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1 Introduction

Quantile regression is an important method of modeling heterogeneous effects and accounting for unobserved

heterogeneity. The standard quantile regression model may be developed from the basic Skorohod represen-

tation. Using this representation, the outcome variable Y , conditional on the exogenous variable of interest

D = d, takes the form

Y = q(D,UD), UD|D ∼ Uniform(0, 1) (1.1)

where q(d, τ) is the conditional τ−th quantile of Y given D = d and UD is the nonseparable error or rank.

This model has played a fundamental role in statistics at least since Bhattacharya (1963), Lehmann (1974),

and Doksum (1974). The conditional quantile function τ 7→ q(d, τ) captures the impact of D on the outcome

at a given quantile, while the rank term UD represents an index of unobserved heterogeneity. Consequently,

the structural quantile effects (SQE) or, equivalently, the quantile treatment effects (QTE), cf. Doksum

(1974),
∂

∂d
q(d, τ) or q(d, τ)− q(d′, τ)

represent a causal or structural effect of D on observational units, holding the unobserved heterogeneity UD

fixed at UD = τ . The quantile effects typically vary across τ , implying heterogeneous, non-constant effects.

Koenker and Bassett (1978) and Bhattacharya (1963) introduced estimation methods for this model based

on the conditional moment restriction

P [Y ≤ q(D, τ)|D] = P [UD ≤ τ |D] = τ for each τ ∈ (0, 1), (1.2)

and estimation has been further developed by Powell (1986) and Portnoy (1991), among others.

In this paper, we consider estimation and inference for the endogenous generalization of the above model,

which is particularly suited to the setting of observational studies where variable D is often endogenous.

The model, introduced and analyzed in Chernozhukov and Hansen (2001a), takes the form

Y = q(D,UD), UD|Z ∼ Uniform(0, 1), (1.3)

where Y is the outcome of interest, D is the endogenous or treatment variable of interest, and Z is an

instrumental variable that is correlated with D but is independent of rank variable UD. Chernozhukov

and Hansen (2001a) show how (1.3) can be derived from primitive conditions that impose a generalized

form of rank invariance and independence of structural (potential) outcomes from the instrument. Under

these conditions, the function q(d, τ) represents the τ -quantile of the outcome in the population under

the hypothetical exogenous assignment of variable D. Chernozhukov and Hansen (2001a) also provide the

conditions required for nonparametric identification of this function from the instrumental analog of equation

(1.2):

P [Y ≤ q(D, τ)|Z] = P [UD ≤ τ |Z] = τ. (1.4)

This paper makes two key contributions. The first contribution is to offer an instrumental variable

quantile regression (IV-QR) estimator of the quantile function τ 7→ q(d, τ) for the leading (linear) case
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and develop a set of inference tools for examining a number of interesting hypotheses. Our estimator

is a quantile analog of two stage least squares.2 Effectively, as in the canonical two stage least squares

model, instrumentation eliminates the endogeneity and selection bias commonly occurring in observational

and experimental studies with imperfect compliance. Thus, the IV-QR process allows us to measure the

exogenous treatment effect as in a fully controlled experiment, whereas the conventional QR process is

inherently biased. The second contribution is the introduction of a class of tests based on the IV-QR process

which allow us to examine numerous interesting hypotheses, including (1) the hypothesis of distributional

equality, or whether the treatment or endogenous variable has a significant effect on outcome Y ; (2)

the hypothesis of a constant or non-varying treatment effect, a fundamental hypothesis of causal and

structural analysis, cf. Heckman (1990) and Doksum (1974); (3) the hypothesis of conditional stochastic

dominance, a fundamental hypothesis as well, cf. Abadie (2002) and McFadden (1989); and (4) the

hypothesis of exogeneity, or whether the treatment variable is exogenous, another essential hypothesis,

e.g. Hausman (1978). The critical values are generated by score subsampling, which subsamples the scores

or estimated influence functions without recomputing the estimates. This method enables fast, computable

implementation.

The use of the approach is illustrated through estimation of the impact of schooling on earnings using

the data and instruments of Angrist and Krueger (1991). We analyze the effect of schooling on earnings

and find evidence in favor of heterogeneous schooling effects: The effect of an additional year of schooling

on earnings varies from almost 30% at low earning quantiles to 10% at high earning quantiles. We also

reject the hypothesis of exogeneity and accept the hypothesis of first order stochastic dominance. Other

applications of the estimation and inference procedures of this paper can be found in Hausman and Sidak

(2002), Januszewski (2002), D’Urso (2002), Frakes and Gruber (2003), and Chernozhukov and Hansen (2003),

among others.3

This paper accompanies our previous paper, Chernozhukov and Hansen (2001a), that focuses on model-

ing and identification of QTE in the presence of endogeneity. The present paper introduces and establishes

the properties of the instrumental variable quantile regression process and of the inference processes and

test statistics derived from it.4 It also provides practical bootstrap tools to carry out the tests.

The remainder of the paper is organized as follows. In the next section, we briefly discuss the causal

model and provide examples demonstrating how economic models may be placed in our modeling framework.

Section 3 presents the IV-QR process and develops its sampling theory. Section 4 develops inference proce-

dures for the IV-QR process and presents practical inference for testing distributional hypotheses. Section

5 presents an empirical study, and Section 6 concludes.

2We do not use the term “two stage quantile regression” (2SQR) because it is already used to name the procedure

proposed by Portnoy and Chen (1996) as an analog of the two stage LAD (2SLAD) of Amemiya (1982) and Powell

(1983). This procedure has been widely used to estimate quantile effects under endogeneity. When the QTE vary

across quantiles, the 2SQR does not solve (1.4) and thus is inconsistent relative to the treatment parameter of interest.

Note that 2SLAD and 2SQR are still excellent strategies for estimating constant treatment effect models.
3A brief review of these applications is provided in Section 6.
4The IV-QR estimator for a single quantile was first defined and studied in the unpublished working paper,

Chernozhukov and Hansen (2001b).
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Notation. We use the concepts of stochastic convergence as defined in van der Vaart (1998). We use

outer (inner) probabilities, P ∗ (P∗), to avoid measurability problems;→p denotes convergence in probability

under P ∗; →d means convergence in distribution of random vectors; and⇒ means weak convergence in the

metric space of bounded functions. The expression “wp → 1” means “with (inner) probability going to 1.”

2 The Instrumental Quantile Regression Model

In this section we describe the modeling framework within which we operate. This model is introduced and

analyzed in detail in our previous work, cf. Chernozhukov and Hansen (2001a).

2.1 Potential Outcomes and Quantile Effects

Our model is developed within the conventional potential outcome framework, cf. Heckman and Robb

(1986) and Imbens and Angrist (1994). Potential real-valued outcomes are indexed against potential values

d of the endogenous variable D, and denoted Yd. For example, Yd is an individual’s outcome when D = d.

The structural outcomes {Yd} are latent because given the selected treatment D, the observed outcome for

each individual or state of the world is Y ≡ YD. That is, only one component of {Yd} is observed for each

observational unit.

Of primary interest to us are the conditional quantiles of potential outcomes, denoted as

q(d, x, τ)

and the structural quantile effects (SQE) or, equivalently, the quantile treatment effects (QTE) that sum-

marize the difference between the quantiles under different levels of d,

q(d, x, τ)− q(d′, x, τ) or, if defined,
∂

∂d
q(d, x, τ).

QTE represents a useful way of describing the effect of d on the marginal distribution of outcomes Yd.
5

Typically D is selected in relation to {Yd} inducing endogeneity or selection bias, so that the condi-

tional quantile of selected Y given the selected D, is generally not equal to the quantile of potential outcome

q(d, x, τ). This makes the conventional quantile regression inappropriate for the estimation of q(d, x, τ).

Thus, a major obstacle to learning about the quantiles of potential outcomes is sample selectivity or endo-

geneity. The model presented in the following section states the conditions under which we can recover the

quantiles of latent outcomes through a set of conditional moment restrictions.

2.2 The Instrumental Quantile Regression Model

Conditional on X = x, the potential outcome Yd can be related to its quantile functions by the Skorohod

representation as

Yd = q(d, x, Ud), where Ud ∼ U(0, 1), (2.1)

5The notion of QTE was rigorously introduced by Doksum (1974).
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and q(d, x, τ) is the conditional τ -quantile of potential outcome Yd. The equation (2.1) is true regardless

of the number of disturbances than determine Yd.
6 The rank variable Ud characterizes heterogeneity of

outcomes for individuals or observational units with the same observed characteristics x and treatment d. It

also determines their relative ranking in terms of potential outcomes. This allows interpretation of the QTE

as actual effects on people or units having fixed the level of unobserved heterogeneity Ud at some level τ .

We are now prepared to state the model which is a list of five main conditions (some are representations)

that hold jointly. Other, more technical conditions will be added to discuss identification and estimation.

ASSUMPTION 1 Main Conditions of the IV-QR Model: Given a common probability space (Ω, F, P ),

for P -almost every value of X,Z, the following conditions A1-A5 hold jointly:

A1 Potential Outcomes. Given X = x, for each d, Yd = q(d, x, Ud), where Ud ∼ U(0, 1) and q(d, x, τ)

is strictly increasing in τ .

A2 Independence. Given X = x,
{
Ud

}
is independent of Z.

A3 Selection. Given X = x, Z = z, for unknown function δ and random vector ν, D ≡ δ(z, x, ν).

A4 Rank Invariance or Rank Similarity. For each d and d′, given (ν,X,Z), either

(a) Ud = Ud′ or (b) Ud ∼ Ud′ .

A5 Observed variables consist of Y ≡ q(D,X,UD), D ≡ δ(Z,X, ν), X, Z.

The main testable implication of A1-A5, which provides an important link of the parameters of the IV-QR

model to a set of conditional moment equations, is given in the following theorem.

THEOREM 1 (Main Implication) Suppose conditions A1-A5 hold, then for any τ ∈ (0, 1), a.s.

P [Y ≤ q(D,X, τ)|X,Z] = P [Y < q(D,X, τ)|X,Z] = τ, (2.2)

and UD is independent of Z and X.

The proof of Theorem 1 is given in Chernozhukov and Hansen (2001a). Equation (2.2) is a restriction

that can be used to estimate the quantile process τ 7→ q(d, x, τ). Identification of the quantile process in the

population does not require functional form assumptions, as shown in Chernozhukov and Hansen (2001a).

(2.2) is simplest to see under rank invariance, i.e. when U = Ud for each d. Under rank invariance, we have

a simple model of the form

Yd = q(d, x, U), U is independent of Z, given X = x .

6For instance, suppose that the structural outcome (e.g. demand) is Yd = m(d, η) , where η is a high-dimensional

vector. Then Yd = q(d, U), where U is uniformly distributed scalar and q(d, τ) is the quantile function of demand

m(d, η) for a fixed d. This aggregation of disturbances is remarkable since it works irrespective of non-additivity and

the dimension of disturbances η and results in the object q(d, τ) which is identifiable.
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It is then immediate that the event {Y ≤ q(D,X, τ)} is equivalent to {U ≤ τ} yielding (2.2).

A detailed discussion of A1-A5 is given in Chernozhukov and Hansen (2001a). In the following examples,

we briefly illustrate how economic models may be embedded in the IV-QR model. The first example

illustrates how a typical schooling model may be considered within the IV-QR framework, and the second

example demonstrates that the IV-QR model encompasses a general model of demand with non-separable

error.

2.3 Example: A Roy Type Model of Returns to Education

An individual considers several levels of schooling denoted d ∈ D = {0, 1, ..., d̄}. The potential outcome

under each schooling level is given by the individual’s earnings under the different levels of training {Yd, d =

0, 1, ..., d̄}. Suppose that the potential earning outcomes, conditional on X = x, are given by

Yd = q(d, x, U), (2.3)

where rank U ∼ U(0, 1) indexes the unobserved heterogeneity, and q(d, x, U) is increasing in U . U ∼ U(0, 1)

is a natural normalization in view of the Skorohod representation. Thus the distribution of potential outcome

Yd is characterized by the quantile functions q(d, x, τ). The rank variable U is assumed to be determined by

ability and other unobserved factors that do not vary with d.

The individual selects her schooling level to maximize her expected utility:

D = argmax
d∈D

E
[
W{Yd, d,X}

∣∣∣X,Z, ν
]
= argmax

d∈D
E
[
W{q(d,X,U), d,X}

∣∣∣X,Z, ν
]
, (2.4)

where W{Yd, d,X} is the unobserved Bernoulli utility function (for example, W{y, d, x} may be increasing

in y but decreasing in d, cf. Heckman and Vytlacil (1999)). As a result, the selection is represented as in

A3 by D = δ(Z,X, ν) for some function δ, where Z and X are observed, and ν is an unobserved information

component that is correlated with U and includes other unobserved variables that are relevant to making the

education decision. This model is thus a special case of the IV-QR model. In this model, the independence

condition A2 only requires that U is independent of Z, conditional on X.

The rank variable U (think of ability, for example) is made invariant to d, which ascribes an important

role to conditioning on covariates X. Having a rich set of covariates makes rank invariance a more plausible

approximation. The rank similarity condition A4(b) also relaxes rank invariance. This condition allows for

noisy, unsystematic variations of rank variable Ud across d, conditional on the information (ν,X,Z) relevant

to making the selection decision (2.4). Consider the following simple example, where for f : R → [0, 1],

Ud = f(ν + ηd), {ηd} are mutually iid conditional on ν,X,Z. The variable ν represents “mean” rank or

ability of a person, while ηd is a noisy adjustment of this rank across treatment states, relative to the group

of people that have the same observed characteristics X.7 This leaves the individual optimization problem

(2.4) unaffected, while allowing variation in an individual’s rank across different potential outcomes.

7Clearly similarity holds in this case : Ud
d
= Ud′ given ν,X,Z.
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2.4 Example: Demand with Non-Separable Error

The following is a generalization of the classic supply-demand example. Consider the model

Yp = q (p, U) ,

Ỹp = ρ (p, z,U) ,
P ∈ {p : ρ (p, Z,U) = q (p, U)},

(2.5)

where functions q and ρ are increasing in the last argument. The function p 7→ Yp is the random demand

function, and p 7→ Ỹp is the random supply function. The random variable U is the level of demand and

describes the demand curve in different states of the world.8 Demand is maximal when U = 1 and minimal

when U = 0, holding p fixed. Note that we impose rank invariance in this model by making U invariant to

p, which implies A4 (a).

The model (2.5) incorporates traditional additive error models Yp = q(p)+ε, where ε = Qε(U). However,

the model is more general in that the price can affect the entire distribution of the demand curve, while

in traditional models it only affects the location of the distribution of the stochastic demand curve. The

τ -quantile of the demand curve p 7→ Yp is given by p 7→ q(p, τ). Thus with probability τ , the curve p 7→ Yp

lies below the curve p 7→ q(p, τ). Therefore, the various quantiles q(p, τ) play a key role in describing

the distribution and heterogeneity of the stochastic demand curve. The QTE is then characterized by

∂q(p, τ)/∂p, or, more conveniently, by the elasticity ∂ ln q(p, τ)/∂ ln p. For example, consider the Cobb-

Douglas model q(p, τ) = exp (β(τ) + α(τ) ln p) which corresponds to a Cobb-Douglas model for demand

with non-separable error Yp = exp(β(U)+α(U) ln p). The log transformation gives lnYp = β(U)+α(U) ln p,

and the QTE for the log-demand equation is given by the elasticity of the original τ -demand curve

α(τ) =
∂QlnYp(τ)

∂ ln p
=

∂ ln q(p, τ)

∂ ln p
.

The elasticity α(U) is random and depends on the state of the demand U and may vary considerably with

U . This variation could arise when the number of buyers varies and aggregation induces a non-constant

elasticity across the demand levels. For example, in an application to the Graddy (1995) data from a New

York fish market, we find that the elasticity, α(τ), varies quite substantially from −2 for low quantiles to

−0.5 for high quantiles of the demand curve.9

The third condition in (2.5), P ∈ {p : ρ (p, Z,U) = q (p, U)}, is the equilibrium condition that generates

endogeneity – the selection of the market clearing price P by the market depends on the potential demand

and supply outcomes. As a result we have a representation that is consistent with A3,

P = δ(Z, ν), where ν = (U,U , “sunspot” variables),

8As mentioned previously, the level of demand U may be determined by many disturbances. However, Skorohod

representation allows aggregation of the unobserved disturbances into a single variable U . Indeed suppose the demand

function is Yp = m(p, η) , where η is a high-dimensional vector of unobserved disturbances. Then Yp = q(p, U), where

U is uniformly distributed scalar and q(p, τ) is the quantile function of demand m(p, η) for a fixed p. This aggregation

of disturbances also applies to supply, where U is the level of supply.
9These estimation results are available upon request.
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where “sunspot” variables are present if there are multiple equilibria. Thus what we observe can be written

as simultaneous equations with the form

Y ≡ q(P,U), P ≡ δ(Z, ν), U is independent of Z. (2.6)

Identification of the τ -quantile of the demand function, p 7→ q(p, τ) is obtained through the use of

instrumental variables Z, like weather conditions or factor prices, that shift the supply curve and do not

affect the level of the demand curve, U , so that independence assumption A2 is met. Furthermore, the

IV-QR model does not require Z to be jointly independent of both U and ν. This is considerably more

general than the requirement that both the error U and the unobserved components of ν are independent

from the instrument Z. The latter property is violated, for example, when there is measurement error in

Z or Z is exogenous relative to the demand equation but endogeneous relative to the supply equation; see

Hausman (1977).

3 The Instrumental Variable Quantile Regression

3.1 The Principle

Recall from Koenker and Bassett (1978) that the (conventional) quantile regression estimator is formulated

as finding the best predictor of Y given X under the asymmetric least absolute deviation loss ρτ (u) =

(τ − 1(u < 0))u. In other words, assuming integrability, the τ -th conditional quantile of Y given X solves

the problem

QY |X(τ) ∈ argmin
f∈F

E [ρτ (Y − f(X))] ,

where F is the class of measurable functions of X (that can be suitably restricted in applications).

The main implication of Theorem 1,

P [Y < q(D,X, τ)|X,Z] = τ, a.s., (3.1)

is equivalent to the statement that 0 is the τ -th quantile of random variable Y − q(D,X, τ) conditional on

(X,Z):

0 = QY−q(D,X,τ)(τ |X,Z) a.s. for each τ . (3.2)

Thus, we may pose the problem of finding a function (d, x) 7→ q(d, x, τ) solving equation (3.1) as the

instrumental variable or inverse quantile regression. This problem is to find a function (d, x) 7→
q(d, x, τ) such that 0 is a solution to the quantile regression of Y − q(D,X, τ) on (Z,X):

0 ∈ argmin
f∈F

Eρτ [(Y − q(D,X, τ)− f(X,Z))] , (3.3)

where F is the class of measurable functions of (X,Z) (that will be suitably restricted in applications).

The term ‘inverse’ emphasizes both the evident inverse relation of this problem to the conventional quantile

regression of Koenker and Bassett (1978) and a connection to the ill-posed inverse problems of Tikhonov

and Arsenin (1977).
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3.2 An Instrumental Variable Quantile Regression Process and An Analogy with Two

Stage Least Squares

For estimation purposes, we focus on the basic linear-in-parameters model

q(d, x, τ) = d′α(τ) + x′β(τ), (3.4)

where d is an l× 1 vector of treatment variables (possibly interacted with covariates) and x is a k× 1 vector

of (transformations of) covariates.

Next we consider a finite-sample analog of the population instrumental variable quantile regression.

Define the weighted quantile regression objective function as

Qn(τ, α, β, γ) ≡ 1

n

n∑

i=1

ρτ (Yi −D′iα−X ′
iβ − Φ̂i(τ)

′γ) · V̂i(τ), where

Φ̂i(τ) ≡ Φ̂(τ,Xi, Zi) is an dim(α) × 1 vector of (transformations of) instruments, and V̂i(τ) ≡ V̂ (τ,Xi, Zi)

is a positive weight function.

A practical formulation would be to use constant weights, V̂i = 1, and use the instrument Φ̂i(τ) formed

by the least squares projection of Di on Zi and Xi (and possibly their powers). In principle, we could include

more elements in vector Φ̂i(τ) than the dimension of α. However, efficiency can instead be improved by

choosing Φ̂i(τ) and V̂i(τ) appropriately.

The instrumental variable quantile regression estimator is defined as follows. Define ‖x‖A =√
x′Ax, and letA(τ) be any uniformly positive definite matrix, e.g. A(τ) = I orA(τ) = 1

n

∑n
i=1 Φ̂i(τ)Φ̂i(τ)

′.10

Then define

α̂(τ) = arg inf
α∈A

∥∥γ̂(α, τ)
∥∥
A(τ)

, where (3.5)

(β̂(α, τ), γ̂(α, τ)) = arg inf
(β,γ)∈B×G

Qn(τ, α, β, γ), (3.6)

A and B are compact parameter sets, and G is any fixed compact cube centered at 0. The parameter

estimates are given by

θ̂(τ) ≡
(
α̂(τ), β̂(τ)

)
≡
(
α̂(τ), β̂(α̂(τ), τ)

)
. (3.7)

The estimator (3.7) is a finite-sample instrumental quantile regression. It finds the parameter values for

α and β through the inverse step (3.5) such that the value of coefficient γ̂(α, τ) on the instrument Φ in the

quantile regression step (3.6) is driven as close to zero as possible, by analogy with the population problem

(3.2). In practice, this procedure is simple to implement as follows:

1. For a given probability index τ of interest, define a grid of values {αj , j = 1, ..., J}, and run the

ordinary τ -quantile regression of Yi −D′iαj on Xi and Φ̂i(τ) to obtain coefficients β̂(αj , τ) and γ̂(αj , τ).

10Exact form of A(τ) is not important here due to “exact identification”.
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2. Choose α̂(τ) as the value among {αj , j = 1, ..., J} that makes ‖γ̂(αj , τ)‖ closest to zero. The estimate

β̂(τ) is then given by β̂(α̂(τ), τ).

The instrumental variable quantile regression process is then defined as

θ̂(·) ≡
(
θ̂(τ), τ ∈ T

)
,

where T is a closed subinterval of (0, 1). In practice, we can compute θ̂(τj) for a finite collection of probability

indices τ , e.g. {0.1, ..., 0.9}, and interpolate in between.

Perhaps unexpectedly, the proposed estimation method may be viewed as an appropriate quantile

regression analog of two stage least squares. To explain the analogy, ignore the covariates X for simplicity

and consider the least squares analog of (3.5)-(3.6):

α̂ = arg inf
α

[
γ̂(α)′

(
1

n

n∑

i=1

ΦiΦ
′
i

)
γ̂(α)

]
, where γ̂(α) = arg inf

γ

[
1

n

n∑

i=1

(Yi −D′iα− Φ′iγ)
2

]
, (3.8)

and Φi denotes a suitable instrument. It is then obvious that (3.8) yields two stage least squares as the

solution. With additional covariates X, the proposed estimation method (3.5)-(3.6) may be thought of as a

peculiar analog of two stage least squares, modified in a manner that makes computation feasible.

3.3 Computational Properties and Comparison with Other Estimation Approaches

An estimator that is theoretically attractive, but uncomputable, has little value for data analysis. In many

cases, the proposed instrumental variable quantile regression estimator is attractive from both a theoretical

and a computational point of view. Indeed, there are three principal motivations for this estimator. First,

it provides a theoretical link of the IV restrictions (3.1) to the conventional quantile regression. Second, it is

computationally convenient, since it efficiently combines convex optimization with low-dimensional searches.

The estimates are computed by implementing a series of ordinary quantile regressions (convex optimization

problems) implying a need for a grid search only over the α-parameter (typically one-dimensional). Using

the interior point-preprocessing methods introduced by Portnoy and Koenker (1997), the convex quantile

regression steps are theoretically faster than OLS.11 Third, the method can be viewed as a computationally

attractive method of approximately solving the estimating equations:

1√
n

n∑

i=1

(1(Yi ≤ D′iα̂+X ′
iβ̂)− τ)(X ′

i, Φ̂i(τ)
′)′V̂i(τ) = op(1). (3.9)

Thus, the estimator is asymptotically equivalent to a particular GMM estimator and, in principle, it may

achieve maximal efficiency by choosing instruments Φi and weights Vi appropriately.

As stated, a simple implementation of inverse quantile regression only requires a low-dimensional search

over α, where dim(α) equals one or two in many applications.12 There are other approaches, used in addi-

tive models, that one could use for estimation in the present nonseparable (heterogeneous effects) context:

11The computations can be improved further by employing parametric programming as in Koenker and D’Orey

(1987). In this approach the quantile regression in (3.5) is initially solved for some α; one then solves for β̂(α, τ) and

γ̂(α, τ) for nearby α using parametric programming.
12Computer programs in Matlab and Ox that implement the estimation and inference are available from the authors.
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generalized method of moments based on (3.9), the minimum distance approach,13 and LIML-type estima-

tion.14 In contrast to our approach, these other approaches often involve highly non-convex and multi-modal

objective functions over many parameters. Implementation of extremum estimators with non-smooth or,

more importantly, non-convex objective functions may require grid type searches over a subset of R
K , where

K = dim(β) + dim(α). For example, in the empirical application we consider, K = 60 + 1. In contrast, in

problems like these the computation of our estimator is quite fast and often trivial. However, it must be

noted that the computational advantages of our estimator rapidly diminish as the number of endogenous

variables dim(α) increases. In these cases, one can base a computable estimation procedure on the Markov

Chain Monte Carlo approach to GMM estimation developed in Chernozhukov and Hong (2003), which also

enables one to approximately solve equations (3.9) and obtain inference statements.

3.4 Theory of Identification, Estimation, and Basic Inference

In order to obtain properties of the IV-QR process, we impose a set of regularity conditions.

ASSUMPTION 2 (Conditions for Identification and Estimation) In addition to (3.4), suppose

R1 Sampling. (Yi, Di, Xi, Zi) are iid defined on the probability space (Ω, F, P ) and take values in a

compact set.

R2 Compactness and Convexity. For all τ , (α(τ), β(τ)) ∈ int A× B, A× B is compact and convex.

R3 Full Rank and Continuity. Y has bounded conditional density , a.s. supy∈R
fY |(X,D,Z)(y) < K,

and for π ≡ (α, β, γ), θ ≡ (α′, β′), and

Π(π, τ) ≡ E
[
(τ − 1(Y < D′α+X ′β +Φ(τ)′γ))Ψ(τ)

]
,

Π(θ, τ) ≡ E
[
(τ − 1(Y < D′α+X ′β))Ψ(τ)

]
, Ψi(τ) ≡ Vi(τ) · [Φi(τ)

′, X ′
i]
′,

Jacobian matrices ∂
∂(α′,β′)

Π(θ, τ) and ∂
∂(β′,γ′)

Π(π, τ) are continuous and have full rank, uniformly over

A× B × G × T and the image of A× B under the mapping (α, β) 7→ Π(θ, τ) is simply-connected.

R4 Estimated Instruments and Weights. Wp → 1, the functions Φ̂(τ, z, x), V̂ (τ, z, x) ∈ F and

V̂ (τ, z, x)→p V (τ, z, x), Φ̂(τ, z, x)→p Φ(τ, x, z) uniformly in (τ, z, x) over compact sets, where V (τ, z, x)

and Φ(τ, x, z) ∈ F ; the functions f(τ, z, x) ∈ F are uniformly smooth functions in (z, x) with the uni-

form smoothness order η > dim(d, z, x)/2,15 and ‖f(τ ′, z, x)− f(τ, z, x)‖ < C|τ − τ ′|a, C > 0, a > 0,

for all (z, x, τ, τ ′).

13See Hogg (1975), Abadie (1995), Macurdy and Timmins (2000), and Hong and Tamer (2003) for pertinent results

that with some work can be adapted to the present case.
14Sakata (2001) proposes a LIML-type estimator based on the absolute deviation for the classical location model,

which solves: maxα,β minγ,δ
[∑n

i=1 |Yi −D′iα−X′iβ − Φ′iγ −X′iδ|/
∑n

i=1 |Yi −D′iα−X′iβ|
]
. The computation of

this estimator poses a serious challenge. The properties of this LAD-LIML estimator are analogous to those of LIML

in the least squares case. We conjecture that the relative theoretical advantages and disadvantages of our estimator

vs. Sakata’s estimator are similar to the relative properties of 2SLS vs. LIML in the least squares case.
15This class of functions Cη

K is defined on page 154 in van der Vaart and Wellner (1996).
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Remark 1. Condition R1 imposes iid sampling and compactness on the support of the variables. Com-

pactness is not restrictive in micro-econometric applications, but it can be relaxed. Condition R2 imposes

compactness on the parameter space. Such an assumption is needed at least for the parameter α(τ) since

the objective function is not convex in α. The role of R4 is to allow possibly estimated instruments and

weights. Smoothness in R4 needs to hold only for the non-discrete sub-component of (d, x, z). Condition R4

allows for a wide variety of nonparametric and parametric estimators of instruments, as shown by Andrews

(1994). The smoothness condition in R4 can be replaced by a more general condition of F having a finite

L2(P )-bracketing entropy integral. The condition in R3 implies global identification and the continuity

condition in R3 together with R1 suffices for asymptotic normality. Clearly, these conditions may be refined

at a cost of more complicated notation and proof.

Remark 2. The parametric identification condition R3 converts an intuitive local identification condition

into a global one. Global identification is obtained through the use of a version of Hadamard’s theorem.

This condition is similar in spirit to the nonparametric identification conditions discussed in Chernozhukov

and Hansen (2001a). This condition requires that the instrument Φ impacts the joint distribution of (Y,D)

at many relevant points. The condition that the image of the parameter space be simply-connected requires

that the image can be continuously homotopized (shrunk) to a point. I.e., it rules out “holes” in the image

of the set. This condition may be thought of as ruling out poorly behaved distributions. One sufficient

condition for the image to be simply-connected is follows from Mas-Colell (1979a).

LEMMA 1 A sufficient condition for global identification is as follows: there exists a compact convex set

C such that A × B ⊂ C, C has a smooth boundary ∂C, det ∂
∂(α′,β′)

Π(θ, τ) > 0 over C, and ∂
∂(α′,β′)

Π(θ, τ) is

positive-quasi-definite on ∂C in the sense defined by Mas-Collel (1979a).

Theorem 2 describes the identification of the parameters of the IV-QR model.

THEOREM 2 (Identification by Full Rank Condition) Given Assumptions 1 - 2, (α, β ′)′ = (α(τ)′, β(τ)′)′

uniquely solves the system of equations E [τ − 1(Y < D′α+X ′β)Ψ(τ)] = 0 over A× B.

Theorem 3 describes the large sample theory of the IV-QR process in the metric space of bounded functions

`∞(T ).

THEOREM 3 (Estimation) Given Assumptions 1-2, for εi(τ) = Yi−D′iα(τ)+X ′
iβ(τ) and li(τ, θ(τ)) =

(τ − 1(εi(τ) < 0)),

√
n(θ̂(·)− θ(·)) = −J(·)−1 1√

n

n∑

i=1

li(·, θ(·))Ψi(·) + op(1)⇒ b(·), (3.10)

where b(·) is a mean zero Gaussian process with covariance function E b(τ)b(τ ′)′ = J(τ)−1S(τ, τ ′)[J(τ ′)−1]′,

J(τ) = E
[
fε(τ)(0|X,D,Z)Ψ(τ)[D′, X ′]

]
, S(τ, τ ′) = (min(τ, τ ′)− ττ ′)EΨ(τ)Ψ(τ ′)′.
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Remark 3. (Basic Inference) A basic implication of Theorem 1 is that for any given probability index τ

√
n
(
θ̂(τ)− θ(τ)

)
→d N

(
0, J(τ)−1S(τ, τ)[J(τ)−1]′

)
. (3.11)

Also, for any finite collection of quantile indices {τj , j ∈ J}
{√

n
(
θ̂(τj)− θ(τj)

)}
j∈J

→d N
(
0,
{
J(τk)

−1S(τk, τl)[J(τl)
−1]′

}
k,l∈J

)
, (3.12)

which gives the joint limit distribution of IV-QR for several quantiles. The result in Theorem 2 is in fact

stronger, assuring that the entire empirical instrumental quantile regression process θ̂(·) asymptotically

behaves continuously, enabling the uniform approximation of θ̂(·) by a finite collection of instrumental

regression quantiles θ̂(τj), j ∈ J for a suitably fine grid of quantile indices {τj , j ∈ J}.

Remark 4. (Standard Errors) The components of the asymptotic variance in (3.11) and (3.12) can be

estimated as follows. The matrix SΨ(τ, τ
′) can be estimated by its sample counterpart:

ŜΨ(τ, τ
′) = (min(τ, τ ′)− ττ ′)

1

n

n∑

i=1

Ψ̂i(τ)Ψ̂i(τ
′)′. (3.13)

Following Powell (1986), the estimator of JΨ(τ) takes the form

ĴΨ(τ) =
1

2nhn

n∑

i=1

I(|ε̂i(τ)| ≤ hn)Ψ̂i(τ)[D
′
i, X

′
i], (3.14)

where ε̂i(τ) ≡ Yi−D′iα̂(τ)−X ′
iβ̂(τ) and hn is an appropriately chosen bandwidth, where hn → 0 and nh2n →

∞.16 The results (3.11) and (3.12) enable a simple form of inference regarding conditional quantiles for

various given probability indices. The next section will address more general inference questions.

Corollary 1 (Distribution-Free Limits) ForW (τ) = J(τ)−1EΨ(τ)Ψ(τ)′[J(τ)−1]′, we haveW (·)− 12 √n(
θ̂(·)− θ(·)

)
⇒ Bp(·), where Bp is a standard p-dimensional Brownian bridge Bp (p = dim(α) + dim(β))

with covariance operator E Bp(τ)Bp(τ
′)′ ≡ (min(τ, τ ′)− ττ ′)Ip.

Remark 5. (Weights and Instruments) When we choose the weight and instruments as V ∗(τ) =

fε(τ)(0|X,Z), v(τ) = fε(τ)(0|D,X,Z), Φ∗(τ) = E[Dv(τ)|X,Z] / V ∗(τ), and Ψ∗(τ)= V ∗(τ)[Φ∗(τ)′ : X ′]′,

the variance function becomes E b(τ)b(τ)′ = τ(1 − τ) · [EΨ∗(τ)Ψ∗(τ)′]−1. This choice of instruments and

weights leads to a pointwise efficient procedure.17 This can be shown by appealing to the argument of

Chamberlain (1987). Regularity condition R4 allows use of a wide variety of nonparametric estimators

and parametric approximations of the optimal Φ and V . For particular examples of such procedures, see

Amemiya (1977) and Andrews (1994). An example of a simple and practical strategy for empirical work is

to construct Φ as an OLS projection of D on Z and X (and possibly their powers) and set Vi = 1.

16E.g., one may use the Sliverman’s rule of thumb. Specific choices of hn are discussed in Koenker (1994).
17The form of optimal weights and instrument for global case remains an interesting open question, since the

complete quantile model involves a continuum of moment conditions.
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4 General Inference

4.1 Inference Hypotheses and Procedures

It is convenient to embed our hypotheses in the following null hypothesis:

R(τ)
(
θ(τ)− r(τ)

)
= 0, for each τ ∈ T , (4.1)

where R(τ) denotes a known q × p matrix of rank q, q ≤ p = dim(θ(τ)), and r(τ) ∈ R
p. It is worth noting

that this set-up differs from the classical one since θ(·) and r(·) are functions and, in many cases, both have

to be estimated.

The tests will be based on the instrumental variable quantile regression process, θ̂(·). We will focus on

the basic inference process

vn(·) = R(·)
(
θ̂(·)− r̂(·)

)
, (4.2)

and statistics of the form Sn = f(
√
nvn(·)) derived from it. In particular, we will be interested in the

Kolmogorov-Smirnov (KS) and Smirnov-Cramer-Von-Misses (CM) statistics, which have

Sn =
√
n sup

τ∈T

‖vn(τ)‖Λ̂(τ), Sn = n

∫

T

‖vn(τ)‖2Λ̂(τ)dτ, (4.3)

respectively, where the symmetric Λ̂(τ)→p Λ(τ) uniformly in τ , and Λ(τ) is a positive definite symmetric

matrix uniformly in τ . The choice of Λ(τ) and Λ̂(τ) is discussed in Section 4.4. The null hypothesis is

rejected if

Sn > c(1− α)

where the critical value c(1− α) can be obtained using the resampling procedure in Section 4.3.

The following are examples of hypotheses that may be considered in this framework. For simplicity, we

set dim(α) = 1 in what follows; extensions to the more general case are straightforward.

Example 1. Hypothesis of No Effect. A basic hypothesis is that the treatment has no impact on the

outcomes: α(τ) = 0 for all τ in T . In this case, R(·) = R = [1, 0, ...] and r(·) = 0.

The next example presents a hypothesis of constant treatment effects. The alternative is that the effect

varies across quantiles, which is of fundamental importance because it motivates modern structural and

causal models developed specifically to cope with varying effects.

Example 2. Location-Shift or Constant Effect Hypothesis. The hypothesis of a constant effect

is that the treatment D affects only the location of outcome Y , but not any other moments. That is,

∃α : α(τ) = α, for all τ ∈ T , which asserts that α(τ) is constant across all τ ∈ T . In this case, R(·) =

R = [1, 0, ...] and r(·) = r = (α, 0, ...), implying Rr = α. The component r of the null hypothesis can be

estimated by any method consistent with the null, e.g. r̂ = (α̂( 1
2
), 0, ...)′.

Example 3. Dominance Hypothesis. The test of stochastic dominance, or whether the effect is unambigu-

ously beneficial, involves the dominance null α(τ) ≥ 0, for all τ ∈ T , versus the non-dominance alternative
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α(τ) < 0, for some τ ∈ T . In this case, the least favorable null involves R(·) = R = [1, 0...] and r(·) = 0,

and one may use the one-sided KS or CM statistics,

Sn =
√
n sup

τ∈T

max(−α̂(τ), 0), and Sn = n

∫

T

‖max(−α̂(τ), 0)‖2Λ(τ)dτ

to test the hypothesis.

Example 4. Exogeneity Hypothesis. In the basic linear model, the quantiles of potential or counterfactual

outcome Yd, conditional on X, are given by d′α(τ) + x′β(τ). Suppose that the treatment D is chosen

independently of outcomes, that is D is independent of {Ud}, conditional on X. Then the quantiles of

realized outcome Y , conditional on D and X, are given by D′α(τ) + X ′β(τ). Thus, in the absence of

endogeneity, (α(·)′, β(·)′)′ can be estimated using the conventional quantile regression without instrumenting.

The difference between IV-QR estimates, θ̂(·), and QR estimate, ϑ̂(·), can be used to formulate a Hausman

test of the null hypothesis of exogeneity:

α(τ) = ϑ(τ)1 for each τ in T , where ϑ(τ) ≡ plim ϑ̂(τ), (4.4)

and ϑ̂(·)1 is the QR estimate of α(·) obtained without instrumenting. In this case, R(·) = [1, 0, ...] and

r(·) = ϑ(·). The alternative of endogeneity states: ∃τ ∈ T : α(τ) 6= ϑ(τ)1.

4.2 Formal Inference Results

ASSUMPTION 3 (Conditions for Inference)

I.1 R(·) (θ(·)− r(·)) = g(·), where the functions g(τ), R(τ), r(τ) are continuous and either (a) g(τ) = 0

for all τ or (b) g(τ) 6= 0 for some τ .

I.2
√
n(θ̂(·) − θ(·)) ⇒ b(·) and √n (r̂(·)− r(·)) ⇒ d(·) jointly in `∞(T ), where b(·) and d(·) are jointly
zero mean Gaussian functions that may have different laws under the null and the alternative.

Remark 6. Conditions I.1(a) and I.1(b) formulate the null and a global alternative. Condition I.2 requires

that the estimates of θ(·) and r(·) are asymptotically Gaussian. In our examples, I.2 holds by the Bahadur

type representation of the IV-QR process (3.10) obtained in Theorem 2 and the corresponding representation

of QR process. Section 3.4 contains further details. I.2 also permits other asymptotically Gaussian estimators

of the parameters of the IV-QR model.

THEOREM 4 (Inference) For f denoting the two- and one- sided KS or CM statistics

1. Under Assumptions 1 and 3:I.1(a), and 3:I.2 Sn→d S ≡ f(v(·)), where v(·) = R(·)(b(·)−d(·)). If v(·)
has nondegenerate covariance kernel, then for α < 1/2, P (Sn > c(1−α))→ α = P (f(v(·)) > c(1−α)),

where c(1− α) is chosen so that P (f(v(·)) > c(1− α)) = α.

2. Under Assumptions 1 and 3:I.1(b), and 3:I.2, Sn→d ∞ and Pn(Sn > c(1− α))→ 1.
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Theorem 4 states the limit distribution of the KS and CM statistics under the null and the alternative.

In the statement of Theorem 4 we implicitly assume that for the case of one-sided tests in Example 3, the

global alternatives to the least favorable null violate the composite null. Theorem 4 alone does not provide

us with operational tests, since we do not know the critical value c(1 − α) : P (f(v(·)) > c(1− α)) = α.

In general, one faces the Durbin problem when estimating c(1 − α), since the limit distribution of f(v(·))
generally depends on P .18 This dependence is caused by the estimation of component r(·) in the hypothesis.

This leads to the presence of the nonstandard term d(·) in the limit inference process v(·) ≡ b(·) + d(·). In

several important cases, such as Examples 1 and 3, the term d(·) = 0 because r(·) is known and need not be

estimated, which makes it possible to ensure the limit distribution of f(v(·)) is independent of P by choosing

an appropriate weight matrix Λ(τ) in (4.3).

Corollary 2 (Distribution-Free Inference) Suppose d(·) = 0 in I.2. If Λ(τ) = [R(τ)W (τ)R(τ)′]
−1
,

with W (τ) = J(τ)−1E[Ψ(τ)Ψ(τ)′][J(τ)−1]′ and Λ̂(τ) = Λ(τ) + op(1) uniformly in τ , then f(vn(·)) ⇒
f(Bq(·)), where Bq is the standard q-dimensional Brownian bridge with covariance function: EBq(τ)Bq(τ)

′ =

(min(τ, τ ′)− ττ ′)Iq.

In other important cases, such as Examples 2 and 4, the simple transformation used in Corollary 2 will

not provide distribution-free limits, see Durbin (1973). There are several ways to proceed. One method is

the Khmaladze martingale transformation, cf. Bai (1997) and Koenker and Xiao (2002). Another method

is to use a simple resampling procedure, recentering the inference process around its sample realization, cf.

Chernozhukov (2002). The simulation examples in Chernozhukov (2002) suggest that resampling has an

accurate size and somewhat better power than Khmaladzation. In the next section, we describe a different

resampling method that delivers the same asymptotic quality and is more attractive computationally in the

present setting.

4.3 Critical Values by Resampling Scores

The method of resampling we suggest does not require the recomputation of the estimates over the resampling

steps, which may be quite laborious since the optimization problem requires many computations of ordinary

quantile regressions for many values of α and τ . Instead we resample the linear approximations of the

empirical inference processes. In addition, to facilitate a feasible, practical implementation, we employ the

m out of n bootstrap (subsampling).

Suppose that we have a linear representation for the inference process:

√
n(vn(·)− g(·)) = − 1√

n

n∑

i=1

zi(·) + op(1), (4.5)

where zi(·) is defined below in Proposition 1. Given a sample of the estimated scores, {ẑi(τ), i ≤ n, τ ∈ T },
consider the following steps. (Estimation of scores is discussed below and other practical details are supplied

in Section 4.4.)

18See e.g. Durbin (1973), Bai (1997), and Koenker and Xiao (2002) for related discussions
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Step 1. Construct Bn randomly chosen subsets of {1, ..., n} of size b. Denote such subsets as Ii, i ≤
Bn.

19 Denote by vj,b,n(·) the inference process computed over the j-th subset of data Ij , i.e. vj,b,n(τ) ≡
1
b

∑
i∈Ij ẑi(τ), and define Sj,b,n ≡ f(

√
b[vj,b,n(·)]) as

Ŝj,b,n ≡ sup
τ∈T

√
b‖vj,b,n(τ)‖Λ̂(τ) or Ŝj,b,n ≡ b

∫

T
‖vj,b,n(τ)‖2Λ̂(τ)dτ,

for cases when Sn is the Kolmogorov-Smirnov (KS) or Smirnov-Cramer-Von-Misses (CM) statistic, respec-

tively.

Step 2. Define, for S = f(v(·)), Γ(x) ≡ P{S ≤ x}. Estimate Γ(x) by Γ̂b,n(x) = B−1n

∑Bn

j=1 1{Sj,b,n(τ) ≤ x}.
The critical value is obtained as the 1− α-th quantile of Γ̂b,n(x), i.e. cb,n(1− α) = inf{c : Γ̂b,n(c) ≥ 1− α}.
The level α test rejects the null hypothesis when Sn > cb,n(1− α).

In order to obtain the linear expansion (4.5), we maintain the following assumption.

ASSUMPTION 4 (Linear Representations) In addition to I.1 and I.2

I.3 The estimates admit linear representations:
√
n
(
θ̂(·)− θ(·)

)
= −J(·)−1 1√

n

∑n
i=1 li(·, θ(·))Ψi(·)+op(1)

and
√
n (r̂(·)− r(·)) = −H(·)−1 1√

n

∑n
i=1 di(·, r(·))Υi(·) +op(1) in `∞(T ), where J(·) and H(·) are

constant invertible matrices, and li(τ, θ(τ))Ψi(τ) and di(τ, r(τ))Υi(τ) are i.i.d. mean zero for each τ .

I.4 (a) We have estimates li(·, θ̂(·))Ψ̂i(·) and di(·, r̂(·))Υ̂i(·) that take realizations in a Donsker class of
functions with a constant envelope and are uniformly consistent in τ in the L2(P ) norm.20 (b) Wp

→ 1, Eli(τ, θ(τ))fi(τ)
∣∣
f=Ψ̂

= 0 and Edi(τ, r(τ))fi(τ)
∣∣
f=Υ̂

= 0 for each i. (c) E‖li(τ, θ)− li(τ, θ
′)‖ <

C ‖θ′−θ‖, E‖di(τ, r)−di(τ, r
′)‖ < C‖r′−r‖, uniformly τ ∈ T and in (θ, θ′, r, r′) over compact sets.

Lemma 4 in Appendix C verifies that I.3 and I.4 are satisfied under Assumption 2 for the particular imple-

mentations that we use.

Proposition 1 (Linear Representations) Under Assumptions 1,3, and 4
√
n(vn(·)−g(·)) = − 1√

n

∑n
i=1 zi(·)

+ op(1), in `∞(T ), where zi(·) = R(·)
[
J(·)−1li(·, θ(·))Ψi(·)−H(·)−1di(·, r(·))Υi(·)

]
.

Thus, the estimate of zi(·) is given by ẑi(·) = R(·)
[
Ĵ(·)−1li(·, θ̂(·))Ψ̂i(·)− Ĥ(·)−1di(·, r̂(·))Υ̂i(·)

]
, where Ĵ(·)

and Ĥ(·) are any uniformly consistent estimates of J(·) and H(·), cf. Section 4.4.

Remark 7. In Assumption 4, condition I.3 requires that the estimates of θ(·) and r(·) entering the null hy-

potheses have asymptotically linear representations of the form defined above and that asymptotic normality

applies to these estimates. Note that I.3 is formulated so that other asymptotically Gaussian estimators

of the IV-QR model are permitted. In our implementation, this condition is implied by the Bahadur type

19The subsampling is done without replacement. However, if b2/n→ 0, subsampling without and subsampling with

replacement are equivalent wp → 1.
20In the sense that f̂(W, τ) is consistent to f(W, τ) in the L2(P ) norm if supτ E[‖f̃(w, τ)− f(w, τ)‖2]

f̃=f̂
→p 0.
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representation of the IV-QR process (3.10) obtained in Theorem 2 and the corresponding representation

of QR process. Conditions I.4(a) and I.4(c) impose sufficient smoothness for developing the theory of the

resampling inference. These conditions are also satisfied in all of the examples considered in this paper.

Condition I.4(b) is the familiar condition of “orthogonality”, cf. Andrews (1994), which implies that the

estimation of Ψi and Υi has no effect on the asymptotic distribution of the linear representation in I.3.

Next, we briefly go through our testing Examples 1-4 and state the scores for each of them.

1. Test of No Effect : Since r(·) = 0, zi(τ) = R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)

]
, where li(τ, θ(τ)) =

(τ − 1(Yi < Diα(τ) +X ′
iβ(τ))) ,Ψi(τ) = Vi(τ)[Φi(τ)

′, X ′]′.

2. Test of Constant Effect: In this case, r̂(·) = θ̂( 1
2
) is an IV-QR estimate, and for li(·, ·) defined

above zi(τ) = R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)− J( 1

2
)−1li( 12 , θ(

1
2
))Ψi( 12 ))

]
.

3. Test of Dominance Effect: Since r(·) = 0, zi(τ) = R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)

]
.

4. Test of Exogeneity: If r(·) is estimated using conventional quantile regression as defined in Example

4, the score is given by zi(τ) = R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)−H(τ)−1di(τ, ϑ(τ))

]
, where di(τ, ϑ(τ))

= (τ − 1(Yi < X̃ ′
iϑ(τ))X̃i, X̃i = (D′i, X

′
i)
′, and H(τ) = EfY |X̃(ϑ(τ)

′X̃)X̃X̃ ′.

Appendix C formally verifies I.3 and I.4 for these examples. Section 4.4 discusses estimation of H and J .

THEOREM 5 (Score Subsampling Inference) Suppose Assumptions 1, 3 and 4 hold, and that we have

Ĵ(τ) = J(τ)+op(1) and Ĥ(τ) = H(τ)+op(1) uniformly in τ over T . Then as Bn →∞, b→∞, n→∞: (1)
Under the null hypothesis, if Γ is continuous at Γ−1(1−α): cb,n(1−α)→p Γ−1(1−α), P (Sn > cb,n(1−α))→
α; (2) Under the alternative hypothesis, Sn→d ∞, cb,n(1−α) = Op(1); P (Sn > cb,n(1−α))→ 1; (3) Γ(x)

is absolutely continuous at x > 0 when the covariance function of v is nondegenerate a.e. in τ .

4.4 Practical Details

This section supplies some necessary implementation details.

Discretization. It is practical to use a grid Tn in place of T with the largest cell size δn → 0 as n→∞.

Corollary 3 Theorems 1-4 are valid for piecewise constant approximations of the finite-sample processes

using Tn, given that δn → 0 as n→∞.

Choice and Estimation of Λ(τ), J(τ) H(τ). In order to increase the test’s power we could set

Λ∗(τ) = [Ω∗(τ)]−1 = Var [zi(τ)]
−1 , which is an Anderson-Darling type weight.21 In iid samples, there are

many methods for estimating Λ∗(τ), uniformly consistently in τ . By I.3 and I.4, a uniformly consistent

estimate of Ω∗(τ) is given by

Ω̂∗(τ) =
1

n

n∑

i=1

ẑi(τ)ẑi(τ)
′, ẑi(τ) = R(τ)

[
Ĵ(τ)−1li(τ, θ̂(τ))Ψ̂i(τ)− Ĥ(τ)−1di(τ, r̂(τ))Υ̂i(τ)

]
.

21This choice is not readily suited to Example 2, since Var zi( 12 ) = 0. However, we can cut out [ 1
2
− ε, 1

2
+ ε] from

the interval T . Alternatively, one may always simply use Λ(τ) = I.
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A uniformly consistent estimate of J(τ) is given by the Powell (1986) estimator, Ĵ(τ) = 1
n

∑n
i=1Khn((Yi −

D′iα̂(τ) −X ′
iβ̂(τ))Ψ̂i(τ)[D

′
i, X

′
i]), where Kh(u) = h−11[|u| ≤ h/2] and hn is chosen as in (3.14). Estimates

of H(τ) are needed in Examples 2 and 4. In Example 2, Ĥ(τ) = Ĵ( 1
2
), and in Example 4, a uniformly

consistent estimate of H(τ) is given similarly by Ĥ(τ) = 1
n

∑n
i=1Khn(Yi − X̃ ′

iϑ̂(τ))X̃iX̃
′
i, X̃i = (D′i, X

′
i).

We do not discuss the formal properties of these standard estimators to save space.22

Choice of the Block Size. In Politis et al. (1999) various rules are suggested for choosing an appro-

priate subsample size, including the calibration and minimum volatility methods. We use b = 5n2/5, though

the empirical results are not sensitive to the subsample size.

5 Returns to Schooling in The United States

One of the most widely studied topics in labor economics is the impact of education on earnings. The large

volume of research in this area has been motivated by both interest in the causal effect of education on

earnings as well as the inherent difficulty in measuring this effect. The difficulty arises due to the possible

endogenous relationship between education and earnings. In particular, it seems likely that unobserved

individual ability is correlated to both a person’s education and wages, thus biasing standard regression

estimates of the relation between schooling and earnings. In addition, economists have long believed that

the returns to schooling may vary among individuals, further complicating the interpretation of conventional

least squares and two stage least squares results.23

In order to address the issue of heterogeneity in the returns to schooling and as an illustration of the use

of the estimation and inference methods presented in this paper, we use the data and methodology employed

in Angrist and Krueger (1991) to estimate the QTE of schooling on earnings. In particular, we estimate

linear conditional quantile models of the form

Qln(Ys)|X(τ) = α(τ)S +X ′β(τ),

where Y is the weekly wage, S is reported years of schooling and X is a vector of covariates consisting of

state and year of birth fixed effects, using quarter of birth as an instrument for education.24

The use of quarter of birth as an instrument is motivated by the fact that quarter of birth is correlated

to years of schooling through compulsory schooling laws. These laws prohibit students from dropping out

of school before reaching a certain age, but in general do not stipulate minimum education levels. However,

most school districts do not admit students to the first grade unless they will be six years old by January 1

of the academic year. This means that individuals born earlier in the year reach the minimum drop out age

after having attended less school than those born later in the year. Angrist and Krueger (1991), examining

22The uniform consistency of Ω̂∗(τ) and Ĵ(τ) can be shown using the uniform laws of large numbers, Theorem 19.3

and Theorem 19.28 in van der Vaart (1998), respectively.
23See, for example, Card (1995), Card (1999), and Carneiro et al. (2000) for discussion and Becker and Chiswick

(1966), Mincer (1970), Mincer (1974), and Mincer (1995) for early examples.
24Specifically, we use the linear projection of S onto the covariates X and three dummies for first through third

quarter of birth as the instrumental variable.
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data from three decennial censuses, find that people born in the first quarter of the year do indeed have

less schooling on average than those born later in the year. Based on this observation, Angrist and Krueger

(1991) use quarter of birth as an instrument for years of completed schooling in an attempt to isolate the

causal impact of schooling on earnings.25

We focus on the specification used in Angrist and Krueger (1991) which includes state of birth effects,

year of birth effects, and a constant in the covariate vector.26 The sample we consider consists of 329,509

males from the 1980 U.S. Census who were born between 1930 and 1939 and have data on weekly wages,

years of completed education, state of birth, year of birth, and quarter of birth. The sample was selected

using the criteria described in Appendix 1 of Angrist and Krueger (1991).

IV-QR and QR estimates of the schooling coefficient are provided in Figure 1. The shaded region in

each panel represents the 95% confidence interval. Both the quantile and instrumental variables quantile

regression estimates suggest that the “returns to schooling” vary over the earnings distribution. The second

row in Table 1 reports the results from a test of the hypothesis of a constant QTE for the IV-QR estimates

which is rejected at the 10% level. The variability of QTE is most apparent in the IV-QR estimates. While

the QR estimates do vary statistically,27 they are all closely clustered around the OLS estimate. The practical

lack of variability in the QR estimates is clearly demonstrated in the first panel of Figure 1, which plots both

the IV-QR (solid line) and QR (dashed line) estimates. Relative to the IV-QR estimates, the QR estimates

appear to be approximately constant.

[Insert Figure 1 about here]

The shapes of the estimated QTE are very interesting. The QR estimates exhibit a distinct u-shape,

implying higher returns to schooling for those in the tails of the distribution than for those in the middle.

However, if schooling is endogenous to the earnings equation, these estimates do not consistently estimate

the true (causal) QTE. IV-QR estimates, on the other hand, are consistent for the QTE under endogeneity

and show quite different results than those obtained through standard QR. In particular, the IV-QR results

show returns to schooling, as measured by QTE, of approximately 30% per year of additional schooling at low

quantiles in the earnings distribution. The returns decrease as the quantile index increases toward the middle

of the distribution and then remain approximately constant at levels near the QR and OLS estimates. This

implies that the largest gains to additional years of schooling accrue to those at the low end of the earnings

distribution. This observation is consistent with the notion that people with high unobserved “ability”, as

measured by the quantile index τ , will generate high earnings regardless of their education level, while those

with lower “ability” gain more from the training provided by formal education.28 Interpreting the quantile

25Angrist and Krueger (1991) also provide evidence that quarter of birth is independent of unobserved taste or

ability factors which may affect earnings, which is necessary for quarter of birth to be a valid instrument. For a

differing viewpoint, see Bound and Jaeger (1996), who argue that quarter of birth should not be treated as exogenous.
26Note that the estimates of the schooling coefficient are not sensitive to the specification of the X vector.
27The test for the quantile regression estimates is not reported, but also rejects the null hypothesis of a constant

treatment effect.
28The term “ability” is used to characterize the unobserved component of earnings, which likely captures elements
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Table 1: Process Tests for the Earning Equation. Subsample size = 5n2/5.

Null Hypothesis Kolmogorov-Smirnov Statistic 90% Critical Value 95% Critical Value

No Effect. α(·) = 0 4.563 2.572 2.935

Constant Effect. α(·) = α 2.630 2.442 2.658

Dominance α(·) ≥ 0 0.000 2.185 2.549

Exogeneity α(·) = αQR(·) 2.510 2.465 2.721

index τ as indexing ability, these results are also consistent with a simple model in which individuals acquire

education up to the point where the cost equals the rate of return and cost depends negatively on ability.29

In this case, we would expect the returns to schooling to be decreasing in ability with the lowest ability

individuals having the highest returns to education, which is exactly the pattern demonstrated by the IV-QR

results.

The first row of Table 1 reports the results from testing that schooling has no causal effect on earnings,

while the third row reports the results from the test of stochastic dominance. As would be expected, the

tests strongly reject the hypothesis of no effect and fail to reject the null hypothesis of stochastic dominance,

confirming our intuition that schooling increases earnings across the distribution. In the final row of Table

1, we test the endogeneity hypothesis. The test rejects the null hypothesis of no endogeneity at the 10%

level, providing some evidence on the need to instrument for schooling in the earnings equation. Again, this

confirms our intuition that endogeneity contaminates standard estimates of the returns to schooling and

underscores the importance of accounting for this endogeneity in estimation.

Overall, the estimation and testing results indicate that the causal effect of schooling on earnings is

quite heterogeneous, with the largest returns accruing to those who fall in the lower tail of the earnings

distribution. The example also illustrates the variety of interesting distributional hypotheses that can be

tested using the methods developed in this paper. The IV-QR results demonstrate considerable heterogeneity

in QTEs and provide additional insight into the economic relationships involved which could not be gained

by focusing on a single feature of the outcome distribution.

6 Conclusion

In this paper, we described how instrumental variable quantile regression can be used to evaluate the impact

of endogenous variables (treatments) on the entire distribution of economic outcomes when the variables

are self-selected or selected in relation to potential outcomes. We introduced an instrumental variable

quantile regression process and the set of inferences derived from it, focusing on tests of distributional

equality, constancy of effects, conditional dominance, and exogeneity. The approach was illustrated through

estimation of the returns to schooling. In this example, the hypotheses of constant returns to schooling and

exogeneity were rejected. The results suggest that estimates of structural (treatment) effects that focus on

of ability and motivation as well as noise.
29See, for example, Card (1999).
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a single feature of the outcome distribution may fail to capture the full impact of the treatment and serve to

illustrate the variety of distributional hypotheses that can be examined based on the instrumental quantile

regression process.

We believe that the results and inference methods presented in this paper will be useful in many

economic problems. Indeed, there are now several papers which examine the distributional impacts of

economic variables using the model, identification, and estimation results provided in this paper. Hausman

and Sidak (2002) consider long-distance price discrimination models with varying coefficients. Januszewski

(2002) studies the impact of air traffic delays on airline ticket prices. D’Urso (2002) uses instrumental quantile

regression methods to estimate the effect of the internet on home buyer search duration. Chernozhukov and

Hansen (2003) estimate the distributional impact of 401(k) participation on assets.

A Proofs

We use the notation for empirical processes following van der Vaart and Wellner (1996). For W ≡ (Y,D,X,Z)

f 7→ Enf(W ) ≡ 1

n

n∑

i=1

f(Wi), f 7→ Gnf(W ) ≡ 1√
n

n∑

i=1

(f(Wi)− Ef(Wi)) .

If f̂ is an estimated function, Gnf(W ) denotes 1√
n

∑n
i=1 (f(Wi)− Ef(Wi))f=f̂ .

A.1 Proof of Theorem 1

See Chernozhukov and Hansen (2001a). ¤.

A.2 Proof of Lemma 1

The result immediately follows from the proof of Theorem 2 in Mas-Colell (1979a). ¤.

A.3 Proof of Theorem 2

See Step 1 in the Proof of Theorem 3. ¤.

A.4 Proof of Theorem 3

Define for ϑ ≡ (β, γ) and ϕτ (u) ≡ (1(u < 0)− τ)

f̂(W,α, ϑ, τ) ≡ ϕτ (Y −D′α−X′β − Φ̂(τ)′γ)Ψ̂(τ),

f(W,α, ϑ, τ) ≡ ϕτ (Y −D′α−X′β − Φ(τ)′γ)Ψ(τ),

Ψ(τ) ≡ V (τ) · (Φ(τ)′, X′)′, Φ(τ) ≡ Φ(τ,X, Z), V (τ) ≡ V (τ,X,Z), Ψ̂(τ) ≡ V̂ (τ) · (Φ̂(τ)′, X′)′, Φ̂(τ) ≡ Φ̂(τ,X, Z),

V̂ (τ) ≡ V̂ (τ,X, Z) ; for ρτ (u) ≡ (τ − 1(u < 0))u

ĝ(W,α, ϑ, τ) ≡ ρτ (Y −D′α−X′β − Φ̂(τ)′γ)V̂ (τ),

g(W,α, ϑ, τ) ≡ ρτ (Y −D′α−X′β − Φ(τ)′γ)V (τ).

Define

Qn(α, ϑ, τ) ≡ Enĝ(W,α, ϑ, τ), Q(α, ϑ, τ) ≡ Eg(W,α, ϑ, τ),
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and

ϑ̂(α, τ) ≡ (β̂(α, τ)′, γ̂(α, τ)′) ≡ arg inf
ϑ∈B×G

Qn(α, ϑ, τ),

ϑ(α, τ) ≡ (β(α, τ)′, γ(α, τ)′) ≡ arg inf
ϑ∈B×G

Q (α, ϑ, τ),

α̂(τ) ≡ arg inf
α∈A

‖γ̂(α, τ)‖, α∗(τ) ≡ arg inf
α∈A

‖γ(α, τ)‖,

ϑ̂(τ) ≡ (β̂(τ)′, γ̂(τ)′)′ ≡ ϑ̂(α̂(τ), τ),

ϑ(τ) ≡ (β(τ)′, 0′)′ ≡ ϑ(α(τ), τ),

Step 1 (Identification)We show that (α(τ)′, β(τ)′) uniquely solves the limit problem for each τ , that is α∗(τ) = α(τ)

and β(α∗(τ), τ) = β(τ). Define

Π(α, β, τ) ≡ E
[
ϕτ (Y −D′α−X′β)Ψ(τ)

]
,

J(α, β, τ) ≡ ∂

∂(α′, β′)
E
[
ϕτ (Y −D′α−X′β)Ψ(τ)

]
.

By R3 J(α, β, τ) has full rank and is continuous in (α, β), uniformly over A× B. Moreover, the image of A× B
under the mapping (α, β) 7→ Π(α, β, τ) is assumed to be simply connected. As in Chernozhukov and Hansen (2001a),

the application of Hadamard’s global univalence theorem for general metric spaces, e.g. Theorem 1.8 in Ambrosetti

and Prodi (1995), yields30 that the mapping Π(·, ·, τ) is a homomorphism (one-to-one) between (A×B) and Π(A,B, τ),
the image of A× B under Π(·, ·, τ). By Theorem 1, (α, β) = (α(τ)′, β(τ)′)′ solves the equation Π(α, β, τ) = 0; and it

is thus the only solution in (A× B). This argument applies for every τ ∈ T .

So we have that the true parameters (α, β) = (α(τ), β(τ)) uniquely solve the equation

E[ϕτ (Y −D′α−X′β − Φ(τ)′0)Ψ(τ)] = 0. (A.1)

By R3 and in view of the global convexity of Q(α, ϑ, τ) in ϑ for each τ and α, ϑ(α, τ) is defined by the subgradient

condition

E[ϕτ (Y −D′α−X′β(α, τ)− Φ(τ)′γ(α, τ))Ψ(τ)]′ν ≥ 0 for all ν : ϑ(α, τ) + ν ∈ B × G. (A.2)

In fact, if ϑ(α, τ) is in the interior of B × G, it uniquely solves the first order condition version of (A.2):

E[ϕτ (Y −D′α−X′β(α, τ)− Φ(τ)′γ(α, τ))Ψ(τ)] = 0. (A.3)

We need to find α∗(τ) by minimizing ‖γ(α, τ)‖ over α subject to (A.2) holding. By (A.1) α∗(τ) = α(τ) makes

‖γ(α∗(τ), τ)‖ = 0 and satisfies (A.3) and hence (A.2) at the same time. By the preceding paragraph, it is the only

such solution. Thus, also by (A.3) β(α∗(τ), τ) = β(τ).

Step 2 (Consistency) By the bounded density condition in R3, Q(α, ϑ, τ) is continuous over A×(B×G)×T ; and by

Lemma 3, sup(α,ϑ,τ)∈A×(B×G)×T ‖Qn(α, ϑ, τ)−Q(α, ϑ, τ)‖ →p 0. This implies by Lemma 2 the uniform convergence

sup(α,τ)∈A×T ‖ϑ̂(α, τ)−ϑ(α, τ)‖→p 0, (∗), which in turn implies sup(α,τ)∈A×T ‖‖γ̂(α, τ)‖A(τ)−‖γ(α, τ)‖A(τ)‖→p 0,

which by invoking Lemma 2 again implies supτ∈T ‖α̂(τ)−α(τ)‖→p 0, which by (∗) implies supτ∈T ‖β̂(τ)−β(τ)‖→p 0

and supτ∈T ‖γ̂(α̂(τ), τ)− 0‖→p 0. (Note that by the implicit function theorem ϑ(α, τ) is continuous in τ and α, and

α(τ) is continuous in τ .)

Step 3 (Asymptotics) Consider a collection of closed balls Bδn (α(τ)) centered at α(τ) for each τ , where balls’

radius δn is independent of τ and δn → 0 slowly enough. Let αn(τ) denote any value inside Bδn (α(τ)). By the

computational properties of the ordinary quantile regression estimator ϑ̂(αn(τ), τ), cf. Theorem 3.3 in Koenker and

Bassett (1978),

O(1/
√
n) =

√
nEnf̂(W,αn(·), ϑ̂(αn(·), ·), ·). (A.4)

30Chernozhukov and Hansen (2001a) apply the theorem in the nonparametric context. Other use of this theorem

in economic analysis includes Mas-Colell (1979b). Original references are Hadamard (1906) and Caccioppoli (1932).
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By Lemma 3, the following expansion of the rhs is valid for any supτ∈T ‖αn(τ)− α(τ)‖→p 0:31

O(1/
√
n) =

√
nEnf̂(W,αn(·), ϑ̂(αn(·), ·), ·) = Gnf̂(W,αn(·), ϑ̂(αn(·), ·), ·) +

√
nEf̂(W,αn(·), ϑ̂n(αn(·), ·), ·)

= Gnf(W,α(·), ϑ(α(·), ·), ·) + op(1) +
√
nEf̂(W,αn(·), ϑ̂(αn(·), ·), ·) in `∞(T ).

(A.5)

Expanding the last line further

O(1/
√
n) = Gnf(W,α(·), ϑ(·), ·) + op(1) + (Jϑ(·) + op(1))

√
n(ϑ̂(αn(·), ·)− ϑ(·))

+ (Jα(·) + op(1))
√
n(αn(·)− α(·)), in `∞(T ),

(A.6)

where

Jϑ(·) =
∂

∂(β′, γ′)
E
[
ϕ·(Y −D′α(·)−X′β − Φ(·)′γ)Ψ(·)

]
(γ,β)=(0,β(·)) ,

Jα(·) =
∂

∂(α′)
E
[
ϕ·(Y −D′α−X′β(·))Ψ(·)

]
α=α(·) .

In other words for any supτ∈T ‖αn(τ)− α(τ)‖→p 0,

√
n(ϑ̂(αn(·), ·)− ϑ(·)) = −J−1ϑ (·)Gnf(W,α(·), ϑ(·), ·)− J−1ϑ (·)Jα(·)[1 + op(1)]

√
n(αn(·)− α(·)) + op(1) in `∞(T ),

i.e

√
n(γ̂(αn(·), ·)− 0) = −J̄γ(·)Gnf(W,α(·), ϑ(·), ·)− J̄γ(·)Jα(·)[1 + op(1)]

√
n(αn(·)− α(·)) + op(1) in `∞(T ),

where

[J̄β(·)′ : J̄γ(·)′]′ is the conformable partition of J−1ϑ (·).
By Step 2 wp → 1

α̂(τ) = arg inf
αn(τ)∈Bn(α(τ))

‖γ̂(αn(τ), τ)‖A(τ) for all τ ∈ T .

By Lemma 3, Gnf(W,α(·), ϑ(·), ·) = Op(1), thus

√
n‖γ̂(αn(·), ·)‖A(·) = ‖Op(1)− J̄γ(·)Jα(·)[1 + op(1)]

√
n(αn(·)− α(·))‖A(·) in `∞(T ).

Since J̄γ(τ)Jα(τ) and A(τ) have full rank uniformly in τ , 32
√
n(α̂(·) − α(·)) = Op(1) in `∞(T ). Hence, using

arguments similar to those in the proof of Lemma 2,

√
n(α̂(·)− α(·)) = arg inf

µ∈Rl
‖ − J̄γ(·)Gnf(W,α(·), ϑ(·), ·)− J̄γ(·)Jα(·)µ‖A(·) + op(1) in `∞(T ) ,

Conclude that in `∞(T ) jointly
√
n(α̂(·)− α(·)) = −

(
Jα(·)′J̄γ(·)′A(·)J̄γ(·)Jα(·)

)−1(
Jα(·)′J̄γ(·)′A(·)J̄γ(·)

)
Gnf(W,α(·), ϑ(·), ·) + op(1) = Op(1),

√
n(ϑ̂(α̂(·), ·)− ϑ(·)) = −J−1ϑ (·)

[
I − Jα(·)

(
Jα(·)′J̄γ(·)′A(·)J̄γ(·)Jα(·)

)−1
Jα(·)′J̄γ(·)′A(·)J̄γ(·)

]

× Gnf(W,α(·), ϑ(·), ·) + op(1) = Op(1).

Due to invertibility of Jα(τ)J̄γ(τ)

√
n (γ̂(α̂(·), ·)− 0) =

[
− J̄γ(·)

[
I − Jα(·)

(
Jα(·)′J̄γ(·)′

)−1
J̄γ(·)

]
Gnf(W,α(·), ϑ(·), ·) + op(1)

= 0×Op(1) + op(1) in `∞(T ).

31Note that by convention in empirical process theory Ef̂(W ) means (Ef(W ))
f=f̂

.

32Indeed, B(τ) =
∂Π(θ,τ)
∂(β′,α′)

−1
and G(τ) =

∂Π(π,τ)
∂(β′,γ′)

−1
, where the derivatives are evaluated at the true parameter

values, exist by the full rank assumption R3. Then using the partitioned inverse formula, note that J̄γ(τ)Jα(τ) =

G22(τ)(B22(τ))−1, where G22(τ) and B22(τ) are l× l lower-right blocks of G(τ) and B(τ). These blocks are invertible

by invertibility of G(τ) and B(τ), so J̄γ(τ)Jα(τ) is also invertible.
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Instead of working out the algebra to see a drastic simplification, using this fact and putting
(
αn(·), ϑ̂(αn(·), ·)

)
=

(
α̂(·), ϑ̂(·)

)
=
(
α̂(·), β̂(·), 0 + op(1/

√
n)
)
back into the expansion (A.6) we have

−Gnf(W,α(·), ϑ(·), ·) = J(·)
√
n

(
α̂(·)− α(·)
β̂(·)− β(·)

)
+ op(1) in `∞(T ) .

Next by Lemma 3, Gnf(W,α(·), ϑ(·), ·)⇒ G(·) in `∞(T ), where G(·) is the Gaussian process with covariance function

S(τ, τ ′) = (min(τ, τ ′)− ττ ′)EΨ(τ)Ψ(τ)′, which yields the desired conclusion

√
n

(
α̂(·)− α(·)
β̂(·)− β(·)

)
⇒ [J(·)]−1 G(·) in `∞(T ). ¤

A.5 Proof of Theorem 4

Part 1 follows by the Continuous Mapping Theorem. We also need that the distribution function of the limit statistics

is continuous on (0,∞). This follows by Theorem 11.1 in Davydov et al. (1998): The distribution of functionals f(v(·))
where f is of the specified sort, is absolutely continuous on (0,∞) once v(·) has a nondegenerate covariance kernel.

Part 2 follows by observing that f(
√
ng(·))→p ∞ implies f(

√
ng(·)+Gn(·))→p ∞, for any tight element Gn(·) = Op(1)

in `∞(T ), once the null is violated (once the composite null is violated for one-sided tests). ¤

A.6 Proof of Proposition 1

The result is immediate from assumptions. ¤

A.7 Proof of Theorem 5

We present the proof for the case where all of subsamples of size b constructed by sampling without replacement are

used. In practice, a smaller number Bn of randomly chosen subsets can also be used, if Bn → ∞ as n → ∞. The

argument extends to the randomly chosen subsets as in Section 2.5 in Politis et al. (1999). To simplify the presentation,

we assume that Λ(τ), J(τ), H(τ) are known. However, the case with estimated matrices is a straightforward extension

which follows, for example, using the arguments in Chernozhukov (2002) in Step II of this proof. Part 1 is shown in

Steps I and II, and Parts 2 and 3 are shown in Step III.

Step I. By assumption, wp → 1 realizations of function τ 7→ ẑ(W, τ) belong to a Donsker set of functions

denoted as {ξ(W, τ), τ ∈ T , ξ ∈ Ξ}. Consider the empirical process (τ, ξ) 7→ Gn(ξ(τ)), which is Donsker in `∞(T ×Ξ)

by assumption with the limit law denoted J . Consider also its subsample realizations (τ, ξ) 7→ Gj,b,n(ξ(τ)) ≡
1√
b

∑
i∈Ij (ξ(Wi, τ)− Eξ(Wi, τ)) , j = 1, ..., Bn. Let Jn denote the sampling (outer) law of (τ, ξ) 7→ Gn(ξ(τ)) in

`∞(T × Ξ), and let Lb,n denote the subsampling law of (τ, ξ) 7→ Gj,b,n(ξ(τ)) in `∞(T × Ξ). By Theorem 7.4.1 in

Politis et al. (1999)

ρBL

(
Lb,n, Jn

)
→p 0 and ρBL

(
Lb,n, J

)
→p 0, (A.7)

where ρBL denotes the Bounded-Lipschitz metric that metrizes weak convergence. See Politis et al. (1999) page 160

for definition.

For f denoting the KS and CM functionals on the empirical processes, let Jn(ξ) denote the (outer) law of

f [Gn(ξ(·))], let Lb,n(ξ) denote the subsampling (outer) law of f
[
Gj,b,n(ξ(·))

]
, and let J(ξ) denote the limit law

of f [Gn(ξ(·))], which exists by the Continuous Mapping Theorem. By (A.7) and definition of ρBL we have that

supξ∈Ξ
[
ρBL

(
Lb,n(ξ), Jn(ξ)

)]
→p 0 and supξ∈Ξ

[
ρBL

(
Lb,n(ξ), J(ξ)

)]
→p 0. This follows because the transformation

f [Gn(ξ(·))] is a uniform Holder-continuous functional of the mapping (ξ, τ) 7→ Gn(ξ(τ)). This immediately gives us

that

[
ρBL

(
Lb,n(ξ), Jn(ξ)

)]
ξ=ẑ

→p 0 and hence
[
ρBL

(
Lb,n(ẑ), J(z)

)]
→p 0, (A.8)
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provided we have the asymptotic continuity condition: ρBL(Jn(zn), J(z)) → 0 for any sequence zn ∈ Ξ such that

supτ∈T [E‖zn(τ) − z(τ)‖2] → 0. (Recall that by I.4 supτ∈T [E‖zn(τ) − z(τ)‖2]zn=ẑ →p 0). But this asymptotic

continuity property is immediate from the stochastic equicontinuity of the process (τ, ξ) 7→ Gn(ξ(τ)) implied by the

assumed Donskerness.

Let Hb,n denote the subsampling distribution function of f
[
Gj,b,n(ẑ(·))

]
, and let Γ denote the limit distribution

function of f [Gn(z(·))]. (A.8) is equivalent to pointwise convergence of Hb,n to Γ at the continuity points x of Γ(x),

that is Hb,n(x)→p Γ(x). The set of continuity points of Γ is (0,∞) as shown in the Proof of Theorem 2.

Step II. Now note that we actually need to show consistency of the subsampling distribution Γb,n of f
[
vj,b,n(·)

]
,

but difference between Γb,n and Hb,n is asymptotically negligible. Indeed,

f
[
Gj,b,n(ẑ(·))

]
−Kn ≤ f

[
vj,b,n(·)

]
≤ f

[
Gj,b,n(ẑ(·))

]
+Kn,

where e.g. when f is the KS function, for some constants Cj , j = 1, 2, 3 :

Kn = sup
τ∈T

∥∥∥
√
b · [Ez(W, τ)]z=ẑ

∥∥∥
Λ(τ)

≤ C1
√
b · sup

τ∈T

∣∣∣C2‖ϑ̂(τ)− ϑ(τ)‖+ C3‖r̂(τ)− r(τ)‖
∣∣∣ = Op

( √
b√
n

)
= op(1),

which follows by invoking I.4(b), I.4(c), and I.3. Thus for any δ > 0 wp → 1 1(En) = 1, where En ≡ {Kn ≤ δ}.
Given the event En for a small ε > 0 there is δ > 0 such that Hb,n(x− ε)1(En) ≤ Γb,n(x)1(En) ≤ Hb,n(x+ ε)1(En).

Hence it follows that wp → 1: Hb,n(x− ε) ≤ Γb,n(x) ≤ Hb,n(x+ ε). We have by Step I Hb,n(x+ c)→p Γ(x+ c), for

c = ε and c = −ε, which implies Γ(x− ε)− ε ≤ Γb,n(x) ≤ Γ(x+ ε) + ε wp → 1. Since ε can be set as small as we like

and Γ is continuous at points x of interest, this yields the conclusion Γb,n(x)→p Γ(x).

Step III. Finally, convergence of quantiles is implied by the convergence of distribution functions at continuity

points. Part 2 of Theorem 5 follows by steps that are identical to those in the proof of Part 1 (Steps I and II), except

that we have convergence of the subsampling distribution Γb,n to some other distribution Γ′ 6= Γ at the continuity

points. Note that by tightness of Γ′, cb,n(1 − α) = Op(1) even if Γ′ is not continuous at Γ′−1(1 − α). Part 3 of

Theorem 5 has already been proven in the proof of Theorem 4. ¤

B Lemmas

LEMMA 2 (Argmax Process) Suppose that uniformly in π in a compact set Π and for a compact set K (i) Zn(π)

is s.t. Qn(Zn(π)|π) ≥ supz∈K Qn(z|π) − εn, εn ↘ 0; Zn(π) ∈ K wp → 1, (ii) Z∞(π) ≡ argsupz∈K Q∞(z|π) is a
uniquely defined continuous process in `∞(Π), (iii) Qn(·|·)→p Q∞(·|·) in `∞(K × Π), where Q∞(·|·) is continuous.
Then Zn(·) = Z∞(·) + op(1) in `∞(Π).

Proof. The argument is a simple extension of the standard consistency argument, cf. Amemiya (1985). We have

Qn(z|π) = Q∞(z|π) + op(1) uniformly in (z, π) ∈ K × Π. For any c > 0, wp → 1 uniformly in ε ≥ c and uniformly

in π ∈ Π we have that: [i] Qn(Zn(π)|π) ≥ Qn(Z∞(π)|π)− ε/3 by definition, [ii] Q∞(Zn(π)|π) > Qn(Zn(π)|π)− ε/3

by the uniform convergence, [iii] Qn(Z∞(π)|π) > Q∞(Z∞(π)|π) − ε/3 by the uniform convergence. Hence wp → 1

Q∞(Zn(π)|π) > Qn(Zn(π)|π) − ε/3 ≥ Qn(Z∞(π)|π) − 2ε/3 > Q∞(Z∞(π)|π) − ε. Pick any δ > 0. Let {Bδ(π), π ∈
Π} be a collection of balls with diameter δ > 0, each centered at Z∞(π). Then ε ≡ infπ∈Π

[
Q∞(Z∞(π)|π) −

supz∈K\Bδ(π)
Q∞(z)

]
> 0 a.s. by assumption ii, and for any ε > 0 we can pick c > 0 so that for P (ε ≥ c) > 1 − ε.

It now follows that with probability becoming greater than 1− ε, uniformly in π: Q∞(Zn(π)|π) > Q∞(Z∞(π)|π)−
Q∞(Z∞(π)|π) + supz∈K\Bδ(π)

Q∞(z|π) = supz∈K\Bδ(π)
Q∞(z|π). Thus with probability becoming greater than

1− ε, supπ∈Π ‖Zn(π)− Z∞(π)‖ ≤ δ. But ε is arbitrary, so supπ∈Π ‖Zn(π)− Z∞(π)‖ ≤ δ wp → 1. ¤

LEMMA 3 (Stochastic Expansions) Under assumption R1-R4, and using notation defined in the proof of The-

orem 3, the following statements are true.

I. sup(α,β,γ,τ)∈A×B×G×T |En[ĝ(W,α, β, γ, τ)]− E[g(W,α, β, γ, τ)]| = op(1).
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II. Gnf(W,α(·), β(·), 0, ·) ⇒ G(·) in `∞(T ), where G is a Gaussian process with covariance function S(τ, τ ′)

defined in Theorem 2. Furthermore, for any supτ∈T ‖(α̂(τ), β̂(τ), γ̂(τ)) − (α(τ), β(τ), 0)‖ = op(1), it is the

case that supτ∈T ‖Gnf̂(W, α̂(τ), β̂(τ), γ̂(τ), τ)− Gnf(W,α(τ), β(τ), 0, τ)‖ = op(1).

Proof. We first show II. Denote π = (α, β, γ) and Π = A× B × G where G is a closed ball at 0. We first show that

the class of functions

H ≡
{
h = (Φ,Ψ, π, τ) 7→ ϕτ (Y −D′α−X′β − Φ(X,Z)′γ)Ψ(X,Z), π ∈ Π,Ψ ∈ F ,Φ ∈ F

}

is Donsker, where F is defined in R4. The bracketing number of F by Cor 2.7.4 in van der Vaart and Wellner (1996)

satisfies

logN[·](ε,F , L2(P )) = O(ε
− dim(z,x)

η ) = O(ε−2−δ
′
),

for some δ′ < 0. Thus F is Donsker with a constant envelope. By Cor 2.7.4 in van der Vaart and Wellner (1996) the

bracketing number of

X ≡
{
(Φ, π) 7→ (D′α−X′β − Φ(X,Z)′γ), π ∈ Π,Φ ∈ F

}

satisfies

logN[·](ε,X , L2(P )) = O(ε
− dim(z,d,x)

η ) = O(ε−2−δ
′′
)

for some δ′′ < 0. Using the idea contained in Remark 4 in Chernozhukov and Hong (2002), i.e. exploiting the

monotonicity and boundedness of indicator function and bounded density condition assumed in R3, it is immediate

that the bracketing number of

V ≡
{
(Φ, π) 7→ 1(Y < D′α+X′β +Φ(X,Z)′γ), π ∈ Π,Φ ∈ F

}

satisfies

logN[·](ε,V, L2(P )) = O(ε−2−δ
′′
)

as well. Since V also has constant envelope by R1 and R4, it is Donsker. Class H is formed by taking products and

sums of bounded Donsker classes F , V, and T ≡ {τ 7→ τ}, i.e. H ≡ T ·F −V ·F , which is Lipschitz over (T ×F ×V).
Hence by Theorem 2.10.6 in van der Vaart and Wellner (1996) H is Donsker.

Now we show claim II using the established Donskerness. Define the process

h = (Φ,Ψ, π, τ) 7→ Gnϕτ (Y −D′α−X′β − Φ(X,Z)′γ)Ψ(X,Z). (B.1)

This process is Donsker (asymptotically Gaussian) in `∞(H). Therefore the process τ 7→ Gnϕτ (Y − D′α(τ) −
X′β(τ))Ψ(τ,X, Z) is also Donsker in `∞(T ) by the uniform Holder continuity of τ 7→ (τ, α(τ)′, β(τ)′, Φ(τ,X, Z)′,

Ψ(τ,X, Z)′)′ in τ with respect to the supremum norm, as imposed by R3 and R4.33 Thus we have Gnϕ·(Y −
D′α(·) − X′β(·))Ψ(·, X, Z) ⇒ G(·). G(·) has covariance function S(τ, τ ′) = E[G(τ)G(τ ′)′] = E[ϕτ (Y − D′α(τ) −
X′β(τ))Ψ(τ)ϕτ ′(Y −D′α(τ ′)−X′β(τ ′))Ψ(τ ′)′] = E[(τ − 1(ε(τ) ≤ 0))(τ ′ − 1(ε(τ ′) ≤ 0))Ψ(τ)Ψ(τ ′)′] = (ττ ′ − ττ ′ −
ττ ′+min(τ, τ ′))E[Ψ(τ)Ψ(τ ′)′] = (min(τ, τ ′)−ττ ′)E[Ψ(τ)Ψ(τ ′)′], where ε(τ) ≡ Y −D′α(τ)−X′β(τ). This calculation

uses that P [ε(τ) ≤ 0|Z,X] = τ by Theorem 1.

Since Ψ̂(·)→p Ψ(·) and Φ̂(·)→p Φ(·) uniformly over compact sets and π̂(τ)− π(τ)→p 0 uniformly in τ , we have

by R3 and R4 that δn ≡ supτ∈T ρ(h′(τ), h(τ))|h′(τ)=ĥ(τ)→p 0, where ρ is the L2(P ) pseudometric on H:

ρ(h, h̃) ≡
√

E
∥∥∥ϕτ (Y −D′α−X′β − Φ(X,Z)′γ)Ψ(X,Z)− ϕτ̃ (Y −D′α̃−X′β̃ − Φ̃(X,Z)′γ̃)Ψ̃(X,Z)

∥∥∥
2
.

Hence as δn → 0

sup
τ∈T

∥∥∥Gnϕτ (Y −D′α̂(τ)−X′β̂(τ)− Φ̂(τ,X, Z)′γ̂(τ))Ψ̂(τ,X, Z)− Gnϕτ (Y −D′α(τ)−X′β(τ))Ψ(τ,X, Z)
∥∥∥

≤ sup
ρ(h̃,h)≤δn
h̃,h∈H

∥∥∥Gnϕτ̃ (Y −D′α̃−X′β̃ − Φ̃(X,Z)′γ̃)Ψ̃(X,Z)− Gnϕτ (Y −D′α−X′β − Φ(X,Z)′γ)Ψ(X,Z)
∥∥∥ = op(1),

33To check the Donskerness, it is easy to verify: (i) the stochastic equicontinuity of the process in τ with respect to

the L2(P ) pseudo-metric using the Holder property and stochastic equicontinuity of the process (B.1) in h, and (ii)

finite-dimensional asymptotic normality by the Lindeberg-Levy theorem.
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by stochastic equicontinuity of h 7→ Gnϕτ (Y −D′α−X′β − Φ(X,Z)′γ)Ψ(X,Z).

Having shown claim II, a simple way to show claim I is to note that functions

P =
{
(Φ, V, α, β, γ, τ) 7→ ρτ (Y −D′α−X′β − Φ(X,Z)′γ)V (X,Z)

}

are bounded by R1 and uniformly Lipschitz over (F ×F ×A×B×G ×T ) which by Theorem 2.10.6 in van der Vaart

and Wellner (1996) implies that P is Donsker. Donskerness implies a uniform LLN

sup
h∈H

∣∣∣Enρτ (Y −D′α−X′β − Φ(X,Z)′γ)V (X,Z)− Eρτ (Y −D′α−X′β − Φ(X,Z)′γ)V (X,Z)
∣∣∣→p 0

which gives

sup
(α,β,γ,τ)∈(A×B×G×T )

∣∣∣Enρτ (Y −D′α−X′β − Φ̃(τ,X, Z)′γ)Ṽ (τ,X, Z)

− Eρτ (Y −D′α−X′β − Φ̃(τ,X, Z)′γ)Ṽ (τ,X, Z)
∣∣∣
Φ̃(·)=Φ̂(·),Ṽ (·)=V̂ (·)

→p 0.

By uniform consistency of Φ̂(·) and V̂ (·) and R4 we also have that

sup
(α,β,γ,τ)∈(A×B×G×T )

∣∣∣Eρτ (Y −D′α−X′β − Φ̃(τ,X, Z)′γ)Ṽ (τ,X, Z)
∣∣∣
Φ̃(·)=Φ̂(·),Ṽ (·)=V̂ (·)

− Eρτ (Y −D′α−X′β − Φ(τ,X, Z)′γ)V (τ,X, Z)
∣∣∣→p 0.

The last two displays imply claim I. ¤.

C Verification of Linear Representations

LEMMA 4 The conditions I.3 and I.4 hold for the proposed implementation in Examples 1-3 under conditions

R.1-R.4. In Example 4 the conditions I.3 and I.4 hold under conditions R.1-R.4 for the IV-QR estimator and the

standard regularity conditions for the QR estimator, e.g. those in Angrist et al. (2003).

Proof. In Example 1, in the test of equality of distributions, I.3 is satisfied for θ̂(·) by Theorem 3. Since r = 0,

zi(τ) = R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)

]
, where

li(τ, θ(τ)) =
(
τ − 1(Yi < Diα(τ) +X′iβ(τ))

)
,Ψi(τ) = Vi(τ)[Φi(τ)

′, X′]′. (C.1)

Condition I.4(a) is checked in the proof of Lemma 3 in Appendix B, cf. the class of functionsH. Condition I.4.(b) holds

by Theorem 1 and since Ψi is a function of (Xi, Zi) only. Condition I.4(c) holds by the bounded density condition R.3.

In Example 2, in the test of constant effect, r̂(·) = θ̂( 1
2
) is an IV-QR estimate. Thus for li(·) defined in (C.1) zi(τ) =

R(τ)
[
J(τ)−1li(τ, θ(τ))Ψi(τ)− J( 1

2
)−1li( 12 , θ(

1
2
))Ψi( 12 ))

]
, i.e. di(τ, r(τ))Υi(τ) = li( 12 , θ(

1
2
))Ψi( 12 ). Thus I.3-I.4 hold

by the preceding argument. In Example 3, the test of stochastic dominance, r = 0, so the situation is identical to that

in Example 1. In Example 4, in the test of exogeneity, the estimate of r̂(τ) is given by the ordinary QR estimator of Y

on D,X, denoted as ϑ̂(τ). In this case under the regularity conditions specified in Angrist et al. (2003) the estimator

ϑ̂(τ) satisfies:
√
n
(
ϑ̂(·)− ϑn(·)

)
= −H(·)−1n−1/2∑n

i=1 di(·, ϑ(·)) + op(1), di(τ, ϑ(τ)) = (τ − 1(Yi < X̃′iϑ(τ))X̃i,

X̃i = (D′i, X
′
i)
′, H(τ) = EfY |X̃(ϑ(τ)′X̃)X̃X̃′. Thus the score is given by zi(τ) = R(τ)[J(τ)−1li(τ, θ(τ))Ψi(τ) −

H(τ)−1di(τ, ϑ(τ)], where Edi(τ, ϑ(τ)) = 0. The conditions I.3 and I.4 for li(τ, θ(τ))Ψi(τ) are checked above. As for

di(τ, ϑ), the proof of Lemma 3 checks I.4.(a) (put X̃i in place of Ψi and γ = 0). Note that Edi(τ, ϑ(τ)) = 0, so I.4.(b)

holds, and I.4.(c) holds by the bounded density condition R.3. ¤
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Figure 1: The sample size is 329,509. Coefficient estimates are on the vertical axis, while the quantile index
is on the horizontal axis. The shaded region is the 95% confidence band estimated using robust standard
errors. The left panel contains estimates of the returns to schooling obtained through instrumental variables
quantile regression, and the right panel presents estimates of the effect of years of schooling on earnings
obtained through standard quantile regression. For comparison, the dashed line in the first panel plots the
schooling coefficient estimated through standard quantile regression. All estimates were computed at .05
unit intervals for τ ∈ [.05, .95].


