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Abstract. We propose robust methods for inference on the effect of a treatment variable

on a scalar outcome in the presence of very many controls. Our setting is a partially linear

model with possibly non-Gaussian and heteroscedastic disturbances. Our analysis allows the

number of controls to be much larger than the sample size. To make informative inference

feasible, we require the model to be approximately sparse; that is, we require that the effect of

confounding factors can be controlled for up to a small approximation error by conditioning

on a relatively small number of controls whose identities are unknown. The latter condition

makes it possible to estimate the treatment effect by selecting approximately the right set

of controls. We develop a novel estimation and uniformly valid inference method for the

treatment effect in this setting, called the “post-double-selection” method. Our results apply

to Lasso-type methods used for covariate selection as well as to any other model selection

method that is able to find a sparse model with good approximation properties.

The main attractive feature of our method is that it allows for imperfect selection of the

controls and provides confidence intervals that are valid uniformly across a large class of mod-

els. In contrast, standard post-model selection estimators fail to provide uniform inference

even in simple cases with a small, fixed number of controls. Thus our method resolves the

long-standing problem of uniform inference after model selection for a large, interesting class

of models. We illustrate the use of the developed methods with numerical simulations and an

application to the effect of abortion on crime rates.

Key Words: treatment effects, partially linear model, high-dimensional-sparse regression,

inference under imperfect model selection, uniformly valid inference after model selection

1. Introduction

Many empirical analyses in economics focus on estimating the structural, causal, or treat-
ment effect of some variable on an outcome of interest. For example, we might be interested in
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estimating the causal effect of the minimum wage or some other government policy on employ-
ment. Since economic policies and many other economic variables are not randomly assigned,
economists rely on a variety of quasi-experimental approaches based on observational data
when trying to estimate such effects. One important method is based on the assumption that
the variable of interest can be taken as randomly assigned once a sufficient set of other factors
has been controlled for. Economists, for example, might argue that changes in state-level mini-
mum wages can be taken as randomly assigned relative to unobservable factors that could affect
changes in state-level employment once aggregate macroeconomic activity, state-level economic
activity, and state-level demographics have been controlled for; see Card and Krueger (1997),
Heckman, LaLonde, and Smith (1999), Imbens (2004), among other references.

A problem empirical researchers face when relying on an identification strategy for estimating
a structural effect that relies on a conditional on observables argument is knowing which
controls to include. Typically, economic intuition will suggest a set of variables that might be
important but will not identify exactly which variables are important or the functional form
with which variables should enter the model. This lack of clear guidance about what variables
to use leaves researchers with the problem of attempting to select a sensible set of controls from
a potentially vast set of control variables including raw regressors available in the data as well
as interactions and other transformations of these regressors. A typical economic study will
rely on an ad hoc sensitivity analysis in which a researcher reports results for several different
sets of controls in an attempt to show that the parameter of interest that summarizes the
causal effect of the policy variable is insensitive to changes in the set of control variables. See
Donohue III and Levitt (2001), which we use as the basis for the empirical study in this paper,
or examples in Angrist and Pischke (2008) among many other references.

We present an approach to estimating and performing inference on structural effects in
an environment where the treatment variable may be taken as exogenous conditional on ob-
servables that complements existing strategies. We pose the problem in the framework of a
partially linear model

yi = diα0 + g(zi) + ζi (1.1)

where di is the treatment/policy variable of interest, zi is a set of control variables, and ζi is an
unobservable that satisfies E[ζi | di, zi] = 0.1 The goal of the econometric analysis is to conduct
inference on the treatment effect α0. We examine the problem of selecting a set of variables
from among p potential controls xi = P (zi), which may consist of zi and transformations of
zi, to adequately approximate g(zi) allowing for p > n. Of course, useful inference about α0 is
unavailable in this framework without imposing further structure on the data. We impose such

1 We note that di does not need to be binary.
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structure by assuming that there is a relatively small set consisting of s < n variables whose
identities are a priori unknown among the p potential conditioning variables that provides
a good enough approximation to g(zi) that the exogeneity of di may be taken as given once
these variables have been controlled for linearly. This assumption, which is termed approximate
sparsity or simply sparsity, allows us to approach the problem of estimating α0 as a variable
selection problem. This framework allows for the realistic scenario in which the researcher is
unsure about exactly which variables or transformations are important for approximating g(zi)
and so must search among a broad set of controls.

The assumed sparsity includes as special cases the most common approaches to parametric
and nonparametric regression analysis. Sparsity justifies the use of fewer variables than there
are observations in the sample. When the initial number of variables is high, the assumption
justifies the use of variable selection methods to reduce the number of variables to a manageable
size. In many economic applications, formal and informal strategies are often used to select such
smaller sets of potential control variables. Most of these standard variable selection strategies
are highly non-robust, leading to a very poor inference.2 In an effort to demonstrate robustness,
researchers often employ ad hoc sensitivity analyses which examine the robustness of inferential
conclusions to variations in the set of controls. Such sensitivity analyses are useful but lack
rigorous justification. As a complement to these ad hoc approaches, we propose a formal,
rigorous approach to inference allowing for selection of controls. Our proposal uses modern
variable selection methods in a novel manner which results in robust and valid inference.

The main contributions of this paper are providing a robust estimation and inference method
within a partially linear model with potentially very high-dimensional controls and developing
the supporting theory. The method relies on the use of Lasso-type or other sparsity-inducing
procedures for variable selection. Our approach sharply differs from usual post-model-selection
methods that rely on a single selection step. Rather, we use two different variable selection
steps followed by a final estimation step as follows:

1. In the first step, we select a set of control variables that are useful for predicting the
treatment di. This step helps to insure robustness by finding control variables that are
strongly related to the treatment and thus potentially important confounding factors.

2. In the second step, we select additional variables by selecting control variables that
predict yi. This step helps to insure that we have captured important elements in

2An example of inference going wrong is given in Figure 1 (left panel), presented in the next section, where the

standard post-model selection estimator has a bimodal distribution which sharply deviates from the standard

normal distribution. More examples are given in Section 6 where we document the poor inferential performance

of the standard post-model selection methods.
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the equation of interest, ideally helping keep the residual variance small as well as
intuitively providing an additional chance to find important confounds.

3. In the final step, we estimate the treatment effect α0 of interest by the linear regression
of yi on the treatment di and the union of the set of variables selected in the two
variable selection steps.

We provide theoretical results on the properties of the resulting treatment effect estimator
and show that it provides inference that is uniformly valid over large classes of models and
also achieves the semi-parametric efficiency bound under some conditions. Importantly, our
theoretical results allow for imperfect variable selection in either of the two variable selection
steps as well as allowing for non-Gaussianity and heteroscedasticity of the model’s errors.3

We illustrate the theoretical results through an examination of the effect of abortion on
crime rates following Donohue III and Levitt (2001), Foote and Goetz (2008), and Donohue III
and Levitt (2008). In the original data of Donohue III and Levitt (2001), we find that the
formal variable selection procedure applied to a set of variables that allows for parsimonious
but flexible trends produces a qualitatively different result than that obtained through the ad
hoc set of sensitivity results presented in the original paper. Interestingly, we come to a similar
conclusion as in Foote and Goetz (2008) that the estimated abortion effects becomes quite im-
precise once a small set of variables including state-level average abortion rates interacted with
a linear trend are included in the model. We also consider a model related to Donohue III and
Levitt (2008) and once again find that the variable selection procedures choose a small number
of controls that allow for simple nonlinear trends in the data interacted with fixed, state-level
variables and that the estimated abortion effect is rendered imprecise once these variables are
included in the model of Donohue III and Levitt (2008). The selection of these variables and
the resulting imprecision of the estimated treatment effect suggest that one cannot determine
precisely whether the effect attributed to abortion found when these parsimonious trend terms
are omitted from the model is due to changes in the abortion rate or some other persistent
state-level factor that is related to relevant changes in the abortion rate and current changes
in the crime rate.4 Finding that a simple-to-implement, formal approach to variable selec-
tion produces a qualitatively different result than a more ad hoc approach suggests that these
methods might be used to complement economic intuition in selecting control variables for

3In a companion paper that presents an overview of results for `1-penalized estimators, Belloni, Cher-

nozhukov, and Hansen (2011a), we provide similar results in the idealized Gaussian homoscedastic framework.
4Note that all models are estimated including fixed effects or more general sets of controls to eliminate any

state-specific factors that might be related to both the relevant level of the abortion rate and the level of the

crime rate.
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estimating treatment effects in settings where treatment is taken as exogenous conditional on
observables.

Relationship to literature. We contribute to several existing literatures. First, we con-
tribute to the literature on series estimation of partially linear models (Donald and Newey
(1994), Härdle, Liang, and Gao (2000), Robinson (1988), and others). We differ from most
of the existing literature by considering many series terms, p À n, that may be used in the
construction of the regression fits. Considering a broad set of terms allows for more refined
approximations of regression functions relative to the usual approach that only allows for a
few low-order terms. Simultaneously, the number of parameters is kept relatively low through
the use of variable selection methods. See, for example, Belloni, Chernozhukov, and Hansen
(2011a) for a wage function example and Section 5 for theoretical examples. Moreover, we
allow for data-dependent selection of the appropriate series terms. We focus on Lasso as our
principal device for performing this selection but note that any other method, such as selection
using the traditional generalized cross-validation criteria, is likely to work as long as the method
guarantees sufficient sparsity in its solution. It should be noted that the previous literature on
inference in the partially linear model generally takes the number of series terms given without
allowing for their data-driven selection. Recent work by Cattaneo, Jansson, and Newey (2010)
allows for p = Cn (with C < 1) series terms in construction of the series regression, a device
which produces refined standard errors even in cases with p ¿ n. This work is complementary
to our work which focuses on reducing the number of terms p À n down to ŝ ¿ n. After
model selection, one may apply conventional standard errors or Cattaneo, Jansson, and Newey
(2010) standard errors.5

Second, we contribute to the literature on the estimation of treatment effects. We note that
the policy variable di does not have to be binary in our framework. However, our method has
a useful interpretation related to the propensity score when di is binary. In the first selection
step, we select terms from xi that predict the treatment di, i.e. terms that explain the propen-
sity score. We also select terms from xi that predict yi, i.e. terms that explain the outcome
regression function. Then we run a final regression of yi on the treatment di and the union of
selected terms. Thus, our procedure relies on the selection of variables relevant for both the
propensity score and the outcome regression. Relying on selecting variables that are important
for both objects allows us to achieve two goals: we obtain uniformly valid confidence sets for
α0 despite imperfect model selection and we achieve full efficiency for estimating α0 in the
homoscedastic case. The connection of our approach to the propensity score brings about in-
teresting connections to the treatment effects literature. Hahn (1998), Heckman, Ichimura, and

5In practice, if the selected number of terms ŝ is substantial, we recommend using Cattaneo, Jansson, and

Newey (2010)’s standard errors after applying our model selection procedure.
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Todd (1998), and Abadie and Imbens (2011) have constructed efficient regression or matching-
based estimates of average treatment effects. Hahn (1998) also shows that conditioning on the
propensity score is unnecessary for efficient estimation of average treatment effects. Hirano,
Imbens, and Ridder (2003) demonstrate that one can efficiently estimate average treatment
effects using estimated propensity score weighting alone. Robins and Rotnitzky (1995) have
shown that using propensity score modeling coupled with a parametric regression model leads
to efficient estimates if either the propensity score model or the parametric regression model is
correct. While our contribution is quite distinct from these approaches, it also highlights the
important robustness role played by the propensity score model in the selection of the right
control terms for the final regression.

Third, we contribute to the literature on estimation and inference with high-dimensional
data and to the uniformity literature. There has been extensive work on estimation and
perfect model selection in both low and high-dimensional contexts,6 but there has been little
work on inference after imperfect model selection. Perfect model selection relies on unrealistic
assumptions, and model selection mistakes can have serious consequences for inference as has
been shown in Pötscher (2009), Leeb and Pötscher (2008), and others. In work on instrument
selection for estimation of a linear instrumental variables model, Belloni, Chen, Chernozhukov,
and Hansen (2010) have shown that model selection mistakes do not prevent valid inference
about low-dimensional structural parameters due to the inherent adaptivity of the problem:
Omission of a relevant instrument does not affect consistency of an IV estimator as long as
there is another relevant instrument. The partially linear regression model (1.1) does not have
the same adaptivity structure, and model selection based on the outcome regression alone
produces non-robust confidence intervals. Our procedure creates the necessary adaptivity by
performing two separate model selection steps, making it possible to perform robust/uniform
inference after model selection. The uniformity holds over large, interesting classes of models.
In that regard, our contribution is in the spirit of recent contributions by Mikusheva (2007) on
uniform inference in autoregressive models, by Andrews and Cheng (2011) on uniform inference
in moment condition models that are potentially unidentified, and by Andrews, Cheng, and
Guggenberger (2011) on a generic framework for uniformity analysis.

Finally, we contribute to the broader literature on high-dimensional estimation. For variable
selection we use `1-penalization methods, though our method and theory will allow for the use
of other methods. `1-penalized methods have been proposed for model selection problems
in high-dimensional least squares problems, e.g. Lasso in Tibshirani (1996), in part because
they are computationally efficient. Many `1-penalized methods have been shown to have good

6For reviews focused on econometric applications, see, e.g., Hansen (2005) and Belloni, Chernozhukov, and

Hansen (2010).
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estimation properties even when perfect variable selection is not feasible; see, e.g., Candes
and Tao (2007), Meinshausen and Yu (2009), Bickel, Ritov, and Tsybakov (2009), Belloni
and Chernozhukov (2011) and the references therein. Such methods have also been shown to
extend suitably to nonparametric and non-Gaussian cases as in Bickel, Ritov, and Tsybakov
(2009) and Belloni, Chen, Chernozhukov, and Hansen (2010). These methods also produce
models with a relatively small set of variables. The last property is important in that it leaves
the researcher with a set of variables that may be examined further; in addition it corresponds
to the usual approach in economics that relies on considering a small number of controls.

Paper Organization. In Section 2, we formally present the modeling environment includ-
ing the key sparsity condition and develop our advocated estimation and inference method.
We establish the consistency and asymptotic normality of our estimator of α0 uniformly over
large classes of models in Section 3. In Section 4, we present a generalization of the basic pro-
cedure to allow for model selection methods other than Lasso. In Section 4, we present a series
of theoretical examples in which we provide primitive condition that imply the higher-level
conditions of Section 3. We present a series of numerical examples that verify our theoretical
results numerically in Section 6, and we apply our method to the abortion and crime example
of Donohue III and Levitt (2001) in Section 7. In appendices, we provide the proofs.

Notation. In what follows, we work with triangular array data {(ωi,n, i = 1, ..., n) , n =
1, 2, 3, ...} defined on probability space (Ω,A,Pn), where P = Pn can change with n. Each
ωi,n = (y′i,n, z′i,n, d′i,n)′ is a vector with components defined below, and these vectors are i.n.i.d.
– independent across i, but not necessarily identically distributed. Thus, all parameters that
characterize the distribution of {ωi,n, i = 1, ..., n} are implicitly indexed by Pn and thus by
n. We omit the dependence on these objects from the notation in what follows for notational
simplicity. We use array asymptotics to better capture some finite-sample phenomena and
to insure the robustness of conclusions with respect to perturbations of the data-generating
process P along various sequences. This robustness, in turn, translates into uniform validity
of confidence regions over certain regions of data-generating processes.

We use the following empirical process notation, En[f ] := En[f(ωi)] :=
∑n

i=1 f(ωi)/n, and
Gn(f) :=

∑n
i=1(f(ωi) − E[f(ωi)])/

√
n. Since we want to deal with i.n.i.d. data, we also

introduce the average expectation operator: Ē[f ] := EEn[f ] = EEn[f(ωi)] =
∑n

i=1 E[f(ωi)]/n.

The l2-norm is denoted by ‖ · ‖, and the l0-norm, ‖ · ‖0, denotes the number of non-zero
components of a vector. We use ‖ · ‖∞ to denote the maximal element of a vector. Given a
vector δ ∈ Rp, and a set of indices T ⊂ {1, . . . , p}, we denote by δT ∈ Rp the vector in which
δTj = δj if j ∈ T , δTj = 0 if j /∈ T . We use the notation (a)+ = max{a, 0}, a ∨ b = max{a, b},
and a ∧ b = min{a, b}. We also use the notation a . b to denote a 6 cb for some constant
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c > 0 that does not depend on n; and a .P b to denote a = OP (b). For an event E, we
say that E wp → 1 when E occurs with probability approaching one as n grows. Given a
p-vector b, we denote support(b) = {j ∈ {1, ..., p} : bj 6= 0}. Throughout the paper, we let c,
C, and q be absolute constants, and let `n ↗∞, δn ↘ 0, and ∆n ↘ 0 be sequences of absolute
positive constants. By absolute constants, we will mean constants that are given and that do
not depend on P = Pn.

2. Inference on Treatment and Structural Effects Conditional on

Observables

2.1. Framework. In this paper we consider the following partially linear model

yi = diα0 + g(zi) + ζi, E[ζi | zi, di] = 0, (2.2)

di = m(zi) + vi, E[vi | zi] = 0, (2.3)

where yi is the outcome variable, di is the policy/treatment variable whose impact α0 we would
like to infer, zi represents confounding factors on which we need to condition, and ζi and vi are
disturbances. The parameter α0 is the average treatment or structural effect under appropriate
conditions given, for example, in Heckman, LaLonde, and Smith (1999) or Imbens (2004) and
is of major interest in many empirical studies.

The confounding factors zi affect the policy variable via the function m(zi) and the outcome
variable via the function g(zi). Both of these functions are unknown and potentially compli-
cated. We use linear combinations of control terms xi = P (zi) to approximate g(zi) and m(zi),
writing (2.2) and (2.3) as

yi = diα0 + x′iβg0 + rgi︸ ︷︷ ︸
g(zi)

+ζi, (2.4)

di = x′iβm0 + rmi︸ ︷︷ ︸
m(zi)

+vi, (2.5)

where x′iβg0 and x′iβm0 are approximations to g(zi) and m(zi), and rgi and rmi are the corre-
sponding approximation errors. In order to allow for a flexible specification and incorporation
of pertinent confounding factors, the vector of controls, xi = P (zi), can have a dimension
p = pn which can be large relative to the sample size. Specifically, our results only require
log p = o(n1/3) along with other technical conditions. High-dimensional regressors xi = P (zi)
could arise for different reasons. For instance, the list of available controls could be large, i.e.
xi = zi as in e.g. Koenker (1988). It could also be that many technical controls are present;
i.e. the list xi = P (zi) could be composed of a large number of transformations of elementary
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regressors zi such as B-splines, dummies, polynomials, and various interactions as in Newey
(1997) or Chen (2007).

Having very many controls creates a challenge for estimation and inference. A key condition
that makes it possible to perform constructive estimation and inference in such cases is termed
sparsity. Sparsity is the condition that there exist approximations x′iβg0 and x′iβm0 to g(zi)
and m(zi) in (2.4)-(2.5) that require only a small number of non-zero coefficients to render the
approximation errors rgi and rmi sufficiently small relative to estimation error. More formally,
sparsity relies on two conditions. First, there exist βg0 and βm0 such that at most s = sn ¿ n

elements of βm0 and βg0 are non-zero so that

‖βm0‖0 6 s and ‖βg0‖0 6 s.

Second, the sparsity condition requires the size of the resulting approximation errors to be
small compared to the conjectured size of the estimation error:

{Ē[r2
gi]}1/2 .

√
s/n and {Ē[r2

mi]}1/2 .
√

s/n.

Note that the size of the approximating model s = sn can grow with n just as in standard
series estimation.

The high-dimensional-sparse-model framework outlined above extends the standard frame-
work in the treatment effect literature which assumes both that the identities of the relevant
controls are known and that the number of such controls s is much smaller than the sample
size. Instead, we assume that there are many, p, potential controls of which at most s con-
trols suffice to achieve a desirable approximation and allow the identity of these controls to be
unknown. Relying on this assumed sparsity, we use selection methods to select approximately
the right set of controls and then estimate the treatment effect α0.

2.2. The Method: Least Squares after Double Selection. We propose the following
method for estimating and performing inference about α0. The most important feature of this
method is that it does not rely on the highly unrealistic assumption of perfect model selection
which is often invoked to justify inference after model selection.7 The construction of our advo-
cated procedure reflects our effort to offer a method that has attractive robustness/uniformity
properties for inference. The estimator is

√
n-consistent and asymptotically normal under

mild conditions and provides confidence intervals that are robust to various perturbations of
the data-generating process that preserve approximate sparsity.

7To the best of our knowledge, our result is the first of its kind in this setting. This result extends our

previous results on inference under imperfect model selection in the instrumental variables model given in

Belloni, Chernozhukov, and Hansen (2010). The problem is more difficult in the present paper due to lack of

adaptivity in estimation which we overcome by introducing additional model selection steps.
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To define the method, we first write the reduced form corresponding to (2.2)-(2.3) as:

yi = x′iβ̄0 + r̄i + ζ̄i, (2.6)

di = x′iβm0 + rmi + vi, (2.7)

where β̄0 := α0βm0 + βg0, r̄i := α0rmi + rgi, ζ̄i := α0vi + ζi.

We have two equations and hence can apply model selection methods to each equation to
select control terms. The chief method we discuss is the Lasso method described in more
detail below. Given the set of selected controls from (2.6) and (2.7), we can estimate α0

by a least squares regression of yi on di and the union of the selected controls. Inference
on α0 may then be performed using conventional methods for inference about parameters
estimated by least squares. Intuitively, this procedure works well since we are more likely
to recover key controls by considering selection of controls from both equations instead of
just considering selection of controls from the single equation (2.4) or (2.6). In finite-sample
experiments, single-selection methods essentially fail, providing poor inference relative to the
double-selection method outlined above. This performance is also supported theoretically by
the fact that the double-selection method requires weaker regularity conditions for its validity
and for attaining the efficiency bound8 than the single selection method.

Now we formally define the post-double-selection estimator: Let Î1 = support(β̂1) denote
the control terms selected by a feasible Lasso estimator β̂1 computed using data (ỹi, x̃i) =
(di, xi), i = 1, ..., n. Let Î2 = support(β̂2) denote the control terms selected by a feasible Lasso
estimator β̂2 computed using data (ỹi, x̃i) = (yi, xi), i = 1, ..., n. The post-double-selection
estimator α̌ of α0 is defined as the least squares estimator obtained by regressing yi on di and
the selected control terms xij with j ∈ Î ⊇ Î1 ∪ Î2:

(α̌, β̌) = argmin
α∈R,β∈Rp

{En[(yi − diα− x′iβ)2] : βj = 0,∀j 6∈ Î}.

The set Î may contain variables that were not selected in the variable selection steps with
indices in Î3 that the analyst thinks are important for ensuring robustness. We call Î3 the
amelioration set. Thus, Î = Î1 ∪ Î2 ∪ Î3; let ŝ = |Î| and ŝj = |Îj | for j = 1, 2, 3.

We define feasible Lasso estimators below and note that other selection methods could be
used as well. When a feasible Lasso is used, we refer to the post-double-selection estimator as
the post-double-Lasso estimator.

The main theoretical result of the paper shows that the post-double-selection estimator α̌

obeys
([Ēv2

i ]
−1Ē[v2

i ζ
2
i ][Ēv2

i ]
−1)−1/2√n(α̌− α0) Ã N(0, 1) (2.8)

8Semi-parametric efficiency is attained in the homoscedastic case.
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post-single-selection estimator
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0

post-double-selection estimator

Distributions of Studentized Estimators

Figure 1. The finite-sample distributions (densities) of the standard post-single selection

estimator (left panel) and of our proposed post-double selection estimator (right panel). The

distributions are given for centered and studentized quantities. The results are based on 10000

replications of Design 1 described in Section 6, with R2’s in equation (2.6) and (2.7) set to

0.5.

under approximate sparsity conditions, uniformly within a rich set of data generating pro-
cesses. We also show that the standard plug-in estimator for standard errors is consistent
in these settings. All of these results imply uniform validity of confidence regions over large,
interesting classes of models. Figure 2.2 (right panel) illustrates the result (2.8) by showing
that the finite-sample distribution of our post-double-selection estimator is very close to the
normal distribution. In contrast, Figure 2.2 (left panel) illustrates the classical problem with
the traditional post-single-selection estimator based on (2.4), showing that its distribution is
bimodal and sharply deviates from the normal distribution.

2.3. Selection of controls via feasible Lasso Methods. Here we describe feasible variable
selection via Lasso. Note that each of the regression equations above is of the form

ỹi = x̃′iβ0 + ri︸ ︷︷ ︸
f(z̃i)

+εi,

where f(z̃i) is the regression function, x̃′iβ0 is the approximation based on the dictionary
x̃i = P (z̃i), ri is the approximation error, and εi is the error. Tibshirani (1996) proposes the
Lasso estimator which is defined as a solution to

min
β∈Rp

En[(ỹi − x̃′iβ)2] +
λ

n
‖β‖1, (2.9)
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where ‖β‖1 =
∑p

j=1 |βj |. The kinked nature of the penalty function induces the solution
β̂ to have many zeroes and thus may be used for model selection. The selected model
T̂ = support(β̂) is often used for further refitting by least squares, leading to the so called
post-Lasso or Gauss-Lasso estimator, see, e.g., Belloni and Chernozhukov (2011). The Lasso
estimator/selector is computationally attractive because it minimizes a convex function. In
the homoskedastic Gaussian case, a basic choice for penalty level suggested by Bickel, Ritov,
and Tsybakov (2009) is

λ = 2 · cσ
√

2n log(2p/γ), (2.10)

where c > 1, 1− γ is a confidence level that needs to be set close to 1, and σ is the standard
deviation of the noise. The formal motivation for this penalty is that it leads to near-optimal
rates of convergence of the estimator under approximate sparsity. The good behavior of the
estimator of β0 in turn implies good approximation properties of the selected model T̂ , as
noted in Belloni and Chernozhukov (2011). Unfortunately, even in the homoskedastic case the
penalty level specified above is not feasible since it depends on the unknown σ.

Belloni, Chen, Chernozhukov, and Hansen (2010) formulate a feasible Lasso estimator/selector
β̂ geared for heteroscedastic, non-Gaussian cases, which solves

min
β∈Rp

En[(ỹi − x̃′iβ)2] +
λ

n
‖Ψ̂β‖1, (2.11)

where Ψ̂ = diag(l̂1, . . . , l̂p) is a diagonal matrix of penalty loadings. The penalty level λ and
loadings l̂j ’s are set as

λ = 2 · c√nΦ−1(1− γ/2p) and l̂j = lj + oP (1), lj =
√
En[x̃2

ijε
2
i ], uniformly in j = 1, . . . , p,

(2.12)
where c > 1 and 1 − γ is a confidence level.9 The lj ’s are the ideal penalty loadings that are
not observed, and we estimate lj by l̂j obtained via an iteration method given in Appendix
A. We refer to the resulting feasible Lasso method as the Iterated Lasso. The estimator β̂

has statistical performance that is similar to that of the (infeasible) Lasso described above in
Gaussian cases and delivers similar performance in non-Gaussian, heteroscedastic cases; see
Belloni, Chen, Chernozhukov, and Hansen (2010). In this paper, we only use β̂ as a model
selection device. Specifically, we only make use of

T̂ = support(β̂),

the labels of the regressors with non-zero estimated coefficients. We show that the selected
model T̂ has good approximation properties for the regression function f under approximate
sparsity in Section 3.

9Practical recommendations include the choice c = 1.1 and γ = .05.
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Belloni, Chernozhukov, and Wang (2011) propose another feasible variant of Lasso called
the Square-root Lasso estimator, β̂, defined as a solution to

min
β∈Rp

√
En[(ỹi − x̃′iβ)2] +

λ

n
‖Ψ̂β‖1, (2.13)

with the penalty level

λ = c · √nΦ−1(1− γ/2p), (2.14)

where c > 1, γ ∈ (0, 1) is a confidence level, and Ψ̂ = diag(l̂1, . . . , l̂p) is a diagonal matrix of
penalty loadings. The main attractive feature of (2.13) is that in the homoscedastic case we
can set l̂j = {En[x̃2

ij ]}1/2, which depends only on observed data and is thus very convenient.

In the heteroscedastic case, we would like to choose l̂j so that

lj + oP (1) 6 l̂j .P lj , where lj = {En[x̃2
ijε

2
i ]]/En[ε2i ]}1/2, uniformly in j = 1, ..., p. (2.15)

As a simple bound, we could use l̂j = 2{En[x̃4
ij ]}1/4 since

{En[x̃2
ijε

2
i ]]/En[ε2i ]}1/2 6 {En[x̃4

ij ]}1/4{En[ε4i ]}1/4/{En[ε2i ]}1/2.

This bound gives lj + oP (1) 6 l̂j if {En[ε4i ]}1/4/{En[ε2i ]}1/2 6 2 + oP (1), which covers a wide
class of marginal distributions for error εi. For example, all t-distributions with degrees of
freedom greater than five satisfy this condition. As in the previous case, we can also iteratively
re-estimate the penalty loadings using estimates of the εi’s to approximate the ideal penalty
loadings:

l̂j = lj + oP (1), uniformly in j = 1, ..., p. (2.16)

The resulting Square-root Lasso and post-Square-root Lasso estimators based on these penalty
loadings achieve near optimal rates of convergence even in drastically non-Gaussian, het-
eroscedastic cases. This good performance implies good approximation properties for the
selected model T̂ .

In what follows, we shall use the term feasible Lasso to refer to either the Iterated Lasso
estimator β̂ solving (2.11)-(2.12) or the Square-root Lasso estimator β̂ solving (2.13)-(2.15)
with c > 1 and 1− γ set such that

γ = o(1) and log(1/γ) . log(p ∨ n). (2.17)

3. Theory of Estimation and Inference

3.1. Regularity Conditions. In this section, we provide regularity conditions that are suf-
ficient for validity of the main estimation and inference result. We begin by stating our main
condition, which contains the previously defined approximate sparsity as well as other more
technical assumptions.
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We assume that for each n the following condition holds for dgp P = Pn:

Condition ASTE (P). (i) {(yi, di, zi), i = 1, ..., n} are i.n.i.d. vectors on (Ω,F ,P) that
obey the model (2.2)-(2.3), and the vector xi = P (zi) is a dictionary of transformations of zi,
which may depend on n but not on P. (ii) The true parameter value α0, which may depend
on P, is bounded, |α0| 6 C. (iii) Functions m and g admit an approximately sparse form.
Namely there exists s > 1 and βm0 and βg0, which depend on n and P, such that

m(zi) = x′iβm0 + rmi, ‖βm0‖0 6 s, {Ē[r2
mi]}1/2 6 C

√
s/n, (3.18)

g(zi) = x′iβg0 + rgi, ‖βg0‖0 6 s, {Ē[r2
gi]}1/2 6 C

√
s/n. (3.19)

(iv) The sparsity index obeys s2 log2(p ∨ n)/n 6 δn and the size of the amelioration set obeys
ŝ3 6 C(1 ∨ ŝ1 ∨ ŝ2). (v) For ṽi = vi + rmi and ζ̃i = ζi + rgi we have |Ē[ṽ2

i ζ̃
2
i ]− Ē[v2

i ζ
2
i ]| 6 δn,

and Ē[|ṽi|q + |ζ̃i|q] 6 C for some q > 4. Moreover, maxi6n ‖xi‖2∞sn−1/2+2/q 6 δn wp 1−∆n.

Comment 3.1. The approximate sparsity (iii) and the growth condition (iv) are the main
conditions for establishing the key inferential result. We present a number of primitive examples
to show that these conditions contain standard models used in empirical research as well as
more flexible models. Condition (iv) requires that the size ŝ3 of the amelioration set Î3 should
not be substantially larger than the size of the set of variables selected by the Lasso method.
Simply put, if we decide to include controls in addition to those selected by Lasso, the total
number of additions should not dominate the number of controls selected by Lasso. This
and other conditions will ensure that the total number ŝ of controls obeys ŝ .P s, and we
also require that s2 log2(p ∨ n)/n → 0. This condition can be relaxed using the sample-
splitting method of Fan, Guo, and Hao (2011), which is done in the Supplementary Appendix.
Condition (v) is simply a set of sufficient conditions for consistent estimation of the variance of
the double selection estimator. If the regressors are uniformly bounded and the approximation
errors are going to zero a.s., it is implied by other conditions stated below; and it can also be
demonstrated under other sorts of more primitive conditions. ¤

The next condition concerns the behavior of the Gram matrix En[xix
′
i]. Whenever p > n, the

empirical Gram matrix En[xix
′
i] does not have full rank and in principle is not well-behaved.

However, we only need good behavior of smaller submatrices. Define the minimal and maximal
m-sparse eigenvalue of a semi-definite matrix M as

φmin(m)[M ] := min
16‖δ‖06m

δ′Mδ

‖δ‖2
and φmax(m)[M ] := max

16‖δ‖06m

δ′Mδ

‖δ‖2
. (3.20)

To assume that φmin(m)[En[xix
′
i]] > 0 requires that all empirical Gram submatrices formed

by any m components of xi are positive definite. We shall employ the following condition as a
sufficient condition for our results.
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Condition SE (P). There is an absolute sequence of constants `n → ∞ such that the
maximal and minimal `ns-sparse eigenvalues are bounded from below and away from zero,
namely with probability at least 1−∆n,

κ′ 6 φmin(`ns)[En[xix
′
i]] 6 φmax(`ns)[En[xix

′
i]] 6 κ′′,

where 0 < κ′ < κ′′ < ∞ are absolute constants.

Comment 3.2. It is well-known that Condition SE is quite plausible for many designs of
interest. For instance, Condition SE holds if

(a) xi, i = 1, . . . , n, are i.i.d. zero-mean sub-Gaussian random vectors that have population
Gram matrix E[xix

′
i] with minimal and maximal s log n-sparse eigenvalues bounded

away from zero and from above by absolute constants, where s(log n)(log p)/n 6 δn →
0;

(b) xi, i = 1, . . . , n, are i.i.d. bounded zero-mean random vectors with ‖xi‖∞ 6 Kn a.s.
that have population Gram matrix E[xix

′
i] with minimal and maximal s log n-sparse

eigenvalues bounded from above and away from zero by absolute constants, where
K2

ns(log3 n){log(p ∨ n)}/n 6 δn → 0.

The claim (a) holds by Theorem 3.2 in Rudelson and Zhou (2011) (see also Zhou (2009)
and Baraniuk, Davenport, DeVore, and Wakin (2008)) and claim (b) holds by Lemma 1 in
Belloni and Chernozhukov (2011) or by Theorem 1.8 Rudelson and Zhou (2011). Recall that
a standard assumption in econometric research is to assume that the population Gram matrix
E[xix

′
i] has eigenvalues bounded from above and away from zero, see e.g. Newey (1997). The

conditions above allow for this and more general behavior, requiring only that the s log n

sparse eigenvalues of the population Gram matrix E[xix
′
i] are bounded from below and from

above. ¤

The next condition imposes moment conditions on the structural errors and regressors.

Condition SM (P). There are absolute constants 0 < c < C < ∞ and 4 < q < ∞ such
that for (ỹi, εi) = (yi, ζi) and (ỹi, εi) = (di, vi) the following conditions hold:

(i) Ē[|di|q] 6 C, c 6 E[ζ2
i | xi, vi] 6 C and c 6 E[v2

i | xi] 6 C a.s. 1 6 i 6 n,
(ii) Ē[|εi|q] + Ē[ỹ2

i ] + max
16j6p

{Ē[x2
ij ỹ

2
i ] + Ē[|x3

ijε
3
i |] + 1/Ē[x2

ij ]} 6 C,

(iii) log3 p/n 6 δn,

(iv) max
16j6p

{|(En − Ē)[x2
ijε

2
i ]|+ |(En − Ē)[x2

ij ỹ
2
i ]|}+ max

16i6n
‖xi‖2

∞
s log(n ∨ p)

n
6 δn wp 1−∆n.

These conditions, which are rather mild, ensure good model selection performance of feasible
Lasso applied to equations (2.6) and (2.7). These conditions also allow us to invoke moderate
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deviation theorems for self-normalized sums from Jing, Shao, and Wang (2003) to bound some
important error components.

3.2. The Main Result. The following is the main result of this paper. It shows that the
post-double selection estimator is root-n consistent and asymptotically normal. Under ho-
moscedasticity this estimator achieves the semi-parametric efficiency bound. The result also
verifies that plug-in estimates of the standard errors are consistent.

Theorem 1 (Estimation and Inference on Treatment Effects). Let {Pn} be a sequence of data-
generating processes. Assume conditions ASTE (P), SM (P), and SE (P) hold for P = Pn for
each n. Then, the post-double-Lasso estimator α̌ obeys, as n →∞

σ−1
n

√
n(α̌− α0) Ã N(0, 1),

where σ2
n = [Ēv2

i ]
−1Ē[v2

i ζ
2
i ][Ēv2

i ]
−1. Moreover, the result continues to apply if σ2

n is replaced by
σ̂2

n = [Env̂2
i ]
−1En[v̂2

i ζ̂
2
i ][Env̂2

i ]
−1, for ζ̂i := [yi− diα̌−x′iβ̌]{n/(n− ŝ− 1)}1/2 and v̂i := di−x′iβ̂,

i = 1, . . . , n where β̂ ∈ arg minβ{En[(di − x′iβ)2] : βj = 0, ∀j /∈ Î}.

An immediate consequence of this result is the following corollary.

Corollary 1 (Uniformly Valid Confidence Intervals). (i) Let Pn be the collection of all
data-generating processes P for which conditions ASTE(P), SM (P), and SE (P) hold for given
n. Let c(1− γ) = Φ−1(1− γ/2). Then as n →∞, uniformly in P ∈ Pn

P
(
α0 ∈ [α̌± c(1− γ)σ̂n/

√
n]

) → 1− γ.

(ii) Let P = ∩n>n0Pn be the collection of data-generating processes for which the conditions
above hold for all n > n0 for some n0. Then as n →∞, uniformly in P ∈ P

P
(
α0 ∈ [α̌± c(1− γ)σ̂n/

√
n]

) → 1− γ.

By exploiting both equations (2.4) and (2.5) for model selection, the post-double-selection
method creates the necessary adaptivity that makes it robust to imperfect model selection.
Robustness of the post-double selection method is reflected in the fact that Theorem 1 permits
the data-generating process to change with n. Thus, the conclusions of the theorem are valid
for a wide variety of sequences of data-generating processes which in turn define the regions P
of uniform validity of the resulting confidence sets. These regions appear to be substantial, as
we demonstrate via a sequence of theoretical and numerical examples in Section 5 and 6. In
contrast, the standard post-selection method based on (2.4) generates non-robust confidence
intervals.
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Comment 3.3. Our approach to uniformity analysis proceeds under triangular array asymp-
totics, with the sequence of dgps obeying certain constraints; then these results imply unifor-
mity over sets of dgps that obey the constraints for all sample sizes. This approach is most
similar to the classical central limit theorems for sample means under triangular arrays, and
does not require the dgps to be parametrically (or otherwise tightly) specified. Hence our
approach seems to be quite different in spirit to the generic uniformity analysis suggested by
Andrews, Cheng, and Guggenberger (2011). ¤

Comment 3.4. Uniformity holds over a large class of approximately sparse models, which
cover conventional models used in series estimation of partially linear models as shown in Sec-
tion 5. Of course, for every interesting class of models and any inference method, one could find
an even bigger class of models, where the uniformity does not apply, which is also true in our
case. In particular our models do not cover models with many small coefficients (in the series
case, this corresponds to small deviations from smoothness towards highly non-smooth func-
tions, namely towards paths generated as realization of an approximate white noise process).
This motivates further research work on inference procedures that have robustness properties
to deviations from the given class of models that are deemed important. In the simulations in
Section 6, we consider incorporating the ridge fit along the other controls to be selected over
using lasso to build extra robustness against such deviations away from approximately sparse
models. ¤

3.3. Auxiliary Results on Model Selection via Lasso and Post-Lasso. The post-
double-selection estimator applies the least squares estimator to the union of variables selected
for equations (2.6) and (2.7) via feasible Lasso. Therefore, the model selection properties of
feasible Lasso as well as properties of least squares estimates for m and g based on the selected
model play an important role in the derivation of the main result. The purpose of this section
is to describe these properties. The proof of Theorem 1 relies on these properties.

Note that either of the regression models (2.6)-(2.7) obey the following conditions.

Condition ASM.We have data {(ỹi, z̃i, x̃i = P (z̃i)) : 1 6 i 6 n} consisting of i.n.i.d vectors
that obey the regression model for each n:

ỹi = f(z̃i) + εi = x̃′iβ0 + ri + εi,

E[εi | x̃i] = 0, Ē[ε2i ] = σ2,

‖β0‖0 6 s, Ē[r2
i ] . σ2s/n.

Let T̂ denote the model selected by the feasible Lasso estimator β̂. Formally, set

T̂ = support(β̂) = {j ∈ {1, . . . , p} : |β̂j | > 0},
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and define the Post-Lasso estimator β̃ as

β̃ ∈ arg min
β∈Rp

En[(ỹi − x̃′iβ)2] : βj = 0 for each j /∈ T̂ . (3.21)

In words, the estimator is ordinary least squares applied to the data after removing the regres-
sors that were not selected by the feasible Lasso.

The following regularity conditions are imposed to deal with non-Gaussian, heteroscedastic
errors.

Condition RF. The following conditions hold:

(i) log3 p/n → 0 and s log(p ∨ n)/n → 0,
(ii) Ē[ỹ2

i ] + max16j6p{Ē[x̃2
ij ỹ

2
i ] + Ē[|x̃3

ijε
3
i |] + 1/Ē[x̃2

ijε
2
i ]} . 1,

(iii) max
16j6p

{|(En − Ē)[x̃2
ijε

2
i ]|+ |(En − Ē)[x̃2

ij ỹ
2
i ]|}+ max

16i6n
‖x̃i‖2

∞
s log(n ∨ p)

n
= oP (1).

The main auxiliary result that we use in proving the main result is as follows.

Lemma 1 (Model Selection Properties of Lasso and Properties of Post-Lasso). Suppose that
conditions ASM and RF hold, and that Condition SE holds for En[x̃ix̃

′
i]. Consider the choices

for penalty level and loadings described in Section 3.3 for a feasible Lasso estimator.

(i) Then the data-dependent model T̂ selected by a feasible Lasso estimator satisfies

ŝ = |T̂ | . s wp 1− o(1)

and

min
β∈Rp: βj=0 ∀j 6∈T̂

√
En[f(z̃i)− x̃′iβ]2 . σ

√
s log(p ∨ n)

n
.

(ii) The Post-Lasso estimator obeys
√
En[f(z̃i)− x̃′iβ̃]2 .P σ

√
s log(p ∨ n)

n
.

and

‖β̃ − β0‖ .P

√
En[{x̃′iβ̃ − x̃′iβ0}2] .P σ

√
s log(p ∨ n)

n
. (3.22)

Lemma 1 was derived in Belloni, Chen, Chernozhukov, and Hansen (2010) for Iterated Lasso
and by Belloni, Chernozhukov, and Wang (2010) for Square-root Lasso. These analyses built
on the rate analysis of infeasible Lasso by Bickel, Ritov, and Tsybakov (2009) and on sparsity
analysis and rate analysis of Post-Lasso by Belloni and Chernozhukov (2011). Lemma 1 shows
that feasible Lasso methods select a model T̂ that provides a high-quality approximation to
the regression function f(z̃i), i.e. they find a sparse model that can approximate the function
at the “near-oracle” rate

√
s/n

√
log(p ∨ n). If we knew the “best” approximating model
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T = support(β0), we could achieve the “oracle” rate of
√

s/n. Note that Lasso methods
generally will not recover T perfectly. Moreover, no method can recover T perfectly in general,
except under the restrictive condition that all non-zero coefficients in β0 are bounded away
from zero by a factor that exceeds estimation error. We do not require this condition to hold
in our results. All that we need is that the selected model T̂ can approximate the regression
function well and that the size of the selected model, ŝ = |T̂ |, is of the same stochastic order
as s = |T |. This condition holds in many cases in which some non-zero coefficients are close to
zero.

The lemma above also shows that feasible Post-Lasso achieves the same near-oracle rate
as feasible Lasso. The coincidence in rates occurs despite the fact that feasible Lasso will in
general fail to correctly select the best-approximating model T as a subset of the variables
selected; that is, T 6⊆ T̂ . The intuition for this result is that any components of T that feasible
Lasso misses are unlikely to be important.

4. Generalization: Inference after Double Selection by a Generic Selection

Method

The conditions provided so far are simply a set sufficient conditions that are tied to the use
of Lasso as the model selector. The purpose of this section is to prove that the main results
apply to any other model selection method that is able to select a sparse model with good
approximation properties. As in the case of Lasso, we allow for imperfect model selection.
Next we state a high-level condition that summarizes a sufficient condition on the performance
of a model selection method that allows the post-double selection estimator to attain good
inferential properties.

Condition HLMS (P). A model selector provides a possibly data-dependent set Î ⊂
{1, ..., p} of covariate names such that, with probability 1−∆n, |Î| 6 Cs and

min
β:βj=0,j 6∈Î

√
En[(m(zi)− x′iβ)2] 6 δnn−1/4 and min

β:βj=0,j 6∈Î

√
En[(g(zi)− x′iβ)2] 6 δnn−1/4.

Condition HLMS requires that with high probability the selected model Î is sparse and
generates a good approximation for the functions g and m. In practice the set Î can be selected
by a variety of sparse methods. Examples of such methods include the Dantzig selector (Candes
and Tao, 2007), feasible Dantzig selector (Gautier and Tsybakov, 2011), Bridge estimator
(Huang, Horowitz, and Ma, 2008), SCAD penalized least squares (Fan and Li, 2001) and
thresholded Lasso (Belloni and Chernozhukov, 2011), to name a few. We emphasize that,
similarly to the previous arguments, we allow for imperfect model selection.
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The following result establishes the inferential properties of a generic model selection device
Î that obeys Condition HLSM.

Theorem 2 (Estimation and Inference on Treatment Effects under High-Level Model Se-
lection). Let {Pn} be a sequence of data-generating processes that satisfies conditions ASTE
(P), SM (P), and SE (P) for P = Pn for each n. Suppose that the selected model Î satisfies
condition HLSM for each n. Then the estimator α̌ based on Î obeys

([Ēv2
i ]
−1Ē[v2

i ζ
2
i ][Ēv2

i ]
−1)−1/2√n(α̌− α0) Ã N(0, 1).

Moreover, the result continues to apply if Ē[v2
i ] and Ē[v2

i ζ
2
i ] are replaced by En[v̂2

i ] and En[v̂2
i ζ̂

2
i ]

for ζ̂i := [yi − diα̌ − x′iβ̌]{n/(n − ŝ − 1)}1/2 and v̂i := di − x′iβ̂, i = 1, . . . , n where β̂ ∈
arg minβ{En[(di − x′iβ)2] : βj = 0, ∀j /∈ Î}.

An immediate consequence of this result is the following corollary.

Corollary 2 (Uniformly Valid Confidence Intervals). (i) Let Pn be the collection of all
data-generating processes P for which conditions ASTE(P), SM (P), SE (P), and HLSM (P)
hold for given n. Let c(1− γ) = Φ−1(1− γ/2). Then as n →∞, uniformly in P ∈ Pn

P
(
α0 ∈ [α̌± c(1− γ)σ̂n/

√
n]

) → 1− γ.

(ii) Let P = ∩n>n0Pn be the collection of data-generating processes for which the conditions
above hold for all n > n0 for some n0. Then as n →∞, uniformly in P ∈ P

P
(
α0 ∈ [α̌± c(1− γ)σ̂n/

√
n]

) → 1− γ.

5. Theoretical Examples

The purpose of this section is to give a sequence of examples – progressing from simple
to somewhat involved – that highlight the range of the applicability and robustness of the
proposed method. In these examples, we specify primitive conditions which cover a broad
range of applications including nonparametric models and high-dimensional parametric models.
We emphasize that our main regularity conditions cover even more general models which
combine various features of these examples such as models with both nonparametric and high-
dimensional parametric components.

In all examples, the model is

yi = diα0 + g(zi) + ζi, E[ζi | zi, vi] = 0,
di = m(zi) + vi, E[vi | zi] = 0,

(5.23)

however, the structure for g and m will vary across examples, and so will the assumptions on
the error terms ζi and vi.
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We start out with a “trivial” example, in which the dimension p of the regressors is fixed. In
practical terms this example approximates cases with p small compared to n. Though simple,
this example is important as standard post-single-selection methods fail to provide confidence
intervals that are valid uniformly in the underlying data-generating process in this context; see
Leeb and Pötscher (2008). In contrast, the post-double-selection method produces confidence
intervals that are valid uniformly in the underlying data-generating process.

Example 1. (Parametric Model with Fixed p.) Consider (Ω,A, P) as the probability space,
on which we have (yi, zi, di) as i.i.d. vectors for i = 1, ..., n obeying the model (5.23) with

g(zi) =
∑p

j=1 βg0jzij ,

m(zi) =
∑p

j=1 βm0jzij .
(5.24)

For estimation we use xi = (zij , j = 1, ..., p)′. We assume that there are some absolute constants
0 < b < B < ∞, qx > q > 4, with 4/qx + 4/q < 1, such that

E[‖xi‖qx ] 6 B, ‖α0‖+ ‖βg0‖+ ‖βm0‖ 6 B, b 6 λmin(E[xix
′
i]),

b 6 E[ζ2
i | xi, vi], E[|ζq

i | | xi, vi] 6 B, b 6 E[v2
i | xi], E[|vq

i | | xi] 6 B.
(5.25)

Let P be the collection of all regression models P that obey the conditions set forth above
for all n for the given constants (p, b, B, qx, q). Then, as established in Appendix F, any
P ∈ P obeys Conditions ASTE (P) with s = p, SE (P), and SM (P) for all n > n0, with the
constants n0 and (κ′, κ′′, c, C) and sequences ∆n and δn in those conditions depending only on
(p, b, B, qx, q). Therefore, the conclusions of Theorem 1 hold for any sequence Pn ∈ P, and the
conclusions of Corollary 1 on the uniform validity of confidence intervals apply uniformly in
P ∈ P. ¤

The next three examples are more substantial and include infinite-dimensional models which
we approximate with linear functional forms with potentially very many regressors. The key to
estimation in these models is a smoothness condition which requires regression coefficients to
decay at some rates. In series and sieve estimation, this condition is often directly connected
to smoothness of the regression function.

Let a and A be positive constants. We shall say that a sequence of coefficients

θ = {θj , j = 1, 2, ...}

is a-smooth with constant A if

|θj | 6 Aj−a, j = 1, 2, ...,
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which will be denoted as θ ∈ Sa
A. We shall say that a sequence of coefficients θ = {θj , j =

1, 2, ...} is a-smooth with constant A after p-rearrangement if

|θ(j)| 6 Aj−a, j = 1, 2, ..., p, |θj | 6 Aj−a, j = p + 1, p + 2, ...,

which will be denoted as θ ∈ Sa
A(p), where {|θ(j)|, j = 1, ..., p} denotes the decreasing rearrange-

ment of the numbers {|θj |, j = 1, ..., p}. Since Sa
A ⊂ Sa

A(p), the second kind of smoothness is
strictly more general than the first kind.

Here we use the term “smoothness” motivated by Fourier series analysis where smooth-
ness of functions often translates into smoothness of the Fourier coefficients in the sense that
is stated above; see, e.g., Kerkyacharian and Picard (1992). We also note that the second
kind of smoothness is considerably more general than the first since it allows relatively large
coefficients to appear anywhere in the series of the first p coefficients. In contrast, the first
kind of smoothness only allows relatively large coefficients among the early terms in the se-
ries. Lasso-type methods are specifically designed to deal with the generalized smoothness of
the second kind and perform equally well under both kinds of smoothness. In the context of
series applications, smoothness of the second kind allows one to approximate functions that
exhibit oscillatory phenomena or spikes, which are associated with “high order” series terms.
An example of this is the wage function example given in Belloni, Chernozhukov, and Hansen
(2011a).

Before we proceed to other examples we discuss a way to generate sparse approximations
in infinite-dimensional examples. Consider, for example, a function h that can be represented
a.s. as h(zi) =

∑∞
j=1 θhjPj(zi) with coefficients θh ∈ Sa

A(p). In this case we can construct
sparse approximations by simply thresholding to zero all coefficients smaller than 1/

√
n and

with indices j > p. This generates a sparsity index s 6 A
1
a n

1
2a . The non-zero coefficient could

be further reoptimized by using the least squares projection. More formally, given a sparsity
index s > 0, a target function h(zi), and terms xi = (Pj(zi) : j = 1, . . . , p)′ ∈ Rp, we let

βh0 := arg min
‖β‖06s

E[(h(zi)− x′iβ)2], (5.26)

and define x′iβh0 as the best s-sparse approximation to h(zi).

Example 2. (Gaussian Model with Very Large p.) Consider (Ω,A,P) as the probability
space on which we have (yi, zi, di) as i.i.d. vectors for i = 1, ..., n obeying the model (5.23)
with

g(zi) =
∑∞

j=1 θgjzij ,

m(zi) =
∑∞

j=1 θmjzij .
(5.27)
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Assume that the infinite dimensional vector wi = (zi, ζi, vi) is jointly Gaussian with zero mean
and minimal and maximal eigenvalues of the covariance matrix (operator) E[wiw

′
i] bounded

below by an absolute constant κ > 0 and above by an absolute constant κ < ∞.

The main assumption that guarantees approximate sparsity is the smoothness condition on
the coefficients. Let a > 1 and 0 < A < ∞ be some absolute constants. We require that the
coefficients of the expansions in (5.27) are a-smooth with constant A after p-rearrangement,
namely

θm = (θmj , j = 1, 2, ...) ∈ Sa
A(p), θg = (θgj , j = 1, 2, ...) ∈ Sa

A(p).

For estimation purposes we shall use xi = (zij , j = 1, ..., p)′, and assume that ‖α0‖ 6 B and
p = pn obeys

n[(1−a)/a]+χ log2(p ∨ n) 6 δ̄n, A1/an
1
2a 6 pδ̄n, and log3 p/n 6 δn,

for some absolute sequence δ̄n ↘ 0 and absolute constants B and χ > 0.

Let Pn be the collection of all dgp P that obey the conditions set forth in this example
for a given n and for the given constants (κ, κ, a,A, B, χ) and sequences pn and δ̄n. Then, as
established in Appendix F, any P ∈ Pn obeys Conditions ASTE (P) with s = A1/an

1
2a , SE

(P), and SM (P) for all n > n0, with constants n0 and (κ′, κ′′, c, C) and sequences ∆n and δn

in those conditions depending only on (κ, κ̄, a, A, B, χ). Therefore, the conclusions of Theorem
1 hold for any sequence Pn ∈ Pn, and the conclusions of Corollary 1 on the uniform validity
of confidence intervals apply uniformly for any P ∈ Pn. In particular, these conclusions apply
uniformly in P ∈ P = ∩n>n0Pn. ¤

Example 3. (Series Model with Very Large p.) Consider (Ω,A,P) as the probability space,
on which we have (yi, zi, di) as i.i.d. vectors for i = 1, ..., n obeying the model:

g(zi) =
∑∞

j=1 θgjPj(zi),
m(zi) =

∑∞
j=1 θmjPj(zi),

(5.28)

where zi has support [0, 1]d with density bounded from below by constant f > 0 and above by
constant f̄ , and {Pj , j = 1, 2, ..} is an orthonormal basis on L2[0, 1]d with bounded elements,
i.e. maxz∈[0,1]d |Pj(z)| 6 B for all j = 1, 2, .... Here all constants are taken to be absolute.
Examples of such orthonormal bases include various compactly supported wavelets or canonical
trigonometric bases.

Let a > 1 and 0 < A < ∞ be some absolute constants. We require that the coefficients of
the expansions in (5.28) are a-smooth with constant A after p-rearrangement, namely

θm = (θmj , j = 1, 2, ...) ∈ Sa
A(p), θg = (θgj , j = 1, 2, ...) ∈ Sa

A(p).
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This condition is directly connected to smoothness of the underlying function. For example,
if a function h : [0, 1]d 7→ R possesses r > 0 continuous derivatives uniformly bounded by
a constant M and the terms Pj are compactly supported Daubechies wavelets, then h can
be represented as h(z) =

∑∞
j=1 Pj(z)θhj , with |θhj | 6 Aj−r/d−1/2 for some constant A; see

(Kerkyacharian and Picard, 1992).

For estimation purposes we shall use xi = (Pj(zi), j = 1, ..., p)′, and assume that p = pn

obeys

n(1−a)/a log2(p ∨ n) 6 δ̄n, A1/an
1
2a 6 pδ̄n and log3 p/n 6 δ̄n,

for some sequence of absolute constants δ̄n ↘ 0. We assume that there are some absolute
constants b > 0, B < ∞, q > 4, with (1− a)/a + 4/q < 0, such that

‖α0‖ 6 B, b 6 E[ζ2
i | xi, vi], E[|ζq

i | | xi, vi] 6 B, b 6 E[v2
i | xi], E[|vq

i | | xi] 6 B.

(5.29)

Let Pn be the collection of all regression models P that obey the conditions set forth above
for a given n. Then, as established in Appendix F, any P ∈ Pn obeys Conditions ASTE
(P) with s = A1/an

1
2a , SE (P), and SM (P) for all n > n0, with absolute constants in those

conditions depending only on the constants (f, f̄ , a, A, b, B, q). Therefore, the conclusions of
Theorem 1 hold for any sequence Pn ∈ Pn, and the conclusions of Corollary 1 on the uniform
validity of confidence intervals apply uniformly for any P ∈ Pn. In particular, as a special
case, the same conclusion applies uniformly in P ∈ P = ∩n>n0Pn. ¤

The following example generalizes the previous example by allowing for sieve, as opposed to
series, approximations.

Example 4. (Sieve Model with Very Large p.) Consider (Ω,A, P) as the probability space,
on which we have (yi, zi, di) as i.i.d. vectors for i = 1, ..., n obeying the model (5.23):

g(zi) =
∑p

j=1 θgjPj,p(zi) + ρg,p(zi),
m(zi) =

∑p
j=1 θmjPj,p(zi) + ρm,p(zi),

(5.30)

where ρg,p(zi) and ρm,p(zi) are approximation errors. We assume that zi has support [0, 1]d

with density bounded from below by constant f > 0 and above by constant f̄ , and Pp(zi) =
(Pj,p(zi), j = 1, ..., p) is an orthonormal sub-basis on L2[0, 1]d with bounded elements, i.e.
maxz∈[0,1]d |Pj,p(z)| 6 B for all j = 1, 2, .... Here all constants are taken to be absolute.

The main assumption that guarantees approximate sparsity is the smoothness condition on
the coefficients. Let a > 1 and 0 < A < ∞ be some absolute constants. We require that the
coefficients of the expansions in (5.30) are a-smooth with constant A after p-rearrangement,
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namely

θm = (θmj , j = 1, 2, ..., p) ∈ Sa
A(p), θg = (θgj , j = 1, 2, ..., p) ∈ Sa

A(p).

We also impose that the approximation errors obey the conditions:
√

E[ρ2
g,p(zi)] 6 Ap−a+1/2, supz∈[0,1]d |ρg,p(z)| 6 Ap−a+1,√

E[ρ2
m,p(zi)] 6 Ap−a+1/2, supz∈[0,1]d |ρm,p(z)| 6 Ap−a+1.

(5.31)

These assumptions are in line with standard assumptions on sieve approximations, e.g., Newey
(1997) and Chen (2007). As stated earlier, this condition is often directly connected to smooth-
ness of the underlying functions.

For estimation purposes we shall use xi = (Pj,p(zi), j = 1, ..., p)′, and assume that p = pn

obeys

n(1−a)/a log2(p ∨ n) 6 δ̄n, A1/an
1
2a 6 pδ̄n and log3 p/n 6 δ̄n,

for some sequence of absolute constants δ̄n ↘ 0. We assume that there are some absolute
constants b > 0, B < ∞, q > 4, with (1− a)/a + 4/q < 0, such that

‖α0‖ 6 B, b 6 E[ζ2
i | xi, vi], E[|ζq

i | | xi, vi] 6 B, b 6 E[v2
i | xi], E[|vq

i | | xi] 6 B.

(5.32)

Let Pn be the collection of all regression models P that obey the conditions set forth above
for a given n. Then, as established in Appendix F, any P ∈ Pn obeys Conditions ASTE (P)
with s = A1/an

1
2a , SE (P), and SM (P) for all n > n0, with constants in those conditions

depending only on the constants (f, f̄ , a, A, b, B, q). Therefore, the conclusions of Theorem 1
hold for any sequence Pn ∈ Pn, and the conclusions of Corollary 1 on the uniform validity of
confidence intervals apply uniformly for any P ∈ Pn. In particular, as a special case, the same
conclusion applies uniformly in P ∈ P = ∩n>n0Pn. ¤

6. Monte-Carlo Examples

In this section, we examine the finite-sample properties of the post- double-selection method
through a series of simulation exercises and compare its performance to that the standard post-
single-selection method.

All of the simulation results are based on the structural model

yi = d′iα0 + x′iθg + σy(di, xi)ζi, ζi ∼ N(0, 1) (6.33)

where p = dim(xi) = 200, the covariates xi ∼ N(0, Σ) with Σkj = (0.5)|j−k|, α0 = .5, and the
sample size n is set to 100. In each design, we generate

di = x′iθm + σd(xi)vi, vi ∼ N(0, 1) (6.34)
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with E[ζivi] = 0. Inference results for all designs are based on conventional t-tests with standard
errors calculated using the heteroscedasticity consistent jackknife variance estimator discussed
in MacKinnon and White (1985). Another option would be to use the standard error estimator
recently proposed in Cattaneo, Jansson, and Newey (2010).

We report results from three different dgp’s. In the first two dgp’s, we set θg,j = cyβ0,j and
θm,j = cdβ0,j with β0,j = (1/j)2 for j = 1, ..., 200. The first dgp, which we label “Design 1,” uses
homoscedastic innovations with σy = σd = 1. The second dgp, “Design 2,” is heteroscedastic

with σd,i =
√

(1+x′iβ0)2

En(1+x′iβ0)2
and σy,i =

√
(1+α0di+x′iβ0)2

En(1+α0di+x′iβ0)2
. The constants cy and cd are chosen

to generate desired population values for the reduced form R2’s, i.e. the R2’s for equations
(2.6) and (2.7). For each equation, we choose cy and cd to generate R2 = 0, .2, .4, .6, and
.8. In the heteroscedastic design, we choose cy and cd based on R2 as if (6.33) and (6.34)
held with vi and ζi homoscedastic and label the results by R2 as in Design 1. In the third
design (“Design 3”), we use a combination of deterministic and random coefficients. For the
deterministic coefficients, we set θg,j = cy(1/j)2 for j ≤ 5 and θm,j = cd(1/j)2 for j ≤ 5. We
then generate the remaining coefficients as iid draws from (θg,j , θm,j)′ ∼ N(02×1, (1/p)I2). For
each equation, we choose cy and cd to generate R2 = 0, .2, .4, .6, and .8 in the case that all
of the random coefficients were exactly equal to 0 and label the results by R2 as in Design 1.
We draw new x’s, ζ’s, and v’s at every simulation replication, and we also generate new θ’s at
every simulation replication in Design 3.

We consider Designs 1 and 2 to be baseline designs. These designs do not have exact
sparse representations but have coefficients that decay quickly so that approximately sparse
representations are available. Design 3 is meant to introduce a modest deviation from the
approximately sparse model towards a model with many small, uncorrelated coefficients. Using
this we shall document that our proposed procedure still performs reasonably well, although
it could be improved by incorporation of a ridge fit as one of regressors over which selection
occurs. In a working paper version of this paper Belloni, Chernozhukov, and Hansen (2011b),
we present results for 26 additional designs. The results presented in this section are sufficient
to illustrate the general patterns from the larger set of results.10

We report results for five different procedures. Two of the procedures are infeasible bench-
marks: Oracle and Double-Selection Oracle estimators, which use of knowledge of the true

10 In particular, the post-double-Lasso performed very well across all simulations designs where approxi-

mate sparsity provides a reasonable description of the dgp. Unsurprisingly, the performance deteriorates as

one deviates from the smooth/approximately sparse case. However, in no design was the post-double-Lasso

outperformed by other feasible procedures. In extensive initial simulations, we also found that Square-Root

Lasso and Iterated Lasso performed very similarly and thus only report Lasso results.
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coefficient structures θg and θm and are thus unavailable in practice. The Oracle estimator is
the ordinary least squares of yi − x′iθg on di, and the Double-Selection Oracle is the ordinary
least squares of y − x′iθg on di − x′iθm. The other procedures we consider are feasible. In all
of them, we rely on Lasso and set λ according to the algorithm outlined in Appendix A with
1 − γ = .95. One procedure is the standard post-single selection estimator – the Post-Lasso
– which applies Lasso to equation (6.33) without penalizing α, the coefficient on d, to select
additional control variables from among x. Estimates of α0 are then obtained by OLS regres-
sion of y on d and the set of additional controls selected in the Lasso step and inference using
the Post-Lasso estimator proceeds using conventional heteroscedasticity robust OLS inference
from this regression. Post-Double-Selection or Post-Double-Lasso is the feasible procedure
advocated in this paper. We run Lasso of y on x to select a set of predictors for y and run
Lasso of d on x to select a set of predictors for d. α0 is then estimated by running OLS
regression of y on d and the union of the sets of regressors selected in the two Lasso runs,
and inference is simply the usual heteroscedasticity robust OLS inference from this regression.
Post-Double-Selection + Ridge is an ad hoc variant of Post-Double-Selection in which we add
the ridge fit from equation (6.34) as an additional potential regressor that may be selected by
Lasso. The ridge fit is obtained with a single ridge penalty parameter that is chosen using
10-fold cross-validation. This procedure is motivated by a desire to add further robustness in
the case that many small coefficients are suspected. Further exploration of procedures that
perform well, both theoretically and in simulations, in the presence of many small coefficients
is an interesting avenue for additional research.

We start by summarizing results in Table 1 for (R2
y, R

2
d) = (0, .2), (0, .8), (.8, .2), and (.8, .8)

where R2
y is the population R2 from regressing y on x (Structure R2) and R2

d is the population
R2 from regressing d on x (First Stage R2). We report root-mean-square-error (RMSE) for
estimating α0 and size of 5% level tests (Rej. Rate). As should be the case, the Oracle
and Double-Selection Oracle, which are reported to provide the performance of an infeasible
benchmark, perform well relative to the feasible procedures across the three designs. We
do see that the feasible Post-Double-Selection procedures perform similarly to the Double-
Selection Oracle without relying on ex ante knowledge of the coefficients that go in to the
control functions, θg and θm. On the other hand, the Post-Lasso procedure generally does
not perform as well as Post-Double-Selection and is very sensitive to the value of R2

d. While
Post-Lasso performs adequately when R2

d is small, its performance deteriorates quickly as
R2

d increases. This lack of robustness of traditional variable selection methods such as Lasso
which were designed with forecasting, not inference about treatment effects, in mind is the
chief motivation for our advocating the Post-Double-Selection procedure when trying to infer
structural or treatment parameters.
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We provide further details about the performance of the feasible estimators in Figures 1,
2, and 3 which plot size of 5% level tests, bias, and standard deviation for the Post-Lasso,
Double-Selection (DS), and Double-Selection Oracle (DS Oracle) estimators of the treatment
effect across the full set of R2 values considered. Figure 1, 2, and 3 respectively report the
results from Design 1, 2, and 3. The figures are plotted with the same scale to aid comparability
and for readability rejection frequencies for Post-Lasso were censored at .5. Perhaps the most
striking feature of the figures is the poor performance of the Post-Lasso estimator. The Post-
Lasso estimator performs poorly in terms of size of tests across many different R2 combinations
and can have an order of magnitude more bias than the corresponding Post-Double-Selection
estimator. The behavior is quite non-uniform across R2 combinations and does not reliably
control size distortions or bias except in the case where the controls are uncorrelated with
the treatment (where First-Stage R2 equals 0) and thus ignorable. In contrast, the Post-
Double-Selection estimator performs relatively well across the full range of R2 combinations
considered. The Post-Double-Selection estimator’s performance is also quite similar to that of
the infeasible Double-Selection Oracle across the majority of R2 values considered. Comparing
across Figures 1 and 2, we see that size distortions for both the Post-Double-Selection estimator
and the Double-Selection Oracle are somewhat larger in the presence of heteroscedasticity but
that the basic patterns are more-or-less the same across the two figures. Looking at Figure
3, we also see that the addition of small independent random coefficients results in somewhat
larger size distortions for the Post-Double-Selection estimator than in the other homoscedastic
design, Design 1, though the procedure still performs relatively well.

In the final figure, Figure 4, we compare the performance of the Post-Double-Selection
procedure to the ad hoc Post-Double-Selection procedure which selects among the original
set of variables augmented with the ridge fit obtained from equation (6.34). We see that the
addition of this variable does add robustness relative to Post-Double-Selection using only the
raw controls in the sense of producing tests that tend to have size closer to the nominal level.
This additional robustness is a good feature, though it comes at the cost of increased RMSE
which is especially prominent for small values of the first-stage R2.

The simulation results are favorable to the Post-Double-Selection estimator. In the simula-
tions, we see that the Post-Double-Selection procedure provides an estimator of a treatment
effect in the presence of a large number of potential confounding variables that performs simi-
larly to the infeasible estimator that knows the values of the coefficients on all of the confound-
ing variables. Overall, the simulation evidence supports our theoretical results and suggests
that the proposed Post-Double-Selection procedure can be a useful tool to researchers doing
structural estimation in the presence of many potential confounding variables. It also shows,
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as a contrast, that the standard Post-Single-Selection procedure provides poor inference and
therefore can not be a reliable tool to these researchers.

7. Empirical Example: Estimating the Effect of Abortion on Crime

In the preceding sections, we have provided results demonstrating how variable selection
methods, focusing on the case of Lasso-based methods, can be used to estimate treatment
effects in models in which we believe the variable of interest is exogenous conditional on ob-
servables. We further illustrate the use of these methods in the context Donohue III and
Levitt’s (2001) study of the impact of abortion on crime rates. In the following, we briefly
review Donohue III and Levitt (2001) and the additional discussions in Foote and Goetz (2008)
and Donohue III and Levitt (2008) and then present estimates obtained using the methods
developed in this paper.

Donohue III and Levitt (2001) discuss two key arguments for a causal channel relating
abortion to crime. The first is simply that more abortion among a cohort results in an otherwise
smaller cohort and so crime 15 to 25 years later, when this cohort is in the period when its
members are most at risk for committing crimes, will be otherwise lower given the smaller
cohort size. The second argument is that abortion gives women more control over the timing
of their fertility allowing them to more easily ensure that childbirth occurs at a time when a
more favorable environment is available during a child’s life. For example, access to abortion
may make it easier to ensure that a child is born at a time when the family environment is
stable, the mother is more well-educated, or household income is stable. This second channel
would mean that more access to abortion could lead to lower crime rates even if fertility rates
remained constant.

The basic problem in estimating the causal impact of abortion on crime is that state-level
abortion rates are not randomly assigned, and it seems likely that there will be factors that
are associated to both abortion rates and crime rates. It is clear that any association between
the current abortion rate and the current crime rate is spurious. However, even if one looks at
say the relationship between the abortion rate 18 years in the past and the crime rate among
current 18 year olds, the lack of random assignment makes establishing a causal link difficult
without adequate controls. An obvious confounding factor is the existence of persistent state-
to-state differences in policies, attitudes, and demographics that are likely related to the overall
state level abortion and crime rates. It is also important to control flexibly for aggregate trends.
For example, it could be the case that national crime rates were falling over this period while
national abortion rates were rising but that these trends were driven by completely different
factors. Without controlling for these trends, one would mistakenly associate the reduction
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in crime to the increase in abortion. In addition to these overall differences across states
and times, there are other time varying characteristics such as state-level income, policing, or
drug-use to name a few that could be associated with current crime and past abortion.

To address these confounds, Donohue III and Levitt (2001) estimate a model for state-level
crime rates running from 1985 to 1997 in which they condition on a number of these factors.
Their basic specification is

ycit = αcacit + w′itβc + δc,i + γc,t + εcit (7.35)

where i indexes states, t indexes times, c ∈ {violent, property, murder} indexes type of crime,
δc,i are state-specific effects that control for any time-invariant state-specific characteristics,
γc,t are time-specific effects that control flexibly for any aggregate trends, wit are a set of
control variables to control for time-varying confounding state-level factors, acit is a measure
of the abortion rate relevant for type of crime c,11 and ycit is the crime-rate for crime type c.
Throughout the remainder of this section, we drop the c subscript for convenience but note
that separate models are estimated for each crime type and thus all coefficients are allowed to
freely vary across crime type. Donohue III and Levitt (2001) use the log of lagged prisoners
per capita, the log of lagged police per capita, the unemployment rate, per-capita income, the
poverty rate, AFDC generosity at time t−15, a dummy for a state having a concealed weapons
law, and beer consumption per capita for wit, the set of time-varying state-specific controls.
Tables IV and V in Donohue III and Levitt (2001) present baseline estimation results based on
(7.35) as well as results from different models which vary the sample and set of controls to show
that the baseline estimates are robust to small deviations from (7.35). We refer the reader to
the original paper for additional details, data definitions, and institutional background.

For our analysis, we follow Donohue III and Levitt (2001) and rely on the argument that the
abortion rates defined above may be taken as exogenous relative to crime rates conditional upon
a set of factors. Unlike Donohue III and Levitt (2001), we do not assume that the identity
of these factors is known and allow for smooth, flexible trends to account for unobservable
factors that may influence both abortion and crime but smoothly trend over time. Given the
seemingly obvious importance of controlling for state and time effects, we account for these in
all models we estimate by including a full set of state and time dummies. Thus, we estimate

11This variable is constructed as a weighted average of abortion rates where weights are determined by the

fraction of the type of crime committed by various age groups. For example, if 60% of violent crime were

committed by 18 year olds and 40% were committed by 19 year olds in state i, the abortion rate for violent

crime at time t in state i would be constructed as .6 times the abortion rate in state i at time t − 18 plus .4

times the abortion rate in state i at time t− 19. See Donohue III and Levitt (2001) for further detail and exact

construction methods.
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models of the form

yit = αait + w′itβy + δy,i + γy,t + g(zit, t) + ζit (7.36)

ait = w′itβa + δa,i + γa,t + m(zit, t) + vit (7.37)

where g(z, t) and m(z, t) are smooth functions of observed variables zit which includes wit, time-
invariant characteristics of {yit, ait, wit}T

t=1 such as initial conditions or state-level averages, and
time. We use the same state-level data as Donohue III and Levitt (2001) but delete Alaska,
Hawaii, and Washington, D.C. which gives a sample with 48 cross-sectional observations and
13 time series observations for a total of 624 observations. With these deletions, our baseline
estimates using the same controls as in (7.35) are quite similar to those reported in Donohue III
and Levitt (2001). Baseline estimates from Table IV of Donohue III and Levitt (2001) and our
baseline estimates of (7.35) are given in the first and second row of Panel A of Table 2.12

Note that interpreting estimates of the effect of abortion from model (7.35) as causal relies
on the belief that there are no higher-order terms of the control variables, no interaction terms,
and no additional excluded variables that are associated both to crime rates and the associated
abortion rate. Allowing for such variables is important in that one might believe that there
may be some feature of a state that is associated both with its growth rate in abortion and its
growth rate in crime. For example, having an initially high-level of abortion could be associated
with having high-growth rates in abortion and low growth rates in crime. Failure to control
for this factor could then lead to misattributing the effect of this initial factor, perhaps driven
by policy or state-level demographics, to the effect of abortion. In practice, it is common to
account for this possibility by allowing state-specific trends (e.g. by specifying g(zit, t) = κg,it)
in addition to state-specific intercepts. Results from estimating (7.35) with state-specific trends
are given in the third row in Table 2 Panel A. In this example, the inclusion of state-specific
linear trends renders the results very imprecise. Of course, one might argue that including
state-specific linear trends is too aggressive in a sample with only 13 time series observations.
The linear trend specification is also very restrictive in imposing that any unobserved factors
that relate to both abortion and crime exhibit constant growth over the 13 year time period.
The assumption of constant growth becomes even more problematic when one expands the
time period as in Foote and Goetz (2008) and Donohue III and Levitt (2008) discussed below.

We follow the Chamberlain (1985) type approach and approximate g(zit, t) and m(zit, t) by
a large number of controls. We approximate these functions by forming 27 factors to include

12Our estimates differ for three reasons. First, we delete Alaska, Hawaii, and Washington, D.C. Second,

Donohue III and Levitt (2001) use population weighted estimates. Third, Donohue III and Levitt (2001) use

an FGLS estimator based on an AR(1) model in the errors where the errors across states share the same AR

coefficient.
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in zit,

zit = (ai0,
1
T

∑
t

ait, yi0, w′i0,
1
T

∑
t

w′it, w′it)
′,

forming nine smooth function of time,

ft = (t, t2, t3, sin(π
t

T
), sin(2π

t

T
), sin(3π

t

T
), cos(π

t

T
), cos(2π

t

T
), cos(3π

t

T
))′,

and then supposing that

g(zit, t) ≈
27∑

r=1

9∑

s=1

βg,r,szit,rft,s = h′itβg and

m(zit, t) ≈
27∑

r=1

9∑

s=1

βm,r,szit,rft,s = h′itβm

where hit is the vector containing all the interactions, and βg and βm are the vectors of
coefficients for each equation. That is, we add an additional 243 control variables to the
model and use the methods developed in this paper to search among these 243 additional
control variables to see if there are potentially important factors that are missed in equation
(7.35).13 With this set of controls, the models we estimate are all more general than (7.35)
and are neither more nor less general than a model with state-specific trends in that we allow
for nonlinearity in trends but do not allow for arbitrarily different state-specific coefficients.
Rather, we restrict these coefficients to differ depending on values of observable covariates.

Controlling for a large set of variables as described above is desirable from the standpoint
of making the belief underlying the causal interpretation of the abortion coefficient, that the
abortion rate defined above may be taken as being as good as randomly assigned once the set
of variables considered is controlled for, more plausible. As with the inclusion of state-specific
trends, the downside is that controlling for many variables lessens our ability to identify the
effect of interest and thus tends to make estimates far less precise. For example, the estimated
abortion effects conditioning on the full set of 68 variables in (7.35) plus the 243 approximating
functions (for a total of 311 control variables) are given in the fourth row of Table 2 Panel A.
As expected, all coefficients are estimated very imprecisely. Of course, very few researchers
would consider using 311 controls with only 624 observations due to exactly this issue.

We are faced with a trade-off between the precision of the estimate and the plausibility of the
conditional exogeneity assumption. By including additional controls in the specification, we
make the conditional exogeneity assumption more plausible. At the same time, we potentially
reduce the precision of our estimate. The double selection method proposed in this paper

13To allow time effects, state effects, and wit to enter each equation without shrinkage, we use our methods

based on ỹit, ãit and h̃it where ỹit is the residual from the regression of yit on wit and a full set of state and

time dummies and ãit and h̃it are defined similarly.
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offers one rigorous approach to achieving a balance. Thus, the approach complements the
usual careful specification analysis by providing a researcher a simple-to-implement, data-
driven way to search for a set of influential confounds from among a sensibly chosen broader
set of potential confounding variables.

In the abortion example, we use the post-double-Lasso estimator defined in Section 2.2 for
each of our dependent variables. For violent crime, a total of 15 variables are selected: eight in
the abortion equation14 and seven in the crime equation.15 For property crime, 16 variables are
selected: ten in the abortion equation16 and seven in the crime equation17 with one occurring
in both. For murder, ten variables are selected: eight in the abortion equation18 and two in the
crime equation.19 It is interesting in looking at the selected variables that in all cases initial
or average levels of abortion interacted with nonlinear trend terms and initial levels of crime
interacted with nonlinear trend terms are selected. This selection illustrates the potential
importance of allowing for nonlinear trends and also the potential that there may be omitted
factors that are related to both abortion and crime.

Estimates of the causal effect of abortion on crime obtained by searching for confounding
factors among our set of 243 potential controls are given in the fifth row of Panel A of Table
2. Each of these estimates is obtained from the least squares regression of the crime rate on
the abortion rate, a full set of state dummies, a full set of time dummies, the initial eight
controls that vary across states and time from (7.35) and the 15, 16, and ten controls selected
by the post-double-Lasso procedure for violent crime, property crime, and murder respectively.
The estimates for the effect of abortion on violent crime and the effect of abortion on murder
are quite imprecise, producing 95% confidence intervals that encompass large positive and
negative values. The estimated effect for property crime is roughly in line with the previous

14The selected variables are average abortion times t, average abortion times cos(π t
T

), initial crime times

t2, initial crime times cos(2π t
T

), average income times t3, average income times sin(π t
T

), average income times

cos(2π t
T

), and initial poverty times cos(2π t
T

).
15The selected variables are average abortion times t3, initial abortion times t3, initial abortion times sin(π t

T
),

initial poverty times sin(2π t
T

), initial poverty times cos(π t
T

), policeit times t3, and beerit times sin(3π t
T

).
16The selected variables are average abortion times cos(π t

T
), initial abortion times sin(3π t

T
), initial crime

times cos(π t
T

), average income times t, average income times cos(π t
T

), initial poverty times cos(2π t
T

), initial

beer times cos(2π t
T

), prisonit times cos(π t
T

), incomeit times cos(π t
T

), and AFDCit times cos(2π t
T

).
17The selected variables are average abortion times t3, initial crime times sin(2π t

T
), initial crime times

cos(π t
T

), average police times cos(2π t
T

), average AFDC times t, initial AFDC times t, and initial AFDC times

t2.
18The selected variables are average abortion times t2, average abortion times cos(π t

T
), initial crime times

t3, initial crime times cos(2π t
T

), average income times t3, average income times sin(π t
T

), average income times

cos(2π t
T

), and average income times cos(3π t
T

).
19The variables selected are average abortion times sin(π t

T
) and initial abortion times sin(π t

T
).
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estimates though it is no longer significant and has a 95% confidence interval that includes
negative as well as modest positive effects. For a quick benchmark relative to the simulation
examples, we note that the R2 obtained by regressing the crime rate on the selected variables
are .2522, .3533, and .0554 for violent crime, property crime, and the murder rate respectively
and that the R2’s from regressing the abortion rate on the selected variables are .9906, .9039,
and .9863 for violent crime, property crime, and the murder rate respectively. These values
correspond to regions of the R2 space considered in the simulation where the post-double-
selection procedure performed quite well, while the standard post-single-selection procedures
performed quite poorly.

While the inclusion of trigonometric terms in our approximations allows for capturing some
types of cyclicality, some researchers may feel more comfortable restricting attention to simpler
trend specifications. To allow for this, we also present results in which the trigonometric
functions are dropped from ft, so that

ft = (t, t2, t3).

That is, we approximate the functions as g(zit, t) ≈
∑27

r=1

∑3
s=1 βg,r,szit,rft,s = h′itβg and

m(zit, t) ≈
∑27

r=1

∑3
s=1 βm,r,szit,rft,s = h′itβm which allows only cubic polynomial trends inter-

acted with state-level characteristics. In this case, only 81 terms are considered in addition to
the 68 controls from the original specification. Results using all 149 controls are given in the
row “Polynomial Trends” in Table 2 Panel A, and results based on Lasso selection among the
81 added controls are given in the row “Post-Double-Selection, Polynomial Trends.” Looking
at these results we see that we would draw the same qualitative conclusion using this restricted
specification as we would when allowing for trigonometric terms as well. Specifically, the esti-
mated abortion effects become quite imprecise after allowing only for the polynomial terms in
time.20

A similar conclusion was reached by Foote and Goetz (2008) who, without doing formal
variable selection, found that inclusion of a linear trend interacted with the average crime rate
from a period before the abortion rate should have been able to have an effect on the crime
rate substantially attenuated the estimated effects from Donohue III and Levitt (2001) and
also rendered them imprecise. It is interesting that we reach a similar conclusion through the
use of formal variable selection procedures motivated by the desire to allow for allow flexible,

20In addition to the 68 original variables, the double-selection procedure selects ten total additional variables

for the violent crime regression, eight additional variables for the property crime regression, and five additional

variables for the murder regression. In each case, the mean of the abortion rate times t is selected and this

variable accounts for most of the explanatory power among the selected additional regressors.
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yet parsimonious trends in an effort to make the exogeneity assumption conditional on controls
more plausible.

In a response to Foote and Goetz (2008), Donohue III and Levitt (2008) note that one
problem with allowing flexible trends is that the short time series renders estimates of the
treatment effect imprecise once flexible trends are allowed. Specifically, estimated treatment
effects are imprecise in their preferred specification

yit = αait + δi + γd,t + κit + εit (7.38)

where δi is a state-specific effect, κi is a state-specific coefficient on a linear trend, and γd,t is
Census division × time effect. To address this issue, Donohue III and Levitt (2008) extend
the sample period to 1960-2003 to allow more precise estimates of the trends and thus more
reliable estimates of the treatment effect. They find that the results in this longer sample
with the full set of division times time interactions and state-specific trends are similar to the
initial results in the shorter panel. Results from this analysis in Donohue III and Levitt (2008)
are provided in the first row of Panel B of Table 2. In the second row of Table 2, Panel B,
we report results from our estimates of the abortion effect using data from 1960-2003 using
exactly the same methodology as Donohue III and Levitt (2008), and we report results from
simple OLS regression of (7.38) in the third row.21

While (7.38) is certainly more general than (7.35), state-specific linear trends are still quite
restrictive, especially over a time period of 40 years. Specifically, it is a strong assumption that
unobserved factors that are correlated to both state level abortion and crime rates exhibited
constant growth over such a long time period. To allow for smooth, but flexible trends, we
once again consider variable selection in a more general model

yit = αait + δy,i + γy,d,t + κy,it + g(zit, t) + ζit (7.39)

ait = δa,i + γa,d,t + κd,it + m(zit, t) + vit (7.40)

where g(z, t) and m(z, t) are smooth functions of observed variables zit which includes time-
invariant characteristics of {yit, ait, wit}T

t=1 such as initial conditions or state-level averages and

21Our results differ due to the exclusion of Alaska, Hawaii, and Washington, D.C. We also completed the

data on abortion before 1985 by filling in 0 for all abortion rates before 1985.
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time. For this longer time period, we approximate g and m by setting

zit = (ai1985,
1
44

2003∑

t=1960

ait, yi1960, yi1961, w′i1985,
1
13

1997∑

t=1985

w′it)
′,

ft = (t2, t3, t4, t5, sin(π
t

T
), sin(2π

t

T
), sin(3π

t

T
), sin(4π

t

T
),

cos(π
t

T
), cos(2π

t

T
), cos(3π

t

T
), cos(4π

t

T
))′,

and then supposing

g(zit, t) ≈
20∑

r=1

12∑

s=1

βg,r,szit,rft,s = h′itβg and

m(zit, t) ≈
20∑

r=1

12∑

s=1

βm,r,szit,rft,s = h′itβm,

where hit is the vector containing all the interactions, and βg and βm are the vectors of
coefficients for each equation. Thus, we add an additional 240 control variables to (7.38).22

Estimates of the abortion effect using the full set of 713 controls consisting of the 473 controls
in (7.38) augmented with the 240 additional controls for smooth nonlinear trends are given in
the fourth row of Table 2 Panel B. As expected, the estimated abortion effects are extremely
imprecise given this large set of controls.

To pare down the number of controls, we employ the Double-Selection procedure developed
in this paper to search for a smaller set of relevant controls among the 240 potential additions.
Based on this exercise, we select a total of 31 additional variables for the violence equation,
30 for the abortion equation, and 27 for the murder equation. R2’s from the regression of
crime rates on the controls are .2806, .3451, and .0422 for violent crime, property crime, and
the murder rate respectively; and the R2’s from regressing the abortion rate on the selected
variables are .9618, .9461, and .9775 for violent crime, property crime, and the murder rate
respectively. Estimates of the treatment effect controlling for the variables in Donohue III and
Levitt (2008) and those selected by Double-Selection are given in the “Post-Double-Selection”
row of Table 2, Panel B. As in the original data, we find that estimates of the abortion effect
are relatively imprecise once parsimonious nonlinear trends are allowed for.

As in the previous specification, we report results using only interactions with the polynomial
trend terms, i.e.

ft = ( t2, t3, t4, t5)′,

22To allow for all the effects in (7.38) to enter each equation without shrinkage, we use our methods based

on ỹit, ãit and h̃it where ỹit is the residual from the regression of yit on a full set of state dummies, a full set of

Census division cross time dummies, and a full set of state-specific trends and ãit and h̃it are defined similarly.
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in the final two rows of Panel B of Table 2. Using only the interactions with the polynomial
terms adds 80 potential regressors to the 473 included in the original Donohue III and Levitt
(2008) specification. Results using the full set of 553 regressors are reported in the row “Poly-
nomial Trends” in Table 2 Panel B and show that once again using this broad set of regressors
results in imprecise estimates of the regression coefficients. The lack of precision in the esti-
mated abortion effect is qualitatively unchanged after using the double-selection procedure to
select controls from among this restricted set, again illustrating that the baseline result is not
driven by the inclusion of trigonometric terms in the set of approximating functions.23

We believe that the example in this section illustrates how one may use modern variable
selection techniques to complement causal analysis in economics. In the abortion example,
we are able to search among a large set of controls and transformations of variables when
trying to estimate the effect of abortion on crime. Considering a large set of controls makes
the underlying assumption of exogeneity of the abortion rate conditional on observables more
plausible, while the methods we develop allow us to produce an end-model which is of manage-
able dimension. In this example, we see that inference about the treatment effects using the
variable selection method differs substantively from inference drawn using the original set of
controls. This statement is true whether one considers the data and model from Donohue III
and Levitt (2001) or Donohue III and Levitt (2008). This difference is driven by the variable
selection method’s selecting different variables than are usually considered. Thus, it appears
that the usual interpretation of there being a substantive causal effect of abortion on crime
hinges on strong prior beliefs about the types of trends that may appear in the structural equa-
tion. In particular, inclusion of a modest number of smooth nonlinear trends interacted with
time-invariant state-level characteristics substantively increases the variance of the estimated
treatment effects.

8. Conclusion

In this paper, we consider estimation of treatment effects or structural parameters in an
environment where the treatment is believed to be exogenous conditional on observables. We
do not impose the conventional assumption that the identities of the relevant conditioning vari-
ables and the functional form with which they enter the model are known. Rather, we assume
that the researcher believes there is a relatively small number of important factors whose iden-
tities are unknown within a much larger known set of potential variables and transformations.
This sparsity assumption allows the researcher to estimate the desired treatment effect and

23In addition to the 473 original variables, the double-selection procedure selects 12 total additional variables

for the violent crime regression, 11 additional variables for the property crime regression, and 11 additional

variables for the murder regression.
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infer a set of important variables upon which one needs to condition by using modern variable
selection techniques without ex ante knowledge of which are the important conditioning vari-
ables. Since naive application of variable selection methods in this context may result in very
poor properties for inferring the treatment effect of interest, we propose a “double-selection”
estimator of the treatment effect, provide a formal demonstration of its properties for estimat-
ing the treatment effect, and provide its approximate distribution under technical regularity
conditions and the assumed sparsity in the model.

In addition to the theoretical development, we illustrate the potential usefulness of our
proposal through a number of simulation studies and an empirical example. In Monte Carlo
simulations, our procedure outperforms simple variable selection strategies for estimating the
treatment effect across the designs considered and does relatively well compared to an infeasible
estimator that uses the identities of the relevant conditioning variables. We then apply our
estimator to attempt to estimate the causal impact of abortion on crime following Donohue III
and Levitt (2001). We find that our procedure selects a small number of conditioning variables.
After conditioning on these selected variables, one would draw qualitatively different inference
about the effect of abortion on crime than would be drawn if one assumed that the correct
set of conditioning variables was known and the same as those variables used in Donohue III
and Levitt (2001). Taken together, the empirical and simulation examples demonstrate that
the proposed method may provide a useful complement to other sorts of specification analysis
done in applied research.

Appendix A. Iterated Estimation of Penalty Loadings

In the case of Lasso under heteroscedasticity, we must specify for the penalty loadings (2.12).
Here we state algorithms for estimating these loadings.

Let I0 be an initial set of regressors with bounded number of elements, including for ex-
ample intercept. Let β̄(I0) be the least squares estimator of the coefficients on the covariates
associated with I0, and define l̂j0 :=

√
En[x2

ij(yi − x′iβ̄(I0))2].

An algorithm for estimating the penalty loadings using Post-Lasso is as follows:

Algorithm 1 (Estimation of Lasso loadings using Post-Lasso iterations). Set l̂j,0 := l̂jI0,
j = 1, . . . , p. Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant
K > 1 as an upper bound on the number of iterations. (1) Compute the Post-Lasso estimator β̃

based on the loadings l̂j,k. (2) For ŝ = ‖β̃‖0 = |T̂ | set lj,k+1 :=
√
En[x2

ij(yi − x′iβ̂)2]
√

n/(n− ŝ).

(3) If max16j6p |l̂j,k − l̂j,k+1| 6 ν or k > K, set the loadings to l̂j,k+1, j = 1, . . . , p and stop;
otherwise, set k ← k + 1 and go to (1).
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A similar algorithm can be defined for using with Lasso instead of Post-Lasso.

Algorithm 2 (Estimation of Square-root Lasso loadings using Post-Square-root Lasso itera-
tions). Set k = 0, and specify a small constant ν > 0 as a tolerance level and a constant K > 1
as an upper bound on the number of iterations. (1) Compute the Post-Square-root Lasso es-

timator β̃ based on the loadings l̂j,k. (2) Set l̂j,k+1 :=
√
En[x2

ij(yi − x′iβ̃)2]/
√
En[(yi − x′iβ̃)2].

(3) If max16j6p |l̂j,k − l̂j,k+1| 6 ν or k > K, set the loadings to l̂j,k+1, j = 1, . . . , p, and stop;
otherwise set k ← k + 1 and go to (1).

A similar algorithm can be defined for using with Square-Root-Lasso instead of Post-Square-
Root-Lasso.

Appendix B. Proof of Theorem 1

The proof proceeds under given sequence of probability measures {Pn}, as n →∞.

Let Y = [y1, ..., yn]′, X = [x1, ..., xn]′, D = [d1, ..., dn]′, V = [v1, ..., vn]′, ζ = [ζ1, ..., ζn]′,
m = [m1, ..., mn]′, Rm = [rm1, ..., rmn]′, g = [g1, ..., gn]′, Rg = [rg1, ..., rgn]′, and so on. For
A ⊂ {1, ..., p}, let X[A] = {Xj , j ∈ A}, where {Xj , j = 1, ..., p} are the columns of X. Let

PA = X[A](X[A]′X[A])−X[A]′

be the projection operator sending vectors in Rn onto span[X[A]], and let MA = In − PA be
the projection onto the subspace that is orthogonal to span[X[A]]. For a vector Z ∈ Rn, let

β̃Z(A) := arg min
b∈Rp

‖Z −X ′b‖2 : bj = 0, ∀j 6∈ A,

be the coefficient of linear projection of Z onto span[X[A]]. If A = ∅, interpret PA = 0n, and
β̃Z = 0p.

Finally, denote φmin(m) = φmin(m)[En[xix
′
i]] and φmax(m) = φmax(m)[En[xix

′
i]].

Step 1.(Main) Write α̌ =
[
D′M

Î
D/n

]−1 [D′M
Î
Y/n] so that

√
n(α̌− α0) =

[
D′M

Î
D/n

]−1 [D′M
Î
(g + ζ)/

√
n] =: ii−1 · i.

By Steps 2 and 3,

ii = V ′V/n + oP (1) and i = V ′ζ/
√

n + oP (1).

Next note that V ′V/n = E[V ′V/n] + oP (1) by Chebyshev, and because E[V ′V/n] is bounded
away from zero and from above uniformly in n by Condition SM, we have ii−1 = E[V ′V/n]−1+
oP (1).
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By Condition SM σ2
n = Ē[v2

i ]
−1Ē[ζ2

i v2
i ]Ē[v2

i ]
−1 is bounded away from zero and from above,

uniformly in n. Hence

Zn = σ−1
n

√
n(α̌− α0) = n−1/2

n∑

i=1

zi,n + oP (1),

where zi,n := σ−1
n viζi are i.n.i.d. with mean zero. For δ > 0 such that 4 + 2δ 6 q

Ē|zi,n|2+δ . Ē
[
|vi|2+δ|ζi|2+δ

]
.

√
Ē|vi|4+2δ

√
Ē|ζi|4+2δ . 1,

by Condition SM. This condition verifies the Lyapunov condition and thus application of the
Lyapunov CLT for i.n.i.d. triangular arrays implies that

Zn Ã N(0, 1).

Step 2. (Behavior of i.) Decompose, using D = m + V ,

i = V ′ζ/
√

n + m′M
Î
g/
√

n
=:ia

+ m′M
Î
ζ/
√

n
=:ib

+ V ′M
Î
g/
√

n
=:ic

− V ′P
Î
ζ/
√

n
=:id

.

First, by Step 5 and 6 below we have

|ia| = |m′M
Î
g/
√

n| 6 √
n‖M

Î
g/
√

n‖‖M
Î
m/
√

n‖ .P

√
[s log(p ∨ n)]2/n = o(1),

where the last bound follows from the assumed growth condition s2 log2(p ∨ n) = o(n).

Second, using that m = Xβm0 + Rm and m′M
Î
ζ = R′

mζ − (β̃m(Î)− βm0)′X ′ζ , conclude

|ib| 6 |R′
mζ/

√
n|+ |(β̃m(Î)− βm0)′X ′ζ/

√
n| .P

√
[s log(p ∨ n)]2/n = oP (1).

This follows since

|R′
mζ/

√
n| .P

√
R′

mRm/n .P

√
s/n,

holding by Chebyshev inequality and Conditions SM and ASTE(iii), and

|(β̃m(Î)− βm0)′X ′ζ/
√

n| 6 ‖β̃m(Î)− βm0‖1‖X ′ζ/
√

n‖∞ .P

√
[s2 log(p ∨ n)]/n

√
log(p ∨ n).

The latter bound follows by (a)

‖β̃m(Î)− βm0‖1 6
√

ŝ + s‖β̃m(Î)− βm0‖ .P

√
[s2 log(p ∨ n)]/n

holding by Step 5 and by ŝ .P s implied by Lemma 1, and (b) by

‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n)

holding by Step 4 under Condition SM.

Third, using similar reasoning, decomposition g = Xβg0 + Rg, and Steps 4 and 6, conclude

|ic| 6 |R′
gV/

√
n|+ |(β̃g(Î)− βg0)′X ′V/

√
n| .P

√
[s log(p ∨ n)]2/n = oP (1).
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Fourth, we have

|id| 6 |β̃V (Î)′X ′ζ/
√

n| 6 ‖β̃V (Î)‖1‖X ′ζ/
√

n‖∞ .P

√
[s log(p ∨ n)]2/n = oP (1),

since by Step 4 below ‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n), and

‖β̃V (Î)‖1 6
√

ŝ‖β̃V (Î)‖ 6
√

ŝ‖(X[Î]′X[Î]/n)−1X[Î]′V/n‖
6

√
ŝφ−1

min(ŝ)
√

ŝ‖X ′V/
√

n‖∞/
√

n .P s
√

[log(p ∨ n)]/n.

The latter bound follows from ŝ .P s, holding by Lemma 1, so that φ−1
min(ŝ) .P 1 by Condition

SE, and from ‖X ′V/
√

n‖∞ .P

√
log(p ∨ n) holding by Step 4.

Step 3. (Behavior of ii.) Decompose

ii = (m + V )′M
Î
(m + V )/n = V ′V/n + m′M

Î
m/n

=:iia

+ 2m′M
Î
V/n

=:iib

− V ′P
Î
V/n

=:iic

.

Then |iia| .P [s log(p∨n)]/n = oP (1) by Step 5, |iib| .P [s log(p∨n)]/n = oP (1) by reasoning
similar to deriving the bound for |ib|, and |iic| .P [s log(p∨n)]/n = oP (1) by reasoning similar
to deriving the bound for |id|.

Step 4. (Auxiliary: Bounds on ‖X ′ζ/
√

n‖∞ and ‖X ′V/
√

n‖∞) Here we show that

(a) ‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n) and (b)‖X ′V/

√
n‖∞ .P

√
log(p ∨ n).

To show (a), we use Lemma 4 stated in Appendix F on the tail bound for self-normalized
deviations to deduce the bound. Indeed, we have that wp → 1 for some `n →∞ but so slowly
that 1/γ = `n . log n, with probability 1− o(1)

max
16j6p

∣∣∣∣∣∣
n−1/2

∑n
i=1 xijζi√

En[x2
ijζ

2
i ]

∣∣∣∣∣∣
6 Φ−1

(
1− 1

2`np

)
.

√
2 log(2`np) .

√
log(p ∨ n). (B.41)

By Lemma 4 the first inequality in (B.41) holds, provided that for all n sufficiently large the
following holds,

Φ−1

(
1− 1

2`np

)
6 n1/6

`n
min

16j6p
M2

j − 1, Mj :=
Ē[x2

ijζ
2
i ]1/2

Ē[|x3
ij ||ζ3

i |]1/3
.

Since we can choose `n to grow as slowly as needed, a sufficient condition for this are the
conditions:

log p = o(n1/3) and min
16j6p

Mj & 1,

which both hold by Condition SM. Finally,

max
16j6p

En[x2
ijζ

2
i ] .P 1, (B.42)

by Condition SM. Therefore (a) follows from the bounds (B.41) and (B.42). Claim (b) follows
similarly.
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Step 5. (Auxiliary: Bound on ‖M
Î
m‖ and related quantities.) This step shows that

(a) ‖M
Î
m/
√

n‖ .P

√
[s log(p ∨ n)]/n and (b) ‖β̃m(Î)− βm0‖ .P

√
[s log(p ∨ n)]/n.

Observe that
√

[s log(p ∨ n)]/n &P
(1)

‖M
Î1

m/
√

n‖ &P
(2)

‖M
Î
m/
√

n‖

where inequality (1) holds since by Lemma 1 ‖M
Î1

m/
√

n‖ 6 ‖(Xβ̃D(Î1) − m)/
√

n‖ .P√
[s log(p ∨ n)]/n, and (2) holds by Î1 ⊆ Î by construction. This shows claim (a). To show

claim (b) note that

‖M
Î
m/
√

n‖ &P
(3)

|‖X(β̃m(Î)− βm0)/
√

n‖ − ‖Rm/
√

n‖|

where (3) holds by the triangle inequality. Since ‖Rm/
√

n‖ .P

√
s/n by Chebyshev and

Condition ASTE(iii), conclude that
√

[s log(p ∨ n)]/n &P ‖X(β̃m(Î)− βm0)/
√

n‖
>

√
φmin(ŝ + s)‖β̃m(Î)− βm0‖ &P ‖β̃m(Î)− βm0‖,

since ŝ .P s by Lemma 1 so that 1/φmin(ŝ + s) .P 1 by condition SE. This shows claim (b).

Step 6. (Auxiliary: Bound on ‖M
Î
g‖ and related quantities.) This step shows that

(a) ‖M
Î
g/
√

n‖ .P

√
[s log(p ∨ n)]/n and (b) ‖β̃g(Î)− βg0‖ .P

√
[s log(p ∨ n)]/n.

Observe that
√

[s log(p ∨ n)]/n &P
(1)

‖M
Î2

(α0m + g)/
√

n‖

&P
(2)

‖M
Î
(α0m + g)/

√
n‖

&P
(3)

|‖M
Î
g/
√

n‖ − ‖M
Î
α0m/

√
n‖|

where inequality (1) holds since by Lemma 1 ‖M
Î2

(α0m + g)/
√

n‖ 6 ‖(Xβ̃Y1(Î2) − α0m −
g)/
√

n‖ .P

√
[s log(p ∨ n)]/n, (2) holds by Î2 ⊆ Î, and (3) by the triangle inequality. Since

‖α0‖ is bounded uniformly in n by assumption, by Step 5, ‖M
Î
α0m/

√
n‖ .P

√
[s log(p ∨ n)]/n.

Hence claim (a) follows by the triangle inequality:
√

[s log(p ∨ n)]/n &P ‖MÎ
g/
√

n‖

To show claim (b) we note that

‖M
Î
g/
√

n‖ > |‖X(β̃g(Î)− βg0)/
√

n‖ − ‖Rg/
√

n‖|
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where ‖Rg/
√

n‖ .P

√
s/n by Condition ASTE(iii). Then conclude similarly to Step 5 that

√
[s log(p ∨ n)]/n &P ‖X(β̃g(Î)− βg0)/

√
n‖

>
√

φmin(ŝ + s)‖β̃g(Î)− βg0‖ &P ‖β̃g(Î)− βg0‖.

Step 7. (Variance Estimation.) Since ŝ .P s = o(n), (n − ŝ − 1)/n = oP (1), and since
Ē[v2

i ζ
2
i ] and Ē[v2

i ] are bounded away from zero and from above uniformly in n by Condition
SM, it suffices to show that

En[v̂2
i ζ̂

2
i ]− Ē[v2

i ζ
2
i ] →P 0, En[v̂2

i ]− Ē[v2
i ] →P 0,

The second relation was shown in Step 3, so it remains to show the first relation.

Let ṽi = vi + rmi and ζ̃i = ζi + rgi. Recall that by Condition ASTE(v) we have Ē[ṽ2
i ζ̃

2
i ] −

Ē[v2
i ζ

2
i ] → 0, and En[ṽ2

i ζ̃
2
i ] − Ē[ṽ2

i ζ̃
2
i ] →P 0 by Vonbahr-Esseen’s inequality in von Bahr and

Esseen (1965) since Ē[|ṽiζ̃i|2+δ] 6 (Ē[|ṽi|4+2δ]Ē[|ζ̃i|4+2δ])1/2 is uniformly bounded for 4+2δ 6 q.
Thus it suffices to show that En[v̂2

i ζ̂
2
i ]− En[ṽ2

i ζ̃
2
i ] →P 0.

By the triangular inequality

|En[v̂2
i ζ̂

2
i − ṽ2

i ζ̃
2
i ]| 6 |En[(v̂2

i − ṽ2
i )ζ̃

2
i ]|

=:iv
+ |En[v̂2

i (ζ̂
2
i − ζ̃2

i )]|
=:iii

.

Then, expanding ζ̂2
i − ζ̃2

i we have

iii 6 2En[{di(α0 − α̌)}2v̂2
i ] + 2En[{x′i(β̌ − βg0)}2v̂2

i ]
+|2En[ζ̃idi(α0 − α̌)v̂2

i ]|+ |2En[ζ̃ix
′
i(β̌ − βg0)v̂2

i ]|
=: iiia + iiib + iiic + iiid = oP (1)

where the last bound follows by the relations derived below.

First, we note

iiia 6 2max
i6n

d2
i |α0 − α̌|2En[v̂2

i ] .P n(2/q)−1 = o(1) (B.43)

iiic 6 2max
i6n

{|ζ̃i||di|}En[v̂2
i ]|α0 − α̌| .P n(2/q)−(1/2) = o(1) (B.44)

which holds by the following argument. Condition SM assumes that E[|di|q] which in turn
implies that E[maxi6n d2

i ] . n2/q. Similarly Condition ASTE implies that E[maxi6n ζ̃2
i ] . n2/q

and E[maxi6n ṽ2
i ] . n2/q. Thus by Markov inequality

max
i6n

|di|+ |ζ̃i|+ |ṽi| .P n1/q. (B.45)

Moreover, En[v̂2
i ] .P 1 and |α̌− α0| .P n−1/2 by the previous steps. These bounds and q > 4

imposed in Condition SM imply (B.43)-(B.44).
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Next we bound,

iiid 6 2max
i6n

|ζ̃i|max
i6n

|x′i(β̌ − βg0)|En[v̂2
i ]

.P n1/q max
i6n

‖xi‖∞
√

s√
n

s log(p ∨ n)√
n

= oP (1), (B.46)

using (B.45) and that for T̂g = support(βg0) ∪ Î, we have

max
i6n

{x′i(β̌ − βg0)}2 6 max
i6n

‖x
iT̂g
‖2‖β̌ − βg0‖2,

where

max
i6n

‖x
iT̂g
‖2 6 |T̂g|max

i6n
‖xi‖2

∞ .P smax
i6n

‖xi‖2
∞

by the sparsity assumption in ASTE and the sparsity bound in Lemma 1, and since β̌[Î] =
(X[Î]′X[Î])−X[Î]′(ζ + g − (α̌− α0)D) we have

‖β̌ − βg0‖ 6 ‖β̃g(Î)− βg0‖+ ‖β̃ζ(Î)‖+ |α̌− α0| · ‖β̃D(Î)‖ .P

√
s log(p ∨ n)/n

by Step 6(b), by

‖β̃ζ(Î)‖ 6
√

ŝφ−1
min(ŝ)‖X ′ζ/n‖∞ .P

√
s log(p ∨ n)/n

holding by Condition SE and by ŝ .P s from Lemma 1, and by Step 4, |α̌− α0| .P 1/
√

n by
Step 1, and

‖β̃D(Î)‖ 6 φ−1
min(ŝ)

√
ŝ max

16j6p
|En[xijdi]| 6 φ−1

min(ŝ)
√

ŝ max
16j6p

√
En[x2

ijd
2
i ] .P

√
s

by Condition SE, ŝ .P s by the sparsity bound in Lemma 1, and Condition SM.

The final conclusion in (B.46) then follows by condition ASTE (iv) and (v).

Next, using the relations above and condition ASTE (iv) and (v), we also conclude that

iiib 6 2max
i6n

{x′i(β̌ − βg0)}2En[v̂2
i ]

.P max
i6n

‖xi‖2
∞

s√
n

s log(p ∨ n)√
n

= oP (1). (B.47)

Finally, the argument for iv = oP (1) follows similarly to the argument for iii = oP (1) and
the result follows. ¤
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Appendix C. Proof of Corollary 1

Let Pn be a collection of probability measures P for which conditions ASTE (P), SM (P), SE
(P), and R (P) hold for the given n. Consider any sequence {Pn}, with index n ∈ {n0, n0+1, ...},
with Pn ∈ Pn for each n ∈ {n0, n0 + 1, ...}. By Theorem 1 we have that, for c = Φ−1(1− γ/2),
limn→∞ Pn (α0 ∈ [α̌± cσ̂n/

√
n]) = Φ(c) − Φ(−c) = 1 − γ. This means that for every further

subsequence {Pnk
} with Pnk

∈ Pnk
for each k ∈ {1, 2, ...}

lim
k→∞

Pnk
(α0 ∈ [α̌± cσ̂nk

/
√

nk]) = 1− γ. (C.48)

Suppose that the claim of corollary does not hold, i.e.

lim sup
n→∞

sup
P∈Pn

∣∣∣P
(
α0 ∈ [α̌± cσ̂n/

√
n]

)− (1− γ)
∣∣∣ > 0.

Hence there is a subsequence {Pnk
} with Pnk

∈ Pnk
for each k ∈ {1, 2, ...} such that:

lim
k→∞

Pnk
(α0 ∈ [α̌± cσ̂nk

/
√

nk]) 6= 1− γ.

This gives a contradiction to (C.48). The claim (i) follows. Claim (ii) follows from claim (i),
since P ⊆ Pn for all n > n0. ¤

Appendix D. Proof of Theorem 2

We use the same notation as in Theorem 1. Using that notation the approximations bounds
stated in Condition HLMS are equivalent to ‖M

Î
g‖ 6 δnn1/4 and ‖M

Î
m‖ 6 δnn1/4.

Step 1. It follows the same reasoning as Step 1 in the proof of Theorem 1.

Step 2. (Behavior of i.) Decompose, using D = m + V

i = V ′ζ/
√

n + m′M
Î
g/
√

n
=:ia

+ m′M
Î
ζ/
√

n
=:ib

+ V ′M
Î
g/
√

n
=:ic

− V ′P
Î
ζ/
√

n
=:id

.

First, by Condition HLMS we have ‖M
Î
g‖ = oP (n1/4) and ‖M

Î
m‖ = oP (n1/4). Therefore

|ia| = |m′M
Î
g/
√

n| 6 √
n‖M

Î
g/
√

n‖‖M
Î
m/
√

n‖ .P o(1).

Second, using that m = Xβm0 + Rm and m′M
Î
ζ = R′

mζ − (β̃m(Î)− βm0)′X ′ζ, we have

|ib| 6 |R′
mζ/

√
n|+ |(β̃m(Î)− βm0)′X ′ζ/

√
n|

6 |R′
mζ/

√
n|+ ‖β̃m(Î)− βm0‖1‖X ′ζ/

√
n‖∞

.P

√
s/n +

√
s {o(n−1/4) +

√
s/n}

√
log(p ∨ n) = o(1).

This follows because

|R′
mζ/

√
n| .P

√
R′

mRm/n .P

√
s/n,



46 BELLONI CHERNOZHUKOV HANSEN

by Chebyshev inequality and Conditions SM and ASTE(iii),

‖β̃m(Î)− βm0‖1 6
√

ŝ + s‖β̃m(Î)− βm0‖ .P

√
s {o(n−1/4) +

√
s/n},

by Step 4 and ŝ = |Î| .P s by Condition HLMS, and

‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n)

holding by Step 4 in the proof of Theorem 1.

Third, using similar reasoning and the decomposition g = Xβg0 + Rg conclude

|ic| 6 |R′
gV/

√
n|+ |(β̃g(Î)− βg0)′X ′V/

√
n|

.P

√
s/n +

√
s {o(n−1/4) +

√
s/n}

√
log(p ∨ n) = oP (1).

Fourth, we have

|id| 6 |β̃V (Î)′X ′ζ/
√

n| 6 ‖β̃V (Î)‖1‖X ′ζ/
√

n‖∞ .P

√
[s log(p ∨ n)]2/n = oP (1),

since ‖X ′ζ/
√

n‖∞ .P

√
log(p ∨ n) by Step 4 of the proof of Theorem 1, and

‖β̃V (Î)‖1 6
√

ŝ‖β̃V (Î)‖ 6
√

ŝ‖(X[Î]′X[Î]/n)−1X[Î]′V/n‖
6
√

ŝφ−1
min(ŝ)

√
ŝ‖X ′V/

√
n‖∞/

√
n .P s

√
[log(p ∨ n)]/n.

The latter bound follows from ŝ .P s by condition HLMS so that φ−1
min(ŝ) .P 1 by condition SE,

and again invoking Step 4 of the proof of Theorem 1 to establish ‖X ′V/
√

n‖∞ .P

√
log(p ∨ n).

Step 3. (Behavior of ii.) Decompose

ii = (m + V )′M
Î
(m + V )/n = V ′V/n + m′M

Î
m/n

=:iia

+ 2m′M
Î
V/n

=:iib

− V ′P
Î
V/n

=:iic

.

Then |iia| .P o(n1/2)/n = oP (n−1/2) by condition HLMS, |iib| = o(n−1/2) by reasoning similar
to deriving the bound for |ib|, and |iic| .P [s log(p ∨ n)]/n = oP (1) by reasoning similar to
deriving the bound for |id|.

Step 4. (Auxiliary: Bounds on ‖β̃m(Î)− βm0‖ and ‖β̃g(Î)− βg0‖.) To establish a bound on
‖β̃g(Î)− βg0‖ note that

‖M
Î
g/
√

n‖ > | ‖X(β̃g(Î)− βg0)/
√

n‖ − ‖Rg/
√

n‖ |
where ‖Rg/

√
n‖ .P

√
s/n holds by Chebyshev inequality and Condition ASTE(iii). Moreover,

by Condition HLMS we have ‖M
Î
g/
√

n‖ = oP (n−1/4) and ŝ = |Î| .P s. Thus

o(n−1/4) +
√

s/n &P ‖X(β̃g(Î)− βg0)/
√

n‖
>

√
φmin(s + ŝ)‖β̃g(Î)− βg0‖

&P ‖β̃g(Î)− βg0‖
since

√
φmin(s + ŝ) &P 1 by Condition SE.
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The same logic yields ‖β̃m(Î)− βm0‖ .P

√
s/n + o(n−1/4).

Step 5. (Variance Estimation.) It follows similarly to Step 7 in the proof of Theorem 1 but
using Condition HLMS instead of Lemma 1.

¤

Appendix E. Proof of Corollary 2

The proof is similar to the proof of Corollary 1.

Appendix F. Verification of Conditions for the Examples

F.1. Verification for Example 1. Let P be the collection of all regression models P that
obey the conditions set forth above for all n for the given constants (p, b, B, qx, q). Below we
provide explicit bounds for κ′, κ′′, c, C, δn and ∆n that appear in Conditions ASTE, SE and
SM that depend only on (p, b, B, qx, q) and n which in turn establish these conditions for any
P ∈ P.

Condition ASTE(i) is assumed. Condition ASTE(ii) holds with ‖α0‖ 6 CASTE
1 = B. Con-

dition ASTE(iii) holds with s = p and rgi = rmi = 0.

Condition ASTE(iv) holds with δASTE
1n := p2 log2(p∨ n)/n → 0 since s = p is fixed. Finally,

we verify ASTE(v). Because ṽi = vi, ζ̃i = ζi and the moment condition E[|vq
i |] + E[|ζq

i |] 6
CASTE

2 = 2B with q > 4, the first two requirements follow. To show the last requirement, note
that because E[‖xi‖qx ] 6 B we have

P
(

max
16i6n

‖xi‖∞ > t1n

)
6 P




[
n∑

i=1

‖xi‖qx

]1/qx

> t1n


 6 nE[‖xi‖qx ]/tqx

1n 6 nB/tqx
1n =: ∆ASTE

1n .

(F.49)
Let t1n = (n log n)1/qxB1/qx so that ∆ASTE

1n = 1/ log n. Thus we have with probability 1 −
∆ASTE

1n

max
16i6n

‖xi‖2
∞sn−1/2+2/q 6 (n log n)2/qxB2/qxpn−1/2+2/q =: δASTE

2n .

It follows that δASTE
2n → 0 by the assumption that 4/qx + 4/q < 1.
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To verify Condition SE note that

P(‖En[xix
′
i]− E[xix

′
i]‖ > t2n) 6

p∑

k=1

p∑

j=1

E[x2
ijx

2
ik]

nt22n

6
p∑

k=1

p∑

j=1

√
E[x4

ij ]E[x4
ik]

nt22n

6
p∑

k=1

p∑

j=1

E[‖xi‖4]
nt22n

6 p2B4/qx

nt22n

=: ∆SE
1n .

Setting t2n := b/2 we have ∆SE
1n = (2/b)2B4/qxp2/n → 0 since p is fixed. Then, with probability

1−∆SE
1n we have

λmin(En[xix
′
i]) > λmin(E[xix

′
i])− ‖En[xix

′
i]− E[xix

′
i]‖ > b/2 =: κ′,

λmax(En[xix
′
i]) 6 λmax(E[xix

′
i]) + ‖En[xix

′
i]− E[xix

′
i]‖ 6 E[‖xi‖2] + b/2 6 2B2/qx =: κ′′.

In the verification of Condition SM note that the second and third requirements in Condition
SM(i) hold with cSM

1 = b and CSM
1 = B2/q. Condition SM(iii) holds with δSM

1n := log3 p/n → 0
since p is fixed.

The first requirement in Condition SM(i) and Condition SM(ii) hold by the stated moment
assumptions, for εi = vi and εi = ζi, ỹi = di and ỹi = yi,

E[|εq
i |] 6 B =: A1

E[|dq
i |] 6 2q−1E[|x′iβm0|q] + 2q−1E[|vq

i |] 6 2q−1E[‖xi‖q]‖βm0‖q + 2q−1E[|vq
i |]

6 2q−1(Bq/qxBq + B) =: A2

E[d4
i ] 6 23(B4/qxB4 + B) =: A′2

E[y4
i ] 6 33‖α0‖4E[d4

i ] + 33‖βg0‖4E[‖xi‖4] + 33E[ζ4
i ]

6 33B423A′2 + 33B4B4/qx + 33B4/q =: A3

max
16j6p

E[x2
ij ỹ

2
i ] 6 max

16j6p
(E[x4

ij ])
1/2(E[ỹ4

i ])
1/2 6 B2/qx(E[ỹ4

i ])
1/2 6 B2/qx(A′2 ∨A3)1/2 =: A4

max
16j6p

E[|xijεi|3] = max
16j6p

E[|x3
ij |E[|ε3i | | xi]] 6 B3/q max

16j6p
E[|x3

ij |] 6 B3/q+3/qx =: A5

max
16j6p

1/E[x2
ij ] 6 1/λmin(E[xix

′
i]) 6 1/b =: A6

since 4 < q 6 qx. Thus these conditions hold with CSM
2 = A2∨(A1+(A′2∨A3)1/2+A4+A5+A6).

Next we show Condition SM(iv). By (F.49) we have max16i6n ‖xi‖2∞ 6 (n log n)2/qxB2/qx

with probability 1−∆ASTE
1n , thus with the same probability

max
i6n

‖xi‖2
∞

s log(n ∨ p)
n

6 (B log n)2/qx
n2/qxp log(p ∨ n)

n
=: δSM

1n → 0

since qx > 4 and s = p is fixed.
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Next for εi = vi and εi = ζi we have

P
(

max
16j6p

|(En − E)[x2
ijε

2
i ]| > δSM

2n

)
6

p∑

j=1

E[x4
ijε

4
i ]

n(δSM
2n )2

6 pB4/q+4/qx

n(δSM
2n )2

=: ∆SM
1n

by the union bound, Chebyshev inequality and by E[x4
ijε

4
i ] = E[x4

ijE[ε4i | xi]] 6 B4/q+4/qx .
Letting δSM

2n = B2/q+2/qxn−1/4 → 0 we have ∆SM
1n = p/n1/2 → 0 since p, B, q and qx are fixed.

Next for ỹi = di and ỹi = yi we have

P
(

max
16j6p

|(En − E)[x2
ij ỹ

2
i ]| > δSM

3n

)
6

p∑

j=1

E[x4
ij ỹ

4
i ]

n(δSM
3n )2

6 pB4/qxA
4/q
8

n(δSM
3n )2

=: ∆SM
2n

by the union bound, Chebyshev inequality and by

E[x4
ij ỹ

4
i ] 6 E[xq̃

ij ]
4/q̃E[ỹq

i ]
4/q 6 E[xqx

ij ]4/qxE[ỹq
i ]

4/q 6 B4/qxA
4/q
8

holding by Hölder inequality where 4 < q̃ 6 qx such that 4/q + 4/q̃ = 1, and

E[ỹq
i ] 6 (1 + 3q−1‖α0‖q)E[dq

i ] + 3q−1‖βg0‖qE[‖xi‖q] + 3q−1E[ζq
i ]

6 3q(A2 + BqA2 + BqBq/qx + B) =: A8.

Letting δSM
3n = B4/qxA

4/q
8 n−1/4 → 0 we have ∆SM

2n = p/n1/2 → 0 since p, B, q and qx are fixed.

Finally, we set c = cSM
1 , C = max{CASTE

1 , CASTE
2 , CSM

1 , CSM
2 }, δn = max{δASTE

1n , δASTE
2n ,

δSM
1n + δSM

2n + δSM
3n } → 0, and ∆n = max{∆ASTE

1n + ∆SM
1n + ∆SM

2n , ∆SE
1n } → 0. ¤

We will make use of the following technical lemma in the verification of examples 2, 3, and
4.

Lemma 2 (Uniform Approximation). Let hi = x′iθh + ρi be a function whose coefficients
θh ∈ Sa

A(p), and κ 6 λmin(E[xix
′
i]) 6 λmax(E[xix

′
i]) 6 κ̄. For s = A1/an1/2a, a > 1, define βh0

as in (5.26), rhi = hi − x′iβh0, for i = 1, . . . , n. Then we have

|rhi| 6 ‖xi‖∞(κ̄/κ)3/2

{
2a− 1
a− 1

√
s2/n + 5

√
sE[ρ2

i ]/κ

}
+ |ρi|.

Proof. Let Th denote the support of βh0 and S denote the support of the s largest components
of θh. Note that |Th| = |S| = s. First we establish some auxiliary bounds on the ‖θh[T c

h]‖ and
‖θh[T c

h]‖1. By the optimality of Th and βh0 we have that
√

E[(hi − x′iβh0)2] 6
√

E[(xi[Sc]′θh[Sc] + ρi)2] 6
√

κ̄‖θh[Sc]‖+
√

E[ρ2
i ] and

√
E[(hi − x′iβh0)2] =

√
E[{x′i(θh − βh0) + ρi}2] > √

κ‖θh[T c
h]‖ −

√
E[ρ2

i ].
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Thus we have ‖θh[T c
h]‖ 6

√
κ̄/κ‖θh[Sc]‖+ 2

√
E[ρ2

i ]/κ. Moreover, since θh ∈ Sa
A(p), we have

‖θh[Sc]‖2 =
∞∑

j=s+1

θ2
(j) 6 A2

∞∑

j=s+1

j−2a 6 A2s−2a+1/[2a− 1] 6 A2s−2a+1

since a > 1. Combining these relations we have

‖θh[T c
h]‖ 6

√
κ̄/κAs−a+1/2 + 2

√
E[ρ2

i ]/κ

=
√

κ̄/κ
√

s/n + 2
√

E[ρ2
i ]/κ.

The second bound follows by observing that

‖θh[T c
h]‖1 6

√
s‖θh[T c

h ∩ S]‖+ ‖θh[Sc]‖1 6
√

s‖θh[T c
h]‖+ As−a+1/[a− 1]

6
√

s2/n
√

κ̄/κ + 2
√

sE[ρ2
i ]/κ + (s/

√
n)/[a− 1]

6
√

s2/n
√

κ̄/κ a/[a− 1] + 2
√

sE[ρ2
i ]/κ.

By the first-order optimality condition of the problem (5.26) that defines βh0, we have

E[xi[Th]xi[Th]′](βh0[Th]− θh[Th]) = E[xi[Th]xi[T c
h]′]θh[T c

h] + E[xi[Th]ρi].

Thus, since ‖E[xi[Th]ρi]‖ = sup‖η‖=1 E[η′xi[Th]ρi] 6 sup‖η‖=1

√
E[(η′xi[Th])2]

√
E[ρ2

i ] we have

κ‖βh0 − θh[Th]‖ 6 κ̄‖θh[T c
h]‖+

√
κ̄E[ρ2

i ]

6 κ̄3/2As−a+1/2/
√

κ + 2κ̄
√

E[ρ2
i ]/κ +

√
κ̄E[ρ2

i ]

=
√

s/n (κ̄3/2/
√

κ) +
√

E[ρ2
i ]
√

κ̄(1 + 2
√

κ̄/κ)

where the last inequality follows from the definition of s = A1/an1/2a. Therefore

|rhi| = |hi − x′iβh0| = |x′i(θh − βh0)|+ |ρi|
6 ‖xi‖∞‖θh − βh0‖1 + |ρi|
6 √

s‖xi‖∞‖θhTh
− βh0‖+ ‖xi‖∞‖θhT c

h
‖1 + |ρi|

6 ‖xi‖∞{
√

s2/n (κ̄/κ)3/2 +
√

sE[ρ2]/κ
√

κ̄/κ(1 + 2
√

κ̄/κ)}+
+‖xi‖∞(

√
s2/n

√
κ̄/κ a/[a− 1] + 2

√
sE[ρ2]/κ) + |ρi|

6 ‖xi‖∞(κ̄/κ)3/2{2a−1
a−1

√
s2/n + 5

√
sE[ρ2]/κ}+ |ρi|.

¤

F.2. Verification for Example 2. Let P be the collection of all regression models P that
obey the conditions set forth above for all n for the given constants (κ, κ̄, a, A,B, χ) and
sequences pn and δ̄n. Below we provide explicit bounds for κ′, κ′′, c, C, δn and ∆n that appear
in Conditions ASTE, SE and SM that depend only on (κ, κ̄, a, A, B, χ), p, δ̄n and n which in
turn establish these conditions for any P ∈ P. In what follows we exploit Gaussianity of wi
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and use that (E[|η′wi|k])1/k 6 Gk(E[|η′wi|2])1/2 for any vector η, ‖η‖ < ∞, where the constant
Gk depends on k only.

Conditions ASTE(i) is assumed. Condition ASTE(ii) holds with ‖α0‖ 6 B =: CASTE
1 .

Because θm, θg ∈ Sa
A(p), Condition ASTE(iii) holds with

s = A1/an1/2a, rmi = m(zi)−
p∑

j=1

zijβm0j , and rgi = g(zi)−
p∑

j=1

zijβg0j

where ‖βm0‖0 6 s and ‖βg0‖0 6 s. Indeed, we have

E[r2
mi] 6 E





 ∑

j>s+1

θm(j)zi(j)




2
 6 κ̄

∑

j>s+1

θ2
m(j) 6 κ̄A2s−2a+1/[2a− 1] 6 κ̄s/n

where the first inequality follows by the definition of βm0 in (5.26), the second inequality
follows from θm ∈ Sa

A(p), and the last inequality because s = A1/an1/2a. Similarly we have
E[r2

gi] 6 E[(
∑

j>s+1 θg(j)zi(j))2] 6 κ̄A2s−2a+1/[2a− 1] 6 κ̄s/n. Thus let CASTE
2 :=

√
f̄ .

Condition ASTE(iv) holds with δASTE
1n := A2/an1/a−1 log2(p ∨ n) → 0 since s = A1/an1/2a,

A is fixed, and the assumed condition n(1−a)/a log2(p ∨ n) log2 n 6 δ̄n → 0.

The moment restrictions in Condition ASTE(v) are satisfied by the Gaussianity. Indeed, we
have for q = 4/χ (where χ < 1 by assumption)

E[|ζ̃i|q] 6 2q−1E[|ζq
i |] + 2q−1E[|rq

gi|] 6 2q−1Gq
q(E[ζ2

i ]q/2 + E[r2
gi]

q/2)
6 2q−1Gq

q{κ̄q/2 + κ̄q/2(s/n)q/2}
6 2qGq

qκ̄q/2 =: CASTE
3

for s 6 n, i.e., n > A2/[2a−1]. Similarly, E[|ṽi|q] 6 CASTE
3 . Moreover,

|E[ζ̃2
i ṽ2

i ]− E[ζ2
i v2

i ]| 6 E[ζ2
i r2

mi] + E[r2
giv

2
i ] + E[r2

mir
2
gi]

6
√

E[ζ4
i ]E[r4

mi] +
√

E[r4
gi]E[v4

i ] +
√

E[r4
mi]E[r4

gi]

6 G2
4κ̄E[r2

mi] + G2
4κ̄E[r2

gi] + G2
4E[r2

mi]E[r2
gi]

6 G2
4κ̄

2{2 + κ̄s/n}s/n =: δASTE
2n → 0.

Next note that by Gaussian tail bounds and λmax(E[wiw
′
i]) 6 κ̄ we have

max
i6n

‖xi‖∞ 6
√

2κ̄ log(pn) with probability at least 1−∆ASTE
1n (F.50)

where ∆ASTE
1n = 1/

√
2κ̄ log(pn). The last requirement in Condition ASTE(v) holds with

q = 4/χ

max
i6n

‖xi‖2
∞sn−1/2+2/q 6 2κ̄ log(pn)A1/an

1
2a
− 1

2
+χ/2 =: δASTE

3n

with probability 1−∆ASTE
1n . By the assumption on a, p, χ, and n, δASTE

3n → 0.



52 BELLONI CHERNOZHUKOV HANSEN

To verify Condition SE with `n = log n note that the minimal and maximal eigenvalues of
E[xix

′
i] are bounded away from zero and from above uniformly in n. By the sub-Gaussianity

of the regressors, the result follows by Theorem 3.2 in Rudelson and Zhou (2011) (restated in
Lemma 9 in Appendix G) with τ = 1/2, m = s log n, α =

√
8/3. Indeed, for

n > Nn := 80(α4/τ2)(s log n) log(12ep/[τs log n])

we have

κ′ := κ/4 6 φmin(s log n)[En[xix
′
i]] 6 φmax(s log n)[En[xix

′
i]] 6 3κ̄ =: κ′′

with probability 1−∆SE
1n , where ∆SE

1n = 2exp(−τ2n/80α4). Note that under ASTE(iv) we have
∆SE

1n → 0 and nSE
0 := max{n : n 6 Nn} 6 max{(12e/τ)2aA−2, 802(α8/τ4)A2/a, n∗} where n∗

is the smallest n such that δ̄n < 1.

The second and third requirements in Conditions SM(i) holds by the Gaussianity of wi,
E[ζi | xi, vi] = 0, E[vi | xi] = 0, and the assumption on that the minimal and maximum
eigenvalues of the covariance matrix (operator) E[wiw

′
i] are bounded below and above by

positive absolute constants.

The first requirement in Condition SM(i) and Condition SM(ii) also hold by Gaussianity.
Indeed, we have for εi = vi and εi = ζi, ỹi = di and ỹi = yi

E[|vq
i |] + E[|ζq

i |] 6 2q−1Gq
q{(E[v2

i ])
q/2 + (E[ζ2

i ])q/2} 6 2qGq
qκ̄q/2 =: A1

E[|dq
i |] 6 2q−1E[|θ′mz|q] + 2q−1E[|vq

i |] 6 2q−1Gq
q(E[|θ′mz|2])q/2 + 2q−1Gq

q(E[v2
i ])

q/2

6 2q−1Gq
q‖θm‖qκ̄q/2 + 2q−1Gq

qκ̄q/2 6 2qGq
qκ̄q/2(1 + (2A)q) =: A2

E[d2
i ] 6 2E[|θ′mzi|2] + 2E[v2

i ] 6 2κ̄‖θm‖2 + 2κ̄ 6 2κ̄(4A2 + 1) =: A′2
E[y2

i ] 6 3|α0|2E[d2
i ] + 3E[|θ′mz|2] + 3E[ζ2

i ] 6 3B2A′2 + 3A′2 + 3κ̄ =: A3

max16j6p E[x2
ij ỹ

2
i ] 6 max16j6p(E[x4

ij ])
1/2(E[ỹ4

i ])
1/2 6 G4

4 max16j6p E[x2
ij ]E[ỹ2

i ]
6 G4

4κ̄(A′2 ∨A3) =: A4

max16j6p E[|xijεi|3] 6 max16j6p(E[x6
ij ])

1/2(E[ε6i ])
1/2 6 G6

6 max16j6p(E[x2
ij ])

3/2(E[ε2i ])
3/2

6 G6
6κ̄

3 =: A5

max16j6p 1/E[x2
ij ] 6 1/λmin(E[wiw

′
i]) 6 1/κ =: A6

because ‖θm‖ 6 2A and ‖θg‖ 6 2A since θm, θg ∈ Sa
A(p). Thus the first requirement in

Condition SM(i) holds with CSM
2 = A2. Condition SM(ii) holds with CSM

3 = A1 +(A′2∨A3)+
A4 + A5 + A6.

Condition SM(iii) is assumed.
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To verify Condition SM(iv) note that for εi = vi and εi = ζi, by (F.50), with probability
1−∆ASTE

1n ,

maxj6p

√
En[x4

ijε
4
i ] 6 maxj6p

4

√
En[x8

ij ]
4

√
En[ε8i ]

6
√

2κ̄ log(pn) maxj6p
4

√
En[x4

ij ]
4

√
En[ε8i ].

(F.51)

By Lemma 3 with k = 4 we have with probability 1−∆SM
1n , where ∆SM

1n = 1/n

max
j6p

4

√
En[x4

ij ] 6
√

κ̄
√

2e +
√

κ̄n−1/4
√

2 log(2pn) 6 5
√

κ̄ (F.52)

for n > nSM
01 = 4 log2(2pn). Also, Lemma 3 with k = 8 and p = 1 we have with probability

1−∆SM
1n that

4

√
En[ε8i ] 6 2κ̄2e2 + 2κ̄n−1/42 log n 6 5e2κ̄ (F.53)

for n > nSM
02 = 16 log4 n. Moreover, we have

max
16j6p

√
E[x4

ijε
4
i ] 6 max

16j6p

4

√
E[x8

ij ]
4

√
E[ε8i ] 6 G4

8κ̄
2.

Applying Lemma 6, for τ = 2∆ASTE
1n + ∆SM

2n , with probability 1− 8τ we have

max
j6p

|(En − Ē)[x2
ijε

2
i ]| 6 4

√
2 log(2p/τ)

n

√
Q( max

16j6p
En[x4

ijε
4
i ], 1− τ) ∨ 2

√
2G4

8κ̄
2/
√

n

where by (F.51), (F.52) and (F.53) we have

Q(max16j6p

√
En[x4

ijε
4
i ], 1− τ) 6 κ̄2

√
2 log(pn)25e2.

So we let δSM
1n = 200e2κ̄2

√
log(2p/τ)

n

√
log(pn)∨2

√
2G4

8κ̄2
√

n
→ 0 under the condition that log2(p∨

n)/n 6 δ̄n.

Similarly for ỹi = di and ỹi = yi, by Lemma 3, we have with probability 1 − ∆SM
1n , for

n > nSM
02 we have

En[ỹ8
i ] 6 (5e2E[ỹ2

i ])
4 6 (5e2[A′2 ∨A3])4. (F.54)

Moreover, 4

√
E[ỹ8

i ] 6 G2
8E[ỹ2

i ] 6 G2
8[A

′
2 ∨A3]. Therefore by Lemma 6, for τ = 2∆ASTE

1n +∆SM
2n ,

with probability 1− 8τ we have

max
j6p

|(En− Ē)[x2
ij ỹ

2
i ]| 6 4

√
2 log(2p/τ)

n

√
2 log(pn)5κ̄(5e2[A′2∨A3])∨2

√
2
G4

8κ̄[A′2 ∨A3]√
n

=: δSM
2n

where δSM
2n → 0 under the condition log2(p ∨ n)/n 6 δ̄n → 0.

We have that the last term in Condition SM(iv) satisfies with probability 1−∆ASTE
1n

max ‖xi‖2
∞

s log(p ∨ n)
n

6 2κ̄ log(pn)A1/an−1+1/2a log(p ∨ n) =: δSM
3n .

Under ASTE(iv) we have δSM
3n → 0.
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Finally, we set n0 = max{nSE
01 , nSM

01 , nSM
02 }, C = max{CASTE

1 , CASTE
2 , 2CASTE

3 , CSM
1 , CSM

2 },
δn = max{δASTE

1n , δASTE
2n , δSM

1n +δSM
2n +δSM

3n } → 0, and ∆n = max{33∆ASTE
1n +16∆SM

1n , ∆SE
1n } →

0.

¤

Lemma 3. Let fij ∼ N(0, σ2
j ), σj 6 σ, independent across i = 1, . . . , n, where j = 1, . . . , p.

Then for any k > 2 and γ ∈ (0, 1) we have

P

(
max
16j6p

{En[|fk
ij |]}1/k > σ

√
2e + σn−1/k

√
2 log(2p/γ)

)
6 γ.

Proof. Note that P (En[|fk
ij |] > M) = P (‖f·j‖k

k > Mn) = P (‖f·j‖k > (Mn)1/k).

Since |‖f‖k − ‖g‖k| 6 ‖f − g‖k 6 ‖f − g‖, we have that ‖ · ‖k is 1-Lipschitz for k > 2.
Moreover,

E[‖f·j‖k] 6 (E[‖f·j‖k
k])

1/k = (
n∑

i=1

E[|fk
ij |])1/k = n1/k(E[|fk

1j |])1/k

= n1/k{σk
j 2k/2Γ((k + 1)/2)}1/k 6 n1/kσ

√
2e

By Ledoux and Talagrand (1991), page 21 equation (1.6), we have

P (‖f·j‖k > (Mn)1/k − E[‖f·j‖k]) 6 2 exp(−{(Mn)1/k − E[‖f·j‖k]}2/2σ2
j ).

Setting M := {σ√2e + σn−1/k
√

2 log(2p/γ)}k, so that (Mn)1/k = n1/kσ
√

2e + σ
√

2 log(2p/γ)
we have by the union bound and σ > σj

P ( max
16j6p

En[|fk
ij |] > M) 6 p max

16j6p
P (En[|fk

ij |] > M) 6 γ.

¤

F.3. Verification for Example 3. Let P be the collection of all regression models P that
obey the conditions set forth above for all n for the given constants (f, f̄ , a, A, b, B, q). Below
we provide explicit bounds for κ′, κ′′, c, C, δn and ∆n that appear in Conditions ASTE, SE
and SM that depend only on (f, f̄ , a, A, b, B, q), p, δ̄n, and n which in turn establish these
conditions for any P ∈ P.

Conditions ASTE(i) is assumed. Condition ASTE(ii) holds with ‖α0‖ 6 B =: CASTE
1 .

Because θm, θg ∈ Sa
A(p), Condition ASTE(iii) holds with

s = A1/an
1
2a , rmi = m(zi)−

p∑

j=1

βm0jPj(zi) and rgi = g(zi)−
p∑

j=1

βg0jPj(zi)
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where ‖βm0‖0 6 s and ‖βg0‖0 6 s. Indeed, we have

E[r2
mi] 6 E





 ∑

j>s+1

θm(j)P(j)(zi)




2
 6 f̄

∑

j>s+1

θ2
m(j) 6 f̄A2s−2a+1/[2a− 1] = f̄s/n

where the first inequality follows by the definition of βm0 in (5.26), the second inequality
follows from the upper bound on the density and orthogonality of the basis, the third inequality
follows from θm ∈ Sa

A(p), and the last inequality because s = A1/an1/2a. Similarly we have
E[r2

gi] 6 E[(
∑

j>s+1 θg(j)zi(j))2] 6 f̄A2s−2a+1/[2a− 1] = f̄s/n. Let CASTE
2 =

√
f̄ .

Condition ASTE(iv) holds with δASTE
1n := A2/an1/a−1 log2(p ∨ n) → 0 since s = A1/an1/2a,

A is fixed, and the assumed condition n(1−a)/a log2(p ∨ n) 6 δ̄n → 0.

To show that Condition ASTE(v) first recall that maxi6n ‖xi‖∞ 6 B. Because f 6
λmin(E[xix

′
i]) 6 λmax(E[xix

′
i]) 6 f̄ , by the assumption on the density and orthonormal ba-

sis, by Lemma 2 with ρ = 0 we have

max
16i6n

|rmi| ∨ |rgi| 6 max
16i6n

‖xi‖∞(f̄/f)3/2 2a− 1
a− 1

√
s2/n 6 B(f̄/f)3/2 2a− 1

a− 1

√
s2/n =: δASTE

2n

where δASTE
2n → 0 under s = A1/an1/2a and a > 1.

Next we establish the moment restrictions in Condition ASTE(v) First, we have

E[|ζ̃i|q] 6 2q−1E[|ζq
i |] + 2q−1E[|rq

gi|] 6 2q−1B + 2q−1(δASTE
2n )q

6 2q−1B + 2q−1(δASTE
2n0

)q =: CASTE
3 .

Similarly, E[|ṽi|q] 6 CASTE
3 . Moreover, since δASTE

2n → 0 we have

|E[ζ̃2
i ṽ2

i ]− E[ζ2
i v2

i ]| 6 E[ζ2
i r2

mi] + E[r2
giv

2
i ] + E[r2

mir
2
gi]

6
√

E[ζ4
i ]E[r4

mi] +
√

E[r4
gi]E[v4

i ] +
√

E[r4
mi]E[r4

gi]

6 2B2/q(δASTE
2n )2 + (δASTE

2n )4 =: δASTE
3n → 0.

Finally, the last requirement holds because (1− a)/a + 4/q < 0 implies

max
i6n

‖xi‖2
∞sn−1/2+2/q 6 B2A1/an1/2a−1/2+2/q =: δASTE

4n → 0,

since s = A1/an1/2a and maxi6n ‖xi‖∞ 6 B.

To show Condition SE with `n = log n note that regressors are uniformly bounded, and
minimal and maximal eigenvalues of E[xix

′
i] are bounded below by f and above by f̄ uniformly

in n. Thus Condition SE follows by Corollary 4 in the supplementary material in Belloni and
Chernozhukov (2011) (restated in Lemma 8 in Appendix G) which is based on Rudelson and
Vershynin (2008). Let

δSE
1n := 2C̄B

√
s log n log(s log n)

√
log(p ∨ n)

√
log n/

√
n
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and ∆SE
1n := (2/f)(δSE

1n )2 + δSE
1n (2f̄/f), where C̄ is an universal constant. By this result and

the Markov inequality, we have with probability 1−∆SE
1n

κ′ := f/2 6 φmin(s log n)[En[xix
′
i]] 6 φmax(s log n)[En[xix

′
i]] 6 2f̄ =: κ′′.

We need to show that ∆SE
1n → 0 which follows from δSE

1n → 0. We have that

δSE
1n 6 2C̄B(1 + A)2

√
n1/2a log2(n)

√
log(p ∨ n)√

n
= 2C̄B(1 + A)2

√
n1/2a log4 n

n2/3

√
log(p ∨ n)

n1/3
.

By assumption we have log3 p/n 6 δ̄n → 0 and a > 1 we have δSE
1n → 0.

The second and third requirements in Condition SM(i) hold with CSM
1 = B2/q and cSM

1 = b

by assumption. Condition SM(iii) is assumed.

The first requirement in Condition SM(i) and Condition SM(ii) follow by, for εi = vi and
εi = ζi, ỹi = di and ỹi = yi

E[|vq
i |] + E[|ζq

i |] 6 2B =: A1

E[|dq
i |] 6 2q−1E[|θ′mxi|q] + 2q−1E[|vq

i |] 6 2q−1‖θm‖q
1E[‖xi‖q∞] + 2q−1B

6 2q−1(2A)qBq + 2q−1B =: A2

E[d2
i ] 6 2f̄‖θm‖2 + 2E[v2

i ] 6 8f̄A2 + 2B2/q =: A′2
E[y2

i ] 6 3|α0|2E[d2
i ] + 3‖θg‖2

1E[‖xi‖2∞] + 3E[ζ2
i ]

6 3B2A′2 + 12A2B2 + 3B2/q =: A3

max16j6p E[x2
ij ỹ

2
i ] 6 B2E[ỹ2

i ] 6 B2(A′2 ∨A3) =: A4

max16j6p E[|xijεi|3] 6 B3E[|ε3i |] 6 B3B3/q =: A5

max16j6p 1/E[x2
ij ] 6 1/λmin(E[xix

′
i]) 6 1/f =: A6

where we used that maxi6n ‖xi‖∞ 6 B, the moment assumptions of the disturbances, ‖θm‖ 6
‖θm‖1 6 2A, ‖θg‖1 6 2A since θm, θg ∈ Sa

A(p) for a > 1. Thus the first requirement in
Condition SM(i) holds with CSM

2 = A2. Condition SM(ii) holds with CSM
3 := A1 + (A′2 ∨

A3) + A4 + A5 + A6.

To verify Condition SM(iv) note that for εi = vi and εi = ζi we have by Lemma 6 with
probability 1− 8τ , where τ = 1/ log n,

max
16j6p

|(En − Ē)[x2
ijε

2
i ]| 6 4

√
2 log(2p/τ)

n Q( max
16j6p

√
En[x4

ijε
4
i ], 1− τ) ∨ 2 max

16j6p

√
2E[x4

ijε
4
i ]

6 4
√

2 log(2p/τ)
n B2Q(

√
En[ε4i ], 1− τ) ∨ 2B2

√
2E[ε4i ]

6 4
√

2 log(2p log n)
n B2B2/q log n =: δSM

1n

where we used E[ε4i ] 6 B4/q and the Markov inequality. By the definition of τ and the assumed
rate log3(p ∨ n)/n 6 δ̄n → 0, we have δSM

1n → 0.
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Similarly, we have for ỹi = di and ỹi = yi, with probability 1− 8τ

max
16j6p

|(En − Ē)[x2
ij ỹ

2
i ]| 6 4

√
2 log(2p/τ)

n Q( max
16j6p

√
En[x4

ij ỹ
4
i ], 1− τ) ∨ 2 max

16j6p

√
2E[x4

ij ỹ
4
i ]

6 4
√

2 log(2p/τ)
n B2Q(

√
En[ỹ4

i ], 1− τ) ∨ 2B2
√

2E[ỹ4
i ]

6 4
√

2 log(2p log n)
n B2A7 log n =: δSM

2n

where we used the Markov inequality and

E[ỹ4
i ] 6 E[d4

i ] + 33|α0|4E[d4
i ] + 33‖θg‖4

1E[‖xi‖4∞] + 33E[ζ4
i ]

6 A
4/q
2 + 33B4A

4/q
2 + 33(2A)4B4 + 33B4/q =: A7.

By the definition of τ and the assumed rate log3(p ∨ n)/n 6 δ̄n → 0, we have δSM
2n → 0.

The last term in the requirement of Condition SM(iv), because maxi6n ‖xi‖∞ 6 B and
Condition ASTE(iv) holds, is bounded by δSM

3n := B2A1/an1/2a log(p ∨ n)/n → 0.

Finally, we set c = cSM
1 , C = max{CASTE

1 , CASTE
2 , 2CASTE

3 , CSM
1 , CSM

2 , CSM
3 }, δn =

max{δ̄n, δASTE
1n , δASTE

2n , δASTE
3n , δASTE

4n , δSM
1n + δSM

2n + δSM
3n } → 0, ∆n = max{16/ log n, ∆SE

1n } →
0. ¤

F.4. Verification for Example 4. The verification of Conditions ASTE, SE, and SM follows
as in Example 3. Here we point out the few needed adjustments. To show Condition ASTE(iii),
the sparsity condition, follows from θm, θg ∈ Sa

A(p). Indeed, we have

rmi = m(zi)−
p∑

j=1

βm0jPj,p(zi) and rgi = g(zi)−
p∑

j=1

βg0jPj,p(zi)

where ‖βm0‖0 6 s and ‖βg0‖0 6 s, so that
√

E[r2
mi] 6

√
E[(

∑p
j=s+1 θg(j)P(j),p(zi))2] +

√
E[ρ2

m,p(zi)]

6
√

(f̄/[2a− 1])s/n + Ap−a+1/2 6
√

f̄s/n + (δ̄n)a−1/2
√

s/n,

since a > 1, s = A1/an1/2a 6 pδ̄n, where δ̄n → 0. Similarly
√

E[r2
gi] 6

√
f̄ s/n+(δ̄n)a−1/2

√
s/n.

Also, because maxi6n ‖xi‖∞ 6 B and f 6 λmin(E[xix
′
i]) 6 λmax(E[xix

′
i]) 6 f̄ by the

assumption on the density and orthonormal basis, by Lemma 2 with ρ = ρm,p where
√

E[ρ2] 6
Ap−a+1/2 and |ρ| 6 Ap−a+1, we have

|rmi| 6 B(f̄/f)3/2

{
2a− 1
a− 1

√
s2/n + 5

√
s/κAp−a+1/2

}
+ Ap−a+1 =: δASTE

1n → 0

since s2/n → 0, s 6 pδ̄n, a > 1 and s →∞. ¤
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Appendix G. Tools

G.1. Moderate Deviations for a Maximum of Self-Normalized Averages. We shall be
using the following result, which is based on Theorem 7.4 in (de la Peña, Lai, and Shao, 2009).

Lemma 4 (Moderate Deviation Inequality for Maximum of a Vector). Suppose that

Sj =
∑n

i=1 Uij√∑n
i=1 U2

ij

,

where Uij are independent variables across i with mean zero. We have that

P
(

max
16j6p

|Sj | > Φ−1(1− γ/2p)
)

6 γ

(
1 +

A

`3
n

)
,

where A is an absolute constant, provided for `n > 0

0 6 Φ−1(1− γ/(2p)) 6 n1/6

`n
min

16j6p
M2

j − 1, Mj :=

(
1
n

∑n
i=1 E[U2

ij ]
)1/2

(
1
n

∑n
i=1 E[|U3

ij |]
)1/3

.

The proof of this result, given in Belloni, Chen, Chernozhukov, and Hansen (2010), follows
from a simple combination of union bounds with the bounds in Theorem 7.4 in de la Peña,
Lai, and Shao (2009).

G.2. Inequalities based on Symmetrization. Next we proceed to use symmetrization ar-
guments to bound the empirical process. In what follows for a random variable Z let Q(Z, 1−τ)
denote its (1− τ)-quantile.

Lemma 5 (Maximal inequality via symmetrization). Let Z1, . . . , Zn be arbitrary independent
stochastic processes and F a finite set of measurable functions. For any τ ∈ (0, 1/2), and
δ ∈ (0, 1) we have that with probability at least 1− 4τ − 4δ

sup
f∈F

|Gn(f(Zi))| 6
{

4
√

2 log(2|F|/δ) Q

(
sup
f∈F

√
En[f(Zi)2], 1− τ

)}
∨ 2max

f∈F
Q

(
|Gn(f(Zi))|, 1

2

)
.

Proof. Let

e1n =
√

2 log(2|F|/δ) Q

(
sup
f∈F

√
En[f(Zi)2], 1− τ

)
, e2n = max

f∈F
Q

(
|Gn(f)|, 1

2

)

and the event E = {supf∈F
√
En [f2(Zi)] 6 Q

(
supf∈F

√
En[f2(Zi)], 1− τ

)
} which satisfies

P (E) > 1 − τ . By the symmetrization Lemma 2.3.7 of van der Vaart and Wellner (1996) (by
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definition of e2n we have βn(x) > 1/2 in Lemma 2.3.7) we obtain

P
{
supf∈F |Gn(f(Zi))| > 4e1n ∨ 2e2n

}
6 4P

{
supf∈F |Gn(εif(Zi))| > e1n

}

6 4P
{
supf∈F |Gn(εif(Zi))| > e1n|E

}
+ 4τ

where εi are independent Rademacher random variables, P (εi = 1) = P (εi = −1) = 1/2.

Thus a union bound yields

P

{
sup
f∈F

|Gn(f(Zi))| > 4en(F)

}
6 4τ + 4|F| sup

f∈F
P {|Gn(εif(Zi))| > e1n|E} . (G.55)

We then condition on the values of Z1, . . . , Zn and E , denoting the conditional probability
measure as Pε. Conditional on Z1, . . . , Zn, by the Hoeffding inequality the symmetrized process
Gn(εif(Zi)) is sub-Gaussian for the L2(Pn) norm, namely, for f ∈ F , Pε{|Gn(εif(Zi))| > x} 6
2 exp(−x2/[2En[f2(Zi)]]). Hence, under the event E , we can bound

Pε {|Gn(εif(Zi))| > e1n|Z1, . . . , Zn, E} 6 2 exp(−e2
1n/[2En[f2(Zi)])

6 2 exp(− log(2|F|/δ)).

Taking the expectation over Z1, . . . , Zn does not affect the right hand side bound. Plugging in
this bound yields the result. ¤

The following specialization will be convenient.

Lemma 6. Let {(x′i, εi)′ ∈ Rp×R, i = 1, . . . , n} be random vectors that are independent across
i. Then with probability at least 1− 8τ

max
16j6p

|En[x2
ijε

2
i ]− Ē[x2

ijε
2
i ]| 6 4

√
2 log(2p/τ)

n
Q

(
max
16j6p

En[x4
ijε

4
i ], 1− τ

)
∨ 2 max

16j6p

√
2Ē[x4

ijε
4
i ]

n

Proof. Let Zi = xiεi, fj(Zi) = x2
ijε

2
i , F = {f1, . . . , fp}, so that n−1/2Gn(fj(Zi)) = En[x2

ijε
2
i ]−

Ē[x2
ijε

2
i ]. Also, let

e1n =
√

2 log(2p/τ1)

√
Q

(
max

16j6p
En[x4

ijε
4
i ], 1− τ2

)
and e2n = max

16j6p
Q(|Gn(fj(Zi))|, 1/2)

where we have e2n 6 max16j6p

√
2Ē[x4

ijε
4
i ] by Chebyshev.

By Lemma 5 we have

P

(
max
16j6p

|En[x2
ijε

2
i ]− Ē[x2

ijε
2
i ]| >

4e1n ∨ 2e2n√
n

)
6 4τ1 + 4τ2.

The first result follows by setting τ1 = τ2 = τ < 1/2. ¤
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G.3. Moment Inequality. We shall be using the following result, which is based on Markov
inequality and (von Bahr and Esseen, 1965).

Lemma 7 (Vonbahr-Esseen’s LLN). Let r ∈ [1, 2], and independent zero-mean random vari-
ables Xi with Ē[|Xi|r] 6 C. Then for any `n > 0

Pr

( |∑n
i=1 Xi|
n

> `nn−(1−1/r)

)
6 2C

`r
n

.

G.4. Matrices Deviation Bounds. Based on results in Rudelson and Vershynin (2008), the
following lemma for bounded regressors was derived in the supplementary material of Belloni
and Chernozhukov (2011).

Lemma 8 (Essentially in Theorem 3.6 of Rudelson and Vershynin (2008)). Let xi, i = 1, . . . , n,
be i.i.d. random vectors in Rp with uniformly bounded entries, ‖xi‖∞ 6 K a.s. for all
i = 1, . . . , n. Let δn := 2

(
CK

√
k log(k)

√
log(p ∨ n)

√
log n

)
/
√

n, where C is the universal
constant. Then,

E

[
sup

‖α‖06k,‖α‖=1

∣∣En

[
(α′xi)2 − E[(α′xi)2]

]∣∣
]

6 δ2
n + δn sup

‖α‖06k,‖α‖=1

√
E[(α′xi)2].

The following result establishes an approximation bound for sub-Gaussian regressors and
was developed in Rudelson and Zhou (2011). Recall that a random vector Z ∈ Rp is isotropic
if E[ZZ ′] = I, and it is called ψ2 with a constant α if for every w ∈ Rp we have

‖Z ′w‖ψ2 := inf{t : E[exp( (Z ′w)2/t2)] 6 2} 6 α‖w‖2.

Lemma 9 (Essentially in Theorem 3.2 of Rudelson and Zhou (2011)). Let Ψi be i.i.d. isotropic
random vectors in Rp that is ψ2 with a constant α. Let xi = Σ1/2Ψi so that Σ = E[xix

′
i]. For

m 6 p and τ ∈ (0, 1) assume that

n > 80mα4

τ2
log

(
12ep

mτ

)
.

Then with probability at least 1− 2 exp(−τ2n/80α4), for all m-sparse vectors u ∈ Rp,

(1− τ)‖Σ1/2u‖2 6
√
En[(x′iu)2] 6 (1 + τ)‖Σ1/2u‖2.

For example, Lemma 9 covers the case of xi ∼ N(0, Σ) by setting Ψi ∼ N(0, I) which is
isotropic and ψ2 with a constant α =

√
8/3.
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Figure 2. This figure presents rejection frequencies for 5% level tests, biases,
and standard deviations for estimating the treatment effect from Design 1 of the
simulation study which has quadratically decaying coefficients and homoscedas-
ticity. Results are reported for a one-step Post-Lasso estimator, our proposed
double selection procedure, and the infeasible OLS estimator that uses the set of
variables that have coefficients larger than 0.1 in either equation (2.6) or (2.7).
Reduced form and first stage R2 correspond to the population R2 of (2.6) and
(2.7) respectively. Note that rejection frequencies are censored at 0.5.



66 BELLONI CHERNOZHUKOV HANSEN

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

Post-Lasso RP(0.05)

First Stage R
2

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

Second Stage R
2

Post-Lasso Mean Bias

First Stage R
2

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

Post-Lasso Std Dev.

First Stage R
2

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

DS RP(0.05)

First Stage R
2

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

Second Stage R
2

DS Mean Bias

First Stage R
2

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

DS Std Dev.

First Stage R
2

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

Oracle DS RP(0.05)

First Stage R
2

0
0.2

0.4
0.6

0

0.5

-0.5

0

0.5

Second Stage R
2

Oracle DS Mean Bias

First Stage R
2

0
0.2

0.4
0.6

0

0.5

0

0.1

0.2

0.3

0.4

Second Stage R
2

Oracle DS Std Dev.

First Stage R
2

Figure 3. This figure presents rejection frequencies for 5% level tests, biases,
and standard deviations for estimating the treatment effect from Design 2 of
the simulation study which has quadratically decaying coefficients and het-
eroscedasticity. Results are reported for a one-step Post-Lasso estimator, our
proposed double selection procedure, and the infeasible OLS estimator that uses
the set of variables that have coefficients larger than 0.1 in either equation (2.6)
or (2.7). Reduced form and first stage R2 correspond to the population R2 of
(2.6) and (2.7) respectively. Note that rejection frequencies are censored at 0.5.
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Figure 4. This figure presents rejection frequencies for 5% level tests, biases,
and standard deviations for estimating the treatment effect from Design 3 of
the simulation study which has five quadratically decaying coefficients and 95
Gaussian random coefficients. Results are reported for a one-step Post-Lasso
estimator, our proposed double selection procedure, and the infeasible OLS
estimator that uses the set of variables that have coefficients larger than 0.1
in either equation (2.6) or (2.7). Reduced form and first stage R2 correspond
to what would be the population R2 of (2.6) and (2.7) if all of the random
coefficients were equal to zero. Note that rejection frequencies are censored at
0.5.
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Figure 5. This figure presents rejection frequencies for 5% level tests and
RMSE’s for estimating the treatment effect from Design 3 of the simulation
study which has five quadratically decaying coefficients and 95 Gaussian random
coefficients. Results in the first column are for the proposed double selection
procedure, and the results in the second column are for the proposed double
selection procedure when the ridge fit from (2.6) is added as an additional
potential control. Reduced form and first stage R2 correspond to what would
be the population R2 of (2.6) and (2.7) if all of the random coefficients were
equal to zero. Note that the vertical axis on the rejection frequency graph is
from 0 to 0.1.
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