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D ata with a large number of variables relative to the sample size—“high-
dimensional data”—are readily available and increasingly common in 
empirical economics. High-dimensional data arise through a combination 

of two phenomena.
First, the data may be inherently high dimensional in that many different char-

acteristics per observation are available. For example, the US Census, the Current 
Population Survey, the Survey of Income and Program Participation, the National 
Longitudinal Survey of Youth, and the American Housing Survey collect informa-
tion on hundreds of individual characteristics. Economists are also increasingly 
using scanner datasets that record transaction-level data for households across a 
wide range of products, or text data where counts of words in documents may be 
used as variables. In both of these latter examples, there may be thousands or tens 
of thousands of available variables per observation.

Second, even when the number of available variables is relatively small, 
researchers rarely know the exact functional form with which the small number of 
variables enters the model of interest. Researchers are thus faced with a large set 
of potential variables formed by different ways of interacting and transforming the 
underlying variables.
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There are many statistical methods available for constructing prediction models 
in the presence of high-dimensional data; for example, see Hastie, Tibshirani, and 
Friedman (2009) for a review. These methods tend to do a good job at prediction, 
which is what they are designed for, but they can often lead to incorrect conclusions 
when inference about model parameters such as regression coefficients is the object 
of interest (Leeb and Pötscher 2008a, b).

The goal of this paper is to provide an overview of how innovations in “data 
mining” can be adapted and modified to provide high-quality inference about model 
parameters. These data mining methods are relevant for learning about economic 
parameters where they are motivated, for example, by a desire to control prop-
erly for confounding variables. Note that here we use the term “data mining” in a 
modern sense which denotes a principled search for “true” predictive power that 
guards against false discovery and overfitting, does not erroneously equate in-sample 
fit to out-of-sample predictive ability, and accurately accounts for using the same data 
to examine many different hypotheses or models.

The key concept underlying the analysis of high-dimensional data is that dimen-
sion reduction or “regularization” is necessary to draw meaningful conclusions. The 
need for regularization can easily be seen when one considers an example where 
there are exactly as many variables (plus a constant), as there are observations. In 
this case, the ordinary least squares estimator will fit the data perfectly, returning 
an ​R ​2​ of one. However, using the estimated model is likely to result in very poor 
forecasting properties out-of-sample because the model estimated by least squares 
is overfit: the least-squares fit captures not only the signal about how predictor vari-
ables may be used to forecast the outcome, but also fits the noise that is present in 
the given sample, and is not useful for forming out-of-sample predictions. Producing 
a useful forecasting model in this simple case requires regularization; that is, the 
estimates must be constrained so that overfitting is avoided and useful out-of-sample 
forecasts can be obtained.

We begin with a discussion of “approximately sparse” regression models in 
high-dimensional data. These models are characterized by having many potential 
predictor/control variables of which only a few are important for predicting the 
outcome. The challenge in this case is to obtain good out-of-sample forecasts 
of outcome (and/or treatment) variables without assuming that the researcher 
knows which of the many available variables actually correspond to the important 
predictors. We then turn to the issue of model selection with high-dimensional 
data when the goal is learning about specific model parameters. We show how 
methods designed for forecasting in approximately sparse regression models can 
be used in this context. To illustrate these ideas, we apply them to examples from 
three papers in the empirical literature: estimating the effect of eminent domain 
on house prices, estimating the effect of abortion on crime, and estimating 
the effect of institutions on economic output. Our focus is not to rework these 
studies in any complete way but to show how one can bring high-dimensional 
analysis into this work and how this introduction can influence the findings of 
the analysis.
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Approximately Sparse Regression Models

To fix ideas, suppose we are interested in forecasting outcome ​y​i​ with controls ​
w​i​ according to the model 

	​ y​i​  =  g(​w​i​ )  + ​ ζ​i​ ,

where the expected value of the error terms ​ζ​i​ given ​w​i​ is equal to zero. Further, 
suppose we have a sample of i = 1, … , n independent observations. To avoid overfit-
ting and produce useful out-of-sample forecasts, we will generally need to restrict or 
regularize the function g(∙).

There are many regularization approaches that produce the needed dimension 
reduction. Perhaps the simplest and most widely applied approach is the researcher 
making an ad hoc decision. Typically, applied researchers assume that they need 
only a small number of controls, which are chosen based on economic intuition and 
a modeling framework. Moreover, the researcher often assumes the controls enter 
the model in a simple fashion, usually linearly, allowing for the usual set of simple 
transformations and forming a small number of interaction terms. This approach 
has intuitive appeal and at some level is unavoidable. A researcher will always have to 
start by imposing some dimension reduction. However, it does leave one wondering 
whether the correct variables and functional forms were chosen.

Nonparametric methods, such as traditional series/sieve expansions, are also 
available. In this framework, one assumes that the model depends only on a small 
number of variables in a smooth but potentially unknown way and then uses a series 
of transformations of these variables in estimation; for example, see Newey (1997) 
and Chen (2007). Practical implementation of a nonparametric estimator requires 
that the researcher has selected an initial set of variables and a pre-specified set of 
series terms containing transformations of these variables. While more flexible than 
parametrics, traditional nonparametrics has a number of important limitations. 
Most importantly, it is again assumed that the most important terms for predicting 
are contained within a pre-specified set of transformed variables determined by the 
researcher that is quite small relative to the number of observations.

In this paper, we focus on an approach to regularization that treats g(​w​i​ ) as a 
high-dimensional, approximately linear model.1 Specifically, we assume that

	 g(​w​i ​)  = ​ ∑​ 
j=1

 ​ 
p

  ​ ​β​j​ ​x​j,i​  + ​ r​p,i​ .

1 There is also work on high-dimensional nonlinear models. For example, van de Geer (2008) and 
Belloni, Chernozhukov, and Wei (2013) consider high-dimensional generalized linear regression, 
and Belloni and Chernozhukov (2011), Belloni, Chernozhukov, and Kato (2013), and Kato (2011) 
consider quantile regression. We consider only linear models here for simplicity. The basic insights 
from the high-dimensional linear models extend to nonlinear settings though the theoretical analysis 
and practical computation is more complicated. High-dimensional linear models can also encompass 
many interesting settings and can accommodate flexible functional approximation just as nonpara-
metric series estimators can.
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The variables ​x​i​ = (​x​1,i​ , … , ​x​p,i​​)′​ may simply be the elementary regressors ​w​i​ or may 
be made of transformations of these elementary regressors as in series modeling. In 
contrast to series modeling, we allow the number of these variables p to be larger 
than the sample size n. The final term ​r​p,i​ is an approximation error. As with series, 
it is assumed that ​r​p,i​ is small enough relative to sampling error in a well-defined 
sense (Bickel, Ritov, and Tsybakov 2009; Belloni, Chen, Chernohukov, and Hansen 
2012). Without further restrictions on the model, practical inference in this kind of 
high-dimensional linear model remains impossible since p ≥ n is allowed.

A structure that has played an important role in the literature is approximate 
sparsity of the high-dimensional linear model. Approximate sparsity imposes a 
restriction that only s variables among all of ​x​j,i​ , where s is much smaller than n, 
have associated coefficients ​β​j​ that are different from 0, while permitting a nonzero 
approximation error ​r​p,i​ . Thus, estimators for this kind of model attempt to learn 
the identities of the variables with large nonzero coefficients, while simultaneously 
estimating these coefficients.2

Note that the approximately sparse high-dimensional linear model structure 
includes as a special case both the traditional parametric and nonparametric model. 
The approximately sparse high-dimensional model generalizes these approaches 
by allowing the researcher to consider many explanatory variables and to use the 
data to learn which of the many variables are the most important. This setting thus 
encompasses many usual approaches to data analysis and accommodates the real-
istic scenario where a researcher does not know a priori exactly which variables 
should be included in a model.

An appealing method for estimating the parameters of sparse high-dimensional 
linear models is the Least Absolute Shrinkage and Selection Operator (LASSO), 
introduced by Frank and Friedman (1993) and Tibshirani (1996), where coefficients 
are chosen to minimize the sum of the squared residuals plus a penalty term that 
penalizes the size of the model through the sum of absolute values of the coefficients. 
In our discussion and empirical examples, we use a variant of the LASSO estimator 
that we proposed in Belloni, Chen, Chernozkukov, and Hansen (2012) defined as

	​   β​  = ​ arg min    
b
  ​ ​∑​ 

i=1
 ​ 

n

  ​ (​y​i​  − ​ ∑​ 
j=1

 ​ 
p

  ​ ​x​i,j​ ​b​j​ )​2​​  +  λ ​∑​ 
j=1

 ​ 
p

  ​ | ​b​j​ | ​γ​j​ ,

where λ > 0 is the “penalty level” and ​γ​j​ are the “penalty loadings.” The penalty 
loadings are chosen to insure basic equivariance of coefficient estimates to 
rescaling of ​x​i,j​ and can also be chosen to address heteroskedasticity, clustering, 
and non-normality in model errors. For more discussion, see Belloni, Chen, 
Chernozkukov, and Hansen (2012), Belloni, Chernozhukov, Hansen, and Kozbur 
(2014), and the online appendix for this paper at http://e-jep.org.

2 Much of the high-dimensional linear model literature assumes that the model is exactly sparse, so the 
approximation error is identically 0. The approximately sparse model is strictly more general in that it 
allows for a nonzero approximation error in the analysis. 
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The penalty level, λ, controls the degree of penalization. Practical choices for λ 
that provably guard against overfitting are provided in Belloni, Chen, Chernozkukov, 
and Hansen (2012). (See also Belloni, Chernozhukov, Fernandéz-Val, and Hansen 
2013; Belloni, Chernozhukov, Hansen, and Kozbur 2014.) It is also common to 
choose λ by cross-validation in prediction contexts, though it is important to note 
that this choice may not immediately equate to good performance when prediction 
is not the end goal.

The penalty function in the LASSO is special in that it has a kink at 0, which 
results in a sparse estimator with many coefficients set exactly to zero. Thus, the 
LASSO estimator may be used for variable selection by simply selecting the vari-
ables with nonzero estimated coefficients. A large part of the appeal of the LASSO 
estimator relative to other selection methods is that the LASSO problem is a convex 
optimization problem and highly efficient computational algorithms exist for its 
solution. LASSO-type estimators have also been shown to have appealing properties 
under plausible assumptions that allow for approximation errors, heteroskedasticity, 
clustering and fixed effects, and non-normality (Bickel, Ritov, and Tsybakov 2009; 
Belloni, Chen, Chernozhukov, and Hansen 2012; Belloni, Chernozhukov, Hansen, 
and Kozbur 2014; Gautier and Tsybakov 2011).

Finally, it is important to note that the nonzero coefficients that are part of the solu-
tion to the LASSO problem tend to be substantially biased towards zero. An appealing 
method to alleviate this bias is to employ the Post-LASSO estimator as in Belloni and 
Chernozhukov (2013) and Belloni, Chen, Chernozhukov, and Hansen (2012). The 
Post-LASSO estimator works in two steps. First, LASSO is applied to determine which 
variables can be dropped from the standpoint of prediction. Then, coefficients on the  
remaining variables are estimated via ordinary least squares regression using only  
the variables with nonzero first-step estimated coefficients. The Post-LASSO estimator 
is convenient to implement and, as we show in Belloni and Chernozhukov (2013) and 
Belloni, Chen, Chernozhukov, and Hansen (2012), works as well as and often better 
than LASSO in terms of rates of convergence and bias.

Model Selection When the Goal is Causal Inference

Using LASSO as a method for penalized estimation of the coefficients of a 
sparse linear model is useful for obtaining forecasting rules and for estimating which 
variables have a strong association to an outcome in a sparse framework. However, 
naively using the results obtained from such a procedure to draw inferences about 
model parameters can be problematic.

Part of the difficulty in drawing inferences after regularization or model selec-
tion is that these procedures are designed for forecasting, not for inference about 
model parameters. This observation suggests that more desirable inference proper-
ties may be obtained if one focuses on model selection over the predictive parts 
of the economic problem—the reduced forms and first-stages—rather than using 
model selection in the structural model directly.
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The more difficult problem with doing inference following model selection 
is that model selection mistakes may occur. If one could be sure that the variable 
selector would always choose exactly all of the variables with nonzero coefficients, 
one could simply use the data to select this set of variables and then use the selected 
set coupled with any conventional procedure to do estimation and inference about 
parameters of interest. The validity of this approach is delicate because it relies 
on perfect model selection. Once one allows for the realistic scenario where some 
variables may have small but nonzero effects, it is likely there will be model selection 
mistakes in which such variables are not selected. The omission of such variables 
then generally contaminates estimation and inference results based on the selected 
set of variables. This problem is not restricted to the high-dimensional setting but is 
present even in low-dimensional settings when model selection is considered. This 
intuition is formally developed in Leeb and Pötscher (2008a, b). Because model 
selection mistakes seem inevitable in realistic settings, it is important to develop 
inference procedures that are robust to such mistakes.

An element in the provision of this robustness that has been employed recently 
is to focus on a small set of parameters of interest over which no model selection will 
be done, leaving model selection or regularization to be done only over “nuisance” 
parts of the problem. The estimation for the main parameters is then carried out 
using estimating equations that are orthogonal or immune to small perturbations 
in the nuisance parts. In Belloni, Chen, Cheernozhukov, and Hansen (2012) and 
Belloni, Chernozhukov, and Hansen (2013), we provide an approach that does 
this in a canonical instrumental variable model; see also Ng and Bai (2009). In 
Belloni, Chernozhukov, and Hansen (2013) and Belloni, Chernozhukov, and 
Hansen (forthcoming), we provide an approach for inference about coefficients 
in a partially linear model, or about average treatment effects in a heterogeneous 
treatment effects model with binary treatment; see also Farrell (2013). In addition 
to showing how to obtain valid inference following model selection in canonical 
econometric models, these papers develop basic intuition helpful in understanding 
how inference following regularization may be performed outside of these models. 
Thus, we outline the approaches of these papers below.

Providing formal results for doing inference about parameters following model 
selection for other models relevant in applied economics is a topic of ongoing 
research. For example, in Belloni, Chernozhukov, Fernandéz-Val, and Hansen 2013, 
we consider the estimation of heterogeneous treatment effects with endogenous 
receipt of treatment and present a general framework for econometric models 
where the orthogonality condition is explained in detail.

Inference with Selection among Many Instruments
Consider the linear instrumental variables model with potentially many 

instruments 

	​ y​i​  =  α​d​i​  + ​ ε​i​

	​ d​i​  = ​ z​ i​ ′​ Π  + ​ r​i​  + ​ v​i​ ,

AQ2
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where E [ ​ε​i​ | ​z​i​ ] = E [ ​v​i​ | ​z​i​, ​r​i​ ] = 0 but E [ ​ε​i​ ​v​i​ ] ≠ 0, leading to endogeneity. In this 
setting, ​d​i​ is a scalar endogenous variable of interest, ​z​i​ is a p -dimensional vector 
of instruments where the number of instruments p may be much larger than 
the number of observations,3 and ​r​i​ is an approximation error. Allowing for a small 
number of included exogenous variables is straightforward by defining the vari-
ables in the model as residuals after partialing these variables out, and we suppress 
this case for simplicity. The results in Belloni, Chen, Chernozhukov, and Hansen 
(2012) also allow for a nonscalar but finite-dimensional treatment vector.

One approach to estimation and inference about α in this context is to select a 
small number of instruments from ​z​i​ to use in a conventional two-stage least squares 
estimation. In Belloni, Chen, Chernozhukov, and Hansen (2012), we provide a set 
of formal conditions under which conventional inference from the two-stage least 
squares estimator based on instruments selected by LASSO or another variable 
selection procedure is valid for learning about the parameter of interest, α. The 
key features that allow this can be illustrated by noting that this model cleanly fits 
into the heuristic outline for doing valid inference after using high-dimensional 
methods provided above. The parameter of interest, α, is finite-dimensional and 
there is no selection over whether ​d​i​ will be included in the model. The variable 
selection component of the problem is limited to the first-stage equation relating 
the endogenous variable to the instruments, which is a pure predictive relationship. 
Finally, the structure of the problem is such that model selection mistakes in which a 
valid instrument with a small but nonzero coefficient is left out of the first-stage will 
not substantially affect the second-stage estimator of α as long as other instruments 
with large coefficients are selected. In other words, the second-stage instrumental 
variable estimate is orthogonal or immune to variable selection errors where instru-
ments with small, nonzero coefficients are mistakenly excluded from estimation.

Inference with Selection among Many Controls
As a more complex example, consider a linear model where a treatment vari-

able, ​d​i​ , is taken as exogenous after conditioning on control variables:

	​ y​i​  =  α​d​i​  + ​ x​ i​ ′​ ​θ​y​  + ​ r​yi​  + ​ ζ​i​ ,

where E [ ​ζ​i​ | ​d​i​ , ​x​i​ , ​r​yi​ ] = 0, ​x​i​  is a p -dimensional vector of controls where p ≫ n is 
allowed, ​r​yi​ is an approximation error, and the parameter of interest is α, the effect 
of the treatment on the outcome.

Before turning to a procedure that provides high-quality estimates and infer-
ential statements about α, it is useful to discuss some intuitive benchmarks that do 

3 In the instrumental variables setting, there are many papers that examine the properties of various 
instrumental variables estimators under many-instrument asymptotics where the number of instru-
ments p is allowed to increase with the sample size n in such a way that p < n and p/n → ρ < 1; see, e.g. 
Bekker (1994), Chao and Swanson (2005), Hansen, Hausman, and Newey (2008), and Hausman, Newey, 
Woutersen, Chao, and Swanson (2012). These approaches do not apply when p ≥ n and tend to perform 
poorly when p/n ≈ 1.
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not work. Considering such cases builds intuition concerning features that must be 
guarded against in applying high-dimensional methods in this and related contexts.

One naive approach would attempt to select control variables by applying 
LASSO to the equation above, forcing the treatment variable to remain in the 
model by excluding α from the LASSO penalty. One could then try to estimate and  
do inference about α by applying ordinary least squares with ​y​i​ as the outcome,  
and ​d​i​ and any selected control variables as regressors. The problem with this 
approach can be seen by noting that LASSO and any other high-dimensional 
modeling device targets prediction, not learning about specific model parameters. 
From the standpoint of prediction, any variable that is highly correlated to the 
treatment variable will tend to be dropped since including such a variable will tend 
not to add much predictive power for the outcome given that the treatment is 
already in the model. Of course, the exclusion of a variable that is highly correlated 
to the treatment will lead to substantial omitted-variables bias if the coefficient in ​θ​y​ 
associated with the variable is nonzero. Such omissions will happen routinely in any 
procedure that looks just at the equation above.

There are two problems with the above naive approach. First, it ignores a key 
component to understanding omitted-variables bias, the relationship between 
the treatment variable and the controls. To aid in learning about this relation-
ship, we introduce an additional “reduced form” relation between the treatment 
and controls:

	​ d​i​  = ​ x​ i​ ′​ ​θ​d​  + ​ r​di​  + ​ v​i​ ,

where E [ ​v​i​ | ​x​i ​ , ​r​di​ ] = 0. The other problem is that the naive approach is based on a 
“structural” model where the target is to learn the treatment effect given controls, 
not an equation representing a forecasting rule for ​y​i​ given ​d​i​ and ​x​i​ . It is thus useful 
to transform the first equation of this section to a reduced form, predictive equation 
by substituting the equation introduced for ​d​i​ into the “structural” equation yielding 
the reduced form system:

	​ y​i​  = ​ x​ i​ ′​ (α​θ​d​  + ​ θ​y​)  +  (α​r​di​  + ​ r​yi​ )  +  (α​v​i​  + ​ ζ​i​ )  = ​ x​ i​ ′​ π  + ​ r​ci​  + ​ ε​i​

	​ d​i​  = ​ x​ i​ ′​ ​θ​d​  +  ​r​di​  + ​ v​i​ ,

where E [ ​ε​i​ | ​x​i​ , ​r​ci ​] = 0, ​r​ci​ is a composite approximation error, and the second equa-
tion is the same as above. Both of these equations represent predictive relationships, 
which may be estimated using high-dimensional methods.

Before turning to the recommended procedure, let us mention the second set 
of naive procedures that use only one of these two  equations for selection. The 
problem with working with only one of the above equations is that single-equation 
approaches rely on there being no errors in variable selection. To see the problem 
with such an approach, note that applying a variable selection method to say the 
first equation for forecasting ​y​i​ with ​x​i​ will tend to select variables with large entries 
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in coefficient vector π but will tend to miss variables with moderately-sized coef-
ficients. However, missing variables that have strong predictive power for ​d​i​ , namely 
variables with large coefficients in ​θ​d​ , may lead to substantive omitted-variables bias 
in the estimator of α if the coefficients on these variables in ​θ​y​ are moderately-sized. 
Intuitively, any such variable has a moderate direct effect on the outcome that will 
be incorrectly misattributed to the effect of the treatment when this variable is 
strongly related to the treatment and the variable is not included in the regression. 
Similarly, if one applied a variable selection method to only the second equation for 
predicting ​d​i​ , one would potentially miss variables that have moderate-sized coef-
ficients in predicting ​d​i​ but large direct effects on ​y​i ​. Such an omission may again 
lead to non-negligible omitted-variables bias.

To guard against such model selection mistakes, it is important to consider 
both equations for selection: we apply variable selection methods to each of the 
two reduced form equations and then use all of the selected controls in estimation 
of α. Thus, variable selection is used to select a set of variables that are useful for 
predicting ​y​i​ , say ​x​yi​ , and a set of variables that are useful for predicting ​d​i​ , say ​x​di​ . We 
then estimate α by ordinary least squares regression of ​y​i​ on ​d​i​ and the union of the 
variables selected for predicting ​y​i​ and ​d​i​ , contained in ​x​yi​ and ​x​di​ . We thus make sure 
we use variables that are important for either of the two predictive relationships to 
guard against the omitted-variables bias, discussed above, when estimating α.

Using both variable selection steps immunizes the resulting procedure against 
the types of model selection mistakes discussed above for single-equation proce-
dures. Specifically, using the variables selected in both reduced form equations 
ensures that any variables that have large effects in either the “structural” equation 
for ​y​i​ or the reduced form equation for ​d​i​ are included in the model. Any excluded 
variables are therefore at most mildly associated to ​y​i​ and ​d​i​ , which greatly limits the 
scope for omitted-variables bias. It is also noteworthy that the “double selection” 
procedure implicitly estimates the residuals and ​ε​i​ and ​v​i​ regresses the estimates of ​
ε​i​ on the estimates of ​v​i​ to construct an estimator of α, thereby providing a selection 
analog of Robinson’s (1988) method for estimating the parameters of a partially 
linear model.

In Belloni, Chernozhukov, and Hansen (2013, forthcoming), we provide formal 
conditions under which this “double selection” procedure will lead to valid infer-
ence about α even when selection mistakes are allowed, and provide substantial 
simulation evidence that the procedure works across a wide variety of models. Using 
both selection steps also enhances efficiency by finding variables that are strongly 
predictive of the outcome and may remove residual variance.4

As a concrete illustration of the potential pitfalls of naive procedures and the 
robustness of the “double selection” approach, we present results from a simulation 

4 That is, standard errors may go down, at least theoretically, after performing the variable selection steps 
if the selected variables reduce residual variance sufficiently to offset the increased variability due to 
including more variables. In fact, under homoskedasticity, the estimator is semi-parametrically efficient, 
achieving the efficiency bound of Robinson (1988).

AQ3
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exercise in this linear modeling context in Figure 1. Details underlying the simula-
tion are as in Belloni, Chernozhukov, and Hansen (2013). The left panel shows 
the sampling distribution of the estimator of α based on the first naive procedure 
discussed in this section, while the right panel shows the sampling distribution of 
the “double selection” estimator. The second mode in the left panel is due to model 
selection mistakes where important variables are missed leading to badly biased 
estimates of α. This strong omitted-variables bias is absent from the distribution 
of the “double selection” estimator, which was specifically designed to reduce the 
influence of such mistakes as discussed above.

Some Empirical Examples

In this section, we provide three concrete examples of the use of these 
methods. An online Appendix available with this paper at http://e-jep.org provides 
implementation details.

F1

Figure 1 
The “Double Selection” Approach to Estimation and Inference versus a Naive 
Approach: A Simulation from Belloni, Chernozhukov, and Hansen (forthcoming) 
(distributions of estimators from each approach)

Source: Belloni, Chernozhukov, and Hansen (forthcoming).
Notes: The left  panel shows the sampling distribution of the estimator of α based on the first naive 
procedure described in this section: applying LASSO to the equation ​y​i​ = ​d​i​ + ​x​ i​ ′​ ​θ​y​ + ​r​yi​ + ​ζ​i​ while 
forcing the treatment variable to remain in the model by excluding α from the LASSO penalty. The 
right panel shows the sampling distribution of the “double selection” estimator (see text for details) as 
in Belloni, Chernozhukov, and Hansen (forthcoming). The distributions are given for centered and 
studentized quantities.

−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8
0

−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8
0

A: A Naive Post-Model Selection Estimator B: Post-Double-Selection Estimator 
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Estimating the Impact of Eminent Domain on House Prices
We consider instrumental variable estimation of the effects of federal appellate 

court decisions regarding eminent domain on housing prices. Recall that eminent 
domain refers to the government’s taking of private property. Federal court rulings 
that a government seizure was unlawful (pro-plaintiff rulings) thus uphold indi-
vidual property rights and make future exercise of eminent domain more difficult 
due to the structure of the US legal system. A more detailed discussion of the 
economics of takings law (or eminent domain) and other institutional and econo-
metric considerations can be found in Belloni, Chen, Chernozhukov, and Hansen 
(2012) and Chen and Yeh (2012).

The analysis of the effects of takings law is complicated by the possible endoge-
neity between takings law decisions and economic variables: for example, a taking 
may be less likely if real estate prices are low and sellers are eager to unload prop-
erty. To address the potential endogeneity of takings law, we employ an instrumental 
variables strategy based on the identification argument of Chen and Sethi (2010) 
and Chen and Yeh (2012) that relies on the random assignment of judges to federal 
appellate panels. Because judges are randomly assigned to three-judge panels to 
decide appellate cases, the exact identity of the judges and their demographics 
are randomly assigned conditional on the distribution of characteristics of federal 
circuit court judges in a given circuit-year. Under this random assignment, the 
characteristics of judges serving on federal appellate panels can only be related to 
property prices through the judges’ decisions; thus the judge’s characteristics will 
plausibly satisfy the instrumental variable exclusion restriction.

Following this argument, we try to uncover the effect of takings law by esti-
mating models of the form

	 log(Case–​Shiller​ct ​)  =  α  ∙ ​ TakingsLaw​ct​  + ​ β​c​  + ​ β​t​  + ​ γ​c​ t  + ​ W ​ ct​ ′ ​ δ  + ​ ε​ct​ 

using the characteristics of judges actually assigned to cases as instruments for ​
TakingsLaw​ct​ . In this equation, ​  Case–Shiller​ct​ is the average of the Case–Shiller home 
price index within circuit court c at time t; ​TakingsLaw​ct​ represents the number of pro-
plaintiff appellate takings decisions in federal circuit court c and year t; ​W​ct​ are included 
exogenous variables that include a dummy variable for whether there were relevant 
cases in that circuit-year, the number of takings appellate decisions, and controls for 
the distribution of characteristics of federal circuit court judges in a given circuit-year; 
and ​β​c​ , ​β​t​ , and ​γ​c​ t are respectively circuit-specific effects, time-specific effects, and 
circuit-specific time trends. An appellate court decision is coded as pro-plaintiff if the 
court ruled that a taking was unlawful, thus overturning the government’s seizure of 
the property in favor of the private owner. The parameter of interest, α, thus repre-
sents the effect of an additional decision upholding individual property rights on a 
measure of property prices. The sample size in this example is 183.

The argument given above suggests that judges’ characteristics satisfy the 
instrumental variables exclusion restriction. Of course, to be valid instruments,  
the characteristics must also be useful for predicting judicial decisions. In the 
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data, we observe a variety of demographic information about each judge, and 
the basic identification argument suggests that any set of characteristics of the 
three-judge panel will be unrelated to structural unobservables. Given the large 
number of instruments that could be constructed by considering all combina-
tions of characteristics of three judge panels, it is also infeasible to just use all 
possible instruments.

Thus, a sensible way to proceed is to use variable selection methods to find a 
set of good instruments from a large set of intuitively chosen potential instruments. 
Under the exclusion restriction, the ideal set of instruments provides a high-quality 
prediction of the endogenous variable—judicial decisions in this example. Forming 
high-quality predictions, which is of course different from obtaining a good 
in-sample fit, is exactly what LASSO and other data mining procedures are designed 
to do. Note that using LASSO with proper penalty parameters theoretically guar-
antees that any instruments selected are not simply spuriously correlated to the 
endogenous variable but have true predictive power. This guarantee means that 
LASSO could select no instruments at all as there may be no set of variables with 
sufficient predictive power to achieve the required standard.

Intuitively, reliably distinguishing true predictive power from spurious associa-
tion becomes more difficult as more variables are considered. This intuition can be 
seen in the theory of high-dimensional variable selection methods, and the methods 
work best in simulations when selection is done over a collection of variables that 
is not overly extensive. It is therefore important that some persuasive economic 
intuition exists to produce a carefully chosen, well-targeted set of variables to be 
selected over even when using automatic variable selection methods.

In this example, we first did dimension reduction by intuitively selecting 
characteristics thought to have strong signals about judge preferences over govern-
ment versus individual property rights. We chose to consider only gender, race, 
religion ( Jewish, Catholic, Protestant, evangelical, not-religious), party affiliation, 
source of academic degrees (bachelor’s degree from an in-state university, bach-
elor’s degree from a public university, JD from a public university, has an LLM or 
SJD), and whether the judge had been elevated from a district court. For each 
of these baseline variables, we then constructed three new variables, counting 
the number of panels with one member with each characteristic, two members 
with each characteristic, and three  members with each characteristic. To allow 
for nonlinearities, we included first-order interactions between all of the previ-
ously mentioned variables, a cubic polynomial in the number of panels with at 
least one democrat, a cubic polynomial in the number of panels with at least one 
member with a JD from a public university, and a cubic polynomial in the number 
of panels with at least one member elevated from within the district. In addition 
to limiting the selection to be over this set of baseline variables, we did additional 
pre-processing to remove instruments that we thought likely to be irrelevant based 
on features of the instrument set alone. We removed any instrument where the 
standard deviation was extremely small and also removed one instrument from 
any pair of instruments that had a bivariate correlation exceeding .99 in absolute 
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value. These instruments were removed as they were highly unlikely to have much 
power.5 After these initial choices, we are left with a total of 147 instruments. The  
number of instruments plus the number of control variables is greater than  
the number of observations in this example, so conventional instrumental vari-
ables estimators using the full set of variables are not defined.

With this set of 147 instruments, we then estimate the first-stage relationship 
using LASSO. The estimated coefficients have just one nonzero element, the coef-
ficient on the number of panels with one or more members with JD from a public 
university squared. Using this instrument gives a first-stage coefficient of 0.4495 with 
estimated standard error of 0.0511—that is, this variable appears to be a strong 
instrument. The second stage estimate using the LASSO-selected instrument is 
then 0.0648 with estimated standard error of 0.0240. This estimate is statistically 
significant at the usual levels, suggesting that a single additional judicial decision 
reinforcing individual property rights is associated with between 2 and 11 percent 
higher property prices with an average number of pro-plaintiff decisions per year 
of 0.19.

For comparison, we also experimented with an “intuitive” instrumental vari-
able using the number of judicial panels with one or more Democrats. The political 
affiliation of judges is known to predict judicial decisions in several contexts, so one 
might hypothesize that this intuition carries over to judicial decisions regarding 
eminent domain. When we used the number of panels with one or more judges 
identified as Democrats as the single instrument, we found that one would not 
reject the hypothesis that this instrument is unrelated to the endogenous variable, 
the number of pro-plaintiff decisions, at any reasonable confidence level—which in 
turn suggests that this instrument is too weak to be useful.

We suspect that most analysts, relying on intuition about what might be a 
useful instrumental variable, would not have intuited that they should use the 
number of judicial panels with one or more members with JD from a public 
university squared. However, we find that one obtains a much stronger first-stage 
relationship in a two-stage least squares approach using this instrument selected 
by a formal variable selection method, relative to that obtained by an “intuitive” 
benchmark. This stronger first-stage in turn leads to a corresponding sensible and 
reasonably precise second-stage estimate. This substantive difference suggests that 
high-dimensional techniques may usefully complement researchers’ intuition for 
choosing instruments and strengthen their ability to draw useful conclusions from 
the data.

Estimating the Effect of Legalized Abortion on Crime
Donohue and Levitt (2001) sought to estimate the effect of abortion on crime 

rates. Looking at state-level data, they find that higher rates of abortion in the years 

5 Note that selection based on characteristics of the instruments without reference to the endogenous 
variable or outcome cannot introduce bias as long as the instruments satisfy the instrumental variable 
exclusion restriction.
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around 1970, as legal restrictions on abortion were eased in a number of states, 
are associated with lower rates of crime two decades later. However, there is a basic 
problem in estimating the causal impact of abortion on crime: state-level abortion 
rates during the earlier time period were not randomly assigned. It seems at least 
plausible that certain factors may be associated with both state-level abortion rates 
and state-level crime rates. Failing to control for these factors will then lead to 
omitted-variables bias in the estimated abortion effect.

To address these potential confounding factors, Donohue and Levitt (2001) 
estimate a differences-in-differences style model for state-level crime rates running 
from 1985 to 1997. Their basic specification is 

	​ y​cit​  = ​ α​c​ ​a​cit​  + ​ w​it​′ ​β​c​  + ​ δ​ci​  + ​ γ​ct​  + ​ ε​cit​ .

The dependent variable, ​y​cit​ , indexes the crime-rate for crime type c (categorized 
between violent, property, and murder) in state i in year t. On the right-hand side, the 
independent variables are ​a​cit​ , a measure of the abortion rate relevant for type of 
crime c (as determined by the ages of criminals when they tend to commit crimes); ​
w​it​ , a set of control variables to control for time-varying confounding state-level 
factors; ​δ​ci​ , state-specific effects that control for any time-invariant state-specific 
characteristics; and ​γ​ct​ , time-specific effects that control for national aggregate 
trends. For independent variables ​a​cit​ , Donohue and Levitt (2001) include the log 
of lagged prisoners per capita, the log of lagged police per capita, the unemploy-
ment rate, per-capita income, the poverty rate, the generosity of the Aid to Families 
with Dependent Children (AFDC) welfare program at time t − 15, a dummy for 
having a concealed weapons law, and beer consumption per capita as ​w​it​ . They 
present baseline estimation results based on this formulation as well as results from 
different models which vary the sample and set of controls in their tables IV and V. 
We refer the reader to the original paper for additional details, data definitions, and 
institutional background.

In this example, we take first-differences of the basic Donahue-Levitt formu-
lation as our baseline. We use the same state-level data as Donohue and Levitt 
(2001) but delete Washington, DC,6 which gives a sample with 50 cross-sectional 
observations and 12 time-series observations for a total of 600 observations. With 
these deletions, our baseline estimates using the same controls are quite similar to 
those reported in Donohue and Levitt (2001). Estimates of the effect of abortion 
on crime from this first-difference model are given in the first row of Table 1. These 
baseline results suggest that increases in abortion rates are strongly associated with 
decreases in crime rates; for example, an increase in the effective abortion rate of 

6 Removing Washington DC produces results similar to those in Donohue and Levitt (2001) without the 
need to introduce the weights used in Donohue and Levitt (2001) and is done for simplicity. This simi-
larity between the weighted results and unweighted results excluding Washington DC is also discussed in 
Donohue and Levitt (2001).

AQ4

T1
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100 per 1,000 live births is associated with around a 15 percent reduction in violent 
crime. This association may be taken as causal under the assumption that all poten-
tial confounding factors not captured in ​w​it​ are either time-invariant or captured by 
a national trend.

Due to the inclusion of state and time effects, the baseline specification 
will control for any factors related to abortion and crime rates that are either 
time-invariant or vary only at the national level. While this formulation is fairly 
flexible, it produces valid estimates of the causal effect of abortion on crime rates 
only if time-varying state-specific factors that are correlated to both abortion and 
crime rates are captured by a small set of characteristics. An approach that is some-
times used to help alleviate such concerns is to include a set of state-specific linear 
time trends in the model to account for differences in state-specific trends that 
may be related to both the outcome and treatment variable of interest. However, 
this approach introduces many additional variables. Perhaps more importantly, the 
assumption of a linear state-specific trend is questionable in many circumstances as  
an approximation and certainly cannot capture the evolution of variables such  
as the crime rate or the abortion rate over any long time horizon.

Instead of using state-specific linear trends, we consider a generalization of the 
baseline model that allows for nonlinear trends interacted with observed state-specific 
characteristics and then use variable selection methods to find potentially important 
confounding variables. This approach allows us to consider quite flexible models 
without including so many additional variables that it becomes mechanically impos-
sible to learn about the abortion effect. A key choice in using high-dimensional 
variable selection methods is the set of candidate variables to consider. For this 
example, our choice of these variables was motivated by our desire to accommodate 
a flexible trend that might offer a sensible model of the evolution of abortion or 

AQ5

Table 1 
Effect of Abortion on Crime

Type of crime

Violent Property Murder

Estimator Effect Std. error Effect Std. error Effect Std. error

First-difference −.157 .034 −.106 .021 −.218 .068
All controls .071 .284 −.161 .106 −1.327  .932
Double selection −.171 .117 −.061 .057 −.189 .177

Notes: This table reports results from estimating the effect of abortion on violent crime, property crime, 
and murder. The row labeled “First-difference” gives baseline first-difference estimates using the controls 
from Donohue and Levitt (2001). The row labeled “All controls” includes a broad set of controls meant 
to allow flexible trends that vary with state-level characteristics. The row labeled “Double selection” 
reports results based on the double selection method outlined in this paper and selecting among the 
variables used in the “All controls” results.
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crime rates over a 12-year period. To accomplish this, we use the double-selection 
procedure outlined in the previous section with models of the form

	 Δ​y​cit​  = ​ α​c​ Δ​a​cit​  + ​ z​cit​′ ​β​c​  + ​​  γ ​​ct​  +  Δ​ε​cit​

	 Δ​a​cit​  = ​ z​cit​′ ​Π​c​  + ​​  κ ​​ct​  +  Δ​v​cit​ .

In this formulation, Δ​y​cit​ = ​y​cit​ − ​y​cit−1​ and Δ​a​cit​ , Δ​ε​cit​ , and Δ​v​cit​ are defined simi-
larly; ​​ γ ​​ct​ and ​​ κ ​​ct​ are time effects; ​z​cit​ is a large set of controls; and we have introduced 
an equation for the abortion rate to make the relation to the earlier discussion 
clear. ​z​itc​ consists of 284 variables made up of the levels, differences, initial level, 
initial difference, and within-state average of the eight state-specific time-varying 
observables, the initial level and initial difference of the abortion rate relevant for 
crime type c, quadratics in each of the preceding variables, interactions of all the 
aforementioned variables with t and ​t ​2​, and the main effects t and ​t ​2​. This set of 
variables corresponds to a cubic trend for the level of the crime rate and abortion 
rate that is allowed to depend on observed state-level characteristics.

Because the set of variables we consider has fewer elements than there are 
observations, we can estimate the abortion effect after controlling for the full set of 
variables. Results from ordinary least squares regression of the differenced crime 
rate on the differenced abortion rate, a full set of time dummies, and the full set of 
variables in ​z​itc​ are given in the second row of Table 1. The estimated abortion effects 
are extremely imprecise with confidence intervals at the usual levels including 
implausibly large negative and implausibly large positive values for the abortion 
effect across all three outcomes. Of course, very few researchers would consider 
using 284 controls with only 600 observations because of exactly this issue.

The final row of Table 1 provides the estimated abortion effects based on the 
double-selection method of Belloni, Chernozhukov, and Hansen (forthcoming). At 
each stage of the process, we include the full set of time dummies without penal-
izing the parameters on these variables, which results in their selection in all cases, 
as we wish to allow for a flexible aggregate trend. In this example, we use LASSO to 
select variables from ​z​cit​ that are useful for predicting the change in crime rate Δ​y​cit ​
and the change in the associated abortion rate. We then use the union of the set of 
selected variables, including time effects, as controls in a final ordinary least squares 
regression of Δ​y​cit​ on Δ​a​cit​ . In all equations, the selected variables suggest the pres-
ence of a nonlinear trend that depends on state-specific characteristics.7 Looking at 

7 For violent crime, lagged prisoners, lagged police, lagged police × t, the initial income difference, 
the initial income difference × t, the initial beer consumption difference × t, average income, average 
income × t, and the initial abortion rate are selected in the abortion equation; and no variables are 
selected in the crime equation. For property crime, lagged prisoners, lagged police, lagged income, 
the initial income difference, the initial income difference × t, average income, and the initial abor-
tion rate are selected in the abortion equation; and initial income squared × ​t ​2​ and average income 
squared × ​t ​2​ are selected in the crime equation. For the murder rate, lagged prisoners, lagged pris-
oners × t, lagged police × t, the initial income difference × t, average income × t, the initial abortion 
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the results, we see that estimated abortion effects are much more precise than the 
“kitchen sink” results that include all controls. However, the double-selection esti-
mates for the effect of abortion on crime rates still produce 95 percent confidence 
intervals that encompass large positive and negative values.

It is interesting that one would draw qualitatively different conclusions from the 
estimates obtained using formal variable selection than from the estimates obtained 
using a small set of intuitively selected controls. Specifically, one would conclude 
that increases in abortion have a strong negative effect on crime rates using a small 
set of intuitively selected controls but would fail to reject the hypothesis that abor-
tion is unrelated to crime rates at usual significance levels using estimates obtained 
using formal variable-selection. Of course, this comparison does not mean that the 
effect of the abortion rate provided in the first  row of Table  1 is inaccurate for 
measuring the causal effect of abortion on crime. It does, however, imply that this 
conclusion is not robust to the presence of fairly parsimonious nonlinear trends. 
Foote and Goetz (2008) reach a similar conclusion based on an intuitive argument.8

Estimating the Effect of Institutions on Output
For our final example, we consider estimation of the effect of institutions on 

later levels of aggregate output following the work of Acemoglu, Johnson, and 
Robinson (2001). Estimating the effect of institutions on output is complicated 
by the clear potential for simultaneity between institutions and output: specifi-
cally, better institutions may lead to higher incomes, but higher incomes may also 
lead to the development of better institutions. To help overcome this simultaneity, 
Acemoglu, Johnson, and Robinson (2001) use mortality rates for early European 
settlers as an instrument for institution quality. The validity of this instrument 
hinges on the argument that settlers set up better institutions in places where they 
are more likely to establish long-term settlements; that where they are likely to settle 
for the long term is related to settler mortality at the time of initial colonization; and 
that institutions are highly persistent. The exclusion restriction for the instrumental 
variable is then motivated by the argument that GDP, while persistent, is unlikely 
to be strongly influenced by mortality in the previous century, or earlier, except 
through institutions.

In their paper, Acemoglu, Johnson, and Robinson (2001) note that their instru-
mental variable strategy will be invalidated if other factors are also highly persistent 
and related to the development of institutions within a country and to the country’s 
GDP. A leading candidate for such a factor, as they discuss, is geography. Thus, they 
control for the distance from the equator in their baseline specifications and also 

rate, and the initial abortion rate × t are selected in the abortion equation; and no variables are 
selected in the crime equation.
8 See also Donohue and Levitt’s (2008) response to Foote and Goetz (2008), which considers the 
same problem using a longer panel and finds similar results to Donohue and Levitt (2001) including 
state-specific linear time trends.
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consider specifications with different sets of geographic controls such as dummy 
variables for continents; see their table 4. 

As a complement to these results, we consider using high-dimensional methods 
to aid in estimating the model

	 log(​GDPpercapita​i​ )  =  α  ∙ ​ ProtectionfromExpropriation​i​  + ​ x​ i​ ′​ β  + ​ ε​i​ .

We use the same set of 64 country-level observations as Acemoglu, Johnson, and 
Robinson (2001). ProtectionfromExpropriation a measure of the strength of individual 
property rights that is used as a proxy for the strength of institutions, and ​x​i​ is a set 
of variables that are meant to control for geography. The underlying identifying 
assumption is the same as that employed in Acemoglu, Johnson, and Robinson 
(2001), which is that mortality risk is a valid instrument after controlling for geog-
raphy. Acemoglu, Johnson, and Robinson (2001) address this by assuming that the 
confounding effect of geography is adequately captured by a linear term in distance 
from the equator or a set of dummy variables. The use of high-dimensional methods 
allow us to replace this assumption by the assumption that geography can be suffi-
ciently controlled for by a small number of variables constructed from geographic 
information whose identities will be learned from the data.

To make use of high-dimensional methods, we note that the model in this 
example is equivalent to the three-equation system

	 log(​GDPpercapita​i​ )  =  α  ∙ ​ ProtectionfromExpropriation​i​  + ​ x​i​′ β  +  ​ε​i​

	​ ProtectionfromExpropriation​i​  = ​ π​1​  ∙ ​ SettlerMortality​i​  + ​ x​i​′ ​Π​2​  + ​ v​i​

	​ SettlerMortality​i​  = ​ x​i​′ γ  + ​ u​i​ , 

which yields three reduced form equations relating the structural variables to 
the controls:

	 log(​GDPpercapita​i​ )  = ​ x​i​′ ​   β​  + ​​  ε ​​i​

	​ ProtectionfromExpropriation​i​  = ​ x​i​′ ​​   Π​​2​  + ​​    v​​i​

	​ SettlerMortality​i​  = ​ x​i​′ γ  + ​ u​i​ .

We can thus select a set of control terms by carrying out variable selection for 
each of these three reduced form equations using the essential idea outlined 
in the discussion of selecting control variables. Valid estimation and inference 
for the parameter α can then proceed by conventional instrumental variable 
estimation using ​SettlerMortality​i​ as an instrument for ​ProtectionfromExpropriation​i​ 
with the union of variables selected from each reduced form as included control 
variables.
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It is important that a set of baseline variables be selected before variable selection 
methods are applied. Our target is to control for geography, so we consider a flex-
ible but still parsimonious set of variables constructed from geography. Specifically, 
we set ​x​i​ equal to the dummy variables for Africa, Asia, North America, and South 
America plus a cubic-spline in latitude (altogether, twelve variables for latitude).9

We report estimation results in Table 2. The first row of the table, labeled “First 
stage,” gives the estimate of the coefficient on “SettlerMortality” from the first stage 
regression of “ProtectionfromExpropriation” on “SettlerMortality” and a set of control 
variables defined by the column headings, with the corresponding estimated stan-
dard error provided in parentheses below the coefficient estimate. The second row 
of the table, labeled “Second stage,” gives the estimate of the structural effect of 
institutions on “log(GDPpercapita)” obtained by instrumental variables estimation 
of “log(GDPpercapita)” on “ProtectionfromExpropriation” using “SettlerMortality” as 
the instrument and controlling for variables as indicated in the column heading, 
with the estimated standard error again provided below the coefficient estimate 
in parentheses.

The first  column of the table labeled “Latitude” gives baseline results that 
control linearly for latitude. These results correspond to the findings of Acemoglu, 
Johnson, and Robinson (2001), suggesting a strong positive effect of improved 

9 Specifically, we include latitude, ​latitude​2​, ​latitude​3​, (latitude−.08​)​+​, (latitude−.16​)​+​, (latitude−.24​)​+​,  
((latitude−.08​)​+​​)​2​, ((latitude−.16​)​+​​)​2​, ((latitude−.24​)​+​​)​2​, ((latitude−.08​​)​+​)​3​, ((latitude−.16​)​+​​)​3​, 
((latitude−.24​)​+​​)​3​ where latitude denotes the distance of a country from the equator normalized to be 
between 0 and 1, the breakpoints in the latitude function were chosen by taking round numbers near 
the quartiles of latitude, and f (a) = ​(a)​+​ is shorthand notation for f (a) = (a)1(a > 0) where 1(∙) is the 
indicator function that returns 1 when the expression inside the parentheses is true and 0 otherwise.

T2

Table 2 
Effect of Institutions on Output

Latitude All controls Double selection

First stage − 0.5372 − 0.2182 − 0.5429
(0.1545) (0.2011) (0.1719)

Second stage 0.9692 0.9891 0.7710
(0.2128) (0.8005) (0.1971)

Notes: In an exercise that follows the work of Acemoglu, Johnson, and Robinson (2001), this table 
reports results from estimating the effect of institutions, using settler mortality as an instrument. The 
row “First Stage” gives the first-stage estimate of the coefficient on settler mortality obtained by regressing  
“​ProtectionfromExpropriation​i​” on “​SettlerMortality​i​” and the set of control variables indicated in the column 
heading.  The row “Second stage” gives the estimate of the structural effect of institutions on log(GDP per 
capita) using “​SettlerMortality​i​” as the instrument and controlling for variables as indicated in the column 
heading (see text for details). Each column reports the results for different sets of control variables. The 
column “Latitude” controls linearly for distance from the equator. The column “All controls” includes 
16 controls defined in the main text and in footnote 9, and the column “Double selection” uses the 
union of the set of controls selected by LASSO for predicting GDP per capita, for predicting institutions, 
and for predicting settler mortality. Standard errors are in parentheses.
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institutions on output with an underlying reasonably strong first-stage. This contrasts 
strongly with the second column of the table, which gives results controlling for all 
16 of the variables defined above and in footnote 9. Controlling for the full set of 
terms results in a very imprecisely estimated first-stage. The estimate of the effect  
of institutions is then unreliable given the weak first-stage.

The variable selection methods discussed in this paper are constructed to 
produce a reasonable trade-off between this perhaps overly flexible second case 
and the parsimonious first case by allowing flexible functions to be considered but 
only using terms which are useful for understanding the underlying reduced form 
relationships. The final  column of Table  2 labeled “Double selection” controls 
for the union of the set of variables selected by running LASSO on each of the 
three reduced form equations. The same single variable, the dummy variable 
for Africa, is selected in the reduced form equations for GDP and mortality, and 
no variables are selected in the reduced form for the expropriation variable. 
Thus, the final column is simply the conventional instrumental variable estimate 
with the Africa dummy included as the single control variable. The results are 
qualitatively similar to the baseline results, though the first-stage is somewhat 
weaker and the estimated effect of institutions is slightly attenuated though still 
very strong and positive. The slightly weaker first-stage suggests that the intuitive 
baseline obtained by controlling linearly for latitude may be inadequate, though 
the results are not substantively altered in this case. Again, we believe these results 
suggest that high-dimensional techniques may usefully complement the sets of 
sensitivity analyses that researchers are already doing (such as those underlying 
table 4 of Acemoglu, Johnson, and Robinson 2001). High-dimensional techniques 
can add rigor to these exercises and thus potentially strengthen the plausibility of 
conclusions drawn in applied economic papers.

Conclusion

The high-dimensional methods discussed in this paper provide a useful addi-
tion to the standard tools used in applied economic research. They allow researchers 
to perform inference about economically interesting model parameters in settings 
with rich confounding information. In these settings, dimension reduction is 
important if one hopes to learn from the data. We have emphasized variable selec-
tion methods for achieving this dimension reduction and outlined procedures that 
provide valid inference in simple, canonical models allowing for inevitable variable 
selection mistakes. In Belloni, Chernozhukov, Fernandéz-Val, and Hansen 2013, we 
provide an extended treatment showing that valid post-selection inference is gener-
ally available when estimation is based on orthogonal estimating equations.

We hope we have convinced you that data mining done correctly is the oppo-
site of “bad practice”: it an extremely useful tool that opens many doors in the 
analysis of interesting economic data. These tools allow researchers to add rigor 
and robustness to the “art” of variable or model selection in data analyses where 
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the aim is to draw inferences about economically meaningful parameters. We have 
only skimmed the surface of the growing set of statistical methods appropriate to 
this setting and anticipate that there will be many developments that further extend 
these tools to cover an increasing set of economically relevant settings. Ultimately, 
the practice of considering high-dimensional data more openly coupled with appro-
priate methodology should strengthen the plausibility of inferences drawn from 
data and allow a deeper exploration of the structures underlying economic data.
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AQ#	 Question	 Response

1.	 I changed “, including a 
constant” to “(plus a constant)” 
Is that correct? A constant isn’t a 
variable, so I was confused.

2.	 You had “small dimensional set of 
parameters” I changed to “small 
set” (“low-dimensional” would be 
another possible solution, but not 
as good). OK?

3.	 You had “construct estimator of 
” and I added the “an”. Correct? 
Just checking because it’s math so 
I’m not sure.

4.	 I added “For independent 
variables acit, “ before “Donohue 
and Levitt (2001).” Is that 
correct? If not where did they 
include these variables?

5.	 Please check this revision. The 
word “controls” sounded like 
a noun so I changed to “will 
control for”. Correct?
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