x0z > 0; 0 < Æ < x0z=ng, and

ln

�
f(Æ � x0z=njx; �0 + z=n)

f(Æjx; �0)
�
= ln

�
p(x)

q(x)

�
(1 +O(n

�1
)) (11)

uniformly in fÆ; z; x 2 R� �Z�X : x0z < 0; 0 > Æ > x0z=ng. Note that in case (a) this holds by

C.3, while in case (b) equation (10) holds identically equal to �1. Hence

Q2n(z) =
h nX
i=1

ln
q(Xi)

p(Xi)
1
�
0 < n�i < X

0
iz
�
+

nX
i=1

ln
p(Xi)

q(Xi)
1
�
0 >n�i >X

0
iz
�i�(1+op(1))

� �Q2n(z)�(1+op(1))
(12)

uniformly in z over Z. (Again this expression may equal �1 in case (b), but that does not

create a problem for the proof.) Write �Q2n(z) as an integral w.r.t. bN:

�Q2n(z) �
Z
E

lz(j; x)dbN(j; x); (13)

where lz(j; x) is de�ned in the theorem. We consider cases (a) and (b) separately:

(a): By conditions C.1-2, the function (j; x) 7! lz(j; x) is bounded and vanishes outside the set

Kz � [��;+�]�X; � = supx2X jx0zj, where � < 1 by C.1. Kz is a compact set in E (by the

standard compacti�cation of E). The function (j; x) 7! lz(j; x) is discontinuous at j = 0 and at

j = x0z. Next de�ne the map T :Mp(E) 7! R
l as

N 7!
�Z

E

lzk(j; x)dN(j; x); k � l

�
:

The mapping T is discontinuous at the set

D(T) � fN 2Mp(E) : j
N
i = 0 or j

N
i = z

0
kx

N
i for some i � 1; k � lg

where (jNi ; x
N
i ; i � 1) denote the points of N . By C.3 and the construction of N

P [ bN 2 D(T); for some n � 1 ] = 0; P [N 2 D(T)] = 0: (14)
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Therefore bN) N in Mp(E) implies T( bN)
d�! T(N). We conclude that�

Q2n(zk); k � l
�

d�!
�
Q21(zk); k � l

�
; (15)

where Q21(z) � R
E
lz(j; x)dN(j; x):

(b): Now consider the second case: `2n(z) � expf �Q2n(z)g. Note that

`2n(z) = 0 if bN(A(z)) > 0; `2n(z) = 1 if bN(A(z)) = 0;

where

A(z) � f(j; x) 2 R+ �X : j < x
0
zg:

Observe also that `21(z) = 0 if N(A(z)) > 0; `21(z) = 1 if N(A(z)) = 0: Thus to show �nite-

dimensional convergence (for �k = 0 or 1):

P
�
`2n(zk) = �k; k � K

�
�! P

�
`21(zk) = �k; k � K

�
;

it suÆces to show
�bN(A(zk)); k � K

�
d�!
�
N(A(zk)); k � K

�
: By the continuous mapping

theorem, this follows from bN) N in Mp(E), since bN(@A(zk)) = 0 and N(@A(zk)) = 0 a.s. �

B.2 Proof of Theorem 2

Using the convexity lemma (1), it suÆces to show the �nite-dimensional (�di) convergence of

�n (�) to �1 (�), �
�n (zk) ; k � K

�
d�!
�
�1 (zk) ; k � K

�
:

�n (z) is an integral with respect to `n over Rd . There are two steps in the proof:

1. Approximate �n (z) over R
d by an integral over a compact subset of Rd . For large M 2 R+ ,

approximate �n (z) by �Mn (z) � �Mn1 (z) =�
M
n2, where

�
M
n1 (z) �

Z
juj�M

� (z � u) `n (u) q (�0 + u=n) du; �
M
n2 �

Z
juj�M

`n (u) q (�0 + u=n) du:

De�ne their corresponding limit process as

�
M
11 (z) �

Z
juj�M

� (z � u) `1 (u) q(�0)du; �
M
21 �

Z
juj�M

`1 (u) q(�0)du:

Now suppose that for each z and each � > 0; Æ > 0, 9M 2 R+:

lim sup
n

P
�
j�n (z)� �Mn (z) j > �

�
< Æ; (16)

This is a tail-smallness property. It follows from the exponential smallness of the likelihood tails,

which is demonstrated in the subsequent lemmas (4) and (5).

2. In view of (16), it suÆces to show
�
�Mn2;�

M
n1 (zk) ; k � K

�
d�!
�
�M21;�

M
11 (zk) ; k � K

�
: This

follows by two facts:

i E`n(z) = 1 <1
ii jE`1=2n (z0)� `

1=2
n (z)j2 � Cjz � z0j

Fact i. is the de�nition of likelihood ratio. Fact ii. is by Lemma 5-6. These facts check the

conditions of a limit theorem for integrals of random functions, Theorem 22 in Appendix I of IH

(1982). �
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B.3 Proof of Theorem 3

By condition C.3, �`n is lower-semi-continuous. Two steps are needed:

� Show �nite-dimensional convergence of `n to the stochastic limit `1,

� Show the stochastic equi-lower-semi-continuity (e-lsc) of f�`ng,
The �rst step was shown in Theorem 1. We demonstrate the second step next. Theorem I.5.1 in

IH(1982) shows that the conclusion of lemma (6) implies that Zn = Op(1): Combining these two

steps, the conclusion follows by Lemma 2.

It remains to show stochastic equi-lower-semi-continuity (e-lsc) of f�`ng, or equivalently of

f�Q2n � � log `ng: We know from the proof of Theorem 1 that:

Q1n(z)�Q11(z)
p�! 0; Q2n(z)� �Q2n(z)

p�! 0;

uniformly in z over �xed compact sets, where �Q2n(z) �
R
E
lz(j; x)dbN(j; x): Q11(z) is a �xed

linear function. It therefore suÆces to show s-e-lsc of f� �Q2n(z)g only.
Because �Q2n(z) is a piece-wise constant function it suÆces to show that or any bounded

set B � R
d and Æ > 0, there are open neighborhoods V (z1); :::V (zm) of some z1; :::; zm s.t.

B � [mk=1V (zk) and

P

�
[mk=1f inf

z2V (zk)
� �Q2n(z) < � �Q2n(zk)g

�
< Æ:

This is done in several steps.

(a)[A seemingly strange point process] Construct the point process:

~N(�) �
X
�i>0

1 [(n�ip(Xi); Xi) 2 �] +
X
�i<0

1 [(n�iq(Xi); Xi) 2 �] :

Represent the points of ~N equivalently in terms of the order statistics

�1n;�2n; ::: of f n�ip(Xi); i : �i > 0 g; �
0
1n;�

0
2n; ::: of f n�iq(Xi); i : �i < 0 g:

so that 0 < �1n � �2n::: ; 0 > �01n � �02n::: : Denote by Xin; X
0
in the corresponding to

�in;�
0
in realizations of the covariate. Thus ~N(�) � P

i�1
1 [(�in; Xin) 2 �] + 1 [(�0in; X

0
in) 2 �] :

~N is a continuous transform of bN, say T(bN), from Mp(E) to Mp(E). Therefore, in Mp(E)
~N(�)) N(�) � T(N) �Pi�1

1 [(�i;Xi) 2 �] + 1 [(�0i;X 0
i ) 2 �] where the distribution of the points

is de�ned in the statement of Theorem 1. Also, by continuous mapping theorem, in Rk

(�1n; :::;�kn)
d�! (�1; :::;�k) :

We need all of this to characterize the equisemi-continuity of �Q2n. Write

�Q2n(z) �
Z
E:j>0

lz(j; x)d bN(j; x) +

Z
E:j<0

lz(j; x)dbN(j; x) � �Q
+
2n(z) + �Q

�
2n(z):

We examine discontinuities of �Q2n by examining that of �Q+
2n(z) and

�Q�2n(z). Because the argu-

ments are identical for either part, consider only part �Q+
2n(z).

(b)[Picking the Cover] Fix a bounded set B � R
d . Cover X by the minimal number of closed

equal-sized cubes fX�(xj); j � J(�)g with the side-length equal to � and the centers of cubes

denoted as xj . Construct sets

fVkj ; k = �m; :::; m; j � J(�)g � R
d
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as Vkj � fz 2 Rd : vk � ' < p(x)x0z < vk + '; 8x 2 X�(xj)g, where ' > 0 and

vk = k'; for k 2 f�m; :::; 0; :::mg:

Since X is a nondegerate compact subset of Rd , and p(x) is bounded away from 0 and above by

assumption, f[kjVkjg can cover any given bounded set B by selecting suÆciently large m.

(c)[Number of Break-points is OP (1) and separated for small '] Consider argument z in

[jVkj , then a discontinuity in �Q+
2n(z) can potentially occur in [jVkj only if there exist z� 2 [jVkj

and (�in; Xin) s.t.

�in = p(Xin)X
0
inz

�
; (17)

where it must be that

vk � ' � �in � vk + ':

If there is such (�in; Xin), we say that �Q+
2n has a breakpoint in [jVkj . Note that �Q+

2n(z) can not

have breakpoints in Vkj with k < 0 because �in > 0. De�ne Nn � #fi : �in < �kg; N � #fi :
�i < �kg; where �k � supx2X;z2B p(x)x0z: Nn is the upper bound on the number of breakpoints of

�Q+
2n(z) in set B. By continuous mapping theorem, Nn

d�! N in R: So the number of breakpoints

O(Nn) is stochastically bounded Op(1). Furthermore, break-points are separated: no more than

one break point can happen in [jVkj with probability arbitrarily close to one if ' is suÆciently

small. De�ne Ak to be the event that �Q+
2n(z) has more than two break-points in [jVkj .

lim sup
n

P [[kAk] � lim sup
n

P

�
min

1�i�Nn
j�in � �(i�1)nj < 2'

�
� lim sup

n

P

�
min

1�i�K
j�in � �(i�1)nj < 2'

�
+ P [Nn > K]

� P

�
min

1�i�K
j�i � �(i�1) j < 2'

�
+ P [N > K]

� Æ=2

which is achieved by setting K suÆciently large so that P [N > K] < Æ=4, followed by setting '

suÆciently small so that P
�
min1�i�K j�i � �(i�1) j < 2'

�
< Æ=4, which is possible since

E
h

min
1�i�K

j�i � �(i�1)j
i
= E

h
min

1�i�K
jEij
i
> 0:

From now on, K and ' are �xed.

(c)[\smart" grid-points by setting � small] Next construct \centers" zkj in Vkj so that

vk � ' < x
0
zkj < vk � '+ �; 8x 2 X�(xj)

where � : 0 < � << ' will be set suÆciently small in the next step. Depending on �, to satisfy

the constraints, we will set � suÆciently small as well.

(d) [Stochastic Equi-semicontinuity] Now follows the veri�cation of stochastic equi-semicontinuty:

lim sup
n

P
h
[kj f inf

z2Vkj(zkj)
� �Q

+
2n(z) < � �Q

+
2n(zkj)g

i
< lim sup

n

P
h
B(�)

i
+ lim sup

n

P
h
[k Ak

i
where B(�) is the event that f�in; i � Kg are separated, and at least one of them falls into one

of the \small" disjoint sets of the form:

[vki � '; vki � '+ �]; i � K:
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The bound is true because the last event contains the event that (�in; i � K) are separated, and

one of them falls into a set of the form [vki � ';X 0
inzkij ] which actually is the event

[kjf inf
z2Vkj (zkj)

� �Q
+
2n(z) < � �Q

+
2n(zkj)g \ ([kAk)

c
;

because � �Q+
2n(z) is piecewise-constant and can only jump up if the index X 0

iz increases. Now

because (�in; i � K)
d�! (�i; i � K), which have the bounded density, it follows that

lim sup
n

P [B(�)] = O(K�) < Æ=2:

by picking suÆciently small �. (Note that K stays �xed and its choice does not depend on �).

By step (b) lim supn P [B(�)] + lim supn P [[kAk] < Æ.�

B.4 Lemmas 4-6

A critical ingredient in the proof of Theorem 2 is the requirement of tail smallness. In this section

such properties of

`n (z) = Ln(� + z=n)=Ln(�):

are established, where z 2 Rd .

Lemma 4 Suppose 9b > 0; B > 0, s.t. 8z 2 Rd ; z0 2 Rd , 9n0 s.t. 8n > n0:

(i)EP�`n (z)
1=2 � e

�bjzj
; (ii)EP� j`n (z)1=2 � `n

�
z
0�1=2 j2 � Bjz � z

0j;
uniformly in � in an open ball at �0. Then for

�Mn1 �

Z
juj>M

`n (u) q (�0 + u=n)R
Un

`n (u) q (�0 + u=n) du
du; �Mn2 (z) �

Z
juj>M

� (z � u)
`n (u) q (�0 + u=n)R

Un
`n (u) q (�0 + u=n) du

du

it is true that under P = P�n

lim
M!1

lim sup
n!1

E�Mn1 = 0; lim
M!1

lim sup
n!1

E�M
0

n2 (z) = 0; (18)

so that

lim
M!1

lim sup
n!1

P
�
j�n (z)� �

M
n (z) j > �

�
= 0: (19)

IH(1982) studied the non-regression models and veri�ed the conditions of this lemma by bounding

a Hellinger distance. Our approach requires a modi�cation: we bound a conditional Hellinger

distance for the model R. The Conditional Hellinger Distance, denoted as r2 (�; � + h), is de�ned

as: �Z Z ���f1=2 �y � x0 (� + h) jx; � + h
�� f1=2

�
y � x0�jx; �� ���2dyFX (dx)

�1=2
Upper and lower bounds on r2 (�) are used for to verify conditions of lemma 2:

Lemma 5 If there are a > 0; A > 0 such that for each h > 0 small,

inf
�
r
2
2 (�; � + h) � ajhj

1 + jhj and sup
�

r
2
2 (�; � + h) � Ajhj

where sup/inf are computed over � in open ball at �0. Then 9b > 0; B > 0, s.t. 8z 2 Rd ; z0 2 Rd,
9n0 s.t. 8n > n0:

sup
�

EP� `n (z)
1=2 � e�bajzj; sup

�

EP� j`n (z)1=2 � `n
�
z0
�1=2 j2 � Bjz � z0j:
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The following lemma veri�es the conditions of lemma (5) and hence also veri�es the bound on

the conditional Hellinger distance in model R.

Lemma 6 In model R, suppose (C.1)-(C.3) hold, then 9a > 0; A > 0, such that for all h > 0

small enough, the following is true:

inf
�
r
2
2 (�; � + h) � ajhj and sup

�

r
2
2 (�; � + h) � Ajhj

Proofs of lemmas (4) to (6):

Lemma (4): (18) is a special case of lemma I.5.2 and Theorem I.10.2 of IH(1982). (19) follows

immediately from (18). �

Lemma (5): It follows from the de�nition of the conditional Hellinger distance that r22 (�; � + z=n)

=2

�
1�

Z Z
f
1=2
�
y � x

0
(� + z=n) jx; � + z=n

�
f
1=2
�
y � x

0
�jx; �� dyFX (dx)

�
:

Also E`n (z)
1=2 �

Z
:::

Z (Y
i�n

�
f1=2 (yi � x0i (� + z=n) jxi; � + z=n)

f1=2 (yi � x0i�jxi; �)
�1=2

Y
i�n

"
f(yi � x

0
i�jx; �)dyiFX(dxi)

#)

�
"Z Z

f
1=2

(y � x
0
(� + z=n)jxi; � + z=n)f

1=2
�
y � x

0
�jx; �� dyFX (dx)

#n
;

we can bound uniformly in P = P�

E`n (z)
1=2

=

�
1� 1

2
r
2
2 (�; � + z=n)

�n
� e

�n
2
r22(�;�+z=n) � e

� 1
2

ajzj
1+jzj=n :

Similarly, E
��`n (z)1=2 � `n (z

0)
1=2
��2 = E`n (z) +E`n (z

0)� 2E`n (z)
1=2 `n (z

0)
1=2

� 2

�
1�

�
EX

Z
f
1=2
�
y �X

0
(� + z=n) jX; � + z=n

�
f
1=2
�
y �X

0 �
� + z

0
=n
� jX; � + z

0
=n
�
dy

�n�
� 2n

�
1�EX

Z
f
1=2
�
y �X

0
(� + z=n) jX; � + z=n

�
f
1=2
�
y �X

0 �
� + z

0
=n
� jX; � + z

0
=n
�
dy

�
� nr

2
2

�
� + z=n; � + z

0
=n
� � Ajz � z

0j: �
Lemma (6): To obtain the uniform upper bound, for � > 0 small enough

r
2
2(�; � + h) �EX

Z �
f
1=2
�
y �X

0
(� + h) jX; � + h

�� f
1=2
�
y �X

0
�jX; �

��2
dy

�EX

Z
jf �y �X

0
(� + h) jX; � + h

�� f
�
y �X

0
�jX; �

� jdy
�EX

Z
[X0�;X0(�+h)]

jf �y �X
0
(� + h) jX; � + h

�� f
�
y �X

0
�jX; �

� jdy
+EX

Z
[X0�;X0(�+h)]c

jf �y �X
0
(� + h) jX; � + h

�� f
�
y �X

0
�jX; �

� jdy;
29



where [a; b] = [a; b] if a � b and = [b; a] if b � a. The �rst inequality follows since ja � bj2 �
j (a+ b) (a� b) j = ja2 � b2j for a > 0 and b > 0. This is further bounded by

2EX jX 0
hj (p (X; �) + q (X; �)) +EX

Z Z 1

0

����h0 @f@u �y �X
0
(� + uh) jX; � + uh

� ����dudy;
which by compactness of X, Cauchy-Schwartz inequality and changing order of integration by

Fubini is bounded by,

� const � jhj+ const � jhj
Z 1

0

EX

Z ����@f@� �y �X
0
(� + uh) jX; � + uh

� ����dydu
The upper bound is now obtained by condition C.3.

Now bound uniformly in � the conditional Hellinger distance from below:

r
2
2(�; � + h) �EX

Z
[X0�;X0(�+h)]

�
f
1=2
�
y �X

0
(� + h) jX; � + h

�� f
1=2
�
y �X

0
�jX; �

��2
dy

�EX

Z
[X0�;X0(�+h)]

1

2
�
����p1=2 (X; �)� q

1=2
(X; �)

����2dy
� 1

2
� Æ �

Z
jX 0

hj ) = 1

2
� Æ � jhj �EX

����X 0h

jhj
���� � const� jhj;

where the last line follows because infc2Rd:jcj=1EjX 0cj > 0; since V ar(X) > 0. �

C Proofs for the Non-Linear Model

In the proofs we set the local parameter sequence 
n = 
0. Putting through the general local

sequence 
n does not change the arguments but introduces a lot of notational complexity.

C.1 Proof of Theorem 4

As in Theorem 1, we split the log likelihood ratio process Qn (z) = lnLn(�0 +Hnz)=Ln(�0) into

the \jump" part and the \smooth" part, and analyze each part separately. For z = (u; v),

Qn (z) =

nX
i=1

qin(z)� [1(�i > �n(Xi; u)=n _ 0) + 1(�i < �n(Xi; u)=n ^ 0)]

+

nX
i=1

qin(z)� [1(0 < �i � �n(Xi; u)=n) + 1(0 > �i � �n(Xi; u)=n)]

� Q1n (z) +Q2n (z) ; where

qin(z) � ln

�
f(Yi � g (Xi; �0 + u=n))jXi; �0 + u=n; �0 + v=

p
n)

f(Yi � g (Xi; �0) jXi; �0)

�
;

�n(x; u) � n(g(Xi; �0 + u=n)� g(Xi; �0)):

I. We �rst �nd the uniform limit of Q1n (z) . In this part only, we apply the arguments similar

to those of IH (1982). For each z, using assumptions (E.1) to (E.3) with a second order Taylor
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expansion:

Q1n (z) =� u
0
E
@g (X; �0)

@�

f 0 (�jX; 
0)
f (�jX; 
0)

+
v0p
n

nX
i=1

@

@�
ln f (�ijXi; 
0) +

1

2
v
0
E

@2

@�@�0
log f (�jX; 
0) v + op (1)

� u
0
E�(X) (p (X)� q (X)) + �Q1n(z) � u

0
�+ �Q1n(z)

where the de�nition of � and �Q1n (z) is obvious. Information matrix equality for � gives �J =

E
@2 log f(�jX;
0)

@�@�0
, and CLT gives 1p

n

Pn

i=1
@
@�
f (�ijXi; 
0)

d�! N (0;J ) : Hence

�Q1n (z)) �Q11(z) �W
0
v � 1

2
v
0J v in `

1
(Z);

a continuous Gaussian process, provided we can show that this convergence is uniform by demon-

strating stochastic equicontinuity of Q1n (z). In particular, for any jz1 � z2j ! 0, we can show

that terms like���� nX
i=1

qin (z1) 1 (�i � �n (Xi; u1) =n _ 0)� qin (z2) 1 (�i � �n (Xi; u2) =n _ 0)

���� p�! 0

Split the term into

nX
i=1

1(�i > �n (Xi; u1) =n _�n (Xi; u2) =n _ 0)

� j ln f (�i ��n (Xi; u1) =njXi; �0 + u1=n; �0 + v1=n)

� ln f (�i ��n (Xi; u2) =njXi; �0 + u2=n; �0 + v2=n) j

+

nX
i=1

1(� 2 (0;�n (Xi; u1) =n _�n (Xi; u2) =n _ 0))

� max
j=1;2

���� ln f (�i ��n (Xi; uj) =nj�0 + uj=n; �0 + vj=
p
n)

f (�ij�0; �0)

����:
By the argument of the proof of Theorem 1, the second term is bounded by

Pn

i=1
1 (�i 2 (0; C0=n _ 0))�

C00

p
n

p�! 0. Each summand in the �rst summation can be bounded by, for some z� between z1

and z2, ���� nX
i=1

1 (�i > �n (Xi; u1) =n _�n (Xi; u2) =n _ 0)������ @@� ln f
�
�i ��n (Xi; u

�
) =nj�0 + u

�
=n; �0 + v

�
=
p
n
� ��������u1 � u2

����=n
+

@

@�
ln f

�
�i ��n (Xi; u

�
) =nj�0 + u

�
=n; �0 + v

�
=
p
n
� v1 � v2p

n

�����
Using assumption (E.5), the �rst term in this summation can be bounded by

C
1

n

nX
i=1

�� @
@�

ln f (�ij
0)
��1+Æju1 � u2j = Op (1) ju1 � u2j
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The second term in the summation can be further expanded as, for z�� between z� and 0,

1p
n

���� nX
i=1

1 (�i > �n (Xi; u1) =n _�n (Xi; u2) =n _ 0)
@

@�
ln f (�ijXi; 
0) (v1 � v2)

����
+
1

n

nX
i=1

���� @2

@�@�0
ln f

�
�i ��n (Xi; u

��
) =njXi; �0 +

u��

n
; �0 +

v��p
n

�����jv�� (v1 � v2) j

Assumption (E.6) implies that the second term is bounded by

const� jv�� (v1 � v2) j 1
n

nX
i=1

C
00
(�i; Xi) = jv1 � v2jOp (1) :

The �rst term by the CLT and assumption (E.4) is Op(1) and is linear in v1 � v2. (Note that

the indicator in the summation can be replaced by 1(�t > 0) by Chebyshev inequality.) Thus as

jz1 � z2j p�! 0 the entire term goes to 0 in probability. This completes the proofs for stochastic

equicontinuity and uniform convergence of Q1n (z) for the nonlinear model.

II. Limit of Q2n (z). As in the proof of Theorem 1, in the expression for Q2n (z) we can replace

qin(z) by either ln p(Xi)=q(Xi) or ln p(Xi)=q(Xi), uniformly in z in Z, depending on the sign of

the r.v. �i. Note that this expressions may equal �1. So uniformly in z over Z, Q2n (z) =
�Q2n(z) + op(1), where

�Q2n(z) �
nX
i=1

�
ln
q(Xi)

p(Xi)
1(0 < n�i � �n(Xi; u)) + ln

p(Xi)

q(Xi)
1(0 > n�i � �n(Xi; u)

�
:

Next we note that by straightforward calculations

E

nX
i=1

���1(0 < n�i � �n (Xi; u))� 1(0 < n�i < �(Xi; u))
���

+
���1(0 > n�i � �n (Xi; u))� 1(0 > n�i > �(Xi; u))

��� = o(1);

where � (Xi; u) � @g(Xi;�0)

@�

0
u, which yields that for any �xed z, �Q2n (z) =

nX
i=1

�
ln
q (Xi)

p (Xi)
1 (0 < n�i < �(Xi; u)) + ln

p (Xi)

q (Xi)
1 (0 > n�i > �(Xi; u))

�
+ op (1) :

Having obtained the \linearized expression," the �nite-dimensional convergence of �Q2n (z) now

follows by the arguments identical to those in Theorem 1. It remains to show that ( �Q2n (zi) ; i �
J) and ( �Q1n (zi) ; i � J), for any �nite J , are asymptotically independent. This follows by

noting that the dependence between these terms is realized through the sums that disappear in

probability for any �xed z = (u; v) 1p
n

Pn

i=1
@
@�

ln f (�ijXi; 
0) 1 (�i 2 (0;�n (Xi; u))) = op (1),
1p
n

Pn

i=1
@
@�

ln f (�ijXi; 
0) 1 (�i 2 (�n (Xi; u) ; 0)) = op (1) �

C.2 Proof of Theorem 5

Similar to theorem 2, the proof is a straightforward application of convexity lemma (1), by which

it suÆces to show the �nite-dimensional (�di) convergence of �n (�) to �1 (�),�
�n (zk) ; k � K

�
d�!
�
�1 (zk) ; k � K

�
:

As before we follow two steps.
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1. First we approximate the integral �n (z) over R
d by an integral over a compact subset of Rd .

For each M 2 R+, the approximation of �n (z) is given by �Mn (z) � �Mn1 (z) =�
M
n2 where

�
M
n1 (z) �

Z
jz0j�M

�
�
z � z

0�
`n
�
z
0�
q
�
�0 +Hnz

0�
du; �

M
n2 �

Z
jz0j�M

`n
�
z
0�
q
�
�0 +Hnz

0�
dz
0
:

De�ne

�
M
11 (z) �

Z
jz0j�M

�
�
z � z

0�
`1
�
z
0�
q(�0)du; �

M
21 �

Z
jz0j�M

`1
�
z
0�
q(�0)dz

0
:

Similar to (19), lemmas (7) and (8) in section (C.5) demonstrate that the tail of the likelihood

ratio process is exponentially small: for each � > 0; Æ > 0, 9M 2 R+:

lim sup
n

P
�
j�n (z)� �

M
n (z) j > �

�
< Æ; (20)

2. In view of (20), it suÆces to show
�
�Mn2;�

M
n1 (zk) ; k � K

�
d�!
�
�M21;�

M
11 (zk) ; k � K

�
: This

follows by two facts:

i E`n(z) = 1 <1
ii Ej`1=2n (z0)� `

1=2
n (z)j2 � Cjz � z0j

Fact i. is be de�nition of likelihood ratio. Fact ii. is by Lemma 7. These facts check the conditions

of a limit theorem for integrals of random functions, Theorem 22 in Appendix I of IH (1982). �

C.3 Proof of Theorem 6

By assumption �`n is lower-semi-continuous. Two steps are needed:

i. Show �nite-dimensional convergence of `n to the stochastic limit `1,

ii. Show the stochastic equi-lower-semi-continuity (e-lsc) of f�`ng,
Theorem 4 handled step i. We demonstrate step ii next. After having these two steps the

conclusion follows by Lemma 2, since Zn = Op(1) by the tail smallness lemma 8 and Theorem

I.5.1 in IH(1982).

It therefore remains to show the stochastic equi-lower-semi-continuity (e-lsc) of f�`ng or

equivalently of f�Q2n � � log `ng: From the proof of Theorem 4:

Q1n(z)) u
0
�+ �Q11(v); in `

1
(Z) (21)

where �Q11(�) is the gaussian process de�ned in the proof of Theorem 4 and Z is any compact

subset of Rd . Also

Q2n(z)� �Q2n(z)
p�! 0;

uniformly in z over Z, where

�Q2n(z) �
Z
E

lun(j; x)dbN(j; x);

lun(j; x) � ln
q (x)

p (x)
1(0 < j � �n(x; u)) + ln

p (x)

q (x)
1(0 > j � �n(x; u)):

Because of (21), it suÆces to show s-e-lsc of f� �Q2n(z)g only. Because �Q2n(z) depends on z

only through u, we may write �Q2n(u) instead. Because �Q2n(u) is a piece-wise constant function
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it suÆces to show that for any bounded set B � R
d1 and Æ > 0, there are open neighborhoods

V (u1); :::V (um) of some u1; :::; um s.t. B � [mk=1V (uk) and

P

�
[mk=1f inf

u2V (uk)
� �Q2n(u) < � �Q2n(uk)g

�
< Æ:

This is done in several steps. The proof is nearly identical to the proof of Theorem 3, and only

the minor di�erences are highlighted below.

(a). This step is identical to step (a) in the proof of Theorem 3, where the point process ~N is

constructed and its limit is found. This process allows to demonstrate the equisemi-continuity of
�Q2n. Write

�Q2n(u) �
Z
E:j>0

lun(j; x)dbN(j; x) +

Z
E:j<0

lun(j; x)dbN(j; x) � �Q
+
2n(u) +

�Q
�
2n(u):

We wish to examine the nature of discontinuities of �Q2n by examining that of �Q+
2n and �Q�2n.

Because the arguments are identical for either part, consider only part �Q+
2n.

(b) This step is identical to step (b) in the proof of Theorem 3 except that the construction

of fVkjg. Here for for suÆciently large n, Vkj � fu 2 R
d1 : vk � ' < p(x)�n(x; u) < vk +

'; 8x 2 X�(xj)g; where ' > 0 and vk = k'; for k 2 f�m; :::; 0; :::mg: Observe that �n(X; u) =
@g(X;�0+u�(X)=n)

@�
has a positive de�nite variance matrix uniformly in u� in any compact set, as

n ! 1, by assumption. Thus the support of this vector in non-degenerate in Rd1 . Thus, as in

Theorem 3, since also X is compact and p(x) is bounded away from 0 and above by assumption,

f[kjVkjg can cover any given bounded set B by selecting suÆciently large m, for large n.

(c)[Number of Break-points is OP (1) and separated for small '] Consider argument z in

[jVkj , then a discontinuity in �Q+
2n(u) (since it only depends on u through the index �n(x; u))

can potentially occur in the set [jVkj only if there exist u� 2 [jVkj and (�in; Xin) s.t.

�in = p(Xin)�n(Xin; u
�
); (22)

where it should be the case for large n that vk � ' � �in � vk + ': If there is such (�in; Xin),

we say that �Q+
2n has a breakpoint in [jVkj . De�ne Nn � #fi : �in < �kg; N � #fi : �i < �kg;

where �k � supx2X;u2B p(x)�(x;u) + 2': For suÆciently large n, Nn is the upper bound on the

number of breakpoints of �Q+
2n(z) in set B. By continuous mapping theorem, Nn

d�! N in R: So

the number of breakpoints O(Nn) is stochastically bounded Op(1). Furthermore, break-points are

separated in the same sense as in the proof of Theorem 3. De�ne Ak to be the event that �Q+
2n(z)

has more than two break-points in [jVkj . Then by the arguments that are identical to those in

the proof of Theorem 3, for any Æ > 0 ' can be picked small so that lim supn P [[kAk] � Æ=2:

(c)[grid-points by setting � small] Next step is to construct the "centers" of ukj of Vkj .

Pick ukj 2 Vkj so that for large n vk � ' < �n(x; ukj) < vk � ' + �; 8x 2 X�(xj), where

� : 0 < � << ' will be set suÆciently small in the next step. Depending on �, to satisfy the

constraints set � suÆciently small as well.

(d) [Stochastic Equi-semicontinuity] This step is identical to step (d) in the proof of Theorem

3, except we replace X 0z with �n(X; u). �

C.4 Proof of Theorems 7 and 8

Proof of Theorem 7 The result is well known. Under the stated conditions, the posterior risk

is �nite for the Bayes estimator, so Theorem 1.1 in Ch.4 of Lehmann applies. �

Proof of Theorem 8. Zn denotes the re-scaled Bayes estimator H�1
n (
̂Bayes � 
)
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As a preliminary step we have for large n, for c1; c2 > 0 and any H

P
�fjZnj > Hg � c1 expf�c2jHjg; (23)

which follows by Theorem I.5.3 in Ibragimov and Hasminski that required the tails smallness

conditions veri�ed in Lemmas (7) and (8).

Zn under P
 depends on 
, which we emphasize by writing as Z

n . (23) and majorzation of �

by a polynomial imply that for some n0,n
�(Z



n); n > n0; 
 in open ball at 
0

o
is uniformly integrable. (24)

De�ne Z

n(K) as H�1

n (fBayes;�K � 
), where fBayes;�K is the Bayes estimator de�ned with

respect to the prior weight �K(x) = 1fH�1
n (x� 
0) 2 Kg. By construction for large H:

P
�fjZ


n(K)j > Hg = 0: (25)

Thus for some n0 and any compact sets K,n
�(Z



n(K)� Æ); n > n0; 
 in open ball at 
0

o
is uniformly integrable. (26)

Next we (a) evaluate

I � R�(ffBayesg;Rd) and II(K) � R�(ffBayes;�K g; K)

and (b) show that II(K) approaches I from below as K " Rd .
Step (a). R�(ffBayesg; K) = limn

R
K
EP
n(Æ)

�(Z

n(Æ)
n )dÆ=Leb(K)

=

Z
K

EP
0
�(Z1)dÆ=Leb(K) = EP
0

�(Z1)

by Theorem 5, equations ((23)-(24)), and dominated convergence theorem. Thus

R�(ffBayesg;Rd) = EP
0
�(Z1)

Analogously, R�(ffBayes;�K g; K) = limn

R
K
EP
n(Æ)

�(Z

n(Æ)
n (K))dÆ=Leb(K)

=

Z
K

EP
0
�(ZÆ

1(K))dÆ=Leb(K)

by Theorem 5(applies to Z

n(Æ)
n (K) by the same argument as it applies to Z


n(Æ)
n ) and equations

(25)-(26), and dominated convergence, where

Z
Æ
1(K) � arg inf

z2Rd

Z
K

�(z � �� Æ)`1(�� Æ)d�:

Step (b). Next, for any Æ,
R
K
EP
0

�(ZÆ
1(K))dÆ=Leb(K) � EP
0

�(Z1): This follows because

the lhs is the lower risk bound for R�(ffng; K). Thus no other estimator sequence in fFng that
di�ers from ffBayes;�K g for i.o. n achieves lower risk value.

Rewrite the inequality asZ
K

EP
0

h
�(ZÆ1(K))� �(Z1)

i
dÆ=Leb(K) �

Z
K

EP
0

h
�(ZÆ1(K))� �(Z1)

i+
dÆ=Leb(K)�

Z
K

EP
0

h
�(ZÆ1(K)) � �(Z1)

i�
dÆ=Leb(K) � 0

(27)
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Next as r(K)!1Z
K

EP
0

h
�(ZÆ1(K))� �(Z1(K))

i�
dÆ=Leb(K) =

Z
(0;1)d

EP
0

h
�(Z

�r(K)
1 (K))� �(Z1)

i�
d�! 0:

(28)

where r(K) denotes the width of the cube K (which is centered at zero by de�nition) . The last

conclusion follows by (a) domination: for any � 2 (0; 1)d, r(K) � 1:h
�(Z

�r(K)
1 (K))� �(Z1)

i�
� �(Z1) (29)

so thatEP
0

h
�(Z

�r(K)
1 (K))� �(Z1)

i�
� EP
0

�(Z1) and (b) pointwise convergence: as r(K)!1,

for any � 2 (0; 1)d

EP
0

h
�(Z

�r(K)
1 (K))� �(Z1)

i�
! 0; (30)

since (i) Z
�r(K)
1

p�! Z1 for � 2 (0; 1)d by de�nition and convexity Lemma 1, due to �-di

convergence of the objective function that Z
�r(K)
1 minimizes to the objective function that Z1

minimizes, in probability; (ii) by (29) the collection of variablesnh
�(Z

�r(K)
1 (K))� �(Z1)

i�
; s.t. � 2 (0; 1)

d
; r(K) � 1

o
is uniformly integrable.

(27)- (30) also imply that it must be that
R
K
EP
0

�
�(ZÆ

1(K))� �(Z1)
�+

dÆ=Leb(K) ! 0 as

r(K)!1. Thus II(K) " I as K " Rd .
Note that this shows that ffBayesg minimizes R�(ffg;Rd). Suppose that there is a sequence

ff�ng in fFng that achieves lower risk value than EP
0
�(Z1). But then this sequence must achieve

a lower value than II(K) for some large K, which is impossible by the previous comment. �

C.5 Lemmas 7-8

In this section some important properties of

`n (z) = Ln(
(z))=Ln(
):

are established, where 
(z) � 
 +Hnz for z � (u; v) 2 Rd .
First we note the conditions of lemma 4 that uniformly in 
 in a ball at 
0

EP
 `n (z)
1=2 � e

�bjzj
; EP
 j`n (z)1=2 � `n

�
z
0�1=2 j � Bjz � z

0j
By the proof of lemma I.5.2 of IH(1982) the �rst inequality only needs to hold for z large, and

the second inequality only needs to hold for jz � z0j < 1.

For the nonlinear model �R, the conditional Hellinger distance r2 (
; 
 + h)
2
is de�ned asZ Z

jf1=2 (y � g (x; t+ h1) ;x; 
 + h)� f
1=2

(y � g (x; t) ;x; 
) j2dyFX (dx)

Next we obtain the nonlinear versions of lemmas (5) and (6) for the model �R.

Lemma 7 If 9a > 0; A > 0, such that for h > 0 small enough for 
 in a ball at 
0

inf


r
2
2 (
; 
 + h) � amax

�jh1j; jh2j2� and sup



r
2
2 (
; 
 + h) � A

�jh1j+ jh2j2
�

then 9b > 0; B > 0, s.t. for all u large, 8z 2 Rd
, z0 2 Rd

, jz � z0j < 1. 9n0, s.t. 8n > n0,

sup



EP
 `n (z)
1=2 � e

�bjzj
; sup




EP
 j`n (z)1=2 � `n
�
z
0�1=2 j � Bjz � z

0j
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Proof: For z large, the same calculation as in lemma 5 leads to

EP
 `n (z)
1=2

=

�
1� 1

2
r
2
2

�

0; �0 + u=n; �0 + v=

p
n
��n

�e�n
2
r22(
0;�0+u=n;�+v=

p
n) � e

�bmax(juj;jvj2) � e
�bmax(juj;jvj) � e

�bjzj

On the other hand, for jz � z0j small,

EP
 j`n (z)1=2 � `n
�
z
0�1=2 j �nr22 �
0 + �u=n; v=pn� ; 
0 + (u

0
=n; v

0
=
p
n)
� � A

�ju� u
0j+ jv � v

0j2�
�A �jz � z

0j+ jz � z
0j2� � B

�jz � z
0j� �

Lemma 8 In model �R, suppose condition (E.1)-(E.6) hold, then 9a > 0, 9A > 0, s.t. 8h > 0

small enough, for 
 in a ball at 
0

inf


r
2
2 (
; 
 + h) � amax

�jh1j; jh2j2� and sup



r
2
2 (
; 
 + h) � A

�jh1j+ jh2j2
�

Proof of Lemma 8 For � > 0 and � > 0 small enough, let 
 = (t; s); h = (�; �),

r22(
; 
 + h) � EX

Z �
f1=2 (y � g (X; t+ �) jX; t+ �; s+ �)� f1=2 (y � g (X; t) jX; t; s)

�2
dy

(1)

�EX

Z
[g(X;t);g(X;t+�)]

����f (y � g (X; t+ �) jX; t+ �; s+ �)� f (y � g (X; t) jX; t; s)

����dy
+EX

Z
[g(X;t);g(X;t+�)]c

�
f
1=2

(y � g (X; t+ �) jX; 
 + h)� f
1=2

(y � g (X; t+ �) jX; t+ �; s)
�2

dy

+EX

Z
[g(X;t);g(X;t+�)]c

����f (y � g (X; t+ �) jX; t+ �; s)� f (y � g (X; t) jX; t; s)

����dy
(2)

�2EX jg (X; t+ �)� g (X; t) j (p (X; 
) + q (X; 
))

+ j�j2
Z 1

0

EX

Z ����@f1=2 (y � g (X; t+ �) jX; t+ �; s+ !�)

@s

����2dyd!
+ j�j

Z 1

0

EX

Z ����@f (y � g (X; t+ !�) jX; t+ !�; s)

@t

����dyd!
(3)

�2j�jEX (p (X; 
) + q (X; 
))

Z 1

0

����@g (X; t+ s�)

@t

����dsFX (dX) +O
�j�j2�+O (j�j)

=O (j�j) +O
�j�j2� :

where [a; b] = [a; b] if a � b and = [b; a] if b � a, and the bound is uniform in 
 by (E.4). The �rst

inequality follows by triangle inequality and from ja�bj2 � ja2�b2j for a > 0 and b > 0. The �rst

term in the second inequality follows from that fact that for y 2 [g (X; t) ; g (X; t+ �)] and � small

enough, jf (�j�) j � 2 (p (X; 
) + q (X; 
)), and then we integrate over y over that area. The second

and third terms in the second inequality are usual multivariate �rst order Taylor expansions and

Fubini. The �rst term in the third inequality follows from Taylor expansion and Fubini. The

second term in the third inequality follows from assumption (E.4), while the third term in that

inequality follows from assumption (E.2).

To obtain a bound from below, consider r22 (
; 
 + h):

=EX

Z
[g(X;t);g(X;t+�)]

�
f
1=2

(y � g (X; t+ �) jX; 
 + h)� f
1=2

(y � g (X; t) jX; 
)
�2

dy

+EX

Z
[g(X;t);g(X;t+�)]c

�
f
1=2

(y � g (X; t+ �) jX; 
 + h)� f
1=2

(y � g (X; t) jX; 
)
�2

dy
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We can bound the �rst term from below uniformly in 
 by

EX
1

2

����g (X; t+ �)� g (X; t)

��������p1=2 (X; 
)� q
1=2

(X; 
)

����2 � cj�jEX

����@g (X; t)

@t

���� � cj�j

using assumption (E.3), Taylor expansion and Cauchy-Schwartz inequality. On the other hand,

bound the second term of r22 (
; 
 + h) uniformly below by:

EX

Z
[g(X;t);g(X;t+�)]c

�
f
1=2

(y � g (X; t+ �) jX; 
 + h)� f
1=2

(y � g (X; t) jX; t; s)
�2

dy

=EX

Z
[g(X;t);g(X;t+�)]c

�
h
0 @f

1=2 (y � g (X; t) j
)
@


�2

dy + o
�jhj2�

Under assumption (E.4) (a), a lower bound is jhj2 inf juj=1EX

R
[g(X;t);g(X;t+�)]c

�
f1=2(y�g(X;t);
)

@


0
u

�2

dy

= jhj2 inf
juj=1

EX

Z  
f1=2 (y � g (X; t) ; 
)

@


0

u

!2

dy + o
�jhj2� � cjhj2 � cj�j2

On the other hand, if assumption (E.4) (b) holds, the uniform lower bound is

EX

Z �
h
0 @f

1=2 (y � g (X; t) j
)
@


�2

dy � j�j2 inf
juj=1

EX

Z  
f1=2 (y � g (X; t) ; 
)

@s

0

u

!2

dy � cj�j2

Thus, conclude that inf
 r
2
2 (
; 
 + h) � cmax

�j�j; j�2j�. �
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