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LIKELIHOOD ESTIMATION AND INFERENCE IN A CLASS OF
NONREGULAR ECONOMETRIC MODELS

BY VICTOR CHERNOZHUKOV AND HAN HONG1

We study inference in structural models with a jump in the conditional density, where
location and size of the jump are described by regression curves. Two prominent exam-
ples are auction models, where the bid density jumps from zero to a positive value at
the lowest cost, and equilibrium job-search models, where the wage density jumps from
one positive level to another at the reservation wage. General inference in such models
remained a long-standing, unresolved problem, primarily due to nonregularities and
computational difficulties caused by discontinuous likelihood functions.

This paper develops likelihood-based estimation and inference methods for these
models, focusing on optimal (Bayes) and maximum likelihood procedures. We derive
convergence rates and distribution theory, and develop Bayes and Wald inference. We
show that Bayes estimators and confidence intervals are attractive both theoretically
and computationally, and that Bayes confidence intervals, based on posterior quantiles,
provide a valid large sample inference method.

KEYWORDS: Point process, extreme value theory, Bayes, frequentist validity of pos-
terior, computational complexity, epi-convergence, insufficiency of maximum likeli-
hood.

1. INTRODUCTION

THIS PAPER DEVELOPS estimation and inference methods for structural mod-
els with a jump in the conditional density, where the location of the jump is
described by a parametric regression curve. The jump in the density is very in-
formative about the parameters of this curve and results in a nonregular and
difficult inference theory, implying highly discontinuous likelihoods, nonstan-
dard rates of convergence and inference, and considerable implementation dif-
ficulties. Aigner, Amemiya, and Poirier (1976) proposed early models of this
type in the context of production efficiency analysis. Many recent econometric
models also share this interesting structure. For example, in models of pro-
curement auctions, cf. Donald and Paarsch (1993a), the conditional density of
winning bids jumps from zero to a positive value at the lowest cost; in models of
equilibrium job search (Bowlus, Neumann, and Kiefer (2001)), the wage den-

1The previous 2000 and 2001 versions of this paper were circulated under the title “Likelihood
Inference with Density Jumps.” We would like to thank Joe Altonji, Stephen Donald, Christian
Hansen, Jerry Hausman, Ivan Fernandez, Hide Ichimura, Jim Heckman, Shakeeb Khan, Yuichi
Kitamura, Sokbae Lee, Oliver Linton, Rosa Matzkin, Whitney Newey, George Neumann, Harry
Paarsch, Frank Schorfheide, Robin Sickles, Richard Spady, and Max Stinchcombe as well as
participants at the December 2000 EC2 meeting, March 2001 CEME conference, Duke, LSE,
MIT, Northwestern, Penn State, Princeton, Rice, University of Texas at Austin, and University
of Pennsylvania for valuable suggestions. We thank three referees and the co-editor for use-
ful input on the paper. We are especially grateful to Takeshi Amemiya for his support and ad-
vice. We gratefully acknowledge the support provided by the NSF Research Grants SES-0241810
(Chernozhukov) and SES-0335113 (Hong).
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sity jumps from one positive level to another at the reservation wage. In what
follows, we refer to the former model as the one-sided or boundary model,
and to the latter model as the two-sided model. In these models, the location
of the density jump is linked to the underlying structural parameters. Learning
about the location of the jump is thus crucial for learning about the structural
parameters.

Several early fundamental papers have developed inference methods for
specific cases of these models, including Aigner, Amemiya, and Poirier (1976),
Ibragimov and Has’minskii (1981), Flinn and Heckman (1982), Christensen
and Kiefer (1991), Smith (1985, 1994), Donald and Paarsch (1993a, 1993b,
1996, 2002), and Bowlus, Neumann, and Kiefer (2001). Ibragimov and
Has’minskii (1981, Chapter V), Smith (1985), and Ghosal and Samanta
(1995) obtained the limit theory of the likelihood-based optimal (Bayes) es-
timators (hereafter BEs) and the maximum likelihood estimator (hereafter
MLE) in the nonregression case.2 Paarsch (1992) and Donald and Paarsch
(1993a, 1993b, 1996, 2002) introduced and developed the theory of the MLE
and related procedures in the one-sided regression model with discrete regres-
sors, demonstrated the prevalence of these models in structural econometric
modeling, and stimulated further research in this area.

Nevertheless, the general inference problem posed by Aigner, Amemiya,
and Poirier (1976) remained unsolved previously. To our knowledge, little
was known about likelihood-based estimation and inference in the general
two-sided regression model. In the general one-sided regression model, the
problem of the likelihood-based estimation and inference also remained an im-
portant unresolved question, with the important exception of the MLE theory
for discrete regressors developed by Donald and Paarsch (1993a).3�4 A general
theory of such regression models was expected to have a substantively different
and more involved structure than the corresponding theory for the univariate
(nonregression) or dummy regressor case.5 Moreover, there were considerable
implementation problems caused by the inherent computational difficulty of
classical (maximum likelihood) estimates.

This paper offers solutions to these open questions by providing a the-

2Van der Vaart (1999, Chapters 9.4 and 9.5) provides a lucid introduction to this limit theory,
focusing on the univariate uniform and Pareto models, including Pareto models with parameter-
dependent support and additional shape parameters.

3Also, another important and more recent addition to the literature is the work of Hirano and
Porter (2003) discussed below.

4There is also a literature on the ad hoc “linear programming” estimators of linear boundary
functions, started by Smith (1994); see, e.g., Portnoy and Jurec̆ková (2000), Knight (2002), and
Chernozhukov (2000). Asymptotics of these estimators differs from that of MLE, except for some
special homoscedastic cases.

5See Aigner, Amemiya, and Poirier (1976) and Donald and Paarsch (1996) for pertinent dis-
cussions. In fact, we show in this paper that in contrast to the previous cases, the limit likelihood is
a function of the multivariate Poisson process with no finite-dimensional sufficient statistics and
complex correlation structure.
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ory for the likelihood-based estimation and inference methods in both the
two- and one-sided models with general regressors. These methods cover
likelihood-based optimal6 (Bayes) and maximum-likelihood procedures. Our
results demonstrate that, among these methods, there are computationally and
theoretically attractive ways to obtain parameter estimates and carry out statis-
tical inference. The inference results of this paper also enable the construction
of confidence intervals using both Bayes and Wald inference.

We show that Bayes confidence intervals based on posterior quantiles are
valid in large samples and also perform well in small samples. These con-
fidence intervals are simple to implement in practice since they require no
knowledge of the (rather complex) asymptotic theory. Moreover, the proof
of the validity of Bayes inference may itself be of independent interest, since it
applies generally to cases that have no finite-dimensional asymptotically suffi-
cient statistics. The estimation methods are also attractive due to their familiar
finite-sample and hence large sample optimality; see, e.g., Theorem I.9.1 and
Corollary I.9.1 in Ibragimov and Has’minskii (1981). They are computationally
attractive when carried out through Markov chain Monte Carlo procedures
(MCMC); see, e.g., Robert and Casella (1998). In contrast, the computation of
the MLE is subject to the curse of dimensionality due to numerous discontinu-
ities in the likelihood function.

To facilitate the results on the likelihood-based estimation and inference, we
first develop a complete large sample theory of the likelihood for these mod-
els. We show that the limit likelihood is a function of a multivariate Poisson
process with a complex correlation structure and no finite-dimensional suffi-
cient statistics. An interesting and important feature of the limit result is that
the MLE is generally not an asymptotically sufficient statistic in these models
(in contrast to the nonregression case or dummy regression case). This com-
pletely rules out the Fisher type “reduction” of all likelihood-based procedures
to some transformations of the MLE. That is, the likelihood contains more
information asymptotically than the MLE does, and likelihood-based proce-
dures, including optimal estimators, are generally not functions of the MLE
even asymptotically, as they are in the nonregression or dummy regression case
(or regular models). This property, which may be called incompleteness, mo-
tivates the study of the entire likelihood and a wide class of likelihood-based
procedures.

Although the asymptotic insufficiency of the MLE does not allow one to sin-
gle out the MLE as the estimator on which optimal procedures can be based
generally, it does not imply that the MLE is an inferior estimation procedure
either. The MLE can be approximated by Bayes estimators under loss func-
tions that approximate the delta function, e.g., 0 − 1 loss 1[|u| > ε]/ε. Hence

6The optimality of Bayes estimators is their general property under very weak conditions both
in finite and large samples; cf. Theorem 9.1 and Corollary 9.1 in Ibragimov and Has’minskii,
(1981, p. 93).
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the MLE is approximately optimal under loss functions that approximate the
delta function, and may perform better under these alternative loss functions
than other Bayesian estimators (BEs) such as posterior means or posterior
medians. Thus, the MLE generally cannot be dominated by any other given BE
when risk comparisons are made across different loss functions. Moreover, the
MLE is invariant to reparameterization, which makes it a valuable estimation
approach, given its approximate optimality.

The asymptotic insufficiency of the MLE and the absence of other finite-
dimensional sufficient statistics have important consequences for inference.
They imply, in particular, that the large sample validity of Bayes inference has
to be established without relying on previous works on Bayes inference in non-
regular (nonregression) models, e.g., Ghosal (1999). The previous arguments
cannot be immediately extended because they deal with simple boundary mod-
els in which MLEs (such as sample minima or maxima) are asymptotically suf-
ficient. In these models, the leading term in the expansion of the posterior is
an exponential distribution shifted by the MLE, i.e., it has an exponential shift
form. This distribution coincides with that of the MLE, allowing a simple an-
alytical demonstration of the equivalence of the Wald inference based on the
MLE and the posterior inference, thus establishing the validity of the posterior
for frequentist inference. In sharp contrast, in our case the limit posterior is a
function of a multivariate Poisson process, generally has no finite-dimensional
sufficient statistics, and neither coincides with the distribution of the MLE nor
is shifted by the MLE. All of these reasons preclude the applicability of the
previous argument and also imply that the Wald inference and the posterior
inference are not asymptotically equivalent. Instead, our proof is based on the
asymptotic average risk optimality of posterior quantiles under the check loss
function, which allows us to establish the quantile unbiasedness of posterior
quantiles and then prove their inference validity. This argument is generic and
thus may be of independent interest.

Our work is also related to a recent paper of Hirano and Porter (2003), who
present a thorough, important analysis of the efficiency problem in boundary
regression models. Hirano and Porter (2003) provide an insightful construction
of an exponential-shift experiment framework and apply a minimax analysis
within this framework, which explains and characterizes the efficiency gains of
BEs over the MLE under the common mean squared and absolute deviation
criteria. In contrast, we consider likelihood-based estimation and inference in
a general class of models that covers both two-sided and one-sided regression
models. We derive the limit likelihood, the large sample properties and limit
distributions of likelihood-based estimators, all of them given explicitly (and
conveniently) in terms of a Poisson process; develop Bayes and Wald inference;
and investigate the finite-sample properties of these estimation and inference
procedures.7

7Hirano and Porter (2003) also discuss the limit likelihood for boundary models as an aux-
iliary result, extending our previous results on boundary models without nuisance parameters;
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The remainder of the paper is organized as follows. Section 2 provides a
nontechnical, practical discussion of the inference and estimation methods.
Section 3 contains a theoretical discussion of large sample theory. Section 4
illustrates the estimation and inference methods developed in the paper in a
simulation study based on an auction model described in Donald and Paarsch
(2002).

2. THE SETUP AND INFORMAL OVERVIEW OF PROCEDURES AND RESULTS

This section describes the model and provides a nontechnical discussion of
the assumptions, results, and inference procedures developed in the paper.

2.1. The Model

It is convenient to describe the framework we consider in terms of a
regression model, where the disturbance has a discontinuous density. Let
(Yi�Xi)� i = 1� � � � � n, denote an i.i.d. sample of size n generated by the model

Yi = g(Xi�β)+ εi�(2.1)

where Yi is the dependent variable, Xi is a vector of covariates that has
distribution function FX , and the disturbance εi has conditional density
f (ε|Xi�β�α). The central assumption of the model is that the conditional den-
sity f (ε|Xi�β�α) has a jump (or discontinuity) normalized to be at 0, which
may depend on the parameters β and α:

lim
ε↑0

f (ε|x�β�α)= q(x�β�α)� lim
ε↓0

f (ε|x�β�α)= p(x�β�α)�(2.2)

p(x�β�α)> q(x�β�α)+η�

for some η> 0� ∀x ∈ X = support(X)�

for all (β�α) ∈ B ×A� a compact subset of R
dβ × R

dα�

Hence, in this model the location of the discontinuity in the density of Y con-
ditional on X is given by the regression function g(X�β), which is described
by the parameter β. Thus, there are two sets of parameters, collected into a
vector γ = (β′�α′)′, where β affects the regression curve and possibly the dis-
turbance distribution, and α affects the shape of the disturbance distribution
only.

cf. Chernozhukov and Hong (2001b).
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We consider two regression models: the two-sided model, where the con-
ditional density jumps from one positive value to another, and the one-sided
model, where the conditional density jumps from zero to a positive constant.
The one-sided model is a limit case of the two-sided model. In addition, Aigner,
Amemiya, and Poirier (1976) suggested that the two-sided model may be ap-
plied to one-sided models in the presence of outliers, using an additional side
to model the outliers.8 More generally, the two-sided model approximates
models with a sharp change in the density, where the location of the change
depends on parameters and regressors. The finite sample distribution of the
parameter estimates in such models is approximated by that in the model with
a density jump. The two-sided model also naturally arises in equilibrium search
models; see, e.g., Bowlus, Neumann, and Kiefer (2001).

The key feature of the regression model (2.1)–(2.2) is that the conditional
density of Y given X jumps at the location g(X�β), which depends on the
parameter β and covariates X . This feature generates sharp discontinuities in
the likelihood, which create statistical nonregularities and computational diffi-
culties. The discontinuities are highly informative about β and imply estimabil-
ity at rate n. (The simplest univariate example is the uniform model U(0�β),
where β can be estimated at rate n.) On the other hand, inference about α is
standard in many ways.

Note that the classification of parameters into α and β is motivated statis-
tically, as in Donald and Paarsch (1993a) and van der Vaart (1999, Chapters
9.3 and 9.4). Parameters of structural economic models usually coincide with
the boundary parameters β, as indicated earlier. If they do not, and Wald in-
ference is to be used, then one needs to reparameterize them into α and β,
as indicated in Donald and Paarsch (1993a). In the following, we briefly re-
view a structural auction model that illustrates the plausibility of our regularity
conditions and provides an example for the Monte Carlo work.

EXAMPLE (An independent private value procurement auction): Consider
an econometric model of an independent private value procurement auction,
formulated in Paarsch (1992) and Donald and Paarsch (2002). In this model,
Yi is the winning bid for the auction i; the covariates Xi = (Zi�mi) describe
variation across auctions; mi denotes the number of bidders in the ith auction
minus 1; and Zi denotes other observed characteristics of the auctions.

The bidders’ privately observed costs V follow an i.i.d. Pareto distribution
given X; i.e., the density of V given X is described by

fV (v|X) = θ2θ
θ2
1

vθ2+1
� v ≥ θ1 > 0� θ2 > 0�

8Another approach that can deal with outliers is developed in Chernozhukov (2000) and is
based on near-extreme quantile regression.
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The parameters θ2 and θ1 are functions of X and β, e.g., θ1(X�β)= exp(β′
1Z)

and θ2(X�β) = exp(β′
2Z), but this dependence will be suppressed for conve-

nience.
Assuming a Bayes–Nash Equilibrium solution concept, the equilibrium bid-

ding function satisfies

σ(v)= v+
∫ ∞
v
(1 − FV (ξ|X))m dξ

(1 − FV (v|X))m
�

which is the cost plus the expected net revenue conditional on winning the auc-
tion. Evaluating σ(v) at v = θ1 gives the conditional support for the winning
bid. As shown in Paarsch (1992), this implies the following conditional density
function of the winning bid Y , which is the first order statistic generated by the
specified bidding rule:

fY(y|X)= θ2m
[

θ1θ2(m−1)
[θ2(m−1)−1]

]θ2m

yθ2m+1
· 1

(
y ≥

[
θ1θ2(m− 1)
θ2(m− 1)− 1

])
�

Therefore, this is an example of a one-sided regression model (2.1), where Yi =
g(Xi�β)+ εi� g(X�β)= θ1(X�β) ·θ2(X�β) · (m− 1)/(θ2(X�β)(m− 1)− 1)�
and εi has density f (ε|X�β)= fY(g(X�β)+ ε|X�β) conditional on X .

The main regularity conditions C0–C5 are collected in Appendix A. They
generalize the conditions of Ibragimov and Has’minskii (1981) and Smith
(1985). These conditions are flexible enough to cover various auction mod-
els, including the one stated above, frontier production function models, and
equilibrium search models.9

2.2. Definitions of Estimation Procedures and Informal Overview of Results

Define the likelihood function as10

Ln(γ)≡
∏
i≤n

f (Yi − g(Xi�β)|Xi;γ)�(2.3)

Bayes estimators (BEs) are likelihood-based optimal estimators that min-
imize the average expected risk, where the risk is computed under different

9See Chernozhukov and Hong (2001a) for an example of verification of these conditions in the
auction model that underlies our Monte Carlo simulations.

10The likelihood can be made unconditional by multiplying through with the density (proba-
bility mass) function of {Xi� i ≤ n}. This additional term is omitted because it cancels out in the
definition of the likelihood ratio.
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parameter values and then averaged over these parameter values. The estima-
tors are generally of the following form:

γ̂ ≡ arg inf
γ∈G

∫
G
ρn(γ − γ̄)

Ln(γ̄)µ(γ̄)∫
G Ln(γ′)µ(γ′)dγ′ dγ̄�(2.4)

where ρn(γ) ≡ ρ(nβ�
√
nα) is a loss function, µ(·) is the weight density (prior

density) on G, and Ln(γ)µ(γ)/
∫
G Ln(γ

′)µ(γ′)dγ′ is the posterior density. The
optimality properties of Bayes procedures carry over to the limit; see, e.g., The-
orem I.9.1 in Ibragimov and Has’minskii (1981).

The loss function ρn is made explicitly dependent on the sample size for pur-
poses of asymptotic analysis, as in Ibragimov and Has’minskii (1981), but this
may be ignored in practice. Convexity and standard conditions are imposed
on the loss function ρ and the prior µ, and collected as D1–D3 in Appen-
dix A. Examples of such loss functions include: (A) ρ(z) = z′z, a quadratic
loss function, (B) ρ(z)= ∑d

j=1 |zj|, an absolute deviation loss function, and (C)
ρ(z;τ) = ∑d

j=1(1(zj > 0)− τ)zj , τ ∈ (0�1), a variant of the Koenker and Bas-
sett (1978) check loss function. Solutions of (2.4) with loss functions (A), (B),
and (C) generate BEs γ̂ that are, respectively, (A) a vector of posterior means,
(B) a vector of posterior medians (for each parameter component), and (C) a
vector of posterior τth quantiles.11 Since BEs become very difficult to compute
when ρ is not convex, we focus on convex loss functions for pragmatic reasons.
However, the proofs of our main results apply more generally to other loss
functions specified in Ibragimov and Has’minskii (1981).

In practice, γ̂ can be computed using the Metropolis–Hastings algorithm
and related Markov chain Monte Carlo (MCMC) methods, which produce
a sequence of draws (γ(1)� � � � � γ(b))� whose marginal distribution is given by
the posterior. Appropriate algorithms and implementation details are given,
for example, in Robert and Casella (1998, p. 245). The Metropolis–Hastings
algorithm is valid under general conditions that do not depend on the like-
lihood having discontinuities; see, e.g., Tierney (1994) and Corollary 6.2.6 in
Robert and Casella (1998). Given an MCMC sequence (γ(1)� � � � � γ(b)), the es-
timators γ̂ can be taken as the appropriate statistics of the sequence depend-
ing on ρ, for example, the component-wise means, medians, and quantiles of
(γ(1)� � � � � γ(b)) in the cases (A), (B), and (C), respectively. More generally, the
estimators γ̂ are solutions of well defined globally convex optimization prob-
lems. Indeed, in practice the estimators γ̂ solve arg minγ∈G(1/b)

∑b

t=1 ρn(γ −
γ(t)), which is a globally convex optimization problem.

11For example, a vector of posterior means is given by∫
G
γ̄

Ln(γ̄)µ(γ̄)∫
G Ln(γ′)µ(γ′)dγ′ dγ̄�

Other estimators do not admit such closed form expressions.
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The computational attractiveness of estimation and inference based on
Bayes procedures stems from the use of MCMC and the statistical motiva-
tion entering the definition of Bayes procedures. Since Bayes estimators and
confidence intervals are typically means, medians, or quantiles of the posterior
distribution, by drawing the MCMC sample of size b from the posterior distri-
bution, we can compute these quantities with an accuracy of order 1/

√
b. In

contrast, computation of the MLE requires optimization of a highly noncon-
vex and discontinuous likelihood function. The exact MLE can be estimated
by grid-based algorithms or MCMC only with an accuracy that worsens expo-
nentially in the parameter dimension.

BEs and the MLE are consistent, and it is shown in this paper that

β̂−β =Op(n
−1) and α̂− α =Op(n

−1/2)�(2.5)

BEs are shown to converge in distribution to Pitman functionals of the limit
likelihood ratio process. MLEs are shown to converge in distribution to
arg max functionals of the limit likelihood ratio process. We first develop a
complete large sample theory of the likelihood for these models, which is a
prerequisite for any inference based on the likelihood principle. In particular,
we obtain an explicit form of the limit likelihood ratio process as a function of
a Poisson process that can be easily simulated.

This result implies that the limit distributions of the estimators can be sim-
ulated for purposes of Wald inference through either (a) simulating the limit
likelihood process, or (b) subsampling and other resampling methods such as
parametric bootstrap. Implementation protocols for subsampling are standard
and can be found in Politis, Romano, and Wolf (1999). Subsampling is more
robust than other methods under local misspecification of the parametric as-
sumptions because it only relies on the existence, and not on a specific form,
of the limit distribution. However, subsampling and other resampling meth-
ods are more computationally expensive than Bayes inference. Simulating the
limit distribution is comparable in terms of computational expense to Bayes
inference due to linearity of the limit process.

An attractive practical alternative is Bayes inference based on posterior
quantiles. Our results establish its large sample (frequentist) validity. Follow-
ing van der Vaart (2000), consider constructing a τ×100% confidence interval
for rn(γ), where rn is a smooth real function that possibly depends on n. Define
the τth posterior quantile of the posterior distribution as

ĉ(τ)≡ arg inf
r̃∈Rn

∫
G
ρ
(
r̃ − rn(γ);τ

) Ln(γ)µ(γ)∫
G Ln(γ′)µ(γ′)dγ′ dγ�(2.6)

where ρ(z;τ) is the check function defined above, and Rn ≡ {rn(γ)�γ ∈ G}.
In practice, ĉ(τ) is computed simply by taking the τth quantile of the MCMC
sequence evaluated at rn,(

rn(γ
(1))� � � � � rn(γ

(b))
)
�(2.7)
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The resulting τ × 100%-confidence intervals are given by

[ ĉ(τ/2)� ĉ(1 − τ/2)]� where(2.8)

lim
n→∞

Pγ{ ĉ(τ/2)≤ rn(γ) ≤ ĉ(1 − τ/2)} = 1 − τ�

under mild conditions on rn, which is one of the main results of this paper.
A pragmatic motivation for Bayesian intervals is that, in order to apply them,

the empirical researcher does not need to know the estimation rate of the
γ components, the form of the limit distributions, or other details of the com-
plex asymptotic limit theory. One can simply compute the intervals through
generic MCMC methods, and then rely upon the present results that establish
the large sample (frequentist) validity of these intervals.

Another classical procedure is the MLE, which is defined by maximizing the
likelihood function: γ̂ = (β̂′� α̂′)′ ≡ arg supγ∈G Ln(γ)� The MLE is the limit of
BEs under any sequence of loss functions that approximates the delta func-
tion. The MLE converges in distribution to a random variable that maximizes
the limit likelihood ratio. We will only briefly discuss the limit distribution of
the MLE due to page constraints. A detailed analysis of the MLE is given in
Chernozhukov and Hong (2001a).

3. LARGE SAMPLE THEORY

This section contains the formal results of the paper. It begins with the analy-
sis of the large sample properties of the likelihood ratio function, followed by
the analysis of Bayes estimators and derived inference procedures, and con-
cludes with a brief discussion of the limit theory for maximum likelihood esti-
mation.

3.1. Large Sample Theory for the Likelihood

A common first step in modern asymptotic analysis is to find the finite-
dimensional marginal limit of the likelihood ratio process or other criterion
functions; see, e.g., van der Vaart (1999) and Knight (2000). After appropri-
ate strengthening, this limit serves to describe the asymptotic distribution of
all likelihood based estimators. In the likelihood analysis, such an initial step is
also called the convergence of experiments.

Consider the local likelihood ratio function n(z) ≡ Ln(γn + Hnz)/Ln(γn)�
where γn ≡ γ0 + Hnδ denotes the true local parameter sequence, δ ∈ R

d , and
Hn is a diagonal matrix with 1/n in the first dβ = dim(β) diagonal entries and
1/

√
n in the remaining dα = dim(α) diagonal entries. Consideration of the lo-

cal parameter sequence is necessary for subsequent analysis and for showing
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that the limit likelihood does not depend on δ. The scaling by Hn corresponds
to convergence rates

√
n for α and n for β.12

The function n(z) is said to converge in distribution to ∞(z) in the finite-
dimensional sense, and ∞(z) is called the finite-dimensional limit, if, for any
finite k,

(n(zj)� j ≤ k)
d→ (∞(zj)� j ≤ k)�(3.1)

where
d→ denotes convergence in distribution under Pγn . We partition the lo-

calized parameter z accordingly into z = (u′� v′)′, where u ∈ R
dβ corresponds

to the localized β parameters and v ∈ R
dα corresponds to the localized α para-

meters.

THEOREM 3.1 (Limits of the likelihood function): Given Conditions C0–C5
collected in Appendix A, the finite-dimensional weak limit of the likelihood ra-
tio process n(z) takes the following form: For ∆(x) ≡ ∂g(x�β0)/∂β, p(X) ≡
p(X�γ0), q(X)≡ q(X�γ0), and li(γ)= lnf (εi|Xi�γ),

∞(z)≡ 1∞(v)× 2∞(u)� 1∞(v)≡ exp(W′v− v′J v/2)�
(3.2)

2∞(u)≡ exp
(
u′m +

∫
R×X

lu(j� x)dN(j�x)

)
�

where

J ≡Eγ0

(
∂

∂α
li(γ0)

∂

∂α
li(γ0)

′
)
� m ≡Eγ0∆(X)[p(X)− q(X)]�

W d=N (0�J )�

and

lu(j� x)≡ ln
q(x)

p(x)
1[0 < j < ∆(x)′u] + ln

p(x)

q(x)
1[0 > j > ∆(x)′u]�

where in the one-sided case, i.e., when q(x) = 0, we use the convention: ln 0 =
−∞, ln∞ = ∞, 1/0 = ∞, and ∞· 0 = 0. N is a Poisson random measure N(·)≡∑∞

i=1 1[(Ji�Xi) ∈ ·] + ∑∞
i=1 1[(J ′

i�X ′
i ) ∈ ·], where

Ji ≡ Γi/p(Xi)� Γi ≡ E1 + · · · + Ei� i ≥ 1�(3.3)

J ′
i ≡ Γ ′

i /q(X ′
i )� Γ ′

i ≡ −(E ′
1 + · · · + E ′

i )� i ≥ 1�(3.4)

{Xi�Ei� i ≥ 1} is an i.i.d. sequence of variables where Xi follows the law FX , and
Ei is a unit exponential variable. The sequence {Ei� i ≥ 1} is independent of the
sequence {Xi� i ≥ 1}. {X ′

i �E ′
i � i ≥ 1} is an independent copy of {Xi�Ei� i ≥ 1}, and

12Convergence rates are established as parts of the proof of subsequent theorems, and follow
from the exponential decay of the likelihood tail E1/2

n (z) ∼ const ·e−c|z| as |z| → ∞; see the proof
of Theorem 3.2.
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both sequences are independent of W.

This theorem extends the results of Ibragimov and Has’minskii (1981) on
the likelihood limits in univariate one-sided and two-sided models. The main
term in the limit likelihood is 2∞(u), which is nonstandard. The discontinu-
ities in the density are highly informative about β, and most of the information
about β is contained in those Yi’s that are near the location of the discontinu-
ity g(Xi�β), that is, in those Yi for which εi = Yi − g(Xi�β) is close to zero.
Thus, the behavior of extreme (closest to zero) εi’s determines the behavior
of 2∞(u), as further explained in Section 3.2. Consequently, one expects that
the rate of convergence of likelihood-based estimators will be n for β (in con-
trast to

√
n for α), and their behavior will be determined by 2∞(u).

In contrast to 2∞(v), the term 1∞(v) is a standard expression for the limit
likelihood ratio in regular models, and inference about the shape parame-
ter α is thus asymptotically regular. The limit log-likelihood has a standard
linear-quadratic expression: v′W − v′J v/2� This limit contains a normal vector
W d= N (0�J ) and the information matrix J . This implies, for example, that
conventional estimators of α, such as the posterior mean and the MLE, have
the standard limit distribution J −1W d=N (0�J −1)�

REMARK 3.1 (An alternative form): To analyze the limit 2∞(u) further,
write the Lebesgue integral

∫
R×X lu(j� x)dN(j�x) appearing in the statement

of Theorem 3.1 as
∞∑
i=1

lu(Ji�Xi)+
∞∑
i=1

lu(J
′
i�X ′

i ) ≡
∞∑
i=1

ln
q(Xi)

p(Xi)
1[0 < Ji < ∆(Xi)

′u](3.5)

+
∞∑
i=1

ln
p(X ′

i )

q(X ′
i )

1[0 > J ′
i > ∆(X ′

i )
′u]�

which is a simple function of the variables {Xi�X ′
i � Ji� J

′
i}. This suggests that the

limit likelihood function can be simulated simply by generating sequences of
{Xi�X ′

i � Ji� J
′
i� i ≤ b} for some large b, say b ∝ n, according to the distributions

specified in Theorem 3.1, and then evaluating the corresponding expressions.
In practice, the quantities p(Xi) and q(Xi) are replaced by their estimates, and
FX is replaced by the empirical distribution function.

REMARK 3.2 (The boundary or one-sided case): There is a drastic simplifi-
cation of 2∞ (u) in the one-sided (boundary) model. Since q(X ) = 0 a.s., using
the rules stated in Theorem 3.1,

∞∑
i=1

lu(Ji�Xi)+
∞∑
i=1

lu(J
′
i�X ′

i )︸ ︷︷ ︸
≡0

≡
{0 if Ji ≥∆(Xi)

′u, for all i ≥ 1,
−∞ otherwise.

(3.6)
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Hence for m =E∆(X)p(X),

2∞(u)≡
{

exp(u′m) if Ji ≥ ∆(Xi)
′u, for all i ≥ 1,

0 otherwise.
(3.7)

Thus, in one-sided models, the limit depends only on the set of variables
in (3.3) and does not depend on the set of variables in (3.4). Another way
to represent the finite-dimensional distribution of 2∞(u) is to observe that
for each (u1� � � � � uk), (2∞(u1)� � � � � 2∞(uk)) is exp(u′m) times a vector of cor-
related Bernoulli variables with success probabilities that depend on u; see
Hirano and Porter (2003) who obtain this alternative form and use it for effi-
ciency analysis.

REMARK 3.3 (Misspecification): It can be conjectured from the proof of
Theorem 3.1 that the limit theory for β is robust under local o(1/n) misspec-
ification of the regression function g(x�β), and local o(1/

√
n) misspecifica-

tion of the heights of the densities, p(x�γ) and q(x�γ), at the jump points.
It also appears that the qualitative nature of the limit theory would be pre-
served under local O(1/n) misspecification of the regression function g(x�β)
and possibly under O(1) misspecification of p(x�γ) and q(x�γ) as long as
p(x�γ) > q(x�γ) for all x. A formal development of these results is beyond
the scope of this paper.

3.2. An Example for Intuition

It is useful to pause here and highlight the intuition behind Theorem 3.1 by
considering the following simple example. Suppose

Yi =X ′
iβ0 + εi� εi

d= E�(3.8)

where E is a standard unit exponential variable. This is a boundary model with
the density at the boundary equal to p(X)= 1� Assume that there are no shape
parameters α (we do not discuss inference about α since it is regular as stated
earlier). This model is a linearized, homoscedastic version of more realistic
nonlinear models.

Intuitively, the smallest values of εi will be the most informative about β, as
the likelihood function will be positive only if Yi − X ′

iβ ≥ 0, for all i, that is,
when nεi ≥ X ′

in(β−β0), for all i. Letting u = n(β− β0), this constraint takes
the form nεi ≥ X ′

iu, for all i. What we can learn about the parameter β0 will
depend on these constraints.

The likelihood for this example is Ln(β)= ∏
i≤n e

−εi+X ′
i(β−β0)1(nεi ≥X ′

in(β−
β0)). Hence the likelihood ratio Ln(β)/Ln(β0) as a function of u = n(β −
β0) takes the form n(u) = ∏

i≤n(e
−εi+X ′

iu/n/e−εi )1(nεi ≥ X ′
iu)� which further

reduces to

n(u)= eX̄
′u · 1(nεi ≥ X ′

iu� for all i)�(3.9)
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Since X̄→pEX , the behavior of n(u) for fixed u is determined by the low-
est order statistics nε(1)� nε(2)� nε(3)� � � � � The Reny representation allows these
rescaled order statistics to be represented almost surely as

E1�E1 + n

n− 1
E2�E1 + n

n− 1
E2 + n

n− 2
E3� � � � �

where {E1�E2� � � � �En} is an i.i.d. sequence of unit-exponential variables; see,
e.g., Embrechts, Klüppelberg, and Mikosch (1997, p. 189). For a given u,
essentially only a stochastically bounded number of order statistics, say
k, matters in the constraints (3.9). Hence as n → ∞, for any finite k:
(nε(1)� nε(2)� � � � � nε(k))

d→ (E1�E1 + E2� � � � �
∑k

j=1 Ej) ≡ (Γ1� Γ2� � � � � Γk)� Hence
the marginal limit of n(u) may be seen as

∞(u)≡ eE(X)′u · 1(Γi ≥X ′
i u� for all i ≥ 1)�

where {Γi} is the sequence of gamma variables defined above, and {Xi} is an
i.i.d. sequence of regressors with distribution FX , which is independent of the
{Γi} sequence. Note that this is just a special case of the limit stated in (3.3),
where p(X) = 1. (Also there are no α parameters in this example, so that
∞(u)= 2∞(u).) The use of point process methods in Theorem 3.1 formalizes
the intuition described above and extends it to more general heteroscedastic
disturbances.

The result stated in Theorem 3.1 is more complicated due to the following
reasons: First, in more general two-sided models, there is also an additional
negative disturbance in equations like (3.8). The information about β is then
largely deduced from the εi’s closest to 0 from above and the εi’s closest to
zero from below. This explains the presence of the additional set of gamma
variables and associated regressors in equation (3.4) as the limit distributions
of “extremes from below.” Second, the density of the εi’s may vary near zero,
which changes the hazard rates of the limit gamma variables Γi and Γ ′

i , re-
sulting in their division by varying hazard rates p(Xi) or q(X ′

i ). Third, the un-
certainty about the additional shape parameter α leads to the presence of an
additional term 1∞(v). The form of this term reflects that the inference about
α is standard. The limit information about α is given by the limit average score
W and the information matrix J . Since information about β comes from a
small portion of the entire sample and is based on extreme type statistics, the
average score W is independent of those statistics asymptotically, which fol-
lows by a standard argument, e.g., Lemma 21.19 in van der Vaart (1999) and
Section 4.3 in Resnick (1986).

3.3. Basic Large Sample Properties of Bayes Estimation

Given the above discussion, the following Theorem 3.2 can be easily conjec-
tured. The Bayes estimator

Zn = (
n(β̂−βn)

′�
√
n(α̂− αn)

′)′
�
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centered at the true parameter γn = (β′
n�α

′
n)

′ and normalized by the conver-
gence rates, is related to the localized likelihood ratio n(z). Zn minimizes
the posterior loss redefined in terms of the local deviation from the true pa-
rameter: Γn(z) = ∫

Rd ρ(z − z′)πn(z
′)dz′� where πn(z) is the posterior den-

sity for the local deviation z from the true parameter: πn(z) = n(z)µ(γn +
Hnz)/

∫
Rd n(z̄)µ(γn +Hnz̄)dz̄; n(z) is the local likelihood ratio process; and

µ is the prior density. As n → ∞, it can be conjectured that the posterior πn(z)
approaches π∞(z) ≡ ∞(z)/

∫
Rd ∞(z)dz, and that the following other results

take place.

THEOREM 3.2 (Basic properties of BEs): Suppose that C0–C5 and D1–D3
stated in Appendix A hold. Then:

(i) The convergence rate is n for estimating β and
√
n for estimating α, i.e.,

Zn =Op(1).

(ii) Zn
d→ Z, where

Z ≡ arg inf
z∈Rd

∫
Rd

ρ(z − z′)
∞(z′)∫

Rd ∞(z̄)dz̄
dz′�

(iii) If ρ(z)= ρβ(u)+ ρα(v), then

n(β̂−βn)
d→ Zβ ≡ arg inf

u

∫
R
dβ

ρβ(u− u′)2∞(u′)du′�

√
n(α̂− αn)

d→ Zα ≡ arg inf
v

∫
Rdα

ρα(v − v′)1∞(v′)dv′�

and Zβ and Zα are independent.

Theorem 3.2 establishes consistency, rates of convergence, and limit distri-
butions of BEs. Theorem 3.2 also enables one to perform Wald inference by
simulating the limit distribution of BEs according to Remark 3.1 or by estimat-
ing it with subsampling according to Remark 3.5. In either case it is desirable
to use MCMC methods for recomputing the BEs. A useful alternative to Wald
inference is Bayes inference, as discussed below.

REMARK 3.4: In the stated result, Zβ and Zα are independent due to the
factorization of ∞(z) into independent terms 1∞(v) and 2∞(u). If ρ(z) =
ρβ(u) + ρα(v) does not hold, part (iii) of Theorem 3.2 does not apply. Also,
the limit distribution of the Bayes estimator of the shape parameter α coin-
cides with that of the MLE if the loss function ρα is symmetric, i.e., the limit
distribution of α̂ is given by N (0�J −1)� This does not take place in the case
of the location parameter β. Furthermore, Bayes estimators of β generally are
not transformations of the MLE of β asymptotically, as shown below, unlike in
the nonregression or dummy regression cases.
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REMARK 3.5: Theorem 3.2 justifies the validity of subsampling for Wald in-
ference. Subsampling approximates the distribution of an estimator in the full
sample based on values of this estimator in many smaller subsets of the sample.
Politis, Romano, and Wolf (1999, Chapter 2) state implementation protocols
for subsampling. Theorem 2.2.1 in Politis, Romano, and Wolf (1999) on va-
lidity of subsampling applies here provided (i) the estimates are consistent at
polynomial in n rates, and (ii) the estimates have a limit distribution. As both
(i) and (ii) are proven in Theorem 3.2, it follows immediately that subsampling
is valid for large sample inference. Subsampling is useful in practice because it
is less demanding than, say, parametric bootstrap in terms of computation and
more attractive than other methods in terms of robustness to local misspeci-
fication of the parametric model. The latter property follows because we only
need conditions (i) and (ii) for subsampling to be valid.

REMARK 3.6: The parametric bootstrap is an alternative to subsampling.
Similarly to Ibragimov and Has’minskii (1981), the main convergence results
of this paper can be stated uniformly in the parameter γ, and conditional on
almost every realization of the covariate sequence {Xi� i ≤ n} as n → ∞. This
would formally establish that the parametric bootstrap is valid in the usual
sense. Although Bayes estimates are not difficult to recompute, we found the
parametric bootstrap to be extremely cumbersome and expensive computa-
tionally. In addition, it appears to be nonrobust against local misspecification
of the parametric model.

3.4. Further Properties of Bayes Procedures and Bayes Inference

Next consider the posterior mean γ̄ and the posterior quantile γ̂(τ) as the
solutions of the problem (2.4) under squared loss and check loss functions,
respectively (each defined in Section 2). Also define Z̄ and Z(τ) as the solu-
tions of the limit problem in Theorem 3.2 under squared and check functions,
respectively.

THEOREM 3.3 (Further properties of the some Bayesian procedures): Sup-
pose that C0–C5 and D1–D3 stated in Appendix A hold. Then:

(i) Posterior mean estimators are asymptotically mean-unbiased:

lim
n→∞

Eγn[H−1
n (γ̄ − γn)] = Eγ0[Z̄] = 0�

(ii) For any 0 < τ′ < τ′′ < 1, if Z(τ) has positive density in an open neigh-
borhood of 0 for τ = τ′ and τ = τ′′, then posterior τ-quantiles are asymptotically
1 − τ-quantile unbiased:

lim
n→∞

Pγn{(γ̂(τ))j ≤ (γn)j} = Pγ0{(Z(τ))j ≤ 0} = 1 − τ�(3.10)
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where (γ)j denotes the jth component of a vector γ. Hence

lim
n→∞

Pγn{(γ̂(τ′))j ≤ (γn)j ≤ (γ̂(τ′′))j} = τ′′ − τ′�(3.11)

Theorem 3.3 has a number of important implications. The asymptotic
mean-unbiasedness of posterior means and the median-unbiasedness of pos-
terior medians (τ = 1/2) are very useful in practice. The asymptotic quantile-
unbiasedness of posterior quantiles demonstrates that the posterior confidence
intervals [(γ̂(τ′))j� (γ̂(τ′′))j] are valid for inference on the parameter compo-
nents (γ)j . The practical usefulness from this result is substantial since the in-
tervals are easy to implement and require no knowledge of asymptotic theory.
The theoretical usefulness is also substantial, since the argument used in the
proof is generic and can be applied to other models where analytical demon-
stration of posterior validity is intractable.

The results (i) and (ii) in Theorem 3.3 follow from the asymptotic average
risk optimality of posterior means and quantiles under squared and check loss
functions, respectively; cf. Section 3.5. For example, if the limit posterior mean
Z̄ had a mean EZ̄ = c �= 0, then the estimator γ̄−Hnc would have strictly lower
asymptotic risk regardless of the local parameter sequence. Hence it must be
that EZ̄ = 0. A similar argument extends to posterior quantiles. The poste-
rior τ-quantile is 1 − τ-quantile unbiased because it is asymptotically optimal
under the τ-check loss function. That Zj(τ) has positive density around 0 is a
technical requirement.

The next result extends the asymptotic validity of posterior quantiles to infer-
ence about smooth real functions of the parameter.13 Consider inference about
the function rn(γ), where rn :G → R is such that for a > 1 and R ≡ [Ṙ′� R̈′]′ with
rank R = 1:

rn(γ)− rn(γ
′) = Ṙ′(α− α′)

√
n+ R̈′(β−β′)n(3.12)

+O
(
n|β−β′|a + √

n|α− α′|a)�
for all γ and γ′ in an open neighborhood of γ0. For purposes of theoretical
analysis, the function is made dependent on n specifically to have a better
finite-sample approximation by avoiding the trivial cases where all of the as-
ymptotic inference is determined by either α or β due to the difference in rates
of convergence. However, if a smooth function m(β) is of prime interest, tak-
ing rn(γ)= n ·m(β) fulfills the condition (3.12). If a smooth function m(α) is of
interest, then taking rn(γ) = √

n · m(α) also fulfills the condition (3.12). Note
that these transformations by

√
n or n do not affect the practical formulations

(2.6)–(2.8) in Section 2.2, by linearity of the transformations and equivariance
of the quantiles to monotone transformations.

13Following, e.g., van der Vaart (2000) and for clarity of presentation, we consider only real
functions rn, but the results can be potentially generalized to multivariate functions by considering
various multivariate analogs of the check function.
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THEOREM 3.4 (Inference validity of posterior quantiles): Suppose that
C0–C5 and D1–D3 stated in Appendix A hold. Then:

(i) For any 0 < τ < 1, ĉ(τ)− rn(γn)
d→ Z̃(τ), where

Z̃(τ)≡ arg inf
z̃∈R

∫
Rd

ρ(z̃ −R′z;τ) ∞(z)∫
Rd ∞(z′)dz′ dz�

(ii) Provided Z̃(τ) has a positive density over an open neighborhood of 0 for
τ = τ′ and τ = τ′′,

lim
n→∞

Pγn {̂c(τ)≤ rn(γn)} = Pγ0{Z̃(τ) ≤ 0} = 1 − τ�(3.13)

lim
n→∞

Pγn {̂c(τ′)≤ rn(γn)≤ ĉ(τ′′)} = τ′′ − τ′�

3.5. On the Optimality of Bayes Procedures and Maximum Likelihood

Lemma 3.1 given below states that BEs are asymptotically average risk opti-
mal, which is most essential for establishing the inference results of Theorems
3.3 and 3.4. Lemma 3.1 is also of independent interest since it complements the
results of Hirano and Porter (2003) on asymptotic (minimax) optimality of BEs
in boundary models, by demonstrating asymptotic (average) optimality in both
two-sided and one-sided models. Lemma 3.1 and the discussion that follows
are also motivated as a response to the critique of maximum likelihood esti-
mation by Hirano and Porter (2003). In fact, we argue that optimality analysis
is useful not only for motivating BEs but also the MLE.

Define the normalization matrix Hn as in Section 3.1, and let γnδ ≡ γ0 +Hnδ,
for δ ∈ R

d� denote a local parameter sequence, where the dependence on δ
needs to be emphasized here. Consider the set Υn of all statistics (measurable
mappings of data) γ̂n. Define the expected risk associated with the loss func-
tion ρ and the estimator γ̂n as Eγnδρ(Ẑn), where Ẑn = H−1

n [γ̂n − γnδ] and the
expectation is computed under γnδ. Consider the following measures of risk.

The finite sample average risk (AR) of γ̂n is given by

1
λ(K)

∫
K

Eγnδρ(Ẑn)µ(γnδ)dδ�(3.14)

where µ is the weight or prior measure over K, ρ is the loss function, and
λ is the Lebesgue measure. The asymptotic average risk (AAR) of the se-
quence {γ̂n} is given by

lim sup
K↑Rd

lim sup
n→∞

1
λ(K)

∫
K

Eγnδρ(Ẑn)dδ�(3.15)

where K ↑ R
d denotes an increasing sequence of cubes centered at the ori-

gin and converging to R
d . Letting K ↑ R

d is needed to rule out nonregular
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(superefficient) estimators. Compared to the previous formula, the weight µ is
replaced by the objective (uninformative) weight.

LEMMA 3.1: Suppose that C0–C5 and D1–D3 hold. For γ̂ρ�µ�n denoting the
Bayes estimator under loss ρ and prior weight µ, Zn ≡ H−1

n [γ̂ρ�µ�n − γnδ], Un ≡
n(B −β0)× √

n(A− α0), the following is true.
(i) For each n, the infimum of the finite sample average risk for K = Un is

achieved over Υn by the Bayes estimator γ̂ρ�µ�n, i.e., by setting Ẑn =Zn in (3.14).
(ii) The infimum of the asymptotic average risk over estimator sequences in Υn

equals Eγ0ρ(Z) <∞, where Z denotes a weak limit of the normalized Bayes esti-
mator Zn. The infimum is attained by the sequence of the Bayes estimators γ̂ρ�µ�n,
i.e., by setting {Ẑn} = {Zn} in (3.15).

Finite-sample average risk efficiency of Bayes estimators, appearing in
part (i), is a basic result of mathematical statistics; cf. Wald (1950). Part (i)
is often simply used as an alternative definition of Bayes procedures. Part (ii)
translates part (i) into a statement of asymptotic average risk efficiency of
Bayes estimators (essentially following the fundamental result of Ibragimov
and Has’minskii (1981, p. 93)).

A very important point to be emphasized here is that, in contrast to the regu-
lar case, the asymptotic efficiency rankings critically rely on the loss function ρ.
For example, the MLE is worse than the posterior mean under the squared
loss, a point well emphasized in Hirano and Porter (2003), but performs better
than the posterior mean under other loss functions, a point emphasized here
and supported further in Section 4. A possible explanation for this is that the
MLE can be approximated by a Bayes estimator under any loss function that
approximates the delta function, e.g., 0 − 1 loss I[|u|> ε]/ε, and penalizes the
estimation mistakes differently than the squared loss does. In that sense the
MLE is approximately optimal under these loss functions and thus may per-
form better under these loss functions than, say, the posterior mean. Thus, the
MLE generally cannot be dominated by any other given BE when risk compar-
isons are made across different loss functions. Such comparisons are relevant
when the empirical investigator does not know the loss function of the end-
user of the estimation results. Moreover, the MLE is invariant to reparameter-
ization, which makes it a valuable estimation approach, given its approximate
optimality.

3.6. Basic Large Sample Properties of Maximum Likelihood Procedures

Consider the MLE γ̂ = (β̂′� α̂′)′ ≡ arg supγ∈G Ln(γ) and define Zn ≡ (Zβ
n

′
�

Zα
n

′)′ ≡ (n(β̂−βn)
′�

√
n(α̂−αn)

′)′ as the MLE centered at the true parameter
and normalized by the convergence rates.
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THEOREM 3.5 (Properties of MLE): Under C0–C5, and supposing that
−∞(z) attains a unique minimum in R

d a.s., then Zn = Op(1) and Zn
d→ Z ≡

arg infz∈Rd −∞(z)� In particular, Zα
n

d→ Zα = J −1W d= N (0�J −1), Zβ
n

d→ Zβ =
arg inf

u∈R
dβ −2∞(u)� and Zβ and Zα are independent.

Theorem 3.5 generalizes the results of Ibragimov and Has’minskii (1981)
and Donald and Paarsch (1993a). To meet space constraints, the proof, which
uses the remarkable epi-convergence framework of Knight (2000), and a de-
tailed discussion are given in Chernozhukov and Hong (2001a). The limit result
allows one to conduct Wald inference by either simulating the limit distribution
or estimating it with subsampling; see previous Remarks 3.1 and 3.5 that apply
here equally well. The limit variable Z is the argmin of the limit likelihood,
which inherits the discontinuities of the finite sample likelihood. Due to as-
ymptotic independence of the information about the shape parameter α from
the information about the location parameter β, the MLEs for these parame-
ters are asymptotically independent. Moreover, in boundary models, the limit
result can be stated more explicitly for β as follows:

n(β̂−βn)
d→ Zβ

≡ arg inf
u

(−exp(u′m) such that Ji ≥ ∆(Xi)
′u� for all i ≥ 1

)
�

REMARK 3.7 (Asymptotic nonsufficiency of MLE): It is important to note
here that posterior means and medians are generally not equal to the bias cor-
rected MLE. Consider the example of Section 3.2 where ∞(z)≡ eE(X)′z1(Γi ≥
X ′

i z, for all i ≥ 1)� The limit maximum likelihood variable Ẑ maximizes ∞(z),
which is equivalent to maximizing E(X)′z subject to the constraint Γi ≥ X ′

i z,
for all i ≥ 1. In the no covariate case, the limit MLE Ẑ maximizes ez over z such
that Γi ≥ z for all i; thus Ẑ = min{Γi� i ≥ n} and ∞(z) = ez1(z ≤ Ẑ), implying
the sufficiency of Ẑ. If Ẑ is sufficient, then the limit optimal (Bayes) estimators
Z are all some shift transformations of Ẑ by the well-known Rao–Blackwell ar-
gument. This raises the question of whether Ẑ is a sufficient statistic for ∞(z)

in the general regression case. Taking the example with X = (1� X̃) where X̃

is continuous, it is easy to see that ∞(z) is not a function of the MLE Ẑ only,
in particular ∞(z) �= eE(X)′z1(X ′

i z ≤ X ′
i Ẑ� for all i ≥ 1) with strictly positive

probability. This implies that Ẑ is not sufficient for ∞(z) even conditional on
covariates. In fact, ∞(z) is determined by the infinite-dimensional sufficient
statistic {Xi�X ′

i � Ji� J
′
i} specified in Theorem 3.1. Thus, the limit Bayes esti-

mators Z generally are functions of the entire likelihood ∞(z) and are not
nonrandom functions of the MLE Ẑ.
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4. COMPUTATIONAL EXPERIMENTS

4.1. Monte Carlo Design and Computation

We used a procurement auction model similar to that in Section 2.1, where
we set θ2 = 1 and θ1 = exp(β0 +β1X), with X ∼U(0�1),β0 = 1, β1 = 1, m = 3.
We take n = 100 and n = 400, which are close to sample sizes encountered in
empirical work on auctions. We used the parameter space B = [β0 ± 5]× [β1 ±
5] and a flat prior to compute Bayes estimates. The starting value was set to
be 0 in the computation of the estimates. The computations were performed
using the canonical random-walk MCMC algorithm described in Robert and
Casella (1998, p. 245).14 The MLE was computed by taking the argmax over
the sequence of draws generated by the MCMC algorithm.

4.2. Quality of Estimation Procedures

We compare the performance of (i) the posterior mean, (ii) the posterior
median, and (iii) the posterior mode (MLE) across different risk measures.
Results given in Tables I and II demonstrate that: (a) the posterior mean is the
best under the mean squared loss, (b) the posterior median is the best under
the mean absolute deviation loss, (c) the MLE does better under the mean
10th power loss function. Thus, all of the listed likelihood-based estimators
perform well relative to some risk measure and none dominate, supporting the
theoretical discussion given previously.

TABLE I
ESTIMATOR PERFORMANCE FOR INTERCEPT β0 (BASED ON 500 REPETITIONS)

Estimator RMSE MAD Median AD pth loss (p = 10)

n= 100
Posterior Mean .0114 .0081 .0059 .0401
Posterior Median .0115 .0078 .0054 .0433
MLE .0127 .0088 .0063 .0369

n= 400
Posterior Mean .0029 .0021 .0015 .0104
Posterior Median .0030 .0020 .0014 .0106
MLE .0034 .0023 .0015 .0103

14In our implementation, the first 20�000 draws are made for a “burn-in stage,” with adjust-
ments made to the variance of transition kernel every 200 draws in order to keep the rejection
rate near �5. Then, additional 20�000 draws were made with a fixed variance, and used in the
computation of the estimates. The C++ implementation is available from the authors.



1466 V. CHERNOZHUKOV AND H. HONG

TABLE II

ESTIMATOR PERFORMANCE FOR SLOPE β1 (BASED ON 500 REPETITIONS)

Estimator RMSE MAD Median AD pth loss (p = 10)

n= 100
Posterior Mean .0212 .0147 .0105 .0983
Posterior Median .0214 .0144 .0096 .1053
MLE .0216 .0145 .0096 .0693

n= 400
Posterior Mean .0053 .0037 .0026 .0227
Posterior Median .0054 .0037 .0025 .0228
MLE .0057 .0038 .0024 .0221

4.3. Quality of Inferential Procedures

In the next step we compare several methods for constructing confidence in-
tervals. We compare confidence intervals based on posterior quantiles, which is
the primary inference method advocated in the paper with a number of other
procedures. In Table III we record the performance of (i) confidence inter-
vals based on posterior quantiles, (ii) percentile confidence intervals based on
parametric bootstrap of the posterior mean, (iii) percentile confidence inter-
vals based on subsampling the posterior mean (using 1/4 ×n as the subsample
size), and (iv)–(vi) percentile confidence intervals based on simulating the limit
distribution of the MLE and other estimators, as described in Remark 3.1 (us-
ing b= n).

Results reported in Table III indicate that confidence intervals based on pos-
terior quantiles and confidence intervals based on simulating the limit distri-
bution perform better than other methods considered. Confidence intervals
based on posterior quantiles also appear to be the shortest on average. Given
that posterior quantiles are the least expensive to compute, they could be pre-
ferred in practice along with subsampling.15 Subsampling is also an inexpen-
sive method, in fact much less expensive than the parametric bootstrap, and is
probably the most robust inference method in the presence of local misspeci-
fication.

15In terms of computational expense, computation of posterior quantiles takes less than
1 minute on a Pentium III PC. Simulation of the limit distribution is roughly twice as expensive
(because limit expressions are simple transformations of linear functions and do not contain non-
linear expressions). We used 200 bootstrap draws and full sample estimates as starting values in
the MCMC algorithm, which reduces the number of MCMC draws needed in the re-computation
of the estimates. Using this implementation, 200 bootstrap draws take between 7 and 30 minutes
for samples n = 100 and n = 400. Thus, 1000 bootstrap draws take up to 150 minutes for n= 400.
The subsampling with 200 draws takes about 1/5th of the time of the parametric bootstrap.
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TABLE III

COMPARISON OF INFERENCE METHODS: COVERAGE AND AVERAGE LENGTH OF THE NOMINAL
90% CONFIDENCE INTERVALS (BASED ON 500 REPETITIONS)

Coverage: Length: Coverage: Length:
Confidence Interval Intercept Intercept Slope Slope

n= 100
Posterior Interval .87 .0298 .85 .0555
Bootstrap P-mean .88 .0392 .86 .0720
Subsampling: P-mean .83 .0416 .82 .0770
Limit Process: P-mean .86 .0346 .84 .0587
Limit Process: P-median .85 .0352 .86 .0610
Limit Process: MLE .93 .0347 .95 .0653

n= 400
Posterior Intervals .87 .0075 .84 .0140
Bootstrap: P-mean .84 .0089 .88 .0167
Subsampling: P-mean .82 .0085 .83 .0158
Limit Process: P-mean .89 .0085 .82 .0145
Limit Process: P-median .86 .0087 .86 .0150
Limit Process: MLE .89 .0084 .92 .0157

5. CONCLUSION

We study estimation and inference in a general model in which the condi-
tional density of the dependent variable jumps at a location that is parameter
dependent. This model includes a number of important economic models dis-
cussed in the recent literature on structural estimation. We derive large sample
theory for a variety of likelihood-based procedures and offer an array of useful
and practical inference techniques, including Bayes and Wald inference meth-
ods. The results provide a theoretical and practical solution to the important
econometric problem posed by Aigner, Amemiya, and Poirier (1976).
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APPENDIX A: REGULARITY CONDITIONS C0–C5 AND D1–D3

NOTATION: Throughout the paper, c and const denote generic positive constants; ‖x‖ is
the Euclidian norm

√
x′x, and |x| is the supremum norm, i.e., |x| = supj≤k |xj |, where x =

(x1� � � � � xk). The densities f (ε|x�γ) are discontinuous at ε = 0 and are not differentiable in ε
at ε = 0. To simplify notation, we use ∂f (ε|x�γ)/∂ε to denote both the usual partial derivative
when ε �= 0 and the directional partial derivative ∂f (0+|x�γ)/∂ε when ε = 0, etc. Also, Bδ(γ)
denotes a closed ball at γ of radius δ as measured by | · |.
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Conditions C0–C5

The following conditions apply to x ∈ X and ε ∈ R. Conditions C0–C3 apply to any γ = (β�α) ∈
G. Conditions C4 and C5 apply to any γ = (β�α) ∈ G and γ̄ = (β̄� ᾱ) ∈ Bδ(γ) for some δ> 0.

CONDITION C0: For each γ, (Yi�Xi) is an i.i.d. sequence of vectors in R × R
k, defined on

a probability space (Ω�F� Pγ). G ⊂ R
d is a compact convex set such that γ0 ∈ interior G; for any γ

and γ̄ �= γ, Pγ{f (Yi − g(Xi� β̄)|Xi� γ̄) �= f (Yi − g(Xi�β)|Xi�γ)}> 0.

CONDITION C1: Xi has a distribution function FX , which does not depend on γ, and has
a compact support X. In addition to (2.2), uniformly in γ and x, we have either:

(i) the two-sided model: p(x�γ) > q(x�γ) > f > 0, or
(ii) the one-sided model: p(x�γ) > f > 0 and f (ε|x�γ)= q(x�γ) = 0, for all ε < 0�

CONDITION C2: Without loss of generality, the density f (ε|x�γ) is upper-semicontinuous at
ε = 0 for each (x�γ). f (ε|x�γ) has continuous first partial derivative in ε (except at ε = 0) for
each (x�γ); f (ε|x�γ) has continuous first and second partial derivative in γ, for each (x� ε�γ).
The density and the said derivatives are continuous in x on X for each (ε� γ). Moreover,

sup
ε∈R�x∈X�γ∈G

f (ε|x�γ) < f̄ �

sup
ε∈R�x∈X�γ∈G

∣∣∣∣ ∂

∂(ε�γ)
f (ε|x�γ)

∣∣∣∣< f̄ ′�

sup
ε∈R�x∈X�γ∈G

∣∣∣∣ ∂2

∂γ ∂γ′ f (ε|x�γ)
∣∣∣∣< f̄ ′′�

where f̄ , f̄ ′, f̄ ′′ < ∞. Lastly, supγ EX

∫ | ∂
∂γ
f (y − g(X�β)|X;γ)|dy < ∞�

CONDITION C3: The function g(x�β) has two continuous derivatives in β, for each (x�β),
and

sup
β∈B�x∈X

|g(x�β)| < ḡ�

sup
β∈B�x∈X

∣∣∣∣ ∂

∂β
g(x�β)

∣∣∣∣ < ḡ′�

sup
β∈B�x∈X

∣∣∣∣ ∂2

∂β∂β′ g(x�β)
∣∣∣∣ < ḡ′′�

where ḡ� ḡ′� ḡ′′ < ∞, and

EX

[
∂g(X;β)

∂β

∂g(X;β)
∂β

′]
is positive definite uniformly in β. The function g(x�β) and its derivatives

∂

∂β
g(x�β) and

∂2

∂β∂β′ g(x�β)

are continuous in x on X for each β.
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CONDITION C4: When the parameter α is present, for li(γ̄) ≡ ln f (Yi − g(Xi� β̄)|Xi� γ̄),
where γ̄ = (β̄� ᾱ), uniformly in γ̄ and γ, either (a)

Eγ

[
∂

∂γ̄
li(γ̄)

∂

∂γ̄
li(γ̄)

′
]

is positive definite and bounded or (b) if ∂
∂β
li(γ) = 0 Pγ-a.s., then

Eγ

[
∂

∂ᾱ
li(γ̄)

∂

∂ᾱ
li(γ̄)

′
]

is positive definite and bounded.

CONDITION C5: In the two-sided model C1(i), the terms∣∣∣∣ ∂

∂β̄
ln f (Yi − g(Xi� β̄)|Xi� γ̄)

∣∣∣∣�∣∣∣∣ ∂

∂γ̄
ln f (Yi − g(Xi� β̄)|Xi� γ̄)

∣∣∣∣2

�(A.1) ∣∣∣∣ ∂2

∂γ̄ ∂γ̄′ ln f (Yi − g(Xi� β̄)|Xi� γ̄)

∣∣∣∣
are bounded respectively by Cj(εi�Xi), j = 1�2�3� for all Yi − g(Xi� β̄) ∈ R \ {0}, uniformly in
γ̄ ∈ Bδ(γ), where supγ EγCj(εi�Xi) < ∞ for j = 1�2�3. Similarly, for the one-sided model C1(ii),
the terms in (A.1) are bounded respectively by Cj(εi�Xi), j = 1�2�3� for all Yi − g(Xi� β̄) > 0,
uniformly in γ̄ ∈ Bδ(γ), where supγ EγCj(εi�Xi) < ∞ for j = 1�2�3.

Conditions D1–D3

The prior µ :G → R+ and the loss function ρ : Rdα+dβ → R+ have the following properties:

PROPERTY D1: µ(·) > 0, is continuous on G, and vanishes outside G.

PROPERTY D2: ρ(·) ≥ 0, ρ(z) = 0 if and only if z = 0, and ρ is convex.

PROPERTY D3: ρ(z) is dominated by a polynomial of |z| as |z| −→ ∞.

REMARK A.1 (Constants): The constants f̄ , f̄ ′, f̄ ′′, ḡ, ḡ′ , and ḡ′′ specified above as well as
the constant f will be extensively used in the proofs. In view of C1–C2, for some δ > 0 and
V (0) = [−δ�δ] \ {0} in the case C1(i) and V (0) = (0� δ] in the case C1(ii), f is any constant that
satisfies infε∈V (0)�x∈X�γ∈G f (ε|x�γ) > f > 0�

REMARK A.2: Conditions C0–C5 and D1–D3 represent a generalization of the assumptions
in Ibragimov and Has’minskii (1981, Chapter V) and Smith (1985). Condition C1(ii) allows for
the boundary model, where the density is zero to the left side of the jump and is positive on the
right side. Condition C1(i) allows for the two-sided model where the density is positive on both
sides. Conditions of type C3–C5 are common in nonlinear analysis and conditions of type D1–D3
in Bayesian analysis.
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APPENDIX B: PROOFS

PROOF OF THEOREM 3.1: In the proof we set the local parameter sequence γn = γ0. Consid-
ering a general sequence does not change the argument but complicates notation.

Following Ibragimov and Has’minskii (1981), we split the log-likelihood ratio process Qn(z) ≡
ln n(z) ≡ lnLn(γ0 +Hnz)/Ln(γ0) into the continuous part Qc

n(z) and the piecewise constant part
Qd

n(z), and analyze each part separately. Our goal is to show that Qn(z) converges in distribution
in the finite-dimensional sense to Q∞(z) ≡ Qc

∞(z)+Qd
∞(z)� where Qc

∞(z) = W′v− 1
2v

′J v+m′u,
Qd

∞(z) = ∫
R×X lu(j� x)dN(j� x)� and each term is defined in Theorem 3.1. Given this result, the

finite-dimensional limit of n(z) is ∞(z) = exp(Q∞(z))� For z = (u′� v′)′ , using that εi = Yi −
g(Xi�β0),

Qn(z) ≡
n∑

i=1

r̂in(z) × [
1(εi > {∆n(Xi�u)/n} ∨ 0)+ 1(εi < {∆n(Xi�u)/n} ∧ 0)

]
︸ ︷︷ ︸

Qc
1n(z)

+
n∑

i=1

(
r̂in(z)− rin(z)

) × [
1(0 < εi ≤ ∆n(Xi�u)/n)

+ 1(0 > εi ≥ ∆n(Xi�u)/n)
]

︸ ︷︷ ︸
Qc

2n(z)

+
n∑

i=1

rin(z)× [
1(0 < εi ≤ ∆n(Xi�u)/n)+ 1(0 > εi ≥ ∆n(Xi�u)/n)

]
︸ ︷︷ ︸

Qd
n(z)

≡ Qc
n(z)+Qd

n(z)� where

r̂in(z) ≡ ln
[
f (Yi − g(Xi�β0 + u/n)|Xi�β0 + u/n�α0 + v/

√
n)

f (Yi − g(Xi�β0)|Xi�γ0)

]

≡ ln
[
f (εi −∆n(Xi�u)/n|Xi�β0 + u/n�α0 + v/

√
n)

f (εi|Xi�γ0)

]
�

rin(z) ≡ ln
[
q(Xi)

p(Xi)

]
1(0 < εi)+ ln

[
p(Xi)

q(Xi)

]
1(0 > εi)�

∆n(x�u)≡ n
(
g(Xi�β0 + u/n)− g(Xi�β0)

)
�

The convergence analysis of the continuous part Qc
n(z) is standard. In sharp contrast, the behavior

of the discontinuous part Qd
n(z) differs from that of Qc

n(z), and is analyzed using the point process
methods. Also, in the expressions above and all the proofs we use the algebraic rules of Ibragimov
and Has’minskii (1981) defined in Theorem 3.1 for working with ∞’s . This is done to include the
proof for the boundary model as a special case. In particular, the expressions involving 1(0 >
εi > · · ·) cancel, since in the boundary model εi > 0. Also in the boundary model we define
r̂in(z) − rin(z) ≡ 0 when 0 < εi ≤ ∆n(Xi�u)/n, so that Qc

2n(z) ≡ 0� Thus Qc
2n(z) �≡ 0 only for the

two-sided model. Further details follow in Parts I and II.
Part I obtains the finite-dimensional limit of Qc

n(z). The proof method is standard for the
smooth likelihood analysis. Application of Taylor expansion to each r̂in(z), i = 1� � � � � n, so that the
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expanded terms are i.i.d., followed by application of the Markov LLN and Chebyshev inequality,
yields for a given z

Qc
1n(z) ≡ −u′E∆(Xi)

f ′(εi|X�γ0)

f (εi|Xi�γ0)︸ ︷︷ ︸
≡u′m

+v′
[

1√
n

n∑
i=1

∂

∂α
lnf (εi|Xi�γ0)

]
︸ ︷︷ ︸

≡Wn

+ 1
2
v′

[
E

∂2

∂α∂α′ log f (ε|X�γ0)

]
︸ ︷︷ ︸

≡−J

v + op(1)�

where ∆(Xi) = ∂g(Xi�β0)/∂β. The information matrix equality for α implies

−J = E
∂2 log f (ε|X�γ0)

∂α∂α′

= −E
∂ log f (ε|X�γ0)

∂α

∂ log f (ε|X�γ0)

∂α

′
�

and the CLT gives Wn
d→ W = N (0�J )� Also, it follows by C2 that m = E∆(Xi)(p(Xi)− q(Xi))�

Therefore, the finite-dimensional limit of Qc
1n(z) is given by Qc

∞(z) ≡ u′m + W′v − 1
2v

′J v�
It remains to show Qc

2n(z) = op(1). In the one-sided case Qc
2n(z) ≡ 0; hence we only need to

consider the two-sided case. Note that by C1–C3, for any compact set Z, as n → ∞, for some
constant c that depends only on f̄ /f and ḡ′ ,∣∣∣∣ ln

[
f (ε−∆n(x�u)/n|x�β0 + u/n�α0 + v/

√
n)

f (ε|x�γ0)

]
− ln

[
q(x)

p(x)

]∣∣∣∣(B.1)

≤ c × ‖z‖/√n

uniformly in {ε� z� x ∈ R+ × Z × X :∆n(x�u) > 0�0 < ε≤ ∆n(x�u)/n}. Likewise∣∣∣∣ ln
[
f (ε−∆n(x�u)/n|x�β0 + u/n�α0 + v/

√
n)

f (ε|x�γ0)

]
− ln

[
p(x)

q(x)

]∣∣∣∣(B.2)

≤ c × ‖z‖/√n

uniformly in {ε� z� x ∈ R− × Z × X :∆n(x�u) < 0�0 > ε≥ ∆n(x�u)/n}. Thus

sup
z∈Z

|Qc
2n(z)| ≤ c × ‖Z‖/√n×

n∑
i=1

1(|εi| <K/n)= Op(1/
√
n)(B.3)

for K= ‖Z‖ × ḡ′ < ∞, where ‖Z‖ = sup{‖z‖ :z ∈ Z}, where K < ∞ by C3. The Op(1/
√
n) con-

clusion is by C2:

E

n∑
i=1

1(|εi| <K/n) ≤ 2f̄K < ∞�(B.4)

Part II obtains the finite-dimensional limit of Qd
n(z). Recall

Qd
n(z) ≡

n∑
i=1

[
ln

q(Xi)

p(Xi)
1(0 <nεi ≤ ∆n(Xi�u))+ ln

p(Xi)

q(Xi)
1(0 > nεi ≥ ∆n(Xi�u))

]
�
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By C2 and C3

E

n∑
i=1

∣∣1(0 <nεi ≤ ∆n(Xi�u))− 1
(
0 <nεi ≤ ∆(Xi)

′u
)∣∣

+ ∣∣1(0 > nεi ≥ ∆n(Xi�u))− 1
(
0 > nεi ≥ ∆(Xi)

′u
)∣∣

≤ 2f̄ ḡ′′‖u‖2/n = o(1)�

where ∆(Xi) ≡ ∂g(Xi�β0)/∂β, which implies that for a given z

Qd
n(z) =

n∑
i=1

[
ln

q(Xi)

p(Xi)
1
(
0 < nεi < ∆(Xi)

′u
) + ln

p(Xi)

q(Xi)
1
(
0 > nεi > ∆(Xi)

′u
)]

+ op(1)�

Now note that (Qd
n(zj)� j ≤ l) and (Qc

n(zj)� j ≤ l), for any finite l, are asymptotically inde-
pendent. This follows by applying a standard argument concerning the independence of extreme
order statistics and sample averages; see, e.g., Lemma 21.19 in van der Vaart (1999). Details are
omitted for brevity, but can be found in Chernozhukov and Hong (2001a).

The next step is to obtain the finite-dimensional limit of Qd
n . The behavior of Qd

n is determined
by near-to-jump observations, which behavior is described using point processes. We split the
argument in two steps. Step 1 constructs the required point process and derives its limit. Step 2
applies Step 1 to obtain the finite-dimensional limit of Qd

n .
Step 1. The intuition for Step 1 is provided in Section 3.2 of the main text.
Define E ≡ R × X. The topology on E is standard; e.g., [a�b] × X is a compact subset relative

to E. The point process of interest is a random measure taking the following form: for any Borel
subset A, N̂(A) = ∑n

i=1 1[(nεi�Xi) ∈ A]� We take N̂ to be a random element of Mp(E), the
metric space of nonnegative point measures on E, with the metric generated by the topology of
vague convergence; cf. Resnick (1987, Chapter 3). We show that N̂ ⇒ N in Mp(E)� for N given in
Theorem 3.1. This is done in the steps (a) and (b).

(a) By C1 and C2, for any F ∈ T , the basis of relatively compact open sets in E (finite unions
and intersections of open bounded rectangles in E),

lim
n→∞

EN̂(F) ≡ lim
n→∞

nP
(
(nεi�Xi) ∈ F

)
=

∫
F

[p(x)1(u > 0)du+ q(x)1(u < 0)du]dFX(x)(B.5)

= m(F) <∞�

where the measure m is defined as dm(u�x) = [p(x)1(u > 0)du + q(x)1(u < 0)du]dFX(x)�
Since {(nεi�Xi) ∈ F} are independent across i by C0, by Meyer’s Theorem (cf. Meyer (1973))

lim
n→∞P(N̂(F) = 0) = e−m(F)�(B.6)

Statements (B.5) and (B.6) imply by Kallenberg’s theorem (cf. Resnick (1987, Proposition 3.22))
that N̂ ⇒N in Mp(E), where N is a Poisson point process with the mean intensity measure m(·).

(b) Next we show that N has the same distribution as N given in Theorem 3.1. First, con-
sider the canonical Poisson processes N0 and N ′

0 with points {Γi} and {Γ ′
i } defined in Theo-

rem 3.1. N0 has the mean measure m0(du) = du on (0�∞), and N ′
0 has the mean measure

m′
0(du) = du on (−∞�0); see Resnick (1987, p. 138). Because N0 and N ′

0 are independent,
N1(·) ≡ N0(·) + N0(·)′ is a Poisson point process with mean measure m1(du) = du on R� by
definition of the Poisson process; see Resnick (1987, p. 130). Because {Xi�X ′

i } are i.i.d. and
independent of {Γi� Γ

′
i }, by Proposition 3.8 in Resnick (1987), the composed process N2 with

points ({Γi�Xi}� {Γ ′
i �X ′

i }� i≥ 1) is a Poisson process with the mean measure m2(du�dx) = [1(u >
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0)du+ 1(u < 0)du]×FX(dx) on R × X� Finally, N with the points {T(Γi�Xi)� T (Γ ′
i �X ′

i )}, where
T : (u�x) �→ (1(u > 0)u/p(x) + 1(u < 0)u/q(x)�x), is a Poisson process with the desired mean
measure m(du�dx) = m2 ◦ T−1(du�dx) = [p(x)1(u > 0) + q(x)1(u < 0)]duFX(dx)� by Propo-
sition 3.7 in Resnick (1987).

Step 2. We have for z = (u′� v′)′,

Qd
n(z) = Qd

n(u) =
[

n∑
i=1

ln
q(Xi)

p(Xi)
1[0 < nεi ≤ ∆(Xi)

′u]

+
n∑

i=1

ln
p(Xi)

q(Xi)
1[0 >nεi ≥ ∆(Xi)

′u]
]

+ op(1)�

Ignoring the op(1) term, write Qd
n(u) as a Lebesgue integral with respect to N̂:

Qd
n(u)=

∫
E

lu(j� x)dN̂(j� x)�

where lu(j� x) is defined in Theorem 3.1. The convergence of this integral is implied by N̂ ⇒ N in
both the two-sided and one-sided model:

(a) In the two-sided model: By conditions C1–C3, the function (j� x) �→ lu(j� x) is bounded
and vanishes outside the compact set Ku ≡ [−η�+η] × X, η = supx∈X |∆(x)′u|, where η < ∞
by C3. Thus (j� x) �→ lu(j� x) has compact support but is discontinuous when j = 0 and j = ∆(x)′u.
Define the map T :Mp(E) �→ R

l as N �→ (
∫
E
luk(j� x)dN(j� x)�k≤ l) for l < ∞. Hence by Propo-

sition 3.13 in Resnick (1987), T is discontinuous at D(T )≡ {N ∈Mp(E) : jNi = 0 or jNi = u′
k∆(x

N
i )

for some i ≥ 1� k ≤ l} where (jNi � x
N
i � i≥ 1) denote the points of N . Since εi’s are absolutely con-

tinuous, P[N̂ ∈ D(T ), for some n ≥ 1] = 0, and by definition of N, P[N ∈ D(T )] = 0� Therefore
N̂ ⇒ N in Mp(E) implies T(N̂)

d→ T(N) by the continuous mapping theorem; cf. Resnick (1987,
p. 153). It follows that (Qd

n(uk)�k ≤ l)
d→ (Qd

∞(uk)�k ≤ l)� where Qd
∞(u) ≡ ∫

E
lu(j� x)dN(j� x)�

(b) In the one-sided model: Using the Ibragimov and Has’minskii (1981) rules for algebraic
operations with ∞’s stated in Theorem 3.1, note that Qd

n(u) = ∫
E
lu(j� x)dN̂(j� x) is a binomial

random variable: Qd
n(u) = −∞ if N̂(A(u)) > 0 and Qd

n(u) = 0 if N̂(A(u)) = 0� where A(u) ≡
{(j� x) ∈ R+ × X : j ≤ ∆(x)′u}� Also define Qd

∞(u) ≡ ∫
E
lu(j� x)dN(j� x), so that Qd

∞(u) = −∞
if N(A(u)) > 0 and Qd

∞(u) ≡ 0 if N(A(u)) = 0� Thus, to show the finite-dimensional conver-
gence (for γk = −∞ or 0): limn→∞ P(Qd

n(uk) = γk�k≤ l)= P(Qd
∞(uk) = γk�k≤ l)� it suffices to

show (N̂(A(uk))�k ≤ l)
d→ (N(A(uk))�k ≤ l) for l < ∞. By a definition of weak convergence of

point processes (cf. Embrechts, Klüppelberg, and Mikosch (1997, p. 232)), this is immediate from
N̂ ⇒ N, since by C2 and construction of N, N̂(∂A(uk)) = 0 and N(∂A(uk)) = 0 a.s. Q.E.D.

PROOF OF THEOREM 3.2: The proof applies Theorem I.10.2 of Ibragimov and Has’minskii
(1981, p. 107), which allows one to obtain the limit distribution of BEs provided some conditions
on the likelihood ratio process are satisfied.

First, BEs are measurable by the Jennrich’s measurability theorem since they minimize ob-
jective functions that are continuous in data and parameters. Second, we shall make use of the
following important lemmas proved in Appendix C. Let γ = (β�α) and h = (hβ�hα). Define the
Hellinger distance

r2(γ;γ + h)2

=
∫ ∫ ∣∣f 1/2

(
y − g(x�β+ hβ);x�γ + h

) − f 1/2
(
y − g(x�β);x�γ)∣∣2

dyFX(dx)�

Note that F1/2
X (dx) is taken outside the | · |2-brackets, since it does not depend on the parameters.
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LEMMA B.1 (Hellinger distance properties): Under C0–C5, there are a > 0 and A> 0 such that
for all h such that γ + h ∈ G, uniformly in γ ∈ G

(a) r2
2(γ;γ + h) ≥ 2

amax(|hβ|� |hα|2)
1 + max(|hβ|� |hα|2) and(B.7)

(b) r2
2(γ;γ + h) ≤ A(|hβ| + |hα|2)�

LEMMA B.2 (Exponential tails and Holder continuity): Given (B.7), for all n > n0, (z� z′) with
γ +Hnz ∈ G and γ +Hnz

′ ∈ G, and some a′ > 0 and n0, uniformly in γ ∈ G

Eγn(z)
1/2 ≤ e−a′(|z|−1)� Eγ|n(z)1/2 − n(z

′)1/2|2 ≤ A(|z − z′|)(1 + 2 · |z′| ∨ |z|)�(B.8)

The following conditions 1–4 verify the conditions of Theorem I.10.2 of Ibragimov and
Has’minskii (1981, p. 107):

1. Holder continuity of 1/2
n (z) in the mean square, and the exponential bound on the expected

likelihood tail, both proved in Lemma B.2. In the latter case, we have that for a′ > 0, Eγn(z)
1/2 ≤

e−a′(|z|−1)� where z �→ a′(|z|−1) falls into the function class G of Ibragimov and Has’minskii (1981,
p. 41), i.e., a′(|z| − 1) is increasing in |z| on [0�∞) and lim|z|→∞ |z|Ne−a′(|z|−1) = 0 for any N > 0.

2. Finite-dimensional convergence of n(z) = exp(Qn(z)) to ∞(z) = exp(Q∞(z)), established
in Theorem 3.1.

3. The limit Bayes problem,

Z = arg inf
z′∈Rd

∫
Rd

ρ(z′ − z)
∞(z)∫

Rd ∞(z̄)dz̄
dz�

is uniquely solved by a random vector Z, which is by D2 (since ρ is convex with a unique minimum;
cf. Ibragimov and Has’minskii (1981, p. 107)).

4. Conditions D1–D3 on the loss functions ρ and prior µ. (It must be noted that Ibragimov and
Has’minskii (1981) impose the symmetry of ρ throughout their book. However, the inspection
of their proof of Theorems I.10.2 (and Theorem I.5.2) reveals that the proof does not require
symmetry and applies to the loss functions that satisfy D1–D3.)

Thus, conditions 1–4 imply by Theorem I.10.2 of Ibragimov and Has’minskii (1981) that Zn
d→

Z� Furthermore, conditions 1–4 imply by Theorem I.5.2 and Theorem I.10.2 of Ibragimov and
Has’minskii (1981) that for any δ ∈ R

d , γnδ = γ0 +Hnδ, N > 0,

lim
L→∞�n→∞

L−NPγnδ {|Zn| >L} = 0� and lim
n→∞

Eγnδρ(Zn) =Eγ0ρ(Z) <∞�(B.9)

The result (B.9) is not needed to prove Theorem 3.2 but will be used later. Q.E.D.

PROOF OF THEOREM 3.3: To show Claim 1, note that limn→∞ Eγnδ [H−1
n (γ̄ − γn)] = Eγ0 Z̄

by (B.9). Consider the problem minc Eγ0ρ(Z̄+ c), where ρ(z) = z′z. The solution of this problem
is c = −EZ̄. Suppose that c �= 0; then

Eγ0ρ(Z̄ + c) < Eγ0ρ(Z̄)�(B.10)

where by Lemma 3.1 stated in Section 3.5 the left-hand side of (B.10) is the asymptotic average
risk of the sequence of estimators γ̄ + Hnc and the right-hand side of (B.10) is the asymptotic
average risk of the sequence of posterior means γ̄, which contradicts the asymptotic average risk
efficiency of the posterior mean established in Lemma 3.1. Thus it must be that c = −EZ̄ = 0.

To show Claim 2, note that by Theorem 3.2 and the definition of weak convergence,

lim
n→∞Pγnδ {(γ̂(τ))j ≤ (γ0)j} = lim

n→∞Pγnδ{(Zn(τ))j ≤ 0} = Pγ0 {(Z(τ))j ≤ 0}�
since 0 is assumed to be a continuity point of the distribution of (Z(τ))j . Consider the
problem minc Eγ0ρ((Z(τ))j − c;τ)� where ρ(z;τ) = (1(z ≥ 0) − τ)z. Note that the quantity
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Eγ0ρ((Z(τ))j − c;τ) is finite for any c by (B.9). A solution of this problem is given by the root of
the first-order condition

Pγ0{(Z(τ))j ≥ c} = τ or Pγ0 {(Z(τ))j ≤ c} = 1 − τ�(B.11)

i.e., c = (1 − τ)th quantile of (Z(τ))j (under the condition that (Z(τ))j has positive density in
any small neighborhood of 0). Suppose c �= 0; then

Eγ0ρ
(
(Z(τ))j − c;τ)<Eγ0ρ

(
(Z(τ))j;τ

)
�(B.12)

where by Lemma 3.1 the left-hand side of (B.12) is the asymptotic average risk of the sequence
of estimators defined as (γ̂(τ) −Hnc)j , and the right-hand side is the asymptotic average risk of
the posterior τth quantile (γ̂(τ))j . See Section 3.5 and Lemma 3.1 for definitions. Then (B.12)
contradicts the asymptotic average risk efficiency of the posterior quantiles under the check loss
function established in Lemma 3.1.

Thus it must be that c = 0 in (B.11), so that the first part of Claim 2, (3.10), is proven. The
second part of Claim 2, (3.11), is immediate from (B.11) with c = 0 for τ = τ′ and τ = τ′′:

lim
n→∞Pγnδ {(γ̂(τ′))j ≤ (γn(δ))j ≤ (γ̂(τ′′))j}(B.13)

= lim
n→∞

Pγnδ {(Zn(τ
′))j ≤ 0 ≤ (Zn(τ

′′))j}
= 1 − lim

n→∞Pγnδ {(Zn(τ
′′))j ≤ 0} − lim

n→∞Pγnδ {(Zn(τ
′))j ≥ 0}

= 1 − Pγ0 {(Z(τ′′))j ≤ 0} − Pγ0 {(Z(τ′))j ≥ 0} = τ′′ − τ′� Q.E.D.

PROOF OF THEOREM 3.4: We will use the following lemma.

LEMMA B.3 (Integral convergence of n(z)): Suppose that (i) n(z) has the properties specified
in Lemma B.2 and (ii) n(z) converges marginally to ∞(z) under a parameter sequence γnδ =
γ0 + Hnδ. Then (a) ∞(z) > 0 in some open ball at zero a.s., (b) for any vector-valued continuous
function g(z) dominated by a polynomial as z → ∞∫

Kn

g(z)
n(z)µ(γ0 +Hnz)∫

Kn
n(z′)µ(γ0 +Hnz′)dz′ dz

d→
∫
K

g(z)
∞(z)∫

K
∞(z′)dz′ dz�

Here either Kn = Un ≡ {z :γnδ + Hnz ∈ G} and K = R
d or Kn = K = U , where U is a fixed cube

centered at the origin; and
d→ denotes weak convergence under Pγn .

The first part of the proof of Theorem 3.4 is done by setting the true parameter sequence
γnδ = γ0. Considering a general sequence does not change the argument but complicates nota-
tion. Write Z̃n(τ) = (ĉ(τ) − rn(γ0)). Note that Z̃n(τ) ≡ arg infz̃∈R

Γn(z̃), where

Γn(z̃)≡
∫

Rd

ρ
(
z̃ − rn(γ0 +Hnz)+ rn(γ0);τ

) n(z)µ(γ0 +Hnz)∫
Rd n(z′)µ(γ0 +Hnz′)dz′ dz�

Since |rn(γ0 +Hnz)−rn(γ0)−R′z| ≤ const |z| · |Hnz|a′ for a′ > 0, by the piece-wise linearity of the
check function we have that |ρ(z̃− rn(γ0 +Hnz)+ rn(γ0);τ)−ρ(z̃−R′z;τ)| ≤ const · |z| · |Hnz|a′ .
Hence by Lemma B.3

Γn(z̃) =
∫

Rd

(
ρ(z̃ −R′z;τ)+O(|z| · |Hnz|a′

)
) n(z)µ(γ0 +Hnz)∫

Rd n(z′)µ(γ0 +Hnz′)dz′ dz(B.14)

=
∫

Rd

ρ(z̃ −R′z;τ) n(z)µ(γ0 +Hnz)∫
Rd n(z′)µ(γ0 +Hnz′)dz′ dz + op(1)�
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Applying Lemma B.3 again, it follows that the marginal limit of Γn(z̃) is given by

Γ∞(z̃) =
∫

Rd

ρ(z̃ −R′z;τ) ∞(z)∫
Rd ∞(z′)dz′ dz�

Recall that Z̃(τ) denotes the minimizer of Γ∞(z̃). By the Convexity Lemma, e.g., Knight (2000)
and Davis, Knight, and Liu (1992), the stated finite-dimensional convergence of convex objective
functions implies Z̃n(τ)

d→ Z̃(τ)� Thus, in what follows it suffices to consider only linear functions
such that rn(γ0 +Hnz)− rn(γ0)−R′z = 0 for all z.

Next, we need to establish the uniform integrability of ρ(Z̃n(τ);τ). Consider the linear trans-
formation ξ = M ′z defined by a nonsingular matrix M such that R is a column of M . Then, the
likelihood for ξ given by n(M

−1ξ) satisfies for some c > 0 and c′ > 0:

(a) Eγ|1/2
n (M−1ξ′)− 1/2

n (M−1ξ′′)|2 ≤ c|ξ′ − ξ′′|(1 + 2|ξ′| ∨ |ξ′′|)�
(b) Eγ

1/2
n (M−1ξ) ≤ e−c′(|ξ|−1)�

by nonsingularity of M and Lemma B.2. By Theorem I.5.2 of Ibragimov and Has’minskii (1981)
for any local sequence of γnδ = γ0 +Hnδ�δ ∈ R

d , and any N > 0, limL→∞�n→∞ L−NPγnδ{|Z̃n(τ)| >
L} = 0. Hence limn→∞ Eγnδρ(Z̃n(τ);τ) = Eγ0ρ(Z̃(τ);τ) < ∞� Then similarly to Lemma 3.1, it
can be concluded that {ĉ(τ)} minimizes the asymptotic average risk, i.e., it achieves the infimum
of

lim sup
K↑Rd

lim sup
n→∞

1
λ(K)

∫
K

Eγnδρ(Zn;τ)dδ

over all statistic sequences {ĉ} that are measurable functions of (Yi�Xi� i ≤ n), where Zn =
ĉ − rn(γnδ). The rest of the argument, which establishes the (1 − τ)-quantile unbiasedness of
the posterior τ-quantiles and the resulting coverage properties, is identical to the proof of Theo-
rem 3.3. Q.E.D.

PROOF OF LEMMA 3.1: Claim 1 is just a special case of Theorem 1.1 of Lehmann and Casella
(1998, Chapter 5). Claim 2 follows by the argument given by Ibragimov and Has’minskii (1981,
p. 93). Details can be found in Chernozhukov and Hong (2001a). Q.E.D.

APPENDIX C: PROOFS OF LEMMAS B.1–B.4

PROOF OF LEMMA B.1: In order to establish (B.7)(b), let γ = (β�α) and h = (hβ�hα),

r2
2(γ;γ + h)

= EX

∫ (
f 1/2(y − g(X�β + hβ)|X;β+ hβ�α+ hα)− f 1/2(y − g(X�β)|X;γ))2

dy

(1)≤ EX

∫
[g(X�β)�g(X�β+hβ)]

∣∣f (y − g(X�β + hβ)|X;β+ hβ�α+ hα)

− f (y − g(X�β)|X;γ)∣∣dy
+EX

∫
[g(X�β)�g(X�β+hβ)]c

(
f 1/2(y − g(X�β+ hβ)|X;γ + h)

− f 1/2(y − g(X�β+ hβ)|X;β+ hβ�α)
)2
dy

+EX

∫
[g(X�β)�g(X�β+hβ)]c

∣∣f (y − g(X�β+ hβ)|X;β+ hβ�α)

− f (y − g(X�β)|X;γ)∣∣dy
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(2)≤ 2EX |g(X�β+ hβ)− g(X�β)|f̄

+ const |hα|2
∫ 1

0
EX

∫ ∣∣∣∣∂f 1/2(y − g(X�β+ hβ)|X�β+ hβ�α+ωhα)

∂α

∣∣∣∣2

dy dω

+ const |hβ|
∫ 1

0
EX

∫ ∣∣∣∣∂f (y − g(X�β+ωhβ)|X�β+ωhβ�α)

∂β

∣∣∣∣dy dω
(3)≤ const f̄ |hβ|EX

∫ 1

0

∣∣∣∣∂g(X�β +ωhβ)

∂β

∣∣∣∣dω+ const (|hα|2)+ const (|hβ|)

(4)= const (|hβ|)+ const (|hα|2)�
where [a�b] = [a�b] if a ≤ b and = [b�a] if b ≤ a, and the bound is uniform in γ. (1) is by
triangle inequality and |a− b|2 ≤ |a2 − b2| for a > 0 and b > 0. The first term in (2) follows from
|f (·|·)| ≤ f̄ . The second and third terms in (2) are by Taylor expansion and Fubini. The first term
in (3) follows from Taylor expansion and Fubini. The second term in (3) follows from C4, while
the third term in (3) is by C2. (4) is by C3.

The lower bound from below, equation (B.7)(a), is established by considering separately
|h| ≤ δ for some sufficiently small δ and |h| > δ. Indeed, for sufficiently small δ and |h| ≤ δ it
is shown below that

r2
2(γ;γ + h) ≥ const max(|hβ|� |hα|2)�(C.1)

On the other hand, by the identification condition C0 for all |h| > δ such that γ + h ∈ G,

r2
2(γ;γ + h) ≥ εδ > 0�(C.2)

Hence for some a > 0 the bound in (B.7)(a) is immediate from (C.1)–(C.2).
It remains to prove (C.1) for |h| < δ for some sufficiently small δ. Write

r2
2(γ;γ + h) = EX

∫
[g(X�β)�g(X�β+hβ)]

(
f 1/2(y − g(X�β+ hβ)|X;γ + h)

− f 1/2(y − g(X�β)|X;γ))2
dy︸ ︷︷ ︸

I

+EX

∫
[g(X�β)�g(X�β+hβ)]c

(
f 1/2(y − g(X�β+ hβ)|X;γ + h)

− f 1/2(y − g(X�β)|X;γ))2
dy︸ ︷︷ ︸

II

�

For small hβ, we can bound I from below uniformly in γ by

EX

1
2
|g(X�β+ hβ)− g(X�β)||p1/2(X�γ)− q1/2(X�γ)|2

≥ constEX

∣∣∣∣∂g(X;β)
∂β

′
hβ

∣∣∣∣ ≥ const |hβ|�

using C3 and Taylor expansion. On the other hand, by C1–C3, bound II from below by

EX

∫
[g(X�β)�g(X�β+hβ)]c

(
h′ ∂f

1/2(y − g(X;β)|γ)
∂γ

)2

dy − o(|h|2)�
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By C2, C3, and C4(a), a further lower bound on II is

|h|2 inf
|u|=1

EX

∫
[g(X�β)�g(X�β+hβ)]c

(
f 1/2(y − g(X�β);γ)

∂γ

′
u

)2

dy

≥ |h|2
(

inf
|u|=1

EX

∫ (
∂f 1/2(y − g(X�β);γ)

∂γ

′
u

)2

dy +O(|hβ|)
)

≥ const |h|2 ≥ const |hα|2�
for all sufficiently small |h|, where the remainder term O(|hβ|) arises from neglecting the inte-
grand over the small area [g(X�β)� g(X�β + hβ)] and using the bounds in C2 and C3 to do so.
On the other hand, if assumption C4(b) holds, the uniform lower bound on II is

EX

∫ (
h′ ∂f

1/2(y − g(X;β)|γ)
∂γ

)2

dy

≥ const |hα|2 inf
|u|=1

EX

∫ (
f 1/2(y − g(X�β);γ)

∂α

′
u

)2

dy

≥ const |hα|2�
for all sufficiently small |h|. Conclude infγ r2

2 (γ;γ + h) ≥ const max(|hβ|� |h2
α|). Q.E.D.

PROOF OF LEMMA B.2: We have

Eγn(z)
1/2 (1)≤

[
1 − 1

2
r2

2(γ;β+ u/n�α+ v/
√
n)

]n

(2)≤ exp
{
−n

2
r2

2(γ;β+ u/n�α+ v/
√
n)

}
(3)≤ exp

{
−a

max(|u|� |v|2)
1 + max(|u|� |v|2)/n

}
(4)≤ exp

{
−a

max(|u|� |v|2)
1 +KG

}
(5)≤ exp

{−a|z| + a

1 +KG

}
�

where the constant KG depends only on the diameter of the parameter space G; (1) follows by the
standard manipulation of the Hellinger distance, as in Ibragimov and Has’minskii (1981, p. 260);
(2) follows by the inequality (1 − r) ≤ e−r when r > 0; (3) is given by (B.7), and (4) and (5) are
obvious. Also,

Eγ|n(z)1/2 − n(z
′)1/2|2 (1)≤ nr2

2

(
γ + (u/n� v/

√
n);γ + (u′/n� v′/

√
n)

)
(2)≤ A(|u− u′| + |v − v′|2)
(3)≤ A(|z − z′| + |z − z′|2)
(4)≤ A(|z − z′|)(1 + 2 · |z′| ∨ |z|)�
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where (1) follows by the standard manipulation of the Hellinger distance, as in Ibragimov and
Has’minskii (1981, p. 260), (2) is given, and (3) and (4) are obvious. Q.E.D.

PROOF OF LEMMA B.3: Assertion (a) is a special case of Lemma I.5.1 in Ibragimov and
Has’minskii (1981). Assertion (b) is proven of Ibragimov and Has’minskii (1981, pp. 106–109)
under more general conditions than conditions (i) and (ii). Q.E.D.
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