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This article suggests very simple three-step estimators for censored quantile regression models with a separation restriction on the
censoring probability. The estimators are theoretically attractive (i.e., asymptotically as ef� cient as the celebrated Powell’s censored
least absolute deviation estimator). At the same time, they are conceptually simple and have trivial computational expenses. They are
especially useful in samples of small size or models with many regressors, with desirable � nite-sample properties and small bias. The
separation restriction costs a small reduction of generality relative to the canonical censored regression quantile model, yet its main
plausible features remain intact. The estimator can also be used to estimate a large class of traditional models, including the normal
Amemiya–Tobin model and many accelerated failure and proportional hazard models. We illustrate the approach with an extramarital
affairs example and contrast our � ndings with those of Fair.
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1. INTRODUCTION

Econometrics and statistics have devoted substantial atten-
tion to censored data. This article analyzes censored quan-
tile regression (CQR) models with known censoring points,
suggesting a simple, easily implementable, and well-behaved
three-step estimation procedure. This is achieved by explor-
ing the structured envelope and separation restrictions on the
censoring probability. These restrictions preserve the plausible
semiparametric, distribution-free, and heteroscedastic features
of the model. We illustrate the procedure with an extramarital
affairs example.

1.1 Censored Quantile Regression Model

CQR models motivate the main effort of this article. The
CQR models allow covariates to shift location, scale, and the
entire shape of the distribution and permit distribution-free
speci� cations. As such, CQR models compare favorably to
the normal Amemiya–Tobin, Cox, Buckley–James, and other
approaches. (See Horowitz and Neumann 1987 and Koenker
and Gelling 2001 for excellent expositions.)

Quantile regression research began in the 1970s. In their
pathbreaking work, Koenker and Bassett (1978) introduced the
general quantile regression (QR) estimation that became the
most popular approach. Lehmann (1974) and Doksum (1974)
formulated the quantile inference paradigm for the p-sample
setting, arguing that location-shift models are insuf� cient to
summarize ubiquitous quantile shift effects. Hogg (1975)
suggested instrumental variable–type estimators. Many other
works also laid the foundation, including those of Amemiya
(1981), Powell (1986), Koenker and Portnoy (1987), Chaud-
huri (1991), Portnoy (1991), Jureckova and Prochazka (1994),
Chaudhuri, Doksum, and Samarov (1997), Buchinsky and
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The conditional quantile function of the dependent real vari-
able Y given covariates X in òd , QY —X , is the inverse of the
conditional distribution function FY —X : QY —X 4’5 D infv2ò8v 2
FY —X4v5 > ’9. The classical linear model of QY —X ,

QY —X 4’5 D X 0‚4’51 (1)

is conceptually appealing, incorporating classical linear
location-scale models as important special cases. We assume
that X includes a constant and note that it may incorporate
a wide array of polynomial and alternative transformations of
the observable covariates.

Equivariance to monotone transformations is an important
property of quantile regression models (see Powell 1986).
For a given monotone transformation ´c4Y 5 of variable Y ,
which may depend on other variables C , Q´c4Y 5—X1 C4’5 D
´c4QY —X1 C 4’55. Transformation equivariance naturally leads to
Powell’s CQR model. In this model, the latent variable Y ü

i is
left censored by the observable, possibly random, censoring
points Ci, and we observe

Yi
D Y ü

i
_ Ci1 Xi1 Ci1 „i

D 14Yi
D Ci50 (2)

Y ü
i is assumed to be conditionally independent of the censor-

ing point Ci; that is, for all y 2 ò,

P4Y ü < y—Xi1Ci5 D P4Y ü < y—Xi51 so that

QY ü —X1 Ci
4’5 D X 0‚4’50

(3)

Conditioning on Ci , assumption (3) and the transformation
equivariance yield the following CQR model (see Powell
1986):

QYi —Xi 1 Ci
4’5 D X 0

i‚4’5 _Ci0 (4)
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The assumption that censoring points are known for all i is
realistic in many (but clearly not all) situations. For example,
in the famous Stanford survival dataset, we can compute all
censoring points, because we know the transplant and the last
follow-up dates for each i. In the extramarital affairs example,
the censoring point is 0, Ci

D 0. In this article we do not con-
sider unobserved censoring points; Zhou (1992), Yang (1997),
Portnoy (2001), and Honoré, Khan, and Powell (2002) have
done important work in this direction.

In fact, any model like (4) can be reduced to a model with
a � xed censoring at 0. Subtracting Ci from Yi , and letting
eYi

D Yi
ƒCi , eXi

D 4Xi1 Ci5, and Q‚4’5 D 4‚4’501ƒ150, by equiv-
ariance,

QeY —X1 Ci
4’5 D X 0‚4’5 _ Ci

ƒ Ci
D eX 0 Q‚4’5 _ 00 (5)

In this model, one coef� cient in front of the regressor Ci is
known to be ƒ1 and need not be estimated. Thus we may set
Ci

D 0 in the sequel.

1.2 The Estimation Problem

Suppose that we have n observations 8Yi1 Xi9. Sample
regression quantiles are de� ned as the solution to the problem

min
‚2òd

nX

iD1

�’ 4Yi
ƒ X 0

i‚51 (6)

where �’4x5 ² 4’ ƒ 14x µ 055x (see Koenker and Bassett
1978). The median or least absolute deviation estimator is a
very important special case with ’ D 1=2. In the censored
model (4), replacement of the linear form with the partially
linear form,

min
‚

nX

iD1

�’ 4Yi
ƒ X 0

i ‚ _ Ci51

leads to the celebrated Powell estimator. Powell (1986) estab-
lished the asymptotic normality of this estimator and devel-
oped an inference theory.

Despite its intuitive appeal, this estimation method has not
become popular in empirical research, because of its well-
known computational dif� culty. We know of only a few
applications of censored median regression in econometrics.
In contrast, the Amemiya–Tobin and Cox approaches have
found hundreds, if not thousands of applications, (see, e.g.,
a series of remarkable works on computations in Fitzen-
berger 1997a, b, Fitzenberger and Winker 2001). Buchinsky
(1994) and Fitzenberger (1997a) designed ingenious compu-
tational algorithms, which Fitzenberger (1997a) recommended
for low degrees of censoring while admitting that “all practi-
cal algorithms perform quite poorly when a lot of censoring
is present.” (see, e.g., Fitzenberger 1997a, p. 15). In the case
of 50% censoring, one regressor, and small sample n D 100,
in several important designs (e.g., A, B), the frequency of
convergence to the Powell estimator ranged from 5% to 37%
for various algorithms. For some of the other designs, results
were better, with convergence frequencies ranging from 30%
to 70%. These results were obtained for the case of one regres-
sor. In case of many regressors and larger n, the results can be
expected to be worse. Fitzenberger’s conclusion is well sub-
stantiated by a very extensive Monte Carlo experiment with

numerous different practical designs. All experiments involved
only one regressor. Additional regressors only worsen the per-
formance. In many empirical applications, the censoring is
quite heavy and dimensionality is also high. For example, in
the affairs example of Section 3, the degree of censoring is
68%, in the well-known Stanford transplant dataset it is 37%.
The number of regressors in these two datasets are 9 and 3.
Arguably, an important goal is the design of both theoretically
elegant and implementable, practically attractive estimators. It
is this requirement that makes the problem at hand particularly
challenging.

Motivated in part by such limitations, recent remark-
able work by Buchinsky and Hahn (1998) and Khan and
Powell (2001) suggested a number of alternative estimators.
Buchinsky and Hahn (1998) proposed � rst estimating the
propensity score h4Xi5 D P4„i

D 1—Xi5 by a nonparametric
kernel regression, then selecting a subset of the whole sam-
ple, where 8i 2 h4Xi5 > 1ƒ’9, [i.e., those observations i where
the conditional quantile line is above the censoring point 0,
X 0

i‚4’5 > 0], and then using a QR on the selected sample.
Analogously, Khan and Powell (2001) proposed using any of
the following three methods to perform the � rst-stage selec-
tion: maximum score estimators of the regression quantile,
nonparametric kernel propensity score estimator for h4Xi5, and
the nonparametric locally linear conditional quantile estimator
of Chaudhuri (1991). The two-stage estimators are somewhat
less ef� cient than the Powell estimator because of smooth-
ing and trimming. Ideologically, these estimators share the
ideas behind the construction of the Powell estimator, except
that Powell imposed simultaneity to obtain his single-step
estimator.

The suggested � rst stages are attractive but are prac-
tical only in low dimensions and have slow convergence
rates. Local kernel smoothers apply to (suf� ciently) contin-
uous variables only, whereas many applications, including
ours, have many (suf� ciently) discrete covariates. This is
very confounding. Of course, asymptotic theory suggests that
the

p
n-consistent estimates could be obtained by averaging

within the cells. In the affairs example, there is on average
6800=4855 02 observations per cell; in the heart example,
69=415� 225 1. Thus such an asymptotic approach is pre-
cluded here. The computational burden is very substantial in
high dimensions and large datasets for all of the � rst-stage
estimates. As a result, we simply cannot use any of the avail-
able estimators in our example and many other real-life appli-
cations because of heavy censoring, high dimensionality, and
the polychotomous nature of numerous regressors. From a
constructive angle, however, we stress that the aforementioned
estimators can be potentially fruitful in many cases.

2. SIMPLE THREE-STEP CENSORED QUANTILE
REGRESSION ESTIMATORS

The current approach is based on the structured modeling
restrictions that we put on the censoring probability. These
restrictions do cause a reduction in generality, but only a small
one, because they still incorporate the Amemiya–Tobin model,
many Cox models, and accelerated failure time models as very
important special cases while preserving the heteroscedasticity
and distribution-free character. The end result is that an easily
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computable (comparable to linear least squares), well-behaved,
robust estimator is available. It offers not only an ef� cient,
practical way to estimate the general CQR models, but also a
good way to estimate important traditional models.

2.1 The Procedure

This section describes the steps of the estimator.

Step 1. Estimate a parametric classi� cation (probability)
model,

„i
D p4 PX 0

iƒ5C …i1

where „i is the indicator of not-censoring. PXi indicates desired
transforms of 4Xi1 Ci5. Next, select the sample J0 D 8i 2
p4 PX 0

i
Oƒ5 > 1 ƒ ’ C c9, where c is strictly between 0 and ’ and

not too small. The practical choice of p is discussed later.
A sensible rule for choosing c is to compare the size of the
selected sample J4c5 D 8i 2 p4 PX 0 Oƒ5 > 1 ƒ ’ Cc9 for c D 0 and
other values. Choosing c D qth quantile of all p4 PX 0

i
Oƒ5 such

that p4 PX 0
i

Oƒ5 > 1 ƒ ’ appears to be sound, because it gives a
control of percentage of observations from J405 to be thrown
out: #J 4c5=#J 405 D 41 ƒ q5� 100%. This rule, with q D 10%,
worked well in simulations. Another way to pick the trimming
constant as well as a more suitable estimator among various
k-step estimators is to evaluate them using the Powell crite-
rion function. The one yielding the minimal value could be
used. This suggestion was made by an anonymous referee.

Step 2. Obtain the initial (inef� cient) estimator O‚04’5 by
the standard QR,

min
‚

X
i2J0

�’ 4Yi
ƒ X 0

i ‚50 (7)

Next, select J1
D 8i 2 X 0

i
O‚04’5 > Ci

C „n9, where „n is a small
positive number such that

p
n� „n

! ˆ and „n
& 0. In prac-

tice, „n could be chosen like c, but the percentage of discarded
observations should be smaller. Intuitively, this step asymp-
totically selects those observations that have covariate values
4Xi1Ci5 such that X 0

i‚4’5 > Ci, building up the ef� ciency of
the next step.

Step 3. Run QR (7) with J1 in place of J0. In empirical
work, a sensible robustness diagnostic is to check whether
J0 JI . If a large proportion of observations J0 are not in JI ,
then one should revise the trimming constants and possibly
also the separation models or the conditional quantile models
in question.
Denote this three-step estimator by O‚14’5.

Step 4. (Optional). Repeat step 3 one or more times, using
sample JI

D 8i 2 X 0
i
O‚Iƒ14’5 > Ci

C „n9 in place of J1. 6I D
21 31 : : : 7.

In step 4, each repetition involves selecting JI
D 8i 2

X 0
i

O‚Iƒ14’5 > Ci
C„n9, and then obtaining O‚I 4’5 from (7) using

the sample JI . Denote the k-step estimators as O‚I 4’5.
Further details are as follows. In step 1 we may use, for

example, logit, probit, extreme value, linear (polynomial), or
any other model that � ts the data 8„i1Xi1Ci9 well. PXi denotes
a suitable transform of Xi. For example, PXi may consist of
Xi1 Ci, and its squares (power series and regression spline

approximations). In general, this gives an inconsistent estima-
tor of the true propensity score

h4Xi1Ci5 ² P4„i
D 1—Xi1Ci51

but the inconsistency is not important as long as the misspec-
i� cation is not too severe.

Indeed, the goal of step 1 is to select some, and not nec-
essarily the largest, subset of observations where h4Xi1Ci5 >
1 ƒ ’, that is, where the quantile line X 0

i‚4’5 is above Ci , so
as to obtain a consistent but inef� cient estimator O‚04’5. For
this task to be carried out, it suf� ces, but is not necessary, that,
say, p4 PX 0

i ƒ05 ƒ c is a lower bound on h4Xi1 Ci5,

a.s. p4 PX 0
iƒ05 ƒ c < h4Xi1Ci51 where ƒ0 ² plim Oƒ1 (8)

and it is nontrivial, meaning that the selected set J0 is suf-
� ciently rich; matrix EXiX

0
i18i 2 J09 is asymptotically invert-

ible. Larger c and better model p4¢5 simplify the selection
task. The envelope restriction may further be replaced by a
much weaker condition—the separating hyperplane restriction
in Theorem 1 (see Fig. 1 for motivation).

The foregoing construction assumes that the estimator Oƒ is
reasonable and converges to a value ƒ0 that minimizes a sensi-
ble distance between h4Xi5 and the model p4 PX 0

iƒ5. For exam-
ple, Oƒ may be de� ned by minimizing

Pn
iD16„i

ƒ p4 PX 0
iƒ572,

in which case, under standard conditions, Oƒ0 converges to
ƒ0 that solves minƒ E6h4Xi5 ƒ p4 PX 0

iƒ572. Alternatively, quasi–
maximum likelihood methods may be used. In the empirical
section we used a polynomial logistic model and estimated it
by the conditional maximum likelihood estimator (MLE).

Another attractive choice is the Fisher–Rao discriminant
analysis. The discriminant prospective is justi� able, as follows
(treating Ci as a component of X). If Xi

—8„i
D 19 has density

g14x5 and Xi
—8„i

D 09 has density g04x5, then, by Bayes’s rule,

P4„i
D 1—Xi

D x5 D q1g14x5

q1g14x5C q0g04x5
1

where q1
D P4„i

D 15 D 1 ƒ q0. Approximating g14x5 and
g04x5 by normality with different means and variances leads
to the classical logistic linear-quadratic discriminant analysis
(LQDA) (see, e.g., Amemiya 1985, p. 282). Other forms of
g1 and g0 can also be used, but even the normality assump-
tion has been known to produce good results (see Efron 1975;
Press and Wilson 1978; Amemiya and Powell 1983). LQDA
was also among the top 3 classi� ers for 11 of 22 commercially
important datasets in the Statlog project (Michie, Spiegelhal-
ter, and Taylor 1994), outcompeting many sophisticated clas-
si� ers.

Formally, we do not con� ne ourselves to a particular esti-
mator. Instead, an assumption such as (8) or its generalization
will be required to hold.

Under conditions to be stated, O‚14’5 is asymptotically nor-
mal with variance equal to that of the Powell estimator. Thus,
starting with a good subset of observations, only two recompu-
tations of QR suf� ce to obtain the Powell-ef� cient estimator.
Estimators O‚I4’5 are also asymptotically normal with variance
equal to that of the Powell estimator.

The QR iterations in step 4 are somewhat analogous to
those in the pioneering and remarkable ILPA algorithm that
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Censoring Point

Y

X

Prob
of
Not Censoring

Propensity
Score

Uncensored Conditional
Quantile Function

1- tauO S1 S1’
S2’

in Step 1

Estimated  (Linear) "Envelope"

QF in step 2
Estimated

S2

Figure 1. How It Works. The solid line depicts the conditional quantile function and the propensity score. The ’ gure corresponds to (5) and
uses notation de’ ned there. The propensity score equals 1 - ’ for the value of eX such that conditional quantile line eX 0 Q‚(’ ) D 0. The propensity
score is above 1 - ’ for eX such that eX 0 Q‚(’) > 0, and below 1 - ’ if eX 0 Q‚(’ ) < 0. Once a sample is such that eX 0

i
Q‚(’) > 0, the conditional quantile

function of the uncensored model can be estimated by the linear QR. The Initial step involves ’ tting an envelope of the propensity score, and
selecting all i , such that eX i 2 [ S1,S10] . Note that the “envelope” is not correct, but this is irrelevant, because it acts as a good separating
hyperplane selecting a subset of i such that eX 0

i
e‚(’) > 0. The second step ’ ts the QR line, which is used to select all i : eXi 2 [ S2, S20] . The third

step uses the selected sample, which asymptotically gets close to the ideal, i : eXi 2 ( O, S20] .

Buchinsky (1994) designed for the Powell problem. (See
Buchinsky 1994 and Fitzenberger 1997b for details.) The basic
idea is to start at a value ‚4’5, say 0, and then proceed
with iterative linear programming computations until conver-
gence is reached. The convergence to the Powell estimator is
not guaranteed and can be quite infrequent (see Fitzenberger
1997b and earlier discussions). The convergence to a local
optimum does not lead to a consistent estimator (see Powell
1986). However, going beyond the third or fourth step is not
desirable on both computational and statistical grounds, based
on our Monte Carlo experience. Our results show that given
the � rst classi� cation step, only two recomputations of quan-
tile regression lead to an ef� cient estimator (relative to the
Powell estimator). In terms of computational aspects, the faster
interior point algorithms of Portnoy and Koenker (1997) may
be preferred to linear programming.

Finally, because of the distributional equivalence with the
Powell CQR estimator, all of the inference procedures devel-
oped by Powell apply without modi� cations. The bootstrap
inference of Bilias, Chen, and Ying (2000) can also be very
useful in practice. All inference procedures are as for the stan-
dard quantile regression procedure, with the only difference
being that the selected (rather than complete) sample is used.
Therefore, a user of the standard QR software need not make
any modi� cation—the standard errors and con� dence intervals
produced by the last step QR routine are all valid. QR software
for R and S-plus environments is available from Statlib or

http://www.econ.uiuc.edu/. Other available software includes
QR modules in STATA, Xplore, and TSP.

In summary, the estimation procedure has two very distinct
features: a very simple, parametric classi� cation � rst step and
the additional third step. The estimator is as ef� cient as the
Powell estimator.

2.2 The Model Beneath: How Restrictive is It?

The canonical CQR model in (4), together with the envelope
restriction (8), can be thought of as a model. The envelope or
the separation assumption in Theorem 1 is a critical ingredient
to yield the simplicity. How restrictive is it?

Treat Ci as a component of Xi to simplify notation. The
popular Amemiya–Tobin model assumes that conditional on
Xi, Yi is conditionally homoscedastic normal. Then propen-
sity score h4X5 is ê4X 0�5 for the normal cdf ê. A signi� -
cantly more general CQR model can be immediately obtained
by simply assuming that ê4 PX 0ƒ05 ƒ c is a nontrivial enve-
lope of an unknown propensity score h4X5, where, say, PX D
4X1X21 : : : 5. Such an assumption imposes neither normal-
ity nor conditional homoscedasticity nor a location-scale sub-
model. Similarly, if the benchmark is the Weibull proportional
hazard model from duration analysis, then h4X5 D â4X 0�5

for the Gumbel cdf â . A much more � exible CQR model is
obtained by assuming that â4 PX 0ƒ05 ƒ c is a nontrivial enve-
lope of the propensity score h4X5.

More generally, Theorem 1 replaces the intuitive envelope
restriction by a weaker separation restriction, which requires

http://www.econ.uiuc.edu/


876 Journal of the American Statistical Association, September 2002

that once p4 PX 0ƒ05 is above a threshold c, h4X5 > 1 ƒ ’. This
assumption allows the envelope to be an incorrect lower bound
of the propensity score, but requires only that it do a good
job selecting a correct subset of observations. Figure 1 illus-
trates the situation. For well-behaved models, the further away
from 0 the conditional quantile function, the further away
from 1 ƒ ’ the propensity score function, and the easier it
is to carry out the classi� cation. Classi� cation problems of
this kind are a subject of the modern classi� cation analysis,
(e.g., Breiman, Friedman, Olshen, and Stone 1984; LeBlanc
and Tibshirani 1996; Ripley 1996; Vapnik 2000). Therefore,
in principle, many elaborate, structured strategies for the � rst
classi� cation step are available.

In summary, the model studied here is more restrictive than
the canonical Powell’s CQR model, yet it leaves the general,
plausible features of the CQR intact. This model is also con-
genial from many other prospectives. The estimator is easily
computable and applicable to such examples as extramarital
data in section 3 (high censoring, very large sample, many cat-
egorical regressors) or Stanford heart data (small sample, high
censoring, categorical regressors). It does well in Monte Carlo
experiments and sensibly in real life examples. We believe that
this estimator will help proliferate the presently scarce appli-
cations of the CQR models.

2.3 Large Sample Properties

The following assumptions are made in addition to (1)–(5).

Theorem 1. Suppose that for ui4’5 ² Y ü
i

ƒ X 0
i‚4’5 and all

’ of interest, the following assumptions hold:

(a) 84Xi1 Y ü
i 1Ci59 are iid; ui4’5 has density fui4’54u—Xi5,

which is bounded from above, away from 0, and continuous,
uniformly in u near 0 and in Xi; ui4’5 has ’ th conditional
quantile at 0; the support of the distribution of 4Xi1Ci5, X, is
compact; and Xi includes a constant.

(b) H‡4’5 ² Efui4’540—Xi5XiX
0
i16h4Xi1Ci5 > 41 ƒ ’5 C ‡7 is

positive de� nite for a � xed constant ‡ 2 401 ’5.
(c) We know a pair of the model p and trimming constant

c that form a nontrivial envelope or a separating hyperplane
of the propensity score, 9 c > 01 v > 0,

p PX 0
i ƒ

¢
> 41 ƒ ’5 C c implies h4Xi1Ci5 > 41 ƒ ’5 C v a.s.1

for any ƒ in a neigborhood of ƒ0 ² plim Oƒ. EXiX
0
i18p4 PX 0

iƒ05 >
41 ƒ ’5 C c9 is invertible, p4¢5 is strictly increasing and con-
tinuous, and PXi is a known function of Xi and Ci.

(d) P4eX 0
i� > v5 is Lipschitz in � uniformly in v, for � in an

open neighborhood of ƒ0 or ‚4’5 and eXi denoting PXi and Xi .

Under the stated assumptions, as „n
�

p
n ! ˆ and „n

# 0,

p
n4 O‚I4’5 ƒ ‚4’55

dƒ! N 01Hƒ1
0 4’5å04’5Hƒ1

0 4’5
¢

for � nite I ¶ 1, where å04’5 ² ’41 ƒ ’5E4XiX
0
i18h4Xi5 >

1 ƒ ’95. Furthermore, the same holds if any other consis-
tent initial estimator O‚04’5 is used in step 2, provided that
sequence „n

# 0 and — O‚04’5 ƒ ‚4’5—=„n

pƒ! 0. Furthermore,
the joint asymptotic distribution of several estimators for

‚4’j5, j µ J is asymptotically normal, with covariance given
by Hƒ1

0 4’l5å04’l1 ’j5H
ƒ1
0 4’j5, where å04’1 ’ 05 ² 64’ ^ ’ 05 ƒ

’’ 07E4XiX
0
i 18h4Xi1 Ci5 > 41 ƒ ’5 _ 41 ƒ ’ 0559.

Remark 1. Assumptions a and b are standard. Assump-
tion c allows the parametric “probability” model p4x0ƒ05 to be
misspeci� ed (see Fig. 1). Assumption c rationalizes the para-
metric � rst step, as we have discussed. This assumption is a
main restriction and should not be downplayed, as discussed
in the preceding section.

Remark 2. The iid assumption on 4Xi1 „i1 Ci5 can be
relaxed at a notational cost. All that is needed is that data
are independent and the limit empirical distribution function
of these variables exists. Under such conditions, laws of large
numbers apply, and Oƒ would still converge to a � xed limit ƒ0.

Remark 3. No assumptions are made about the rate of
convergence of Oƒ to its probability limit ƒ0 or of O‚04’5 to
‚4’5. The trimming device is designed to eliminate the bias,
and stochastic equicontinuity eliminates the impact of the
variance of the preliminary steps. Assumption (d) requires,
for example, the distribution of PX 0

i� to respond smoothly to
changes in � in the vicinity of ƒ0. The Lipschitz condition can
be replaced by the weaker Holder continuity.

Remark 4. Treating Ci as a subcomponent of Xi , it is use-
ful to comment on what happens when the number of param-
eters in the separation model �4x5 D p4 Px4x50ƒ5ƒc is increas-
ing with n, for instance, if we model Pxn4x50ƒn as a power
series or spline series. The result is preserved as long as
x 7! p4 Pxn4x50 Oƒn5 converges in ä uniformly to a � xed function
x 7! p4x5, where ä is a subset of functions in C r

M 4X5, (see
van der Vaart and Wellner 1996, p. 154) with r > dim4x5=2,
that also have the property that P4™4X5 > c5 is uniformly Lip-
schitz in ™ over ä with respect to the L24P5 metric. Note that
the resulting class of envelope models ° ² 8x 7! 14�4x5 > c51
� 2 ä1 c 2 601 179 is Donsker. This is true because the log of
L24P5 bracketing number of ° is of the same order as that for
¦ D 8x 7! �4x5 ƒc1� 2 ä1 c 2 601 179 by monotonicity of the
indicator function and the Lipschitz property. The bracketing
numbers for ¦ are given in example 19.9 of van der Vaart
(1998) or corollary 2.7.4. of van der Vaart and Wellner (1996).
Hence if r > dim4x5=2, then the bracketing entropy integral
for ° is � nite, and the Donsker property holds in view of a
constant envelope. Furthermore, the Donsker property is pre-
served when ° is multiplied by a bounded random variable,
as required in the proof.

2.4 Finite-Sample Properties

Table 1 reports the result of a small Monte Carlo exper-
iment. The setup of our simulation is similar to that of
Buchinsky and Hahn (1998). The model is a standard location-
scale model with an error term hit by a linear-quadratic het-
eroscedastic scale, for Xi

D 411 eXi5
02 Y ü

i
D X 0

i‚ C …i . We draw
eXi

2 ò5 from independent standard normal distributions, trun-
cated as 8eXi 2 ˜Xi

˜ˆ < 29. The error term has the multiplicative
heteroscedasticity structure, …i

D ui
� 41 C 05

P5
jD14eXij

C eX2
ij55,

where ui N 401 255. The true parameter vector is chosen
at 411 11 051 ƒ11ƒ051 0255, and the censoring point is ƒ075,
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Table 1. Monte Carlo Simulation Results With Five Regressors for the .50 Quantile (1,000 Repetitions)
Normal Heteroscedastic Results

Intercept Slope

2-step 3-step 5-step BHü ILPAü 2-step 3-step 5-step BHü ILPAü

n D 100
RMSE 5008 2015 2079 3025 3093 2069 1089 2035 2025 3005
Mean bias 4016 1046 1059 1038 07 02 ƒ008 007 021 043
MAE 4023 107 1086 1089 1055 2002 1039 1064 1009 1011
Median bias 3071 1043 1033 1054 1022 003 ƒ043 ƒ027 0 ƒ012

n D 400
RMSE 2028 1005 1021 1028 1031 1013 088 093 077 089
Mean bias 1094 064 075 062 074 ƒ018 ƒ028 ƒ018 ƒ024 ƒ038
MAE 1099 082 088 08 081 089 069 072 051 069
Median bias 1083 066 071 064 078 ƒ019 ƒ043 ƒ03 ƒ03 ƒ054

NOTE: Sample sizes are denoted by n(1001400). The last two columns are from Buchinsky and Hahn (1998, table 2). BH denotes
their estimator Cva, which uses a cross-validated bandwidth adjusted to the undersmoothing assumption. Powellü (ILPA ü ) is the Powell
estimator or, more precisely, an estimator obtained by iterated linear programming.

which produces roughly 45% censoring. We use X and X2 in
the parametric propensity score regressions. We experimented
with different probability models p, including logit, probit,
and linear models. However, the type of probability model
used has very little effect on the performance of the estimators.
Therefore, in Table 1 we report the results only for the logit
selection model. Note that due to the heteroscedasticity error
structure, even the probit model is not consistent with the true
propensity score. We report the initial step, the � rst step, and
the third step estimators and compare them to the Buchinsky
and Hahn (1998) estimator and to the Powell estimator.

Notably, the results from the Monte Carlo simulation show
that for sample size 100, the 3-step estimator outperforms all
other estimators in terms of root mean square errors (RMSEs).
Its mean absolute deviation (MAE), its mean and median
biases, are comparable to that of other estimators. Iterating to
step 5 increases both the RMSE and the MAE, with the bene� t
of reducing both mean and median biases. Overall, the 5-step
estimator still compares favorably to both the Buchinsky and
Hahn (1998) estimator and the Powell estimator. The initial
inef� cient estimator does fairly poorly, as expected. In a large
sample, n D 400, the 3-step estimator and the Buchinsky and
Hahn estimator perform equally well and are both more favor-
able than other estimators in all dimensions. To conclude, the
3-step estimator does better in small samples and quite well
in large samples.

3. DETERMINANTS OF EXTRAMARITAL AFFAIRS:
A CENSORED QUANTILE REGRESSION ANALYSIS

Extramarital affairs, an important social phenomenon, have
received much attention by anthropologists, psychologists,
evolutionary biologists, sociologists, and economists (see e.g.,
Fair 1978; Reiss, Anderson, and Sponaugle 1980; Miller and
Klein 1981; Cronk 1991; South and Lloyd 1995.) We present
a retrospective analysis of the Redbook dataset on extramarital
affairs, � rst analyzed by Fair (1978). We contrast our anal-
ysis mainly with his data and model-analytic � ndings. Fair
(1978) presented a utility-based optimization model of the
time spent in the affair (affair intensity) as determined by pref-
erence for diversity, value of goods consumed in and outside

marriage, labor and nonlabor income, and time already spent
with the spouse and paramour.

3.1 Data

The dataset was collected by Redbook magazine. Fair
(1978) described the collection procedures as well as the
place of this dataset among only few similar datasets. The
dataset covers 6388 � rst-time married women, of which 68.5%
reported to have had no extramarital affairs. This presents
a very high degree of “censoring.” We de� ne the following
variables similar to Fair (1978) to facilitate comparisons with
Fair’s statistical and model-analytic � ndings:

¡ Level of Affair, dependent variable, de� ned as the number
of different partners outside marriage times the approxi-
mate number of relationships with each partner, divided
by the number of years in the marriage. For 6805% of the
respondents, it is equal to 0. For the rest of the respon-
dents, the density function is sketched by the histogram
and a kernel estimator in Figure 2.
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Figure 3.

Simple histograms of the following regressors are given in
Figure 3:

¡ Marriage Rating: respondents’ rating of their marriage, on
a scale of 1 to 5.

¡ Age, Years Married, Number of Children.
¡ Religiousity: respondents’ rating of their religiosity, on

the scale from 1 to 4.
¡ Education: 900, 1200, 1400: grade school, high school, and

some college; 1600, 1700, 2000: college graduate, some
graduate school, and advanced degree.

¡ Occupation, Husband’s occupation: Hollingshead’s socio-
economic status of occupation: 6, professional with
advanced degree; 5, managerial, administrative, business;
4, teacher, artist, etc., 3, white collar (administrative, cler-
ical); 2, blue colar (farming, factory); 1, student.

3.2 Models

The CQR model assumes the following form (with Ci
D 0):

QY —X 4’5 D 4�4’5 C X 0ˆ4’55 _ 00 (9)

That is, the conditional quantile function of the affair level
is either 0 or linear. This functional form is appealing, as we
have discussed. We also consider a standard normal model,

QY —X4’5 D 4� C‘ êƒ14’5 C X 0ˆ5 _ 01 8 ’1 (10)

where êƒ14’5 is the inverse of the standard normal distribu-
tion. Another benchmark model is the accelerated failure time
model [for exp4Y 5] from survival analysis,

QY —X 4’5 D 4� C‘ F ƒ14’5 C X 0ˆ5 _ 01 8 ’1 (11)

where F is an unspeci� ed distribution function. It is easy to
estimate the quantile shift effects ˆ in this model by taking

or averaging any of the estimates of ˆ4’5 in the CQR model.
This will not be necessary, because neither this nor the normal
model is supported by the data.

3.3 Estimation and Model Comparisons

To construct the initial envelope/classi� er, we examined the
pairwise plots of Y versus X . Many of covariates appeared
to be associated with a higher dispersion of Y , which led us
to consider a number of polynomial powers in the logistic
model p4 Px0 Oƒ5; Px consisted of x4i5, x2

4i5, x3
4i5, and certain inter-

actions x4i5x4j5 that appeared to signi� cantly improve the � t.
The dimension of Px was 18, which is plausible in view of the
large sample size. Sensitivity of the � nal estimates to further
increases in the complexity of the envelope was negligible.
The trimming constant c was set to about 01 according to the
rule described in Section 2, and Oƒ was estimated by the con-
ditional MLE.

Due to heavy censoring, it was not possible to estimate
all quantile coef� cients Ô4’5. Identi� cation depended on the
nondegeneracy of the selected design matrix. This condition
prevented considering quantiles lower than 04.

The results are summarized graphically in Figure 4. The
solid line denotes the 3-step estimates of O‚4’5 D 4 O�4’5,
Ô4’5050, ’ 2 8041 : : : 1 099, and the shaded region depicts the
pointwise 95% con� dence intervals. The dashed line presents
the MLEs Ô of the quantile shift effects in the normal model
(10) obtained by Fair (1978).

Ô4’5 varies signi� cantly across quantiles, especially at
higher ones. This presents an evident violation of homoscedas-
ticity assumptions. Therefore, both model (10) and model (11)
are strongly unsupportive of the data. It is still interesting
to brie� y comment on the behavior of MLEs of the normal
model. It is well known that the estimates are not robust to vio-
lations of both normality (e.g., heavy tails) and homoscedas-
ticity (see Hurd 1979; Goldberger 1983 for proofs and simu-
lation studies). In our example, we have both. It is interesting
that for � ve out of eight variables, the estimates Ô

j seem to
correspond to the extreme quantile estimates Ô

j4’51 ’ 09. For
the Marriage Longevity variable, in contrast, the estimate Ô

j is
far away from any of Ô

j4’5. Furthermore, in several cases, the
sign of Ô

j4’5 changes across ’, so Ô
j understandably cannot

even match the direction of the quantile shift effect, because
if the normal model (10) or location-shift model (11) were
adequate, then it would have been the case that Ô4’5 Ô for
all ’. Thus Ô

j can hardly be given any meaning in the present
setting. This � nding is an empirical illustration of the earlier
discussion on the breadth and � exibility of the CQR model.

3.4 Analysis

The quantile shift effects estimates Ô4’5 are given in
Figure 4. The Religiosity effect is expectedly negative at all
quantiles of affair intensity and is especially strong at very
high quantiles. The Education quantile shift effects are nega-
tive and strongly negative at high quantiles. Note that Educa-
tion and Religiosity are weakly correlated (.14), but because
we condition on Religiosity, the Education effects are net of
this and other factors. Education effects are inexplicable within
the Fair’s model, yet they appear to have a clear meaning in
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Figure 4.

view of the relational perspectives toward a paramour among
the more intelligent and educated individuals (Reiss 1980).

The quantile shift effects for Age are nonpositive across
all presented quantiles. Age effects are negative at the middle
quantile and strongly negative at high quantiles. This means
that the younger respondents are more likely to engage in an
affair holding everything else � xed.

Women with an Occupation of higher socioeconomic sta-
tus are relatively more likely to engage in affairs, especially
more intense ones. Explanations for this are to be looked at.
One view is that such status creates an interactional advan-
tage, increasing the hazard of an affair and subsequent mari-
tal dissolution (South and Lloyd 1995). Fair’s analytic model
does not necessarily yield predictions about the direction of
the status effect (because he treats the status as proxy for labor
income). To the extent that higher status is associated with
nonlabor income, or to the degree that income effects domi-
nate substitution effects, Fair’s model may predict a positive
effect.

Husband’s Occupational Status has a very small positive or
a negligible effect across almost all quantiles, except at very
extreme ones, where it becomes very negative. (It is positive

but insigni� cant at .95.) Fair’s analytic model predicts the pos-
itive effects of a husband’s status (income) on the affair level,
because a higher value of goods consumed in marriage causes
wives to substitute labor activities for time spent with family
and paramour. The Fair model, however, ignores the negative
value of the dissolution option, which is real, as other studies
have pointed out (South and Lloyd 1995). Our results suggest
that Fair’s model explains only the middle quantiles and does
not apply to the high quantiles. It seems plausible that incor-
poration of the dissolution risk into the Fair model, more along
the lines of Becker’s (1968) crime and punishment model, can
make it conform to the present � ndings.

The effect of Marriage Longevity is slightly positive at .6–.8
quantiles and strongly negative at high quantiles. Fair postu-
lated that marriage longevity may positively relate to diversity
considerations, leading to an increased affair level. However,
it is not entirely clear why the effect is very negative at high
quantiles. This may relate to the fact that only married and
undivorced respondents were selected to the sample, so that
marriage longevity correlates with the marriage match quality
and thus has a deleterious effect on affairs. Such an outcome
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would be a clear prediction of the search (for spousal alterna-
tives) theory.

Our � nding thus partially challenges both the analytic and
statistical predictions of Fair (1978) derived from the normal
model.

4. DISCUSSION

This article had two goals. One goal was to offer an empir-
ical CQR analysis of the determinants of a very serious social
phenomenon—extramarital affairs. This is an important topic
within sociology, psychology, and economics of marriage and
family. To our regret, we found no previous implementable
estimators that can be used in the settings of heavy censoring,
many polychotomous or continuous regressors, and large or
small samples. Such datasets seem to prevail in many areas of
applied statistics. This justi� ed the other goal, the pursuit of
a practical, implementable, well-behaved estimator. The sug-
gested estimator can be used to robustly estimate the CQR
models, as well as many traditional models.

APPENDIX: PROOF OF THEOREM 1

Here, C , const, and K are generic positive constants, and Ci

denotes the censoring point. The � rst part of the proof, up to (A.2),
uses convexity arguments. The remainder of the proof shows that the
estimated selector does not affect the asymptotic distribution, invok-
ing the empirical process arguments.

Part 1. First, consider O‚04’5. The rescaled statistic Z0
n

Dp
n4 O‚04’5 ƒ‚4’55 minimizes

Qn4z1 Oƒ5 ²
1p
n

nX

iD1

Vin4z516p4 PX 0
i

Oƒ5 > 1 ƒ ’ C c71

where Vin4z5 ²
p

n6�’ 4…i ƒX 0
iz=

p
n5 ƒ�’ 4…i57 and …i ² Yi ƒX 0

i‚4’5.
The claim is that for any � nite collection of points zj1 j µ l,

4Qn4zj1 Oƒ51 j µ l5
dƒ! 4Qˆ4zj 51 j µ l51 (A.1)

where Qˆ4z5 ² PW 0z C 1
2
z0 PJz, PW dD N 401 På5, PJ ² Efu40—Xi5�

XiX
0
i16p4 PX 0

iƒ05 > 1 ƒ ’ C c7, and På ² ’41 ƒ ’5EXiX
0
i 16p4 PX 0

i ƒ05 >

1 ƒ’ C c7. PJ is invertible by conditions b and d. Because Qn and Qˆ
are convex, � nite, and continuous in z, and because Qˆ is uniquely
minimized at ƒ PJ ƒ1 PW D Op415, (A.1) implies that

Z0
n

dƒ! ƒ PJƒ1 PW

by the convexity theorem (e.g., Davis, Knight, and Liu 1992, Pollard
1991). But if Oƒ D ƒ0 , then (A.1) follows by the law of large numbers,
the central limit theorem, and some standard calculations, and so it
remains only to verify that

Qn4z1 Oƒ5ƒ Qn4z1 ƒ05
pƒ! 0 for any � xed z0 (A.2)

(a) For any � xed z, 8Qn4z1 ƒ5 ƒEQn4z1ƒ51ƒ 2 §9 is stochasti-
cally equicontinuous in ƒ, where § ² 8ƒ 2 —ƒ ƒƒ0— µ „9 and „ > 0 is
small. Indeed, ¦ D 8 Px 7! 16p4 Px0ƒ5 > 1ƒ’ Cc7, ƒ 2 §9 is a Vapnik-
Cervonenkis subgraph class, and hence by theorem 2 of Andrews
(1994), it satis� es Pollard’s entropy condition with a constant enve-
lope. This property is retained by the product of ¦ with random vari-
able Vin4z5, Vin4z5 † ¦ , by theorem 3 of Andrews (1994), because
by assumption a —Vin4z5— has a constant envelope,

—Vin4z5— µ 2—Xiz— < const0 (A.3)

Hence, Part (a) is veri� ed by theorem 1 of Andrews (1994).
(b) Space § with pseudometric �4ƒ11ƒ25 ² supn¶1 E—Vin4z5 �

618p4 PX 0
iƒ15 > 1ƒ’ Cc9ƒ18p4 PX 0

i ƒ25 > 1ƒ’ Cc97—2 µ const � ˜ƒ2 ƒ
ƒ1˜2 is totally bounded, where the inequality easily follows from
(A.3) and assumption d using compactness of X. Parts (a) and (b)
together imply that

sup
—ƒƒƒ0 —!0

—Qn4z1ƒ5 ƒ Qn4z1 ƒ05 ƒ EQn4z1 ƒ5 CEQn4z1 ƒ05— D op4150

Thus to complete the proof of (A.2), it only remains to show that

—EQn4z1 ƒ5 ƒEQn4z1 ƒ05—ƒD Oƒ D op4150 (A.4)

We show that for si4ƒ1ƒ05 ² 16p4 PX 0
i ƒ5 > 1 ƒ ’ C c7 ƒ 16p4 PX 0

iƒ05 >

1 ƒ ’ C c7,

EQn4z1ƒ5—ƒD Oƒ ƒ EQn4z1ƒ05 ²
p

nEVin4z5si4ƒ1ƒ05—ƒD Oƒ

D Op4 Oƒ ƒƒ051 (A.5)

Write
p

nVin4z5 ² ƒ
p

n68’ ƒ 16…i µ 079X 0
iz7 C

p
n6ƒ‡i4z58X0

iz ƒ
…i

p
n97 ²

p
nV 0

in4z5 C
p

nV 00
in4z5, where ‡i4z5 ² 614…i µ 05 ƒ 14…i µ

X 0
i z=

p
n57. For ƒ close enough to ƒ0 , p4 PX 0

i ƒ5 > 41 ƒ ’5 C c implies
X 0

i ‚4’5 > Ci
Cv a.s. for v > 0 small for all i, so that

E6
p

nV 0
in4z5si4ƒ1ƒ05—Xi1 Ci7 D 0 uniformly in i1 (A.6)

because P6…i µ 0—Xi1Ci1 Xi‚4’5 > Ci
Cv7 D ’ [if Xi‚4’5 > Ci , …i has

’ th conditional quantile at 0]. Also, E6
p

nV 00
in4z5si4ƒ1ƒ05—Xi1 Ci7 D

O6fu40—Xi5z
0XiX

0
i z14X0

i‚4’5 > Ci
C v57 � si4ƒ1ƒ05, uniformly in i.

Therefore, by assumptions c and d:

EE6
p

nV 00
in4z5si4ƒ1ƒ05—Xi1Ci7 D O4E6si4ƒ1ƒ0575 D O4ƒ ƒƒ050

(A.7)

(A.6) and (A.7) imply (A.4).

Part 2. It suf� ces to show the result for O‚14’5 with O‚04’5 as the
selector. The proof for O‚I 4’5, I > 1 is identical. The proof of Part 2
is similar to that of Part 1, so only important differences are given.
Rescaled statistic Z1

n
D

p
n4 O‚14’5 ƒ‚4’55 minimizes

Qn4z1 O‚04’51„n5 ²
1p
n

nX

iD1

Vin4z516X 0
i
O‚04’5 > Ci

C„n70

Consider „n as a parameter sequence. Proceed identically as in Part 1
up to (A.2), only replacing 16p4 PX 0

i
Oƒ5 > 1 ƒ ’ C c7 by 16X0

i
O‚04’5 >

Ci C„n7, 16p4 PX 0
i ƒ5 > 1ƒ ’ C c7 by 16X0

i‚4’5 > Ci7 and PW , PJ , and På
by W

dD N401 Hƒ1
0 å0H

ƒ1
0 5, H0, and å0. It remains to show that

Qn4z1 O‚04’51„n5 ƒQn4z1‚4’5105
pƒ! 0 for any � xed z0 (A.8)

(a) For any � xed z, 8Qn4z1‚1„5 ƒEQn4z1‚1„51 4‚1„5 2 ¢ � ¤9

is stochastically equicontinuous in ‚1„, where ¢ ² 8‚ 2 —‚ƒ‚4’5— µ
C 09, ¤ ² 8„ 2 0 µ „ µ C 009, and C 01 C 00 > 0 are small. Indeed,
¦ D 84X1C5 7! 16X0‚ > C C„7, 4‚1 „5 2 ¢� ¤9 is a VC subgraph
class. Hence ¦ has a � nite uniform covering entropy integral and a
constant envelope; that is, it satis� es Pollard’s entropy condition. This
property is retained by the product of space ¦ with random variable
Vin4z5: Vin4z5†¦ , by theorem 3 of Andrews (1994), because —Vin4z5—
has a constant envelope. Thus part (a) is veri� ed by theorem 1 of
Andrews (1994).
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(b) Space ¢ � ¤ is totally bounded under the L2 pseudometric,

�44‚11 „151 4‚21 „255

² sup
n

4E—Vin4z5 � 618X0
i‚1 > „19 ƒ 18X 0

i ‚2 > „297—25

µ const � ˜‚2 ƒ‚1˜2 C const � ˜„2 ƒ „1˜21 (A.9)

where (A.9) follows from (A.3) and from assumption d, treating „ as
shifting the intercept parameter. Part (b), along with Part (a), imply
that

sup
—‚ƒ‚4’5—!0

—Qn4z1‚1„n5 ƒQn4z1‚4’5105 ƒEQn4z1‚1„n5

CEQn4z1‚4’5105— D op4150

Thus, to complete the proof of (A.8), it remains to show that

—EQn4z1‚1„n5 ƒEQn4z1‚4’5105—‚D O‚4’5
D op4150 (A.10)

Let si4‚1‚4’55 ² 14X 0
i ‚ > Ci

C „n5 ƒ 14X 0
i‚4’5 > Ci

C 05. By
assumption on the sequence „n, with probability ! 1, O‚04’5 is inside
the ball with radius Š0„n , centered at ‚4’5, where Š0 > 0 is small.
By the compactness assumption on Xi , Š0 can be chosen so that with
probability ! 1, supx2X —x 04 O‚04’5 ƒ ‚4’55— < 1

2
„n . So set ‚ inside

this ball. Then for small enough Š0 chosen as such, x0‚ C c > „n

implies x0‚4’5 > c, and x0‚4’5 µ c implies x0‚ µ c C „n . Thus
si4‚1‚4’55 6D 0 necessarily implies X 0

i ‚4’5 > Ci a.s. Hence, uni-
formly in i,

E6
p

nV 0
in4z5si4‚1 ‚4’55—Xi1Ci7

D E6
p

nV 0
in4z514X0

i‚4’5 > Ci5—Xi1 Ci7� si4‚1‚4’55 D 01 (A.11)

because P6…i µ 0—Xi1 Ci1Xi‚4’5 > Ci7 D ’ . Also,

E6
p

nV 00
in4z5si4‚1‚4’55—Xi1Ci7

D O6fu40—Xi5z
0XiX

0
iz14X 0

i‚4’5 > Ci57 � si4‚1‚4’551 (A.12)

uniformly in i. Therefore, by assumption c and Lipschitz condition d,

EE6
p

nV 00
in4z5si4‚1‚4’55—Xi1 Ci7 D O6Esi4‚1‚4’557

D O4‚ ƒ‚4’55C O4„n50 (A.13)

(A.11) and (A.12) give (A.10).

Finally, joint convergence results can be obtained analogously.

[Received June 2001. Revised December 2001.]
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