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neous impact of variables on different points of an outcome distribution makes them

appealing in many economic applications. However, in observational studies, the vari-

ables of interest (e.g. education, prices) are often endogenous, making conventional

quantile regression inconsistent and hence inappropriate for recovering the causal ef-

fects of these variables on the quantiles of economic outcomes. In order to address

this problem, we develop a model of quantile treatment effects (QTE) in the presence

of endogeneity and obtain conditions for identification of the QTE without functional

form assumptions. The principal feature of the model is the imposition of conditions

which restrict the evolution of ranks across treatment states. This feature allows us

to overcome the endogeneity problem and recover the true QTE through the use of

instrumental variables. The proposed model can also be equivalently viewed as a

structural simultaneous equation model with non-additive errors, where QTE can be

interpreted as the structural quantile effects (SQE).
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1. Introduction

The ability of quantile regression models to characterize the heterogeneous impact of

variables on different points of an outcome distribution makes them appealing in many eco-

nomic applications. However, in observational studies, the variables of interest (e.g. education,

prices) are often endogenous, making conventional quantile regression methods inconsistent

and hence inappropriate for recovering the causal effects of these variables on the quantiles of

economic outcomes. In order to address this problem, we develop a model of quantile treat-

ment effects (QTE) in the presence of endogeneity and obtain conditions for identification

of the QTE without functional form assumptions. The principal feature of the model is the

imposition of conditions which restrict the evolution of ranks across treatment states. This

feature allows us to overcome the endogeneity problem and recover the true QTE through

the use of instrumental variables. Hausman and Sidak (2002), Januszewski (2002), and Cher-

nozhukov and Hansen (2001a, 2004) present economic applications of the model and method

proposed here.

Our proposal complements other modern heterogeneous effect models under endogeneity,2

but is different in that it puts restrictions on the evolution of ranks across treatment states and

that it primarily focuses on QTE. Our model also differs from that in Abadie, Angrist, and

Imbens (2002), who consider a QTE model for the (unobserved) sub-population of “compliers,”

which applies only to binary treatment variables. The approach in this paper is expressly

designed for studying heterogeneous QTE over the entire population and applies to binary,

discrete, and continuous treatment variables. As will be discussed, our approach is also

different from the control function methods for triangular structural models in Chesher (2003)

and Imbens and Newey (2003) that aim at estimating triangular structures using quantile

transforms. We instead aim at directly estimating the QTE (SQE) using IV equations. Also,

our approach provides a causal model and foundation for estimation methods based on IV

quantile-independence conditions and median-independence conditions.3

2E.g. see Heckman and Vytlacil (1999), Imbens and Angrist (1994), and Blundell and Powell (2001).
3Chernozhukov and Hansen (2001a, 2001b, 2004), Chernozhukov and Hong (2003), and Chernozhukov,

Imbens, and Newey (2003) propose estimation methods based on quantile-independence conditions to esti-

mate parameters of general heterogeneous (non-additive) models proposed in this paper. Hong and Tamer

(2003), Abadie (1995), Macurdy and Timmins (2001), Honore and Hu (2003), and Sakata (2001) use median-

independence and other robust moments to estimate classical additive models.
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2. The Model

In this section we present the model, its main statistical implication, and the principal

identification result. In what follows, we focus the discussion on the case where the treatment

(endogenous variable) takes on two values, D = 0 and D = 1, as it simplifies the discussion

and best illustrates the conditions required for identification. However, the definition of the

model and its main statistical implications do not rely upon this notational simplification.

The appendix contains generalizations to non-binary treatments.

2.1. Framework. Our model is developed within the conventional potential (latent) outcome

framework, e.g. Heckman and Robb (1986). Potential real-valued outcomes which vary among

individuals or observational units are indexed against potential treatment states d ∈ {0, 1}
and denoted Yd. The potential outcomes {Yd} are latent because, given the selected treatment

D, the observed outcome for each individual or observational unit is only one component

Y ≡ YD(2.1)

of the potential outcomes vector {Yd}. Throughout the paper, capital letters denote random

variables, and lower case letters denote the potential values they may take.

The objective of causal (structural) analysis is to learn about features of the distributions of

potential outcomes Yd. Of primary interest to us are the τ -th quantiles of potential outcomes

under various treatments d, conditional on observed characteristics X = x, and denoted as

q(d, x, τ).(2.2)

We will refer to the function q(d, x, τ) as the quantile treatment response (QTR) function.

We are also interested in the quantile treatment effects (QTE), defined as

q(1, x, τ)− q(0, x, τ),(2.3)

that summarize the differences in the impact of treatments on the quantiles of potential

outcomes.4 The related average effects are defined as
∫ 1

0
(q(1, x, τ)− q(0, x, τ))∂τ .5

Typically, the realized treatment D is selected in relation to potential outcomes inducing

selection bias (endogeneity). This makes the conventional quantile regression of observed Y on

4Early formulations of QTE go back to Lehmann (1974) and Doksum (1974). In cases when d is continuous,

QTE may be defined as the partial effects ∂q(d, τ)/∂d.

5In cases when d is continuous, ATE may be defined as
∫ 1

0
(∂q(d, τ)/∂d)∂τ.
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observed D inappropriate for measuring q(d, x, τ) and the derived QTE. The model presented

next states the conditions under which we can identify and estimate the quantiles of latent

outcomes through the nonlinear quantile-type conditional moment restrictions:

P [Y ≤ q(D,X, τ)|X,Z] = τ a.s.,(2.4)

where Z is an instrument that affects D but is independent of potential outcomes.

2.2. The Instrumental Quantile Treatment Effects (IVQR) Model. Having condi-

tioned on the observed characteristics X = x, each latent outcome Yd can be related to its

quantile function q(d, x, τ) as6

Yd = q(d, x, Ud), where Ud ∼ U(0, 1).(2.5)

We will refer to Ud as the rank variable, and note that representation (2.5) is essential to what

follows.

The rank variable Ud is responsible for heterogeneity of outcomes among individuals with

the same observed characteristics x and treatment state d. It also determines their relative

ranking in terms of potential outcomes; hence one may think of rank Ud as representing some

unobserved characteristic, e.g. ability or proneness.7 This interpretation makes quantile anal-

ysis an interesting tool for describing and learning the structure of heterogeneous treatment

effects and controlling for unobserved heterogeneity.8

For example, consider a returns-to-training model, where Yd’s are potential earnings un-

der different training levels d, and q(d, x, τ) is the earning function, which describes how an

individual having training d and “ability” τ is rewarded by the labor market. The earning

function may be different for different levels of τ , implying heterogeneous effects of training

on earnings of people that have different levels of “ability”.

Formally, our model consists of five conditions (some are representations) that hold jointly.

Main Conditions of the Model: Given a common probability space (Ω, F, P ), the following

conditions hold jointly with probability one:

6This follows by the Skorohod representation of random variables which states that given a collection of

variables {ζd}, each variable ζd can be represented as ζd = q(d, Ud), for some Ud ∼ U(0, 1), cf. Durrett (1996),

where q(d, τ) denotes the τ -quantile of variable ζd.
7Doksum(1974) uses the term proneness as in “prone to learn fast” or “prone to grow taller”.
8See Doksum(1974), Lehmann(1974), and Koenker and Hallock (2001).
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A1 Potential Outcomes. Conditional on X = x, for each d, Yd = q(d, x, Ud), where

q(d, x, τ) is strictly increasing in τ and Ud ∼ U(0, 1).

A2 Independence. Conditional on X = x,
{
Ud

}
are independent of Z.

A3 Selection. D ≡ δ(Z,X, V ) for some unknown function δ and random vector V .

A4 Rank Invariance or Rank Similarity. Conditional on X = x, Z = z,

(a) {Ud} are equal to each other; or, more generally,

(b) {Ud} are identically distributed, conditional on V .

A5 Observed Variables consist of Y ≡ q(D, X,UD), D, X and Z.9

The following is the main statistical implication of the model.

Theorem 1 (Main Testable Implication). Suppose conditions A1-A5 hold. Then for all τ ∈
(0, 1), a.s.

P [Y ≤ q(D,X, τ)|X,Z] = P [Y < q(D, X, τ)|X, Z] = τ,(2.6)

and UD ∼ U(0, 1) conditional on Z and X.

The result is simplest to see under rank invariance A4(a), i.e. when Ud = U for all d.

Indeed, by A1 under rank invariance, the event

{Y ≤ q(D,X, τ)} is equivalent to {U ≤ τ},(2.7)

which yields the conclusion given independence condition A3. The proof of Theorem 1 given

in the appendix provides more details and generalizes the result to rank similarity A4(b).

The model and the results of Theorem 1 are important for two reasons. First, Theorem 1

serves as a means of identifying the QTE in a general heterogeneous effects model. Second,

by demonstrating that the IVQR model leads to the conditional moment restrictions (2.6),

Theorem 1 provides an economic and causal foundation for estimation based on these restric-

tions; the pertinent estimation approaches are referenced in the introduction. It should be

noted that conditioning on the instrument as in (2.6) may appear to be a natural strategy

9Here UD = D · U1 + (1−D)U0 when D ∈ {0, 1} and, more generally, UD ≡ ∑
d 1(D = d) · Ud
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for estimating the QTE.10 However, this strategy will typically fail outside of the developed

IVQR model, where the quantiles of potential outcomes q(d, x, τ) will generally not satisfy

equation (2.6). Thus, the IVQR model provides conditions under which one can recover the

quantiles of potential outcomes from statistical equations (2.6) in applications.

2.3. Discussion of the Model. Condition A1 restates the basic Skorohod representation

(2.5) of potential outcomes with strict monotonicity imposed on the QTR function. The

imposition of strict monotonicity rules out discrete response cases that we hope to explore in

future work.

Condition A2 states that potential outcomes are independent of Z, given X, which is

a conventional independence restriction. Condition A3 is a convenient representation of a

treatment selection mechanism, stated for the purposes of discussion. In A3 the unobserved

random vector V is responsible for the difference in treatment choices D across observationally

identical individuals. The independence condition in A2 and A3 is significantly weaker than

the commonly made assumption – that both the disturbances {Ud} in the outcome equations

and the disturbances V in the selection equation are jointly independent of the instrument

Z; e.g. Heckman and Robb (1986) and Imbens and Angrist (1994). The latter assumption

may be violated when the instrument is measured with error, cf. Hausman (1977), or the

instrument is not assigned exogenously relative to the selection equation, cf. Example 2 in

Imbens and Angrist (1994).

Condition A4 is probably the most important assumption. Its simplest, though strongest,

form is rank invariance, A4(a), when ranks Ud do not vary with potential treatment states

d:11

Ud = U for each d.(2.8)

For example, under rank invariance, people who are strong (highly ranked) earners without

a training program remain strong earners having done the training. Indeed, the earning of

a person with rank U = τ in the training state “0” is Y0 = q(0, x, τ) and in the state “1” is

10In general, variation of treatment effects across individuals creates many problems for “conditioning on

Z” approaches, as explained in Heckman and Robb (1986). This problem is resolved here by imposing rank

similarity conditions and using quantile transforms.
11Notice that under rank invariance, condition A3 is a pure representation, not a restriction, since nothing

restricts the unobserved information component V .
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Y1 = q(1, x, τ).12 Thus, rank invariance implies that a common unobserved factor U – say,

innate ability – determines the ranking of a given person across treatment states. Conditioning

on appropriate covariates X may be important to achieve rank invariance.

However, rank invariance implies that the potential outcomes {Yd} are not truly multi-

variate, being jointly degenerate, which may be implausible on logical grounds as noted in

Heckman, Smith, and Clements (1997). Also, the rank variables Ud may be determined by

many unobserved factors. Thus, it is desirable to allow the rank Ud to change across d, reflect-

ing some unobserved, unsystematic variation. Rank similarity A4(b) achieves this property,

thus accommodating general multivariate outcomes, while managing to preserve the useful

moment restriction (2.6).

Rank similarity A4(b) relaxes exact rank invariance by allowing unsystematic deviations,

“slippages” in one’s rank away from some common level U . Rank similarity requires that,

conditional on U , which may enter disturbance V in the selection equation, the slippages13

Ud − U are identically distributed across d ∈ {0, 1}.(2.9)

In this formulation, we implicitly make the assumption that one selects the treatment without

knowing the exact potential outcomes; i.e. one may know U and even the distribution of

slippages, but does not know the exact slippages Ud − U . This assumption is consistent with

many empirical situations where the exact latent outcomes are not known beforehand.

In summary, rank similarity is the main restriction of the IVQR model that allows us

to address endogeneity. This restriction is absent in conventional endogenous heterogeneous

treatment effect models. However, rank similarity enables a more general selection mechanism,

A3, that requires neither the monotonicity assumptions of the LATE approach (Imbens and

Angrist 1994) nor the stronger independence assumptions of the conventional models listed

earlier. The main force of rank similarity and the other stated assumptions is the implied

moment restriction (2.6) of Theorem 1, which is useful for estimation and identification of the

quantile treatment effects.

12Rank invariance is used in many interesting models without endogeneity. See e.g. Doksum (1974),

Heckman, Smith, and Clements (1997), Koenker and Geling (2001).
13Formally, conditioning is required to be on all components of V in the selection equation A3.
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2.4. Identification. As in Newey and Powell (2003), we focus on obtaining point-identifying

assumptions. Newey and Powell (2003) show that a necessary and sufficient condition for

nonparametric identification of a function µ under the conventional linear IV condition

E(Y − µ(D)|Z) = 0 a.s.(2.10)

is that the Jacobian of the vector of moment equations should be of full rank when D is binary

or discrete. They also demonstrate that for continuous D the full rank condition generalizes

to an instrument completeness condition; see the Appendix.

Our identification conditions are also formulated in terms of full rank and completeness

conditions. However, the conditions differ from those in Newey and Powell (2003) in that they

reflect the specific nature of our problem and, due to nonlinear nature of the IV condition

(2.6), are not minimal. In the main text, we focus the discussion on the binary case, which

is the most relevant case for program evaluation, where D’s ∈ {0, 1} are participation states

and Z’s ∈ {0, 1} are offers of participation. Generalizations to discrete and continuous D and

Z follow analogously, and formal results are stated in the appendix.

The following analysis is all conditional on X = x and for a given quantile τ ∈ (0, 1),

but we suppress this dependence for ease of notation. Under the conditions of Theorem 1 we

know that there is at least one function q(d) ≡ q(d, x, τ) that solves P [Y ≤ q(D)|Z] = τ a.s.

The function q(·) can be equivalently represented by a vector of its values q = (q(0), q(1))′.

Therefore, for vectors of the form y = (y0, y1) and the vector of moment equations

Π(y) ≡ (
P [Y ≤ yD|Z = 0]− τ, P [Y ≤ yD|Z = 1]− τ )′,(2.11)

where yD ≡ (1−D) · y0 + D · y1, the identification question is whether y = q uniquely solves

Π(y) = 0. Next we specify a parameter space L consisting of vectors that may also potentially

solve Π(y) = 0. Identification will hold when a rank condition is imposed on all elements of

L.

Fix some small constants δ > 0 and f > 0, and define L as a closed rectangle containing

all vectors (y0, y1) that satisfy

(i) for each z, P [Y < yD|Z = z] ∈ [τ − δ, τ + δ], and

(ii) for each d, yd ∈ sd ≡ {λ : fY (λ|d, z) ≥ f for all z with P [D = d|Z = z] > 0}.
(2.12)
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Condition (i) defines the parameter space L as a set of potential solutions to the moment

equations Π(y) = 0, while condition (ii) requires these solutions to be in the support of

the response variable. Define the Jacobian of the moment equations Π(y) with respect to

y = (y0, y1)
′ as

Π′(y) ≡
[

fY (y0|D = 0, Z = 0)P [D = 0|Z = 0] fY (y1|D = 1, Z = 0)P [D = 1|Z = 0]

fY (y0|D = 0, Z = 1)P [D = 0|Z = 1] fY (y1|D = 1, Z = 1)P [D = 1|Z = 1]

]

≡
[

fY,D(y0, 0|Z = 0) fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 1) fY,D(y1, 1|Z = 1)

]
.

(2.13)

Theorem 2 (Global Identification by Full Rank Conditions). Suppose A1-A5 hold, the support

of D is {0, 1} and the support of Z is {0, 1}. Assume that for the sets L and sd specified above

(i) Π′(y) is continuous for all y ∈ L, and (ii) q(d) ∈ sd for each d. Then the τ -quantiles of

potential outcomes, q = (q(0), q(1)), are identified if

rank [Π′(y)] is full for any y ∈ L.(2.14)

Condition (i) imposes continuity on the conditional density and (ii) is an inclusion assump-

tion that requires that the realized outcome Y takes on values around q(d). This condition

implies that q ∈ L. Therefore, to check identification one needs to show that y = q is the

only solution to Π(y) = 0 among all y ∈ L. The main condition, (2.14), insures that y = q

is the unique solution by imposing that the Jacobian Π′(y) is of full rank for all y ∈ L. The

full rank condition requires the impact of instrument Z on the joint distribution of (Y,D) to

be sufficiently rich; in particular, the instrument Z should not be independent of the endoge-

nous variable D. The proposed global identification condition is stronger but is almost as

reasonable as the local identification condition: rank [Π′(y)] is full for y = q.

In applications, the identification conditions may also be weakened by restricting the pa-

rameter space L using further economic restrictions. If economic restrictions impose that

(q(0), q(1))′ ∈ LR for some convex closed set LR in R2, then L can be replaced by LR ∩ L
provided conditions of Theorem 3 stated in the Appendix hold.

To illustrate the above condition, note that rank Π′(y) is full is equivalent to det Π′(y) 6= 0,

which implies

fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
>

fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
for all y = (y0, y1) ∈ L(2.15)
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(or the same condition but with > replaced with <). Inequality (2.15) may be interpreted

as a monotone likelihood ratio condition. That is, the instrument Z should have a monotonic

impact on the likelihood ratio specified in (2.15), which in general is a stronger condition

than the usual condition that D is correlated with Z. Nevertheless, the condition (2.15) will

be trivially satisfied in many useful contexts. For instance, if we impose monotonicity of the

treatment impact on the outcome quantiles, so that q(1) ≥ q(0), i.e. q ∈ LR = {y ∈ R2 :

y1 ≥ y0}, then condition (2.15) has to hold only for y ∈ LR ∩ L. That is, it simply suffices

that the instrument Z (e.g. the offer of treatment) increases the relative joint likelihood of

receiving the treatment and having a weakly higher outcome, which is a plausible condition in

many program evaluation applications. In other cases, we also have that P [D = 1|Z = 0] = 0

(e.g. those not offered a treatment do not receive that treatment), so that the right-hand side

of (2.15) equals 0, which makes the identification condition (2.15) satisfied trivially, without

monotonicity restrictions.14

2.5. Partial Identification and The Identification Region. When the rank conditions do

not hold, point identification may not hold generally, just as in the additive IV models studied

in Newey and Powell (2003). In that case, given a quantile of interest τ , the identification

region of models for q(d, x, τ) can be stated as the set M of functions m(d, x) that satisfy the

following relations:

P [Y ≤ m(D, X)|X, Z] = P [Y < m(D,X)|X, Z] = τ a.s.(2.16)

This representation of the identification region M is implicit, since a closed-form represen-

tation of M does not exist generally.15 Nevertheless, statistical inference about M can be

based on (2.16) and can be carried out using the set-inference approach described in Manski

and Tamer (2002) and Chernozhukov, Hong, and Tamer (2003).

3. Comparison with Control Function Approach

It is useful to compare our approach with the recent literature on Roehrig (1988) type

triangular simultaneous equations, e.g. Chesher (2003) and Imbens and Newey (2003). In

14However, this implicitly requires the technical condition that the supports sets s0 and s1 specified in

(2.12) are connected.
15This implicit nature of the identification region is not special to the present problem, and would hold

generally for problems where parameters solve nonlinear moment equations.
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order to do so, recall that the observational equations of our model (A5) combined with the

main implication of the model (Theorem 1), suppressing dependence on covariates X, yield

the following relations:
{

Y = q(D,UD)

D = δ(Z, V )
; UD is a scalar independent of Z,(3.1)

where q(d, τ) is the quantile treatment response function. The disturbances in the selection

equation V are possibly multivariate and some components of V may depend on Z.

The model studied in Chesher (2003) and Imbens and Newey (2003) takes the following

form:
{

Y = t(D, ν, η)

D = ϕ(Z, ν)
; η, ν are scalars jointly independent of Z,(3.2)

where D and Z are both continuous and t(d, ν, η) is strictly increasing in η and ϕ(z, ν) is

strictly increasing in ν.16

Since Chesher (2003) and Imbens and Newey (2003) require D and Z to be continuous,

their approach does not apply to typical returns-to-education examples or program evaluation

studies. In contrast, our approach allows for both discrete and continuous D and Z. Moreover,

our outcome equation is stated in terms of the quantile treatment response function q(d, τ),

which is a conceptually different object than the triangular structural function t(d, ν, η). Hence

our prime object of interest is also different from that in those papers. However, when (3.2)

implies (3.1), by defining the quantile response function q(d, τ) as the quantile function of

t(d, ν, η) for fixed d, our approach is applicable to (3.2) as well. At the same time, our

approach does not impose the strong independence and continuity assumptions employed in

(3.2).

The joint independence condition and scalar nature of ν in (3.2) are essential for identifica-

tion in the control function strategies used by Chesher (2003) and Imbens and Newey (2003).

However, this condition expressly requires the instrument Z to be independent of the distur-

bances in the whole system, thus ruling out potentially useful instruments that will remain

valid in our approach. For example, Imbens and Angrist (1994) provide important examples

16Chesher (2003) actually employs a local independence condition that suffices for local identification.

Imbens and Newey (2003) also analyze identification of average derivatives and other functionals of t(d, ν, η)

without the condition that η is a scalar.
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in which the instrument Z is assigned depending on D, though independently of potential

outcomes. In another example, Hausman (1977) shows that when Z is measured with error

the triangular structure (3.2) becomes inapplicable.17 Our approach accommodates these sit-

uations, since it allows V in D = ϕ(Z, V ) to be of arbitrary dimension and some components

of V to be correlated with Z.

4. Conclusion

In many observational studies, the variables of interest are endogenous, making quantile

regression inappropriate for recovering the causal effects of these variables on the quantiles of

economic outcomes. In this paper, we have developed a model of quantile treatment effects

in the presence of endogeneity and obtained conditions for identification of the QTE without

functional form assumptions. The key feature of the model is the imposition of conditions

which restrict the evolution of the distribution of the ranks across treatment states. This

feature allows us to overcome the endogeneity problem and recover the true QTE through

the use of instrumental variables. The proposed model can also be equivalently viewed as a

structural simultaneous equation model with non-additive errors.

There are several interesting directions for further work. The previous discussion of iden-

tification of QTE relates to the broader issue of identification of the joint distribution of

outcomes. Our approach identifies the marginal quantiles of potential outcomes, as is typ-

ically required in welfare analysis, but does not identify the joint distribution of outcomes,

unless the extreme case of rank similarity (rank invariance) is imposed. However, one may

potentially adopt the approach of Heckman, Smith and Clements (1997) to put bounds on the

joint distributions even under rank similarity. In their approach, developed for the exogenous

setting, one first assumes a bound on the degree of slippage in the ranks, and then derives

bounds on the joint distributions from the marginal distributions. Implementation of this

approach in the present endogenous setting is an interesting direction for further work.

Dept. Economics, Massachusetts Institute of Technology, E52-262F, 50 Memorial Drive,

Cambridge, MA 02142, U.S.A.; vchern@mit.edu; www.mit.edu/˜vchern,

and,

17In this case, the selection equation contains the original structural disturbance and an additional mea-

surement error correlated with Z, violating model (3.2).
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Graduate School of Business, University of Chicago, 1101 East 58th Street Chicago, IL

60637, USA.; chansen1@gsb.uchicago.edu.
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Appendix A. Proof of Theorem 1

Conditioning on X = x is suppressed. We first show the result under rank invariance A4(a)

and then generalize to rank similarity A4(b). Under rank invariance, Ud = U for each d, so

that a.s.

P [Y ≤ q(D, τ)|Z]
(1)
= P [q(D, U) ≤ q(D, τ)|Z]

(2)
= P [U ≤ τ |Z]

(3)
= τ,(A.1)

where equality (1) follows from representation A1, A5, and rank invariance. Define the inverse

of q(d, τ) in its second argument as q−1
2 (D, y) ≡ inf{p : q(D, p) ≥ y}. Because q(d, τ) is strictly

increasing in τ , it is one-to-one and its inverse is also strictly increasing by A1. Hence, applying

the inverse to both sides of the inequality q(D, U) ≤ q(D, τ), we have the equivalence of two

events

{q(D,U) ≤ q(D, τ)} = {U ≤ τ},(A.2)

which shows (2). Lastly, (3) follows by the independence condition A2 and rank invariance

A4(a). A similar argument shows that P [Y < q(D, τ)|Z] = τ a.s.

Now let us relax the rank invariance assumption A4(a), and assume rank similarity A4(b).

For P -a.e value z of Z,

P
[
Y ≤ q(D, τ)|Z = z

] (1)
= P [q(D, UD) ≤ q (D, τ) |Z = z]

(2)
= P [UD ≤ τ |Z = z]

(3)
=

∫
P [UD ≤ τ |Z = z, V = v] dP [V = v|Z = z]

(4)
=

∫
P

[
Uδ(z,v) ≤ τ |Z = z, V = v

]
dP [V = v|Z = z]

(5)
=

∫
P [U0 ≤ τ |Z = z, V = v] dP [V = v|Z = z]

(6)
= P [U0 ≤ τ |Z = z]

(7)
= τ.

(A.3)

Equality (1) is by A1 and A5. Equality (2) is immediate from the equivalence relation

{q(D, UD) ≤ q(D, τ)} = {UD ≤ τ}, which follows similarly to (A.2). Equality (3) is by

definition. Equality (4) is by the representation A3. Equality (5) is by the similarity assump-

tion A4(b) and representation A3: Conditional on (V = v,X = x, Z = z), D = δ(z, v) is a
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constant, so that by A4(b)

Uδ(z,v) equals in distribution U0,(A.4)

where “0” denotes any fixed value of D. Equality (6) is by definition, and equality (7) is by

the independence assumption A2. Similarly, we conclude P [Y < q(D, τ)|Z] = τ a.s.

Finally, the conclusion that UD is U(0, 1) conditional on Z follows from (A.3) .

Q.E.D.

Appendix B. Proof of Theorem 2

The result can be deduced from the high-level technical results, e.g the ones used in Theorem

3, but this case is simple enough to give an elementary proof that highlights the essence of

what is required for point identification. Consider the two nonlinear curves (iso-probability

curves) defined as

Y = {(y0, y1) : P [Y ≤ yD|Z = 0] = τ} and Ỹ = {(y0, y1) : P [Y ≤ yD|Z = 1] = τ}.(B.1)

By Theorem 1 and by condition (ii), q = (q(0), q(1)) ∈ L. Hence we need to check whether

y = q is the only solution to Π(y) = 0 over L. The common set of solutions of the two moment

equations defined in (B.1) over L is given by (Y ∩ Ỹ ∩ L). By Theorem 1 and by condition

(ii), q ∈ (Y ∩ Ỹ ∩ L). Point identification requires that q is the only point in (Y ∩ Ỹ ∩ L).

Under the stated conditions, curves Y and Ỹ satisfy the differential equations:

fY,D(y0, 0|Z = 0)dy0 + fY,D(y1, 1|Z = 0)dy1 = 0 and fY,D(y0, 0|Z = 1)dy0 + fY,D(y1, 1|Z = 1)dy1 = 0.

(B.2)

Thus the slopes of the curves Y and Ỹ at y = (y0, y1) in L are given by

(
dy0

dy1

) ∣∣∣∣∣
(y0,y1)

= −fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
and

(̃
dy0

dy1

)∣∣∣∣∣
(y0,y1)

= −fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
.(B.3)

The slopes take values only in [−∞, 0] since entries of Π′(y) are non-negative and rank Π′(y)

is full. Moreover, the slopes are not equal to each other when evaluated at the same point

(y0, y1) in L, if rank Π′(y) is full. It is intuitively clear that if one slope is bigger than the other

at some relevant points, the curves Y and Ỹ intersect over L only once, hence the solution

set (Y ∩ Ỹ ∩ L) should be a singleton. The following argument shows that it suffices that the

slopes are different only when evaluated at any same point (y0, y1) in L.
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Since we suppose that the Jacobian is continuous, the determinant of Π′(y) is continuous

in y = (y0, y1) over L. Hence the assumption rank Π′(y) = 2 for all y ∈ L is equivalent to

det Π′(y) > (or <) 0 for all y ∈ L. This is equivalent to the condition

fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
>

fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
for all y = (y0, y1) ∈ L, or

fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
<

fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
for all y = (y0, y1) ∈ L.

(B.4)

In the main text, this was interpreted as the monotone likelihood ratio property.

By L being compact and Milnor (1964), p.8, the set (Y ∩ Ỹ ∩ L) is finite. Denote its

points as a collection of vectors (y(j), j = 1, ..., k), for k < ∞, where each y(j) is of the form

y(j) = (y
(j)
0 , y

(j)
1 ) ∈ L. If k > 1, there must be at least two solutions y(j) and y(j′) in L such

that the slopes of the iso-probability curves satisfy the relations

(
dy0

dy1

) ∣∣∣∣∣
y(j)

>

(̃
dy0

dy1

)∣∣∣∣∣
y(j)

and

(
dy0

dy1

) ∣∣∣∣∣
y(j′)

<

(̃
dy0

dy1

)∣∣∣∣∣
y(j′)

.(B.5)

That is, if there exist multiple crossings in L of curve Y by curve Ỹ , for any crossing point

y(j) of Y by Ỹ from above, there must be another crossing point y(j′) where the direction of

crossing is the opposite – from below. (If k > 1, crossings can not be all from above or all

from below since the slopes of the curves are restricted to [−∞, 0]). Crossing from opposite

directions implies (B.5), posing a contradiction to (B.4) and (B.3).

Q.E.D.

Appendix C. Generalizations

In this section we generalize the identification work to non-binary treatments. Note that

the definition of the model in A1-A5 and Theorem 1 do not depend on treatments being

binary. The following analysis is all conditional on X = x and for a given quantile τ ∈ (0, 1),

but we suppress this dependence for ease of notation. First consider the case when D has the

support {1, ..., l} and Z has the support {1, ..., r} (l ≤ r < ∞). Note that function q(·) can

be represented by a vector q = (q(1), ..., q(l)) ∈ Rl. Under conditions of Theorem 1 there is

at least one function q(d) that solves P [Y ≤ q(D)|Z] = τ a.s.. Therefore, for vectors of the
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form y = (y1, ..., yl) and the vector of moment equations

Π(y) =
(
P [Y ≤ yD|Z = z]− τ, z = 1, ..., r)′,(C.1)

where yD ≡ ∑
d 1[D = d] · yd, the identification question is whether y = q uniquely solves

Π(y) = 0.

Fix some small constants δ > 0 and f > 0, and define the set L as the convex hull of

all vectors y = (y1, ..., yl) that satisfy (i) for each z, P [Y ≤ yD|Z = z] ∈ [τ − δ, τ + δ],

where yD ≡ ∑l
d=1 yd · 1(D = d), and (ii) for each d, yd ∈ sd ≡ {λ : fY (λ|d, z) > f >

0 for all z with P [D = d|Z = z] > 0}, where d denotes elements in the support of D and z

denotes elements in the support of Z. The parameter space L contains potential solutions to

the equations Π(y) = 0. Imposition of further economic restrictions LR on L can be useful in

applications (as discussed in the main text). In that case, provided LR ∩ L is convex, L can

be replaced by LR ∩ L without affecting the argument given below.

Identification will hold when a rank condition is imposed on each element of L. Define

Π′(y) = d
dy′Π(y) as the Jacobian matrix of Π(·) with a typical (z, d)-th element given by

fY (yd|D = d, Z = z)P [D = d|Z = z], where d = 1, ..., l, z = 1, ..., r. Let Πm(y) denote the

m-th (l × 1) sub-block of Π(y) for some ordering 1, ..., M of all (l × 1) sub-blocks, and let

Π′
m(y) denote the corresponding Jacobian. The following theorem generalizes Theorem 2.

Theorem 3 (Identification for Discrete D). Suppose A1-A5 hold, and the support of D is

{1, ..., l} and of Z is {1, ..., r}. Assume that for the sets L and sd specified above (i) q(d) ∈ sd

for each d, and (ii) Π′(y) is continuous for all y ∈ Rl. Then, q = (q(1), ..., q(d))′ is identified,

if L can be covered by convex compact sets {Lj} with smooth boundary such that for each j,

q ∈ Lj and there is m(j) s.t.

rank [Π′
m(j)(y)] is full for all y ∈ Lj,(C.2)

and either Π′
m(j)(y) is positive quasi-definite at the boundary of Lj, in the sense of Mas-Colell

(1979a), or, more generally, Πm(j)(Lj) is simply connected.

Comment C.1. The proof uses variants of Hadamard’s global inverse function theorem given

by Ambrosetti and Prodi (1995) and Mas-Colell (1979a); also see Mas-Colell (1979b) for

useful discussion. Here, application of Mas-Colell (1979a)’s Theorem 2 requires the technical
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condition on principal minors, while application of Ambrosetti and Prodi (1995)’s Theorem

1.8 requires the simple connectivity of the image set Πm(j)(Lj).

Proof. By Theorem 1 and by condition (i), q ∈ L. Hence we need to check whether y = q

is the only solution to Π(y) = 0 over L. Consider a covering set Lj. By A1-A5, Theorem 1

implies that Πm(j)(q) = 0, where Πm(j)(y) denotes the m(j)-th (l × 1) sub-block of Π(y). By

assumption q ∈ Lj. The stated rank conditions and compactness and covexity of Lj imply

that the mapping y → Πm(j)(y) is a homeomorphism (one-to-one) between Lj and Πm(j)(Lj),

by the global inverse function theorem, cf. Theorem 2 in Mas-Colell (1979a) or Theorem 1.8

in Ambrosetti and Prodi (1995). Thus, y = q is the unique solution of Πm(j)(y) = 0 over Lj.

Since this argument applies to every j and {Lj} cover L, it follows that y = q is the unique

solution of Π(y) = 0 over L.

Q.E.D.

Finally we consider continuous D. Recall that in the IV equation E(Y − µ(D)|Z) = 0

a.s., the condition for identification of a bounded function µ(·) is the bounded completeness

condition, cf. Newey and Powell (2003):18 For any bounded function ∆(d) = m(d)− µ(d)

L1 E[∆(D)|Z] = 0 a.s. ⇒ ∆(D) = 0 a.s.

Lehmann (1959) provided a fundamental sufficient condition for L1:

L2 fD(d|z) is a full rank exponential or any other boundedly-complete family.

For instance, the full rank exponential family condition means that fD(d|z) ∝ exp(η(z)′T (d)+

h(d) + λ(z)), where η(z) must vary over an open rectangle in Rdim(T (d)), which imposes that

the number of continuous, jointly nondegenerate instruments should be larger than or equal

to dim(T (d)) ≥ dim(d), cf. Newey and Powell (2003). Condition L2 is reasonable because the

exponential families include or approximate a broad variety of nonparametric distributions,

cf. Stone (1991).

In our case, we can transform both Y and D to have bounded support, without loss of

generality. Fix some small constants δ, f > 0, and define the relevant parameter space L as

the convex hull of functions m(·) that satisfy : (i) for each z, P [Y ≤ m(D)|z] ∈ [τ − δ, τ + δ]

and (ii) for each d, m(d) ∈ sd ≡ {y : fY (y|d, z) ≥ f > 0 for all z with fD(d|z) > 0}, where d

18Actually, L1 is weaker than the unbounded completeness used by Newey and Powell (2003); see Mattner

(1993).
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denotes elements in the support of D and z denotes elements in the support of Z. For any

bounded ∆(d) = m(d)− q(d) with m(·) ∈ L and ε ≡ Y − q(D), consider two conditions:

L1* E [∆(D) · ω(D,Z)|Z] = 0 a.s. ⇒∆(D) = 0 a.s., for ω(D,Z) =
∫ 1

0
fε(δ∆(D)|D, Z)dδ >

0.

L2* ϕ(d|z) ≡ c(z) · ω(d, z) · fD(d|z) is a full rank exponential or other boundedly-complete

family.19

Comment C.2. Condition L1* is a bounded completeness condition, an analog of L1; and L2*

is an analog of L2. These condition suffices for global identification. The local bounded com-

pleteness conditions (L1’ and L2’) are obtained simply by replacing ω(D, Z) with ω′(D, Z) =

fε(0|D, Z) in L1* and L2*. These conditions suffice only for local identification, but are easier

to check.20

Theorem 4 (Identification for Continuous D). Suppose A1-A5 hold, and both Y and D have

bounded support. Assume that (i) the density fε(e|D, Z) is continuous and bounded in e over

R, a.s., and (ii) q(d) ∈ sd for each d. Then q(·) is identified,21 if L1* (or L2*) holds.

Proof. By Theorem 1, q solves P [Y ≤ q(D)|Z] = τ a.s., and by condition (ii) q ∈ L. Hence

we need to check whether q is the only solution to P [Y ≤ q(D)|Z] = τ a.s. in L. Suppose

there is m ∈ L such that P [Y ≤ m(D)|Z] = τ a.s. Define ∆(d) ≡ m(d)− q(d), and write

P [Y ≤ m(D)|Z]− P [Y ≤ q(D)|Z]
(1)
= E[E[

∫ 1

0

fε(δ∆(D)|D,Z)∆(D)dδ|D, Z]|Z]

(2)
= E[

∫ 1

0

fε(δ∆(D)|D,Z)∆(D)dδ|Z]

(3)
= E[∆(D) · ω(D, Z)|Z].

(C.3)

Noting that ∆(D) and fε(δ∆(D)|D, Z) are bounded, observe that (1) follows by the fun-

damental theorem of calculus, (2) by the law of iterated expectations, and (3) by linearity

of integration. For uniqueness, we need that (C.3)=0 a.s. ⇒ ∆(D) = 0 a.s. This shows

sufficiency of L1*.

19The constant c(z) > 0 is chosen so that ϕ(d|z) integrates to one over the support of D given Z = z.
20See Chernozhukov, Imbens, and Newey (2003).
21I.e. for any other m(·) ∈ L such that P [Y ≤ m(D)|Z] = τ a.s., m(D) = q(D) a.s.
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Since E[∆(D) ·ω(D, z)|z] ∝ Eϕ(·|z)[∆(D)] and by condition (ii) {ϕ(d|z) = 0} ⇔ {fD(d|z) =

0}, it follows by Lehmann (1959) that Eϕ(·|z)[∆(D)] = 0 P −a.e. ⇒ ∆(D) = 0 P −a.s. Here

Eϕ(·|z) denotes the expectation with ϕ(d|z) used as a density for d. Hence L2* is sufficient for

L1*.

Q.E.D.
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