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Abstract

Quantile regression is an increasingly important tool that estimates the conditional quantiles of

a response Y given a vector of regressors D. It usefully generalizes Laplace’s median regression

and can be used to measure the effect of covariates not only in the center of a distribution, but

also in the upper and lower tails. For the linear quantile model defined by Y = D′γ(U) where

D′γ(U) is strictly increasing in U and U is a standard uniform variable independent of D, quantile

regression allows estimation of quantile specific covariate effects γ(τ) for τ ∈ (0, 1). In this paper,

we propose an instrumental variable quantile regression estimator that appropriately modifies the

conventional quantile regression and recovers quantile-specific covariate effects in an instrumental

variables model defined by Y = D′α(U) where D′α(U) is strictly increasing in U and U is a uniform

variable that may depend on D but is independent of a set of instrumental variables Z. The proposed

estimator and inferential procedures are computationally convenient in typical applications and can

be carried out using software available for conventional quantile regression. In addition, the proposed

estimation procedure gives rise to a convenient inferential procedure that is naturally robust to weak

identification. The use of the proposed estimator and testing procedure is illustrated through two

empirical examples.

Keywords: Quantile Regression, Instrumental Variables, Weak Instruments

1. Introduction

Quantile regression is an important tool for estimating conditional quantile models that has been

used in many empirical studies and has been studied extensively in theoretical statistics; see Koenker

and Bassett (1978), Koenker and Portnoy (1987), Portnoy (1991), Gutenbrunner and Jurečková

(1992), Chaudhuri, Doksum, and Samarov (1997), Portnoy and Koenker (1997), Knight (1998),

Koenker and Machado (1999), Portnoy (2001), and He and Zhu (2003). One of quantile regression’s

∗The Matlab software for this paper is available upon request via e-mail chansen1@gsb.uchicago.edu.

Further updates of this paper can be downloaded at www.mit.edu/˜vchern. Address correspondence to C.

Hansen, Asst. Prof. of Econometrics and Statistics, The University of Chicago, Graduate School of Business,

5807 South Woodlawn Avenue, Chicago, IL 60637, USA, chansen1@gsb.uchicago.edu.
†Portions of this paper were previously included in MIT Department of Economics Working Paper 02-07,

“An IV Model of Quantile Treatment Effects”, 2001.



2

most appealing features is its ability to estimate quantile-specific effects that describe the impact of

covariates not only on the center but also on the tails of the outcome distribution. While the central

effects, such as the mean effect obtained through conditional mean regression, provide interesting

summary statistics of the impact of a covariate, they fail to describe the full distributional impact

unless the variable affects both the central and the tail quantiles in the same way. In addition,

interest focuses on the impact of covariates on points other than the center of the distribution in

many cases. For example, in a study of the effectiveness of a job training program, the effect of

training on the low tail of the earnings distribution will likely be of more interest for public policy

than the effect of training on the mean of the distribution.

For an outcome Y and set of factors D affecting the outcome, the conventional linear conditional

quantile model may be defined as

Y = D′γ(U∗), U∗|D ∼ Uniform(0, 1),(1.1)

where τ 7→ D′γ(τ) is strictly increasing and continuous in τ . Doksum (1974) interprets the dis-

turbance U∗ as individual ability or proneness. By construction, D′γ(τ) is the τ -quantile of Y

conditional on D. This model generalizes the usual linear regression model

Y = D′γ0 + γ1(U
∗)

by allowing quantile-specific effects of covariates D. For a given quantile indexed by τ ∈ (0, 1),

the quantile specific effects γ(τ) can be estimated using standard quantile regression methods (e.g.

Koenker and Bassett (1978)).

In this paper, we develop a new estimation method for an endogenous generalization of the

above model. The developed approach is designed for settings where the observed variables D are

determined non-experimentally, making it difficult to infer the true structural/causal effects of D on

the outcomes. Specifically, we consider the model

Y = D′α(U), U |Z ∼ Uniform(0, 1),(1.2)

where τ 7→ D′α(τ) is strictly increasing in τ , D is statistically dependent on U , and Z is a set of

instrumental variables that are independent of U but statistically related to D. Since D depends on

U , the sampled D will depend on U , leading to biased sampling or endogeneity. This endogeneity

makes γ(τ) 6= α(τ), rendering conventional quantile regression inconsistent for estimating (1.2).

For example, suppose that Y is the hourly wage of a worker and that D is an individual’s

level of training. The unobserved disturbance U would reflect unobserved personal characteristics,

such as ability, which influence the individual’s wage via the equation Y = D′α(U). If high-ability

individuals choose high levels of training, then the level of training is correlated with ability, which

causes dependence between U and D and implies that conventional quantile regression will overstate
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the true effect of training on earnings, γ(τ) > α(τ). Instrumental variables Z, such as random

assignment to training programs in the training context, allow us to overcome this problem by

providing a source of variation in D that is independent of U . There are many other interesting

examples where D is sampled depending on U , i.e. endogenously. The empirical section presents a

supply-demand example and a training example.

Model (1.2) generalizes the conventional instrumental variables model with additive disturbances

Y = D′α0+α1(U) where U |Z ∼ U(0, 1) to cases where the impact of D varies across quantiles of the

outcome distribution. A number of appealing approaches are readily available to estimate α0 in the

conventional instrumental variables model with additive disturbances, including the conventional

two-stage least squares (2SLS) estimator and its robust analogs by Amemiya (1982) and Chen and

Portnoy (1996).

The purpose of this paper is to provide practical estimation and inference methods for model

(1.2). The estimator we propose is an appealing modification of the standard quantile regression

that can be constructed from a series of conventional quantile regressions. Thus, the estimation

approach is computationally convenient and simple to implement in many typical applications. It

has already been used in empirical applications, e.g. Hausman and Sidak (2004), Januszewski

(2004), and Chernozhukov and Hansen (2004a), and will be further illustrated with two empirical

applications in this paper. In addition, the estimation procedure leads naturally to an inference

procedure that will be valid even when one of the key conditions for identification of the model, that

D is statistically dependent on Z, fails.

The remainder of this paper is organized as follows. In Section 2, we define the model in more

detail and allow for other controls in the equations. Section 3 discusses estimation and testing

procedures based on a set of moment equations introduced in Section 2. Section 4 illustrates the

use of the derived estimator and testing procedure through brief empirical examples, and Section 5

concludes.

2. The Instrumental Quantile Regression Method

2.1. The Model

In this section, we more formally define the model we will estimate. Suppose we have a structural

relationship defined by

Y = D′α(U) + X ′β(U), U |X, Z ∼ Uniform(0, 1),(2.1)

D = δ(X, Z, V ), where V is statistically dependent on U,(2.2)

τ 7→ D′α(τ) + X ′β(τ) strictly increasing in τ .(2.3)
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In these equations,

• Y is the scalar outcome variable of interest,

• U is a scalar random variable that aggregates all of the unobserved factors affecting the

structural outcome equation,

• D is a vector of endogenous variables determined by (2.2), where

• V is a vector of unobserved disturbances determining D and correlated with U ,

• Z is a vector of instrumental variables (control variables excluded from (2.1) that are inde-

pendent of the disturbance U but impact variable D via (2.2)), and

• X is a vector of included control variables.

The observed variables consist of (Y, D, X, Z), and due to the dependence between V and U , D is

also sampled depending on U .

We shall refer to the function

SY (τ |d, x) = d′α(τ) + x′β(τ)(2.4)

as the Structural Quantile Function (SQF) in order to emphasize that it is in general a different

object than the conditional quantile function QY (τ |d, x). The structural quantile function SY (τ |d, x)

describes the quantile function of the latent outcome variable Yd = d′α(U) + X ′β(U) obtained by

fixing D = d and sampling the disturbance U ∼ U(0, 1) (all conditional on X). This notion of

sampling corresponds to independent sampling of D and U , which is generally not feasible outside

experimental settings. Instead the sampled variable D is determined via (2.2). Nevertheless, it is

still possible to estimate or make inference on the structural quantile function SY (τ |d, x) through

the use of instrumental variables Z which induce variation in D but are themselves independent of

U .

2.2. The Principle

Under the conditions of (2.1) and (2.3), the problem of dependence between U and D is overcome

through the presence of instrumental variables, Z, that affect the determination of D but are in-

dependent of U . In program evaluation studies with imperfect compliance, a simple example of an

instrument is random assignment to the treatment group, which is done independently of the poten-

tial values of U . The presence of the instrumental variable leads to a set of moment equations that

can be used to estimate the parameters of (2.1). From (2.1) and (2.3), the event {Y ≤ SY (τ |D, X)}
is equivalent to the event {U ≤ τ}. It then follows from (2.1) that

P [Y ≤ SY (τ |D, X)|Z, X ] = τ.(2.5)
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Equation (2.5) provides a useful statistical restriction that can be used to estimate the structural

parameters α and β. It is important to notice that the equation P [Y ≤ SY (τ |D, X)|Z, X ] = τ differs

from the conventional estimating equation

P [Y ≤ QY (τ |D, X)|D, X ] = τ(2.6)

used to estimate the conditional quantile function of Y given D and X .

Recall from Koenker and Bassett (1978) that the ordinary quantile regression (QR) is formulated

as finding the best predictor of Y given W under the asymmetric least absolute deviation loss

ρτ (u) := (τ − 1(u < 0))u. In other words, assuming integrability, the τ -th conditional quantile of Y

given W solves the problem:

QY (τ |W ) = argmin
f∈F

E [ρτ (Y − f(W ))](2.7)

where F is the class of measurable functions of W (restricted in applications to be a set of flexible

parametric functions). Laplace’s median regression function QY (.5|W ) is a solution of this problem

with τ = 1/2 so that ρτ (u) = 1
2 |u|. The function QY (τ |D, X) solves the above problem with

W = (D, X) and can be estimated using the finite sample analog of the above equation.

The moment equation given in (2.5) is equivalent to the statement that 0 is the τ -th quantile

of random variable Y − SY (τ |D, X) conditional on (Z, X):

0 = QY −SY (τ |D,X)(τ |Z, X) a.s. for each τ .(2.8)

Thus, we may pose the problem of finding α(τ) and β(τ) solving equation (2.5) as the instrumental

variable or inverse quantile regression (IVQR). This problem is to find an SY (τ |D, X) such

that 0 is a solution to the quantile regression of Y − SY (τ |D, X) on (Z, X):

0 = arg min
f∈F

Eρτ [(Y − SY (τ |D, X) − f(Z, X))] ,(2.9)

where F is the class of measurable functions of (X, Z) (which will be restricted in applications). The

term ‘inverse’ emphasizes an evident inverse relation of this problem to the conventional quantile

regression, (2.7).
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3. The Instrumental Quantile Regression Estimator and Derived Dual In-

ference

3.1. Basic Description and Properties

Next we consider a finite-sample analog of the above procedure. Define the (weighted) conventional

quantile regression objective function as

Qn(τ, α, β, γ) :=
1

n

n∑

i=1

ρτ (Yi − D′
iα − X ′

iβ −Z ′
iγ)Vi,

where D is a dim(α)-vector of endogenous variables, X is a dim(β)-vector of exogenous explanatory

variables, Zi ≡ f(Xi, Zi) is a dim(γ)-vector of instrumental variables such that dim(γ) ≥ dim(α),

and Vi := V (Xi, Zi)> 0 is a scalar weight. In practice, a simple procedure is to set Vi = 1 and let

Zi either be Zi or the predicted value from a least squares projection of Di on Zi and Xi.

The instrumental variable or inverse quantile regression estimator (IVQR) is defined as

follows. For a given value of the structural parameter, say α, let us run the ordinary QR to obtain

(β̂(α, τ), γ̂(α, τ)) := arg min
β,γ

Qn(τ, α, β, γ).(3.1)

To find an estimate for α(τ), we will look for a value α that makes the coefficient on the instrumental

variable γ̂(α, τ) as close to 0 as possible. Formally, let

α̂(τ) = arg inf
α∈A

[Wn(α)] , Wn(α) := n[γ̂(α, τ)′]Â(α)[γ̂(α, τ)],(3.2)

where Â(α) = A(α) + op(1) and A(α) is positive definite, uniformly in α ∈ A. It is convenient to

set A(α) equal to the inverse of the asymptotic covariance matrix of
√

n(γ̂(α, τ)− γ(α, τ)) in which

case Wn(α) is the Wald statistic for testing γ(α, τ) = 0, a fact that we will use below for inference

about α(τ) itself. The parameter estimates are then given by

θ̂(τ) :=
(
α̂(τ), β̂(τ)

)
:=

(
α̂(τ), β̂(α̂(τ), τ)

)
.(3.3)

The estimator (3.3) is a finite-sample instrumental variable quantile regression. Analogous to the

population problem (2.8), it finds parameter values for α and β through the inverse step (3.2) such

that the value of coefficient γ̂(α, τ) on Z in the ordinary quantile regression step (3.1) is driven as

close to zero as possible. This estimator is consistent and asymptotically normal under appropriate

regularity and identification conditions:

√
n(θ̂(τ) − θ(τ))→d N (0, Ωθ) ,(3.4)

for Ωθ specified below. This asymptotic distribution can be used for conducting direct inference on

the parameter of interest using standard Wald procedures.
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In addition, we can base inference on the “dual” Wald statistic Wn(α) for testing whether the

coefficients on the instruments are zero (i.e. whether γ(α, τ) = 0). When α = α(τ), Wn(α) is

asymptotically chi-squared with dim(γ) degrees of freedom:

Wn(α(τ))→d χ2(dim(γ))(3.5)

Thus, a valid confidence region for α(τ) can also be based on the inversion of this dual Wald statistic:

CRp[α(τ)] := {α : Wn(α) < cp} contains α(τ) with probability approaching p,(3.6)

where cp is the p-percentile of a χ2(dim(γ)) distribution. This dual approach is valid under weaker

assumptions than the direct approach; in particular, it is robust to weak or partial identification of

α(τ). Section 3.5 discusses the properties of the dual procedure in more detail.

For a given probability index τ of interest, the estimator may be computed in practice as follows:

1. Define a suitable set of values {αj , j = 1, ..., J}, and run the ordinary τ -quantile regression

of Yi − D′
iαj on Xi and Zi to obtain coefficients β̂(αj , τ) and γ̂(αj , τ).

2. Save the inverse of the variance-covariance matrix of γ̂(αj , τ), which is readily available in

any common implementation of the ordinary QR, to use as Â(αj) in Wn(αj). Then Wn(αj) becomes

a Wald or F-statistic for testing γ(αj , τ) = 0, depending on the naming convention.

3. Choose α̂(τ) as a value among {αj , j = 1, ..., J} that minimizes Wn(α). The estimate of β(τ)

is then given by β̂(α̂(τ), τ).

4. Direct inference on α(τ) may be conducted using the variance formula for Ωθ provided below.

Dual confidence regions for α(τ), CRp, may be computed as CRp[α(τ)] = {αj : Wn(αj) < cp}, and

its upper and lower bounds may be used as end-points of a confidence interval for α(τ).

3.2. Computational Complexity and Implementation

One of the most appealing features of the IVQR and associated dual inference confidence region is

that both may be computed using the output from the conventional QR using any modern software.

Portnoy and Koenker (1997) show that ordinary QR can be computed in polynomial stochastic time

Op

(
dim(β, γ)3 × n1+δ

)
using interior point algorithms with preprocessing,3 so the above IVQR

procedure has computational complexity of Op((1/ǫ)dim(α) × dim(β, γ)3 × n1+δ) for a desired level

of accuracy ǫ and some δ > 0. Since we need ǫ ∝ 1/na, a > 1/2, and it suffices to have a = 1/2+ δ′,

for some small δ′ > 0, the proposed algorithm has computational complexity

Op

(
n(1/2+δ′) dim(α) × dim(β, γ)3 × n1+δ

)

3In contrast, simplex procedures will have running time of Op

�
ndim(β,γ)

�
.
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that is polynomial in the sample size n and in the dimension of (β, γ), but is not polynomial in the

dimension of α. Thus, the procedure will be computationally attractive and work well when the

number of exogenous variables, dim(β), is possibly large, but the number of endogenous variables,

dim(α), is small. This situation is certainly the most common case prevalent in econometric speci-

fications, where typically dim(α) = 1 or 2 and dim(β) varies from 1 to 50 or more. In fact, due to

its practical properties, the estimator has already been applied in empirical analysis by Hausman

and Sidak (2004), Januszewski (2004), and Chernozhukov and Hansen (2004a), and this paper also

presents two additional empirical applications.

There are other approaches that one could adopt for estimation of the model defined in Section

2.1. For example, an immediate approach is the method of moments approach (MM) that attempts

to minimize ‖ 1√
n

∑n
i=1(1(Yi ≤ D′

iα + X ′
iβ) − τ)(X ′

i ,Z ′
i)

′Vi‖ over α and β. Another example is

the estimator of Sakata (2001) which is an elegant maximum likelihood type estimator based on

the absolute deviation.4 In contrast to the IVQR approach, these alternative approaches involve

highly non-convex, multi-modal, and non-smooth objective functions over many parameters, which

poses a serious computational challenge. Implementation of extremum estimators with non-smooth

and, more importantly, non-convex objective functions generally requires non-convex searches over

parameter sets of dimension K = dim(β)+dim(α), which will be quite large in many cases due to the

high-dimension of β. Thus, the IVQR approach will have an advantage when dim(α) is small, as is

the case in many applications. When dim(α) is high, both the IVQR approach and the MM approach

become difficult to implement. In such settings one could use the quasi-Bayesian methods for MM

developed in Chernozhukov and Hong (2003). This approach computes estimates and confidence

intervals using a quasi-posterior defined as the exponent of the MM function specified above.

4. Asymptotic Distribution Theory

4.1. Assumptions

To state the assumptions, define the population objective function as

Q(τ, α, β, γ) := E [ρτ (Yi − D′
iα − X ′

iβ −Z ′
iγ)Vi] ,(4.1)

and let

(β(α, τ), γ(α, τ)) := argmin
β,γ

Q(τ, α, β, γ).(4.2)

4In our notation, the estimator solves the following program:

max
α,β

min
γ,δ

"
nX

i=1

|Yi − D′

iα − X ′

iβ −Z ′

iγ − X ′

iδ|/
nX

i=1

|Yi − D′

iα − X ′

iβ|

#
.
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Define the parameter space Θ = A×B as a compact convex set such that B contains the population

value β(α, τ) for each α ∈ A in its interior, so that the parameter-on-the-boundary problem does

not arise. We assume the data were generated by the model defined in Section 2 and impose the

following additional assumptions:

R1 (Yi, Di, Xi, Zi) are iid defined on the probability space (Ω, F, P ) and have compact support.

R2 For the given τ , (α(τ), β(τ)) is in the interior of the specified set Θ.

R3 Density fY (Y |X, D, Z) is bounded by a constant f̄ a.s.

R4 ∂E [1(Y < D′α + X ′β + Z ′γ)Ψ] /∂(β′, γ′) has full rank at each α in A, for Ψ = Vi(Z
′
i, X

′
i)

′

The compactness conditions in R1 and R2 simplify the analysis. The bounded density in R3 and

compactness condition in R1 are sufficient for the Jacobian matrix in R4 to be well-defined. The full

rank condition in R4 and iid sampling suffice for the estimates (β̂(α, τ), γ̂(α, τ)) to be asymptotically

normal and are sufficient for implementing the dual inference. It is important to note that R1-R4

do not impose any conditions on the relation between D and Z; that is, unlike the direct inference

procedure, the dual procedure will be valid when identification is weak or fails partially or completely.

Stronger additional conditions are imposed for implementing the direct inference.

R5 ∂E [1(Y < D′α + X ′β)Ψ)′] /∂(α′, β′) has full rank at (α(τ)′, β(τ)′)′.

R6 The function (α, β) 7→ E [{τ − 1(Y < D′α + X ′β)}Ψ] is one-to-one over Θ.

The imposition of R1-R6 is sufficient for identification and asymptotic normality of the IVQR

estimator, both of which are necessary for the validity of the direct inference approach. These as-

sumptions considerably strengthen the conditions R1-R4 by imposing restrictions on the relationship

between D and Z. The dual approach does not require these assumptions for its validity. Hence,

the dual approach is robust to the violation of either R5 or R6.

To further comment on the nature of correlation between Z and D required by R5, note that

by R1 and R3 we have that

∂E [1(Y < D′α + X ′β)Ψ)′] /∂(α′, β′) = E[fǫ(0|X, D, Z)Vi(Z ′
i, Xi)

′(D′
i, X

′
i)].

Hence, if we set Vi = 1 for simplicity, we see that the Jacobian in R5 takes a form of density-weighted

covariation matrix between D and Z, and R5 requires that this matrix has full rank. R6 imposes

that global identifiability must hold; hence, the impact of Z should be rich enough to guarantee

that the moment equations are solved uniquely. These assumptions are required to carry out direct

inference but are not required in the dual approach. Thus, discrepancies between the dual approach

and the direct approach should be indicative of situations where R5 and R6 do not hold.
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Before proceeding to the asymptotic results, we provide some sufficient and more primitive

conditions for the global identifiability condition R6. A set of conditions that suffices for both R5

and R6 is as follows:

R5’ ∂E [1(Y < D′α + X ′β)Ψ] /∂(α′, β′) has full rank at each (α, β) in Θ.

R6’ The image of Θ under (α, β) 7→ E [{τ − 1(Y < D′α + X ′β)}Ψ] is simply-connected.

R5’ ensures that the mapping (α, β) 7→ E [{τ − 1(Y < D′α + X ′β)}Ψ] is locally one-to-one

everywhere. The simple-connectivity condition R6’ curbs somewhat the non-linearity of the mapping

and implies a global one-to-one relationship by a Plastock-Hadamard type result, cf. Ambrosetti

and Prodi (1995). This fact and equations (2.4) and (2.5) imply that the solution of the equation

E [{τ − 1(Y < D′α + X ′β)}Ψ] = 0

is unique and is given by (α(τ), β(τ)).

Other sufficient and more primitive conditions for R5 and R6 also result through an application

of Theorem 2 in Mas-Colell (1979). Let Θ′ be a convex compact set that contains Θ and that has a

smooth boundary ∂Θ′. Then the following conditions imply R5’ and R6’ and hence R5 and R6.

R5* ∂E [1(Y < D′α + X ′β)Ψ] /∂(α′, β′) has a positive determinant at each (α, β) in Θ′.

R6* ∂E [1(Y < D′α + X ′β)Ψ] /∂(α′, β′) is positive quasi-definite along the boundary ∂Θ′ in the

sense defined by Mas-Colell (1979).

Note that in the exogenous model, we can set Zi = Di, and these conditions will be trivially satisfied.

4.2. Asymptotic Properties of the Dual Inference

We first state the formal results for dual inference, because they are the simplest to explain. Under

the conditions R1-R4, as n → ∞, uniformly in α ∈ A
√

n(ϑ̂(α, τ) − ϑ(α, τ)) = −J−1
ϑ (α) · n−1/2 ·

n∑

i=1

si(α) + op(1),(4.3)

si(α) = [τ − 1 (ǫi(α) < 0)] Ψi, Ψi = Vi{X ′
i,Z ′

i}′,(4.4)

ǫi(α) = Yi − Diα − X ′
iβ(α, τ) −Z ′

iγ(α, τ),(4.5)

Jϑ(α) = E
[
fǫ(α)(0|Z, X)ΨΨ′/V

]
.(4.6)

(4.3)-(4.6) follow by adopting standard arguments for the quantile regression process. The difference

here is that we have a process in α, whereas we usually have a process over τ . Hence for each α

√
n

(
ϑ̂(α, τ) − ϑ(α, τ)

)
→d N (0, Ωϑ[α]) ,(4.7)

Ωϑ[α] = J−1
ϑ [α]S[α]J−1

ϑ [α], S[α] = E[si(α)si(α)′].(4.8)
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The statistic for testing γ(α, τ) = 0 is given by the Wald statistic Wn(α) = n[γ̂(α, τ)′]Ω̂ϑ[α][γ̂(α, τ)],

where Ω̂ϑ[α] = Ωϑ[α] + op(1) is any standard consistent estimate of the asymptotic variance (4.8) of

the ordinary QR. Therefore, when α = α(τ)

Wn[α(τ)]→d χ2(dim(γ)),(4.9)

and for the confidence region CRp[α(τ)] := {α ∈ A : Wn(α) < cp}, where P{χ2(dim(γ)) < cp} = p,

P{α(τ) ∈ CRp[α(τ)]} = P{Wn[α(τ)] < cp} → p.(4.10)

Proposition 1. Under conditions R1-R4, the results (4.3)-(4.10) are true.

Comment 1. Unlike direct inference, the dual inference requires only assumptions R1-R4 to hold.

The results for dual inference are also straightforward to extend in various direction. In particular,

one can note that the preliminary estimation of weights Vi and instruments Zi will not affect (4.9)

or even (4.7) as long as α is in a root-n neighborhood of α(τ). Additional regularity conditions on

the estimates of weights and instruments that must be imposed can be found in Andrews (1994).

4.3. Asymptotic Properties of the Direct Inference

The following proposition presents the asymptotic properties of the direct approach.

Proposition 2. In the specified model under conditions R1-R4 and conditions R5-R6, sufficient

conditions for which are either R5’-R6’ or R5*-R6*,

√
n

(
θ̂(τ) − θ(τ)

)
→d N(0, Ωθ), Ωθ = (K ′, L′)′S(K ′, L′),(4.11)

where, for Ψ = V ·[X ′,Z ′]′ and ǫ = Y −D′α(τ)−X ′β(τ), S = τ(1−τ)E [ΨΨ′] , K = (J ′
αHJα)−1J ′

αH,

H = J̄ ′
γA[α(τ)]J̄γ , L = J̄βM, M = Ik+r − JαK, Jα = E[fǫ(0|X, Z, D)ΨD′], and [J̄ ′

β , J̄ ′
γ ]′ is a

partition of J−1
ϑ := (E [fǫ(0|X, Z)ΨΨ′/V ])−1 such that J̄β is a dim(β)× dim(β, γ) matrix and J̄γ is

a dim(γ) × dim(β, γ) matrix.

Corollary 1. When dim(γ) = dim(α), the choice of A(τ) does not affect asymptotic variance, and

the joint asymptotic variance of α̂(τ) and β̂(τ) will generally have the simple form

Ωθ = J−1
θ S(J ′

θ)
−1

for S defined above and Jθ = E[fǫ(0|X, Z, D)Ψ[D′, X ′]].

Corollary 2. When dim(γ) > dim(α), the choice of the weighting matrix A(α) in the objective

function Wn(α) generally matters. A natural choice for A(α) is given by A(α) = ([Ωϑ[α]22)
−1 which

corresponds to the inverse of the covariance matrix of
√

n(γ̂(α, τ) − γ(α, τ)). Noting that A(α) is

equal to (J̄γSJ̄ ′
γ)−1 at α(τ), it follows that the asymptotic variance of

√
n(α̂(τ) − α(τ)) equals

Ωα = (J ′
αJ̄ ′

γ(J̄γSJ̄ ′
γ)−1J̄γJα)−1.
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Corollary 3. The efficient score for (α(τ), β(τ)) is given by 1
τ(1−τ) [τ − 1(ǫ ≤ 0)]Ψ∗, where Ψ∗ =

V ∗ ·[X ′,Z∗′]′, Z∗ := E[D ·v∗|Z, X ]/V ∗, v∗ := fǫ(0|D, Z, X), and V ∗ = fǫ(0|Z, X). Thus, if Z = Z∗

and V = V ∗, the asymptotic variance of (α̂(τ), β̂(τ)) attains the efficiency bound τ(1−τ)E[Ψ∗Ψ∗′]−1.

Comment 2. Corollary 1 is especially convenient since the variance formula becomes simple once

the instrument Z is collapsed to the same dimension as D. Corollary 3 shows how to construct

the instrument Z and weight V such that the IVQR estimator achieves the efficiency bound in the

sense defined by Amemiya (1977) as well as the semi-parametric efficiency bound in the sense of

Bickel, Klaassen, Ritov, and Wellner (1993). Efficient estimation can be implemented in two steps.

In the first step, IVQR is used to obtain residuals ǫ̂i. In the second step, the required weights

V ∗
i and instruments Z∗

i are estimated using nonparametric or parametric methods and are used

in IVQR again. It can be shown that estimation of weights and instruments has no effect on the

limit distribution of the estimators, provided additional regularity conditions, found e.g. in Andrews

(1994), on the estimates of weights and instruments hold.

4.4. Estimating Variance and Jacobian Matrices

The components of the variance matrices that we need to estimate include Jϑ, Jα, and S for direct

inference and Jϑ[α] and S[α] for dual inference. Following Koenker’s (1994) analysis for ordinary

QR, the first set of components can be estimated as follows:

Ŝ =
1

n

n∑

i=1

ŝiŝ
′
i, Ĵα =

1

n

n∑

i=1

[K(ǫ̂i/h)/h]ΨiD
′
i, Ĵϑ =

1

n

n∑

i=1

[K(ǫ̂i/h)/h]ΨiΨ
′
i/Vi,

where ǫ̂i := Yi −D′
iα̂(τ)−X ′

i β̂(τ), ŝi = [τ − 1 (ǫ̂i < 0)] Ψi, Ψi = Vi[Z
′
i, X

′
i]
′, h is a bandwidth chosen

such that h → 0 and nh2 → ∞, and K(·) is a kernel function. Specific choices of h are discussed in

Koenker (1994). Similarly, the second set of estimates is given by

Ŝ[α] =
1

n

n∑

i=1

ŝi[α]ŝi[α]′, Ĵϑ[α] =
1

n

n∑

i=1

[K(ǫ̂i[α]/h)/h] ΨiΨ
′
i/Vi

where ǫ̂i[α] := Yi −D′
iα−X ′

iβ̂(τ, α)−Z ′
i γ̂(α, τ) and si[α] = [τ − 1 (ǫ̂i[α] < 0)] Ψi,Ψi = Vi[Z

′
i, X

′
i]
′, h

is a bandwidth chosen such that h → 0 and nh2 → ∞, and K(·) is a kernel function. The consistency

properties of these estimators are standard and will not be discussed here.

5. Empirical Examples

In this section, we present two applications of the estimation and inference results derived in Section

3. The first application reports the results of a simple analysis of the demand for fish. This

application makes use of a small sample and illustrates the potential differences between the direct
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and dual inference procedures. In the second example, we consider the effects of a job training

program on earnings. In this case, the identification is quite strong, and we see small differences

between the direct and dual inference procedures. The results here also demonstrate the bias in

the conventional quantile regression under endogeneity. In particular, the conventional quantile

regression estimates indicate that the effect of training is positive and significant across the entire

outcome distribution, while the IVQR estimates indicate that the training impact is close to zero in

the lower tail of the outcome distribution.

5.1. Demand for Fish

In this section, we present estimates of demand elasticities which may potentially vary with the

level of demand. The data contain observations on price and quantity of fresh whiting sold in the

Fulton fish market in New York over the five month period from December 2, 1991 to May 8, 1992.

These data were used previously in Graddy (1995) to test for imperfect competition in the market.

The price and quantity data are aggregated by day, with the price measured as the average daily

price and the quantity as the total amount of fish sold that day. The total sample consists of 111

observations for the days in which the market was open over the sample period.

For the purposes of this illustration, we focus on a simple Cobb-Douglas random demand model

with non-additive disturbance:

ln(Qp) = α0(U) + α1(U) ln(p),

where Qp is the quantity that would be demanded if the price were p, U is an unobservable affecting

the level of demand normalized to follow U(0, 1), and α1(U) is the random demand elasticity when

the level of demand is U . A supply function Sp = f(p, Z,U) describes how much producers would

supply if the price were p, subject to other factors Z and unobserved disturbance U . The factors Z

affecting supply are assumed to be independent of demand disturbance U .

The observed quantity Y sold in the market is given in logs by

lnY = α0(U) + α1(U) lnP, where

U is independent of Z,
(5.1)

where P is the price picked by the market to equate supply and demand. That is, P satisfies

α0(U) + α1(U) ln(P ) = ln f(P, Z,U), which implies the observed price depends on the demand

disturbance U , i.e. that P = δ(Z, U,U) for some function δ.

As instruments Z, we consider two different variables capturing weather conditions at sea:

Stormy is a dummy variable which indicates wave height greater than 4.5 feet and wind speed

greater than 18 knots, and Mixed is a dummy variable indicating wave height greater than 3.8
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feet and wind speed greater than 13 knots. These variables are plausible instruments since weather

conditions at sea should influence the amount of fish that reaches the market but should not influence

demand for the product.5 Simple OLS regressions of the log of price on these instruments suggest

they are correlated to price, yielding R2 and F-statistics of 0.227 and 15.83 when both Stormy and

Mixed are used as instruments and 0.160 and 20.69 when just Stormy is used. However, given the

small sample, we may still expect identification to be weak, and weak identification is suggested by

the results reported below.

Quantile regression (QR) and inverse quantile regression (IVQR) results for the .15, .25, .50,

.75, and .85 quantiles are reported in columns (1)-(3) of Table 1 below. Column (1) reports the

QR results, while columns (2) and (3) report IVQR results. Columns (2) and (3) differ in that only

Stormy is used as an instrument in Column (2), while Stormy and Mixed are used as instruments in

Column (3). For the τ th quantile, the row labeled α̂(τ) gives the QR or IVQR estimate of α. The

row labeled “Wald Interval” contains the 95% confidence interval for α̂(τ) constructed based on the

asymptotic approximation, and for the IVQR estimates, the row labeled “Dual Interval” contains

the 95% confidence bound constructed using the dual inference procedure outlined in Section 3.1.

The computation of the IVQR estimator was conducted over the parameter space A = [−5, 5] using

αj equally spaced with a step size of 0.1.

The IVQR estimates exhibit considerable heterogeneity, ranging from -1.5 to -0.7 in column (2)

and from -1.5 to -0.9 in column (3). The IVQR elasticities are also uniformly greater in magnitude

than the “price effects” estimated by the ordinary QR, which we might anticipate given endogenous

sampling resulting from the joint determination of price and quantity in the market. These differ-

ences are illustrated graphically in Figure 1. The left panel reports the QR results, and the right

panel reports the IVQR results when both Stormy and Mixed are used as instruments. In the figure,

we clearly see that the demand functions estimated by IVQR are steeper than those estimated by QR

when plotted in log-price-log-quantity space, and that this translates directly into more curvature

of the demand curve when plotted in the original price-quantity space. It is also important to note

that the interpretation of IVQR and QR estimates is very different. IVQR estimates a structural

demand model, while QR estimates the conditional quantiles of the equilibrium quantity variable as

a function of the equilibrium price. It is no surprise that these estimates are different.

Interestingly, there are clear and large differences between the confidence intervals given by the

two different inference procedures for IVQR. In particular, the confidence intervals based on the

dual procedure which is robust to weak and partial identification are uniformly much wider than

the intervals based on the direct inference procedure. For instance, the dual confidence region for

the .85 quantile case contains the upper endpoint of the parameter space A. In addition, it is worth

5More detailed arguments may be found in Graddy (1995).
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Table 1. Results from Empirical Examples

Example 1: Demand for Fish Example 2: Returns to Training

QR IVQR IVQR QR IVQR

(1) (2) (3) (4) (5)bα(.15) -0.53 -1.5 -1.5 1188 -200

Wald CI (-1.24,0.16) (-3.69,-0.69) (-2.51,-0.49) (553,1822) (-1435,1035)

Dual CI [-5.0,0.5) (-3.2,0.1) (-1300,1500)bα(.25) -0.40 -1.0 -1.4 2510 500

Wald CI (-0.87,0.07) (-2.51,0.51) (-2.52,-0.28) (1742,3278) (-887,1887)

Dual CI (-4.4,0.0) (-3.1,0.1) (-1000,2000)bα(.50) -0.41 -0.7 -0.9 4420 300

Wald CI (-0.81,-0.01) (-1.67,0.27) (-1.82,0.02) (3220,5621) (-1589,2189)

Dual CI (-3.0,0.6) (-3.0,0.6) (-1400,2700)bα(.75) -0.70 -1.2 -1.3 4678 2700

Wald CI (-1.18,-0.22) (-2.02,-0.38) (-2.07,-0.53) (2901,6455) (-260,5660)

Dual CI (-2.0,-0.1) (-2.1,0.1) (-400,5600)bα(.85) -0.81 -1.3 -1.1 4806 3200

Wald CI (-1.24,-0.38) (-2.10,-0.50) (-1.82,-0.38) (2751,6861) (32, 6368)

Dual CI (-2.0,5.0] (-2.6,5.0] (500,5800)

Notes: Columns (1)-(3) report results from estimation of the demand for fish, and columns (4) and (5)

report results from estimation of the returns to training from the JTPA experiment. Columns (1) and (4)

report conventional quantile regression results, and columns (2), (3), and (5) report instrumental quantile

regression results. In column (2), one instrument, Stormy, is used, and in column (3), two instruments,

Stormy and Mixed are used. Rows labeled α(τ ) for τ ∈ {.15, .25, .50, .75, .85} report point estimates, and

the numbers in parentheses are confidence intervals.

noting that the confidence intervals obtained using two instrumental variables are generally shorter

than the confidence intervals obtained using just one instrumental variable, suggesting an efficiency

gain to using more instruments.

The construction and nature of the dual confidence bounds are further illustrated in Figures 2

and 3, which respectively plot the IVQR objective function Wn(α) over the parameter space in the

two cases. α is plotted on the horizontal axis, and the vertical axis shows Wn(α). The horizontal

line in each graph is the 95% critical value for the dual testing procedure, so all points lying below

the horizontal line belong to the confidence region for α(τ).

These graphs display a number of interesting features. It is apparent that the objective function,

while having numerous local minima, has a distinct minimum over A in all cases. The objective
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functions, and hence dual confidence regions, are generally well-behaved in the middle of the distri-

bution and become more erratic as one moves toward the tails of the distribution. It is also clear

that the dual confidence regions are not connected in many cases.

This simple example clearly illustrates the potential differences between the direct and dual

inference procedures. It also provides an example of an application of the methods of this paper

to demand analysis where the elasticity of demand is potentially heterogeneous. The next example

illustrates the use of the estimator in a setting with a considerably larger sample and where identi-

fication is much stronger, showing that in this setting the two inference procedures produce similar

results. The results also demonstrate the interesting insights that may be gained through quantile

analysis and the importance of accounting for endogeneity in such studies.

5.2. The Returns to Training

The impact of job training programs on the earnings of trainees, especially those with low income, is

of great interest to both policy makers and academic economists, but evaluating the causal effect of

training programs on earnings is difficult due to the self-selection of treatment status. However, data

available from a randomized training experiment conducted under the Job Training Partnership Act

(JTPA) provides a mechanism for addressing this issue. In the experiment, people were randomly

assigned the offer of JTPA training services, but because people were able to refuse to participate, the

actual treatment receipt was self-selected. Of those offered treatment, only 60 percent participated

in the training. There was also a small number of individuals from the control group who received

training. The random assignment of the training offer provides a plausible instrument for a person’s

actual training status. Abadie, Angrist, and Imbens (2002), who previously used this data to

examine the impact of job training on earnings,6 provide more detailed information regarding data

collection procedures, sample selection criteria, and institutional details of the JTPA along with

additional facts and discussion about the JTPA training experiment. In this example, we limit the

analysis to the sample of adult males.

To capture the effects of training on earnings, we estimate a structural quantile model of the

form

Y = Dα(U) + X ′β(U), U ∼ U(0, 1), given Z and X,

where D indicates training status and is instrumented for by assignment to the treatment group, the

outcomes Y are earnings, X is a vector of covariates, Z is a dummy variable indicating assignment

to the treatment group, and U is an unobservable affecting earnings.

6They use a different modeling framework and estimator that estimates the treatment effect for the

sub-population of “compliers”.
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The data consist of 5,102 observations with data on earnings, training and assignment status,

and other individual characteristics. Earnings are measured as total earnings over the 30 month

period following the assignment into the treatment or control group, and average earnings in the

sample are $19,147. The vector of controls, X , includes dummies for black and Hispanic persons, a

dummy indicating high-school graduates and GED holders, five age-group dummies, a marital status

dummy, a dummy indicating whether the applicant worked 12 or more weeks in the 12 months prior

to the assignment, a dummy signifying that earnings data are from a second follow-up survey, and

dummies for the recommended service strategy.7 For brevity, we only report results for estimates of

the key parameter, α(τ), which represents the impact of the training program on earnings.

Since assignment to the treatment or control group was random, it provides a natural instrument

Z. The instrument is useful for identification since it is highly correlated to the actual training

state D. The partial R2 of a regression of training status on assignment to the treatment group,

controlling for the other covariates, is .609, and the first-stage F-statistic is 2,673. This strong

correlation suggests that weak identification should not be a problem in this case, so the direct and

dual inference procedures should yield similar results.

As in the previous example, estimation results for the .15, .25, .50, .75, and .85 quantiles are

reported in columns (4)-(5) of Table 1. Column (4) reports the QR results, while column (5) reports

the IVQR results. For the τ th quantile, the row labeled α̂(τ) gives the QR or IVQR estimate of α.

The row labeled “Wald Interval” contains the 95% confidence interval for α̂(τ) constructed based on

the asymptotic approximation, and for the IVQR estimates, the row labeled “Dual Interval” contains

the 95% confidence bound constructed using the dual inference procedure outlined in Section 3.1.

The computation of IVQR was conducted over the parameter space A = [−2500, 7500] using αj

equally spaced with a step size of 100. In addition, the results are presented graphically in Figure 4.

The conventional QR results, which fail to account for the selection into the treatment state,

are uniformly positive and significantly different from 0. They indicate that the training program

had a relatively large impact on the earnings of participants, and that this impact is increasing in

the quantile index. However, given that people were able to decide whether or not to participate

in training following the initial random assignment, it seems likely that these estimates would be

upward biased for the actual effect of training on earnings. This suspicion is confirmed by the IVQR

estimates, which account for the endogeneity of training status and are uniformly smaller than

the corresponding QR estimates. This difference is most apparent in the low and middle earning

quantiles. In the low quantiles, QR suggests a moderate positive and significant effect of training on

earning quantiles; however, the IVQR estimates are quite low and, while imprecise, not significantly

7The recommended service strategy was broken into three categories: classroom training, on-the-job

training and/or job search assistance, and other forms of training.
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different from 0. The difference in the estimates becomes more apparent when we consider the

percentage impact of the training program, which is presented in the right hand column of Figure

4.8 Here, the QR estimates imply a large percentage increase in earnings in the low earning quantiles,

starting at 139% for τ = .15, which declines as one moves to the upper quantiles of the conditional

earnings distribution, though the impact remains large even in the center of the distribution at

τ = .50, where the implied effect is a 35% increase in earnings due to training. The IVQR estimates

on the other hand are quite stable, varying between −13% and 14%, and with the exception of

τ = .25 are all below 10%.

Unlike the case considered above, we do not find large differences between the direct and dual

inference procedures for IVQR in this case. The similarity between the two approaches is not

unexpected due to the strong correlation between the instrument and endogenous regressor. The

close agreement here further suggests that not much is lost by considering the dual procedure in

cases where identification is strong. It also provides further support for the argument that the

differences detected in the previous section are due to weak identification. Given the robustness of

the dual procedure to the presence of weak instruments and its simple computation, it seems that

this inference procedure will be preferable to the standard procedure in many cases.

The dual confidence bounds are further illustrated in Figure 5, which plots the IVQR objective

function Wn(α) over the parameter space A. α is plotted on the horizontal axis, and the vertical

axis shows Wn(α). The horizontal line in each graph is the 95% critical value for the dual testing

procedure, so all points lying below the horizontal line belong to the confidence region for α(τ). The

graphs in Figure 3 differ markedly from those in Figures 1 and 2. In particular, all of the objective

functions, and hence confidence regions, in Figure 3 look remarkably well-behaved. The objective

functions appear to be reasonably smooth, and the confidence intervals are all connected and clearly

bounded within the parameter space considered.

6. Conclusion

In this paper, we propose an estimation approach, the inverse quantile regression (IVQR), that

appropriately modifies the conventional quantile regression (QR) and recovers quantile-specific co-

variate effects in an instrumental variables model defined by Y = D′α(U) where U is independent

of a set of instrumental variables Z. The IVQR estimator is appealing for estimation in this model

since it can be computed through a series of conventional quantile regression steps and so will be

computationally convenient in many cases encountered in practice. We derive the asymptotic prop-

erties of the estimator under suitable conditions. In addition, we demonstrate that the estimation

8The percentage impact is for changing from D = 0 to D = 1, i.e. from the non-training to the training

state. All other covariates were evaluated at their sample means.
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procedure leads to a testing procedure which will be robust to the presence of weak instruments

and that this inference procedure results naturally from the IVQR algorithm and so is simple to

implement in practice.

We then illustrate the use of the proposed estimator and testing procedure through two brief

empirical examples. In the first example, we examine a simple demand model in a small sample with

relatively weak instruments. In this case, we find that the conventional QR estimate of the elasticity

of demand appears to be upward biased as would be expected due to the joint determination of

price and quantity by supply and demand. In addition, we find that there are large differences

between the direct inference procedure and the dual inference procedure which is robust to weak

instruments. In the second example, we look at the impact of a job training program on earnings. In

this case, we instrument for training status with random assignment to the training program which

is very highly correlated to actual receipt of training. In this case, there is essentially no difference

between the direct inference procedure and the dual procedure which is robust to weak instruments.

In addition, there is strong evidence of endogeneity of training status resulting in substantial bias to

the conventional QR estimator. This bias is especially pronounced in the lower tail of the earnings

distribution where QR suggests a significant and positive effect of training on earnings, while the

IVQR estimates are insignificant and small in magnitude.
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7. Appendix

7.1. Proof of Proposition 1

The result (4.3) follows by adopting standard arguments for quantile regression processes, for in-

stance those of Gutenbrunner and Jurečková (1992). The rest of the stated conclusions (4.4)-(4.10)

follow by the Slutsky Lemma.

7.2. Proof of Proposition 2

We use standard definitions and notation from empirical process theory, as e.g. van der Vaart and

Wellner (1996) and van der Vaart (1998). For W := (Y, D, X, Z), define the maps

f 7→ En [f(W )] :=
1

n

n∑

i=1

f(Wi), f 7→ Gn [f(W )] :=
1√
n

n∑

i=1

(f(Wi) − E [f(Wi)]) ,(7.1)

where we use E to denote the usual expectation and E to denote expectation evaluated at an

estimated function f̂ : E[f̂(Wi)] := (E [f(Wi)])f= bf .

For convenience we collect important definitions below. Let ϑ := (β, γ) and ϑ(τ) := (β(τ), 0).

Define

f(W, α, ϑ) := {τ − 1(Y ≤ D′α + X ′β + Z ′γ)}Ψ,(7.2)

where Ψ := V · (X ′, Z ′)′. Define for ρτ (u) = (τ − 1(u < 0))u

g(W, α, ϑ) := ρτ (Y − D′α − X ′β −Z ′γ)V.(7.3)

Define

Qn(α, ϑ) := En [g(W, α, ϑ)] , Q(α, ϑ) := E [g(W, α, ϑ)] ,(7.4)

and

ϑ̂(α, τ) := (β̂(α, τ), γ̂(α, τ)) := arg infϑ∈Rdim(β,γ) Qn(α, ϑ),(7.5)

ϑ(α, τ) := (β(α, τ), γ(α, τ)) := arg infϑ∈Rdim(β,γ) Q (α, ϑ),(7.6)

Wn[α] := γ̂(α, τ)′Â(α)γ̂(α, τ), W [α] := γ(α, τ)′A(α)γ(α, τ),(7.7)

α̂(τ) := arg infα∈A Wn[α], α∗ := arg infα∈A W [α],(7.8)

β̂(τ) := β̂(α̂(τ), τ), β∗ := β(α∗, τ), γ̂(τ) := γ̂(α̂(τ), τ), γ∗ := γ(α∗, τ).(7.9)

Step 1 (Identification) We show that ϑ(τ) = (α(τ)′, β(τ)′) uniquely solves the limit problem.

First, by R6, the mapping (α, β) 7→ E [{τ − 1(Y ≤ D′α + X ′β)}Ψ] is one-to-one over A×B. By

equation (2.5), we have that ϑ(τ) = (α(τ)′, β(τ)′)′ solves the equation E [{τ − 1(Y ≤ D′α + X ′β)}Ψ] =

0, and it is thus the only solution over A× B.
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Second, we need to show that R5’-R6’ and R5*-R6* suffice for R6. Sufficiency of R5’-R6’

follows by a variant of Hadamard-Cacciopoli theorem for general metric spaces, cf. Theorem 1.8 in

Ambrosetti and Prodi (1995). Sufficiency of R5*-R6* follows by Theorem 2 in Mas-Colell (1979).

Third, we have that the true parameters (α, β) = (α(τ), β(τ)) uniquely solve the equation

E [{τ − 1(Y ≤ D′α + X ′β + Z ′0)}Ψ] = 0(7.10)

over A × B. By R4 and by convexity in ϑ of the limit optimization problem for each α, ϑ(α, τ)

uniquely solves the equation:

E [(τ − 1{Y ≤ D′α + X ′β(α, τ) + Z ′γ(α, τ)})Ψ] = 0.(7.11)

By construction of A × B we know that β(α, τ) is in the interior of B for each α ∈ A. We need to

find α∗ ∈ A such that this equation holds and the norm of γ(α∗, τ) is minimal. α∗ = α(τ) makes

γ(α∗, τ) = 0 by equation (2.5). Thus α∗ = α(τ) is a solution; by the preceding argument it is unique

and β(α∗(τ), τ) = β(τ).

Step 2. (Consistency) One consequence of Proposition 1, namely of equation (4.3), is that

sup
α∈A

∥∥ϑ̂(α, τ) − ϑ(α, τ)
∥∥→p 0 i.e. sup

α∈A

∥∥γ̂(α, τ) − γ(α, τ)
∥∥→p 0,(7.12)

which implies supα∈A
∣∣Wn(α) − W (α)‖

∣∣ p−→ 0, where W (α) is continuous in α over A. It therefore

follows by the standard consistency argument for extremum estimators that α̂(τ)→p α(τ), and then

by (7.12) that for any αn→p α(τ), β̂(αn, τ) →p β(α(τ), τ) = β(τ) and γ̂(αn, τ)→p γ(α(τ), τ) =

γ(τ) = 0. Hence we also have that

ϑ̂(αn, τ)→p ϑ(α(τ), τ) for any αn→p α(τ).(7.13)

Note that above we have used that ϑ(α, τ) is continuous in α, which is verified by the implicit

function theorem applied to equation (7.11).

Step 3. (Asymptotics) Let αn be in a small ball centered at α(τ). By the computational

properties of the quantile regression estimator ϑ̂(αn, τ) established in Theorem 3.3 in Koenker and

Bassett (1978),

O(1/
√

n) =
√

nEn[f(W, αn, ϑ̂(αn, τ))].(7.14)

The functional class {f(W, α, ϑ), (α, ϑ) ∈ A× B × G} is Donsker for any compact sets A, B, and G,

because this class is a product of a VC subgraph class and a bounded random vector. Hence the

following expansion of the rhs of (7.14) is valid for any αn→p α(τ)

O(1/
√

n) = Gn

[
f

(
W, αn, ϑ̂(α(τ), τ)

)]
+
√

nE

[
f

(
W, αn, ϑ̂(αn, τ)

)]

= Gn

[
f
(
W, α(τ), ϑ(α(τ), τ)

)]
+
√

nE

[
f

(
W, αn, ϑ̂(αn, τ)

)]
+ op(1).

(7.15)
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Expanding the very last element further, by R4

O(1/
√

n) = Gn [f(W, α(τ), ϑ(τ))] + op(1)

+ (Jϑ + op(1))
√

n(ϑ̂(αn, τ) − ϑ(τ)) + (Jα + op(1))
√

n(αn − α(τ)),
(7.16)

where by R1 and R3

Jϑ =
∂

∂(β′, γ′)
E [ϕτ (Y − D′α(τ) − X ′β −Z ′γ)Ψ]

∣∣∣
(γ,β)=(0,β(τ))

= E [fǫ(0|X, Z)ΨΨ′/V ] ,

Jα =
∂

∂α′ E [ϕτ (Y − D′α − X ′β(τ))Ψ]
∣∣∣
α=α(τ)

= E[fǫ(0|X, Z, D)ΨD′].

(7.17)

In other words, for any αn→p α(τ)
√

n(ϑ̂(αn, τ) − ϑ(τ)) = − J−1
ϑ Gn [f(W, α(τ), ϑ(τ))]

− J−1
ϑ Jα[1 + op(1)]

√
n(αn − α(τ)) + op(1),

(7.18)

so
√

n(β̂(αn, τ) − β(τ)) = − J̄βGn [f(W, α(τ), ϑ(τ))]

− J̄βJα[1 + op(1)]
√

n(αn − α(τ)) + op(1),
(7.19)

and
√

n(γ̂(αn, τ) − 0) = − J̄γGn [f(W, α(τ), ϑ(τ))]

− J̄γJα[1 + op(1)]
√

n(αn − α(τ)) + op(1),
(7.20)

where [J̄ ′
β , J̄ ′

γ ]′ is the conformable partition of J−1
ϑ .

Center a shrinking closed ball Bn at 0, so that by consistency obtained in Step 2, αn−α(τ) ∈ Bn

wp → 1. Then wp → 1

α̂(τ) = arginf
αn−α(τ)∈Bn

Wn(αn).(7.21)

Note that Gn [f(W, α(τ), ϑ(τ))] →d N(0, S) by the Central Limit Theorem. Hence Gn [f(W, α(τ), ϑ(τ))] =

Op(1), and

Wn(αn) =
[
Op(1) − J̄γJα[1 + op(1)]

√
n(αn − α(τ))

]′

× [A(αn) + op(1)]

×
[
Op(1) − J̄γJα[1 + op(1)] ×

√
n(αn − α(τ))

]
.

(7.22)

It then follows from (7.21) and (7.22) that
√

n(α̂(τ) − α(τ)) = Op(1) since J̄γJα has full column

rank and A(α) has full rank from R4 and R5. Thus, we have that

√
n(α̂(τ) − α(τ)) = arg inf

z∈√
nBn

[Qn(z) + op(1)] ,(7.23)

where Qn(z) :=
(
− J̄γGnf(W, α(τ), ϑ(τ)) − J̄γJαz

)′
A(α)

(
− J̄γGnf(W, α(τ), ϑ(τ)) − J̄γJαz

)
.
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LEMMA 1 (Approximate Argmins, Knight (1999)). Define Zn such that Qn(Zn) ≤ infz∈Rd Qn(z)+

ǫn, ǫn ց 0, and defined Z∗
n as arg infz∈Rd Qn(z). Suppose that Zn = Op(1), Z∗

n = Op(1), Z∞ :=

argminz∈RdQ∞(z) is uniquely defined in Rd a.s., and Qn(·) ⇒ Q∞(·) in ℓ∞(K) over any compact

sets K, where Q∞ is continuous. Then Zn = Z∗
n + op(1) and Zn→d Z∞.

Apply Lemma 1 to Qn(z) defined above and conclude that

√
n(α̂(τ) − α(τ)) = arg inf

z∈Rdim(α)
[Qn(z)] + op(1),(7.24)

that is
√

n(α̂(τ) − α(τ)) = −
(
J ′

αJ̄ ′
γA(α(τ))J̄γJα

)−1(
J ′

αJ̄ ′
γA(α(τ))J̄γ

)

× Gn [f(W, α(τ), ϑ(τ), τ)] + op(1).
(7.25)

Hence
√

n(ϑ̂(α̂(τ), τ) − ϑ(τ)) = −J−1
ϑ

[
I − Jα

(
J ′

αJ̄ ′
γA(α(τ))J̄γJα

)−1

J ′
αJ̄ ′

γA(α(τ))J̄γ

]

× Gn [f(W, α(τ), ϑ(τ), τ)] + op(1)
(7.26)

The conclusion of Proposition 2 follows from Gn [f(W, α(τ), ϑ(τ))] →d N(0, S).
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Figure 1. Estimates of Effect of Price on Quantity by QR and IVQR
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Note: Left Column: The estimated conditional quantile curves of the quantity of fish sold
as a function of price for τ = .15, .25, .50, .75, and .85. The top display is in log-price
log-quantity space with log-price on the horizontal axis and log-quantity on the vertical
axis. The bottom display is in price-quantity space with price on the horizontal axis and
quantity on the vertical axis. Right Column: The demand curves estimated by IVQR for
τ = .15, .25, .50, .75, and .85. The top display is in log-price log-quantity space with
log-price on the horizontal axis and log-quantity on the vertical axis. The bottom display
is in price-quantity space with price on the horizontal axis and quantity on the vertical
axis.
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Figure 2. Statistic Wn(α) in Demand Example Using Stormy as an Instrument
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Note: Objective functions and dual confidence regions for demand for fish example. All
models are as specified in the main text. The estimates make use of one instrument,
Stormy. α is on the horizontal axis and Wn(α) is on the vertical axis. The horizontal line
is the 95% critical value from a χ2

1. The dual confidence region is all values of α such
that the Wn(α) lies below the horizontal line.
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Figure 3. Statistic Wn(α) in Demand Example Using Stormy and Mixed as Instruments
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Note: Objective functions and dual confidence regions for demand for fish example. All
models are as specified in the main text. The estimates make use of two instruments,
Stormy and Mixed. α is on the horizontal axis and Wn(α) is on the vertical axis. The
horizontal line is the 95% critical value from a χ2

2. The dual confidence region is all
values of α such that Wn(α) lies below the horizontal line.
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Figure 4. Estimates of the Training Impact by QR and by IVQR
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Note: Left Column: QR and IVQR estimates of the impact of a job training program on
earnings for τ = .15, .25, .50, .75, and .85. The top panel reports the QR estimate of the
training impact, and the bottom panel reports the IVQR results. In each figure, the solid
line represents the point estimates, and the dashed (- -) line represents the 95%
confidence interval formed using the direct inference approach. For the IVQR results, the
dash-dot (-.) line represents the 95% confidence bound constructed using the dual
inference procedure described in the text. In both figures, the horizontal axis measures
the quantile index τ , and the vertical axis is the impact of training on earning quantiles
measured in dollars. Models include covariates as specified in the text, and the sample
size is 5,102. Right Column: QR and IVQR estimates of the percentage impact of
training for τ = .15, .25, .50, .75, and .85. The top panel reports the QR estimate of the
training impact, and the bottom panel reports the IVQR results. Percentage impacts are
for moving from non-training to training and all other covariates are evaluated at their
sample mean. In both figures, the horizontal axis measures the quantile index τ , and the
vertical axis is the percentage impact of training.
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Figure 5. Statistic Wn(α) in the Training Example.
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Note: Objective functions and dual confidence regions for returns to training example.
All models are as specified in the main text. The estimates use random assignment to
the training program as the instrument. α is on the horizontal axis and Wn(α) is on the
vertical axis. The horizontal line is the 95% critical value from a χ2

1. The dual confidence
region is all values of α such that the function value lies below the horizontal line.


