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Abstract

Quantile regression (QR) fits a linear model for conditional quantiles, just as ordinary least

squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it

gives the minimum mean square error linear approximation to the conditional expectation func-

tion even when the linear model is misspecified. Empirical research using quantile regression

with discrete covariates suggests that QR may have a similar property, but the exact nature

of the linear approximation has remained elusive. In this paper, we show that QR minimizes

a weighted mean-squared error loss function for specification error. The weighting function is

an average density of the dependent variable near the true conditional quantile. The weighted

least squares interpretation of QR is used to derive an omitted variables bias formula and a par-

tial quantile regression concept, similar to the relationship between partial regression and OLS.

We also present asymptotic theory for the QR process under misspecification of the conditional

quantile function. The approximation properties of QR are illustrated using wage data from

the US census. These results point to major changes in inequality from 1990-2000.
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1 Introduction

The Quantile Regression (QR) estimator, introduced by Koenker and Bassett (1978), is an in-

creasingly important empirical tool, allowing researchers to fit parsimonious models to an entire

conditional distribution. Part of the appeal of quantile regression derives from a natural paral-

lel with conventional ordinary least squares (OLS) or mean regression. Just as OLS regression

coefficients offer convenient summary statistics for conditional expectation functions, quantile

regression coefficients can be used to make easily interpreted statements about conditional dis-

tributions. Moreover, unlike OLS coefficients, QR estimates capture changes in distribution

shape and spread, as well as changes in location.

An especially attractive feature of OLS regression estimates is their robustness and inter-

pretability under misspecification of the conditional expectation function (CEF). In addition

to consistently estimating a linear conditional expectation function, OLS estimates provide the

minimum mean square error linear approximation to a conditional expectation function of any

shape. The approximation properties of OLS have been emphasized by White (1980), Chamber-

lain (1984), Goldberger (1991), and Angrist and Krueger (1999). The fact that OLS provides a

meaningful and well-understood summary statistic for conditional expectations under almost all

circumstances undoubtedly contributes to the primacy of OLS regression as an empirical tool.

In view of the possibility of interpretation under misspecification, modern theoretical research

on regression inference also expressly allows for misspecification of the regression function when

deriving limiting distributions (White, 1980).

While QR estimates are as easy to compute as OLS regression coefficients, an important dif-

ference between OLS and QR is that most of the theoretical and applied work on QR postulates

a correctly specified linear model for conditional quantiles. This raises the question of whether

and how QR estimates can be interpreted when the linear model for conditional quantiles is

misspecified (for example, QR estimates at different quantiles may imply conditional quantile

functions that cross). One interpretation for QR under misspecification is that it provides the

best linear predictor for a response variable under asymmetric loss. This interpretation is not

very satisfying, however, since prediction under asymmetric loss is typically not the object of

interest in empirical work.1 Empirical research on quantile regression with discrete covariates

suggests that QR may have an approximation property similar to that of OLS, but the exact na-

ture of the linear approximation has remained an important unresolved question (Chamberlain,

1994, p. 181).
1An exception is the forecasting literature; see, e.g., Giacomini and Komunjer (2003).
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The first contribution of this paper is to show that QR is the best linear approximation to the

conditional quantile function using a weighted mean-squared error loss function, much as OLS

regression provides a minimum mean-squared loss fit to the conditional expectation function.

The implied QR weighting function can be used to understand which, if any, parts of the

distribution of regressors contribute disproportionately to a particular set of QR estimates. We

also show how this approximation property can be used to interpret multivariate QR coefficients

as partial regression coefficients and to develop an omitted variables bias formula for QR. A

second contribution is to present a distribution theory for the QR process that accounts for

possible misspecification of the conditional quantile function. We present the main inference

results only, with proofs available in a supplementary appendix. The approximation theorems

and inference results in the paper are illustrated with an analysis of wage data from recent U.S.

censuses.2 The results show a sharp change in the quantile process of schooling coefficients

in the 2000 census, and an increase in conditional inequality in the upper half of the wage

distribution from 1990-2000.

The paper is organized as follows. Section 2 introduces assumptions and notation and

presents the main approximation theorems. Section 3 presents inference theory for QR processes

under misspecification. Section 4 illustrates QR approximation properties with U.S. census data.

Section 5 concludes.

2 Interpreting QR Under Misspecification

2.1 Notation and Framework

Given a continuous response variable Y and a d× 1 regressor vector X, we are interested in the

conditional quantile function (CQF) of Y given X. The conditional quantile function is defined

as:

Qτ (Y |X) := inf {y : FY (y|X) ≥ τ},

where FY (y|X) is the distribution function for Y conditional on X, which is assumed to have

conditional density fY (y|X). The CQF is also known to be a solution to the following mini-

mization problem, assuming integrability:

Qτ (Y |X) ∈ arg min
q(X)

E [ρτ (Y − q(X))] , (1)

2Quantile regression has been widely used to model changes in the wage distribution; see, e.g., Buchinsky

(1994), Abadie (1997), Gosling, Machin, and Meghir (2000), Autor, Katz, and Kearney (2004).
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where ρτ (u) = (τ − 1(u ≤ 0))u and the minimum is over the set of measurable functions of

X. This is a potentially infinite-dimensional problem if covariates are continuous, and can be

high-dimensional even with discrete X. It may nevertheless be possible to capture important

features of the CQF using a linear model. This motivates linear quantile regression.

The linear quantile regression (QR), introduced by Koenker and Bassett (1978), solves the

following minimization problem in the population, assuming integrability and uniqueness of the

solution:

β(τ) := arg min
β∈Rd

E
[
ρτ (Y −X ′β)

]
. (2)

If q(X) is in fact linear, the QR minimand will find it, just as if the conditional expectation

function is linear, OLS will find it. More generally, QR provides the best linear predictor for Y

under the asymmetric loss function, ρτ . As noted in the introduction, however, prediction under

asymmetric loss is rarely the object of empirical work. Rather, the conditional quantile function

is usually of intrinsic interest. For example, labor economists are often interested in comparisons

of conditional deciles as a measure of how the spread of a wage distribution changes conditional

on covariates, as in Katz and Murphy (1992), Juhn, Murphy, and Pierce (1993), and Buchinsky

(1994). Thus, our first goal is to establish the nature of the approximation to conditional

quantiles that QR provides.

2.2 QR Approximation Properties

Our principal theoretical result is that the population QR vector minimizes a weighted sum

of squared specification errors. This is easiest to show using notation for a quantile-specific

specification error and for a quantile-specific residual. For any quantile index τ ∈ (0, 1), we

define the QR specification error as:

∆τ (X,β) := X ′β −Qτ (Y |X).

Similarly, let ετ be a quantile-specific residual, defined as the deviation of the response variable

from the conditional quantile of interest:

ετ := Y −Qτ (Y |X),

with conditional density fετ (e|X) at ετ = e. The following theorem shows that QR is a weighted

least squares approximation to the unknown CQF.

Theorem 1 (Approximation Property) Suppose that (i) the conditional density fY (y|X)

exists a.s., (ii) E[Y ], E[Qτ (Y |X)], and E‖X‖ are finite, and (iii) β(τ) uniquely solves (2).

3



Then

β(τ) = arg min
β∈Rd

E
[
wτ (X,β) ·∆2

τ (X, β)
]
,

where

wτ (X, β) =
∫ 1

0
(1− u) · fετ (u∆τ (X,β)|X) du

=
∫ 1

0
(1− u) · fY

(
u ·X ′β + (1− u) ·Qτ (Y |X)|X)

du ≥ 0.

Proof: We have that β(τ) = arg minβ∈Rd E[ρτ (ετ − ∆τ (X, β))], or equivalently, since

E[ρτ (ετ )] does not depend on β and is finite by condition (ii),

β(τ) = arg min
β∈Rd

{E [ρτ (ετ −∆τ (X,β))]− E [ρτ (ετ )]} . (3)

By definition of ρτ and the law of iterated expectations, it follows further that

β(τ) = arg min
β∈Rd

{E[A(X,β)]− E[B(X, β)]} ,

where

A(X,β) = E [(1{ετ < ∆τ (X, β)} − τ)∆τ (X,β) |X] ,

B(X, β) = E [(1{ετ < ∆τ (X,β)} − 1{ετ < 0}) ετ |X] .

The conclusion of the theorem can then be obtained by showing that

A(X, β) =
(∫ 1

0
fετ (u∆τ (X, β)|X)du

)
·∆2

τ (X,β), (4)

B(X,β) =
(∫ 1

0
ufετ (u∆τ (X, β)|X)du

)
·∆2

τ (X, β), (5)

establishing that both components are density-weighted quadratic specification errors.

Consider A(X,β) first. Observe that

A(X,β) = [Fετ (∆τ (X, β)|X)− Fετ (0|X)] ∆τ (X, β)

=
(∫ 1

0
fετ (u∆τ (X,β)|X)∆τ (X, β)du

)
∆τ (X,β),

(6)

where the first statement follows by the definition of conditional expectation and noting that

E[1{ετ ≤ 0}|X] = Fετ (0|X) = τ and the second follows from the fundamental theorem of

calculus (for Lebesgue integrals). This verifies (4). Turning to B(X, β), suppose first that
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∆τ (X, β) > 0. Then, setting uτ = ετ/∆τ (X, β), we have

B(X,β) = E
[
1{ετ ∈ [0,∆τ (X, β)]} · ετ

∣∣∣X
]

= E
[
1{uτ ∈ [0, 1]} · uτ ·∆τ (X, β)

∣∣∣X
]

=
(∫ 1

0
ufuτ (u|X)du

)
∆τ (X,β)

=
(∫ 1

0
ufετ (u∆τ (X, β)|X)∆τ (X,β)du

)
·∆τ (X, β),

(7)

which verifies (5). A similar argument shows that (5) also holds if ∆τ (X, β) < 0. Finally, if

∆τ (X, β) = 0, then B(X, β) = 0, so that (5) holds in this case too. Q.E.D.

Theorem 1 states that the population QR coefficient vector β(τ) minimizes the expected

weighted mean squared approximation error, i.e., the square of the difference between the true

CQF and a linear approximation, with weighting function wτ (X, β).3 The weights are given by

the average density of the response variable over a line from the point of approximation, X ′β, to

the true conditional quantile, Qτ (Y |X). Pre-multiplication by the term (1− u) in the integral

results in more weight being applied at points on the line closer to the true CQF.

We refer to the function wτ (X,β) as defining importance weights, since this function de-

termines the importance the QR minimand gives to points in the support of X for a given

distribution of X.4 In addition to the importance weights, the probability distribution of X

also determines the ultimate weight given to different values of X in the least squares problem.

To see this, note that we can also write the QR minimand as

β(τ) = arg min
β∈Rd

∫
∆2

τ (x, β) wτ (x, β) dΠ(x),

where Π(x) is the distribution function of X with associated probability mass or density function

π(x). Thus, the overall weight varies in the distribution of X according to

wτ (x, β) · π(x).

A natural question is what determines the shape of the importance weights. This can be

understood using the following approximation. When Y has a smooth conditional density, we

have for β in the neighborhood of β(τ):

wτ (X,β) = 1/2 · fY (Qτ (Y |X)|X) + %τ (X), |%τ (X)| ≤ 1/6 · |∆τ (X,β)| · f̄ ′(X). (8)
3Note that if we define β(τ) via (3), then integrability of Y is not required in Theorem 1.
4This terminology should not to be confused with similar terminology from Bayesian statistics.
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Here, %τ (X) is a remainder term and the density fY (y|X) is assumed to have a first deriva-

tive in y bounded in absolute value by f̄ ′(X) a.s.5 Hence in many cases the density weights

1/2 · fY (Qτ (Y |X)|X) are the primary determinants of the importance weights, a point we il-

lustrate in Section 4. It is also of interest to note that fY (Qτ (Y |X)|X) is constant across X in

location models, and inversely proportional to the conditional standard deviation in location-

scale models.6

QR has a second approximation property closely related to the first. This second property

is particularly well-suited to the development of a partial regression decomposition and the

derivation of an omitted variables bias formula for QR.

Theorem 2 (Iterative Approximation Property) Suppose that (i) the conditional density

fY (y|X) exists and is bounded a.s., (ii) E[Y ], E[Qτ (Y |X)2], and E‖X‖2 are finite, and (iii)

β(τ) uniquely solves (2). Then β̄(τ) = β(τ) uniquely solves the equation

β̄(τ) = arg min
β∈Rd

E
[
w̄τ (X, β̄(τ)) ·∆2

τ (X,β)
]
, (9)

where

w̄τ (X, β̄(τ)) =
1
2

∫ 1

0
fετ

(
u ·∆τ (X, β̄(τ))|X)

du

=
1
2

∫ 1

0
fY

(
u ·X ′β̄(τ) + (1− u) ·Qτ (Y |X)|X)

du ≥ 0.

Proof: We want show that

β(τ) = arg min
β∈Rd

E[ρτ (Y −X ′β)], (10)

is equivalent to the fixed point β̄(τ) that uniquely solves

β̄(τ) = arg min
β∈Rd

E
[
w̄τ (X, β̄(τ)) ·∆2

τ (X, β)
]
, (11)

where the former and the latter objective functions are finite by conditions (i) and (ii).

By convexity of (11) in β, any fixed point β = β̄(τ) solves the first order condition:

F(β) := 2 · E [w̄τ (X, β) ∆τ (X,β) X] = 0.

By convexity of (10) in β, the quantile regression vector β = β(τ) solves the first order condition:

D(β) := E [D(X, β)] = 0,
5The remainder term %τ (X) = wτ (X, β) − (1/2) · fετ (0|X) is bounded as |%τ (X)| = | R 1

0
(1 − u)(fετ (u ·

∆τ (X, β)|X)− fετ (0|X))du| ≤ |∆τ (X, β)| · f̄ ′(X) · R 1

0
(1− u) · u · du = (1/6) · |∆τ (X, β)| · f̄ ′(X).

6A location-scale model is any model of the form Y = µ(X) + σ(X) · e, where e is independent of X. The

location model results from setting σ(X) = σ.
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where

D(X, β) := E [(1{ετ < ∆τ (X, β)} − τ) X|X] .

An argument similar to that used to establish equation (6) yields

D(X, β) = (Fετ (∆τ (X, β)|X)− Fετ (0|X)) ·X

=
(∫ 1

0
fετ (u∆τ (X, β)|X)du

)
·∆τ (X, β) ·X

= 2 · w̄τ (X,β) ·∆τ (X,β) ·X,

where we also use the definition of w̄τ (X; β). The functions F(β) and D(β) are therefore

identical. Since β = β(τ) uniquely satisfies D(β) = 0, it also uniquely satisfies F(β) = 0. As a

result, β = β(τ) = β̄(τ) is the unique solution to both (10) and (11). Q.E.D.

Theorem 2 differs from Theorem 1 in that it characterizes the QR coefficient as a fixed

point to an iterated minimum distance approximation. Consequently, the importance weights

w̄(X,β(τ)) in this approximation are defined using the QR vector β(τ) itself. The weighting

function w̄τ (X, β(τ)) is also related to the conditional density of the dependent variable. In

particular, when the response variable has a smooth conditional density around the relevant

quantile, we have by a Taylor approximation

w̄τ (X,β(τ)) = 1/2 · fY (Qτ (Y |X)|X) + %̄τ (X), |%̄τ (X)| ≤ 1/4 · |∆τ (X, β(τ))| · f̄ ′(X),

where %̄τ (X) is a remainder term, and the density fY (y|X) is assumed to have a first derivative

in y bounded in absolute value by f̄ ′(X) a.s. When either ∆τ (X, β(τ)) or f̄ ′(X) is small, we

then have

w̄τ (X, β(τ)) ≈ wτ (X,β(τ)) ≈ 1
2
fY (Qτ (Y |X)|X).

The approximate weighting function is therefore the same as derived using Theorem 1.

2.3 Partial Quantile Regression and Omitted Variable Bias

Partial quantile regression is defined with regard to a partition of the regressor vector X into

a variable, X1, and the remaining variables X2, along with the corresponding partition of QR

coefficients β(τ) into β1(τ) and β2(τ). We can now decompose Qτ (Y |X) and X1 using orthogonal

projections onto X2 weighted by w̄τ (X) := w̄(X;β(τ)) defined in Theorem 2:

Qτ (Y |X) = X ′
2πQ + qτ (Y |X), where E[w̄τ (X) ·X2 · qτ (Y |X)] = 0,

X1 = X ′
2π1 + V1, where E[w̄τ (X) ·X2 · V1] = 0.

7



In this decomposition, qτ (Y |X) and V1 are residuals created by a weighted linear projection

of Qτ (Y |X) and X1 on X2, respectively, using w̄τ (X) as the weight.7 Standard least squares

algebra then gives

β1(τ) = arg min
β1

E
[
w̄τ (X) (qτ (Y |X)− V1β1)2

]

and also β1(τ) = arg minβ1 E
[
w̄τ (X) (Qτ (Y |X)− V1β1)2

]
. This shows that β1(τ) is a partial

quantile regression coefficient in the sense that it can be obtained from a weighted least squares

regression of Qτ (Y |X) on X1, once we have partialled out the effect of X2. Both the first-step

and second-step regressions are weighted by w̄τ (X).

We can similarly derive an omitted variables bias formula for QR. In particular, suppose we

are interested in a quantile regression with explanatory variables X = [X ′
1, X ′

2]
′, but X2 is not

available, e.g., a measure of ability or family background in a wage equation. We run QR on

X1 only, obtaining the coefficient vector γ1(τ) = arg minγ1 E[ρτ (Y −X ′
1γ1)]. The long regression

coefficient vectors are given by (β1(τ)′, β2(τ)′)′ = arg minβ1,β2 E[ρτ (Y −X ′
1β1 −X ′

2β2)]. Then,

γ1(τ) = β1(τ) + (E[w̃τ (X) ·X1X
′
1])

−1E[w̃τ (X) ·X1Rτ (X)],

where Rτ (X) := Qτ (Y |X) −X ′
1β1(τ), w̃τ (X) :=

∫ 1
0 fετ (u ·∆τ (X, γ1(τ))|X)du/2, ∆τ (X, γ1) :=

X ′
1γ1 −Qτ (Y |X), and ετ := Y −Qτ (Y |X).8 Here Rτ (X) is the part of the CQF not explained

by the linear function of X1 in the long QR. If the CQF is linear, then Rτ (X) = X ′
2β2(τ). The

proof of this result is similar to the previous arguments and therefore omitted.

As with OLS short and long calculations, the omitted variables formula in this case shows the

short QR coefficients to be equal to the corresponding long QR coefficients plus the coefficients

in a weighted projection of omitted effects on included variables. While the parallel with OLS

seems clear, there are two complications in the QR case. First, the effect of omitted variables

appears through the remainder term, Rτ (X). In practice, it seems reasonable to think of this

as being approximated by the omitted linear part, X ′
2β2(τ). Second, the regression of omitted

variables on included variables is weighted by w̃τ (X), while for OLS it is unweighted.9

3 Sampling Properties of QR Under Misspecification

Parallelling the interest in robust inference methods for OLS, it is also of interest to know how

specification error affects inference for QR. In this case, inference under misspecification means
7Thus, πQ =E [w̄τ (X)X2X

′
2]
−1E [w̄τ (X)X2Qτ (Y |X)] and π1 =E [w̄τ (X)X2X

′
2]
−1E [w̄τ (X)X2X1].

8Note that the weights in this case depend on how the regressor vector is partitioned.
9The formula obtained above can be used to determine the bias from measurement error in regressors, by

setting the error to be the omitted variable. This suggests that classical measurement error is likely to generate

an attenuation bias in QR as well as OLS estimates. We thank Arthur Lewbel for pointing this out.
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distribution theory for quantile regressions in large samples without imposing the restriction

that the CQF is linear. While not consistent for the true nonlinear CQF, quantile regression

consistently estimates the approximations to the CQF given in Theorems 1 and 2. We would

therefore like to quantify the sampling uncertainty in estimates of these approximations. This

question can be compactly and exhaustively addressed by obtaining the large sample distribution

of the sample quantile regression process, which is defined by taking all or many sample quantile

regressions.

As in Koenker and Xiao (2001), the entire QR process is of interest here because we would

like to either test global hypotheses about (approximations to) conditional distributions or make

comparisons across different quantiles. Therefore our interest is in the QR process, and is not

confined to a specific quantile. The second motivation for studying the process comes from the

fact that formal statistical comparisons across quantiles, often of interest in empirical work,

require the construction of simultaneous (joint) confidence regions. Process methods provide a

natural and simple way of constructing these regions.

The QR process β̂(·) is formally defined as

β̂(τ) ∈ arg min
β∈Rd

n−1
n∑

i=1

ρτ (Yi −X ′
iβ), τ ∈ T := a closed subset of [ε, 1− ε] for ε > 0. (12)

Koenker and Machado (1999) and Koenker and Xiao (2001) previously focused on QR process

inference in correctly specified models, while earlier treatments of specification error discussed

only pointwise inference for a single quantile coefficient (Hahn, 1997). As it turns out, the

empirical results in the next section show misspecification has a larger effect on process inference

than on pointwise inference. Our main theoretical result on inference is as follows:

Theorem 3 Suppose that (i) (Yi, Xi, i ≤ n) are iid on the probability space (Ω,F , P ) for each

n, (ii) the conditional density fY (y|X = x) exists, and is bounded and uniformly continuous in

y, uniformly in x over the support of X, (iii) J(τ) := E[fY (X ′β(τ)|X)XX ′] is positive definite

for all τ ∈ T , and (iv) E ‖X‖2+ε < ∞ for some ε > 0. Then, the quantile regression process

is uniformly consistent, supτ∈T ‖β̂(τ) − β(τ)‖ = op(1), and J(·)√n(β̂(·) − β(·)) converges in

distribution to a zero mean Gaussian process z(·), where z(·) is defined by its covariance function

Σ(τ, τ ′) := E [z(τ)z(τ ′)′], with

Σ(τ, τ ′) = E [
(
τ − 1

{
Y < X ′β(τ)

}) (
τ ′ − 1

{
Y < X ′β(τ ′)

})
XX ′]. (13)

If the model is correctly specified, i.e. Qτ (Y |X) = X ′β(τ) a.s., then Σ(τ, τ ′) simplifies to

Σ0(τ, τ ′) := [min(τ, τ ′)− ττ ′] · E [XX ′]. (14)
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Theorem 3 establishes joint asymptotic normality for the entire QR process.10 The proof

of this theorem appears in the supplementary appendix. Theorem 3 allows for misspecification

and imposes little structure on the underlying conditional quantile function (e.g., smoothness of

Qτ (Y |X) in X, needed for a fully nonparametric approach, is not needed here). The result states

that the limiting distribution of the QR process (and of any single QR coefficient) will in general

be affected by misspecification. The covariance function that describes the limiting distribution

is generally different from the covariance function that arises under correct specification.

Inference on the QR process is useful for testing basic hypotheses of the form:

R(τ)′β(τ) = r(τ) for all τ ∈ T . (15)

For example, we may be interested in whether a variable or a subset of variables j ∈ {k +

1, ..., d} enter the regression equations at all quantiles with zero coefficients, i.e. whether βj(τ) =

0 for all τ ∈ T and j ∈ {k + 1, ..., d}. This corresponds to R(τ) =
[
0(d−k)×k Id−k

]
and r(τ) =

0d−k. Similarly, we may want to construct simultaneous (uniform) confidence intervals for linear

functions of parameters

R(τ)′β(τ)− r(τ) for all τ ∈ T .

Theorem 3 has a direct consequence for these confidence intervals and hypothesis testing,

since it implies that (EXX ′)−1Σ(τ, τ ′) 6= [min(τ, τ ′)−ττ ′]·Id. That is, the covariance function un-

der misspecification is not proportional to the covariance function of the standard d-dimensional

Brownian bridge arising in the correctly specified case. Hence, unlike in the correctly specified

case, the critical values for confidence regions and tests are not distribution-free and can not

be obtained from standard tabulations based on the Brownian bridge. However, the following

corollaries facilitate both testing and the construction of confidence intervals under misspecifi-

cation:

Corollary 1 Define V (τ) := R(τ)′J(τ)−1 Σ(τ, τ) J(τ)−1R(τ) and |x| := maxj |xj |. Under the

conditions of Theorem 3, the Kolmogorov statistic Kn := supτ∈T |V (τ)−1/2√n(R(τ)′β̂(τ)−r(τ))|
for testing (15) converges in distribution to variable K := supτ∈T |V (τ)−1/2R(τ)′J(τ)−1z(τ)|
with an absolutely continuous distribution. The result is not affected by replacing J(τ) and

Σ(τ, τ) with estimates that are consistent uniformly in τ ∈ T .

10A simple corollary is that any finite collection of
√

n(β̂(τk) − β(τk)), k = 1, 2, ..., are asymptotically jointly

normal, with asymptotic covariance between the k-th and l-th subsets equal to J(τk)−1Σ(τk, τl)J(τl)
−1. Hahn

(1997) previously derived this corollary for a single quantile.
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Thus, Kolmogorov-type statistics have a well-behaved limit distribution.11 Unlike in the

correctly specified case, however, this distribution is non-standard. Nevertheless, critical values

and simultaneous confidence regions can be obtained as follows:

Corollary 2 For κ(α) denoting the α-quantile of K and κ̂(α) any consistent estimate of it, for

instance the estimate defined below, limn→∞ P{√n(R(τ)′β(τ)− r(τ)) ∈ În(τ), for all τ ∈ T } =

α, where În(τ) = [u(τ) : |V (τ)−1/2√n(R(τ)′β̂(τ)− r(τ)− u(τ))| ≤ κ̂(α)]. If R(τ)′β(τ)− r(τ) is

scalar, the simultaneous confidence interval is În(τ) = [R(τ)′β̂(τ)− r(τ)± κ̂(α) · V (τ)1/2]. This

result is not affected by replacing V (τ) with an estimate that is consistent uniformly in τ ∈ T .

A consistent estimate of the critical value, κ̂(α), can be obtained by subsampling. Let

j = 1, ..., B index B randomly chosen subsamples of ((Yi, Xi), i ≤ n) of size b, where b →
∞, b/n → 0, B → ∞ as n → ∞. Compute the test statistic for each subsample as Kj =

supτ∈T |V̂ (τ)−1/2
√

bR(τ)′(β̂j(τ)− β̂(τ))|, where β̂j(τ) is the QR estimate using j-th subsample.

Then, set κ̂(α) to be the α-quantile of {K1, ...,KB}.
Finally, the inference procedure above requires estimators of Σ(τ, τ ′) and J(τ) that are

uniformly consistent in (τ, τ ′) ∈ T × T . These are given by:

Σ̂(τ, τ ′) = n−1
n∑

i=1

(τ − 1{Yi ≤ X ′
iβ̂(τ)})(τ ′ − 1{Yi ≤ X ′

iβ̂(τ ′)}) ·XiX
′
i,

Ĵ(τ) = (2nhn)−1
n∑

i=1

1{|Yi −X ′
iβ̂(τ)| ≤ hn} ·XiX

′
i,

where Σ̂(τ, τ ′) differs from its usual counterpart Σ̂0(τ, τ ′) = [min(τ, τ ′) − ττ ′] · n−1
∑n

i=1 XiX
′
i

used in the correctly specified case; and Ĵ(τ) is Powell’s (1986) estimator of the Jacobian, with

hn such that hn → 0 and h2
nn → ∞. Koenker (1994) suggests hn = C · n−1/3 and provides

specific choices of C. The supplementary appendix shows that these estimates are consistent

uniformly in (τ, τ ′).

4 Application to U.S. Wage Data

In this section we study the approximation properties of QR in widely used U.S. Census micro

data sets.12 The main purpose of this section is to show that linear QR indeed provides a useful
11In practice, by stochastic equicontinuity of QR process, in the definition of Kn-statistics we can replace any

continuum of quantile indices T by a finite-grid TKn , where the distance between adjacent grid points goes to

zero as n →∞.
12The data were drawn from the 1% self-weighted 1980 and 1990 samples, and the 1% weighted 2000 sample,

all from the IPUMS website (Ruggles et al., 2003). The sample consists of US-born black and white men of age

11



minimum distance approximation to the conditional distribution of wages, accurately capturing

changes in the wage distribution from 1980 to 2000. We also report new substantive empirical

findings arising from the juxtaposition of data from the 2000 census with earlier years. The

inference methods derived in the previous section facilitate this presentation. In our analysis,

Y is the real log weekly wage for U.S. born men aged 40-49, calculated as the log of reported

annual income from work divided by weeks worked in the previous year, and the regressor X

consists of a years-of-schooling variable and other basic controls.13

The nature of the QR approximation property is illustrated in Figure 1. Panels A-C plot

a nonparametric estimate of the conditional quantile function, Qτ (Y |X), along with the linear

QR fit for the 0.10, 0.50, and 0.90 quantiles, where X includes only the schooling variable. Here

we take advantage of the discreteness of the schooling variable and the large census sample to

compare QR fits to the nonlinear CQFs computed at each point in the support of X. We focus

on the 1980 data for this figure because the 1980 Census has a true highest grade completed

variable, while for more recent years this must be imputed. It should be noted, however, that

the approximation results for the 1990 and 2000 censuses are similar.

Our theorems establish that QR implicitly provides a weighted minimum distance approx-

imation to the true nonlinear CQF. It is therefore useful to compare the QR fit to an explicit

minimum distance (MD) fit similar to that discussed by Chamberlain (1994).14 The MD esti-

mator for QR is the sample analog of the vector β̃(τ) solving

β̃(τ) = arg min
β∈Rd

E
[
(Qτ (Y |X)−X ′β)2

]
= arg min

β∈Rd
E

[
∆2

τ (X, β)
]
.

In other words, β̃(τ) is the slope of the linear regression of Qτ (Y |X) on X, weighted only by the

probability mass function of X, π(x). In contrast to QR, this MD estimator relies on the ability

to estimate Qτ (Y |X) in a nonparametric first step, which, as noted by Chamberlain (1994), may

be feasible only when X is low dimensional, the sample size is large, and sufficient smoothness

of Qτ (Y |X) is assumed.

Figure 1 plots this MD fit with a dashed line. The QR and MD regression lines are close,

as predicted by our approximation theorems, but they are not identical because the additional

40-49 with 5 or more years of education, with positive annual earnings and hours worked in the year preceding

the census. Individuals with imputed values for age, education, earnings or weeks worked were also excluded from

the sample. The resulting sample sizes were 65,023, 86,785, and 97,397 for 1980, 1990, and 2000.
13Annual income is expressed in 1989 dollars using the Personal Consumption Expenditures Price Index. The

schooling variable for 1980 corresponds to the highest grade of school completed. The categorical schooling

variables in the 1990 and 2000 Census were converted to years of schooling using essentially the same coding

scheme as in Angrist and Krueger (1999). See Angrist, Chernozhukov, and Fernandez-Val (2004) for details.
14See Ferguson (1958) and Rothenberg (1971) for general discussions of MD. Buchinsky (1994) and Bassett,

Knight, and Tam (2002) present other applications of MD to quantile problems.
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weighting by wτ (X, β) in the QR fit accentuates quality of the fit at values of X where Y is more

densely distributed near true quantiles. To further investigate the QR weighting function, panels

D-F in Figure 1 plot the overall QR weights, wτ (X,β(τ)) · π(X), against the regressor X. The

panels also show estimates of the importance weights from Theorem 1, wτ (X, β(τ)), and their

density approximations, fY (Qτ (Y |X)|X).15 The importance weights and the actual density

weights are fairly close. The importance weights are stable across X and tend to accentuate the

middle of the distribution a bit more than other parts. The overall weighting function ends up

placing the highest weight on 12 years of schooling, implying that the linear QR fit should be

the best in the middle of the design.

Also of interest is the ability of QR to track changes in quantile-based measures of conditional

inequality. The column labeled CQ in panel A of Table 1 shows nonparametric estimates of the

average 90-10 quantile spread conditional on schooling, potential experience, and race. This

spread increased from 1.2 to about 1.35 from 1980 to 1990, and then to about 1.43 from 1990

to 2000. QR estimates match this almost perfectly, not surprisingly since an implication of our

theorems is that QR should fit (weighted) average quantiles exactly. The fit is not as good,

however, when averages are calculated for specific schooling groups, as reported in panels B and

C of the table. These results highlight the fact that QR is only an approximation. Table 1

also documents two important substantive findings, apparent in both the CQ and QR estimates.

First, the table shows conditional inequality increasing in both the upper and lower halves of

the wage distribution from 1980 to 1990, but in the top half only from 1990 to 2000. Second,

the increase in conditional inequality since 1990 has been much larger for college graduates than

for high school graduates.

Figure 2 provides a useful complement to, and a partial explanation for, the patterns and

changes in Table 1. In particular, Panel A of the figure shows estimates of the schooling co-

efficient quantile process, along with robust simultaneous 95% confidence intervals. These

estimates are from quantile regressions of log-earnings on schooling, race and a quadratic func-

tion of experience, using data from the 1980, 1990 and 2000 censuses.16 The robust simultaneous

15The importance weights defined in Theorem 1 are estimated at β = β̂(τ) as follows:

bwτ (X, bβ(τ)) = (1/U) ·
UX

u=1

[(1− u/U) · bfY ((u/U) ·X ′bβ(τ) + (1− u/U) · bQτ (Y |X)|X)], (16)

where U is set to 100; f̂Y (y|X) is a kernel density estimate of fY (y|X), which employs a Gaussian kernel and

Silverman’s rule for bandwidth; bQτ (Y |X) is a non-parametric estimate of Qτ (Y |X), for each cell of the covariates

X; and X ′bβ(τ) is the QR estimate. Approximate weights are calculated similarly. Weights based on Theorem 2

are similar and therefore not shown.
16The simultaneous bands were obtained by subsampling using 500 repetitions with subsample size b = 5n2/5

and a grid of quantiles Tn = {.10, .11, ..., .90}.
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confidence intervals allow us to asses of the significance of changes in schooling coefficients across

quantiles and across years. The horizontal lines in the figure indicate the corresponding OLS

estimates.

The figure suggests the returns to schooling were low and essentially constant across quantiles

in 1980, a finding similar to Buchinsky’s (1994) using Current Population Surveys for this period.

On the other hand, the returns increased sharply and became much more heterogeneous in 1990

and especially in 2000, a result we also confirmed in Current Population Survey data. Since

the simultaneous confidence bands do not contain a horizontal line, we reject the hypothesis

of constant returns to schooling for 1990 and 2000. The fact that there are quantile segments

where the simultaneous bands do not overlap indicates statistically significant differences across

years at those segments. For instance, the 1990 band does not overlap with the 1980 band,

suggesting a marked and statistically significant change in the relationship between schooling

and the conditional wage distribution in this period.17 The apparent twist in the schooling

coefficient process explains why inequality increased for college graduates from 1990 to 2000.

In the 2000 census, higher education was associated with increased wage dispersion to a much

greater extent than in earlier years.

Another view of the stylized facts laid out in Table 1 is given in Figure 2B. This figure plots

changes in the approximate conditional quantiles, based on a QR fit, with covariates evaluated at

their mean values for each year. The figure also shows simultaneous 95% confidence bands. This

figure provides a visual representation of the finding that between 1990 and 2000 conditional

wage inequality increased more in the upper half of the wage distribution than in the lower

half, while between 1980 and 1990 the increase in inequality occurred in both tails. Changes in

schooling coefficients across quantiles and years, sharper above the median than below, clearly

contributed to the fact that recent (conditional) inequality growth has been mostly confined to

the upper half of the wage distribution.

Finally, it is worth noting that the simultaneous bands differ from the corresponding point-

wise bands (the latter are not plotted). Moreover, the simultaneous bands allow multiple com-

parisons across quantiles without compromising confidence levels. Even more importantly in

our context, accounting for misspecification substantially affects the width of simultaneous con-

fidence intervals in this application. Uniform bands calculated assuming correct specification

can be constructed using the critical values for the Kolmogorov statistic K reported in Andrews
17Due to independence of samples across Census years, the test that looks for overlapping in two 95% confidence

bands has a significance level of about 10%, namely 1 − .952. Alternately, an α-level test can be based on a

simultaneous α-level confidence band for the difference in quantile coefficients across years, again constructed

using Theorem 3.
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(1993). In this case, the resulting bands for the schooling coefficient quantile process are 26%,

23%, and 32% narrower than the robust intervals plotted in Figure 2A for 1980, 1990, and

2000.18

5 Summary and conclusions

We have shown how linear quantile regression provides a weighted least squares approximation

to an unknown and potentially nonlinear conditional quantile function, much as OLS provides

a least squares approximation to a nonlinear CEF. The QR approximation property leads to

partial quantile regression relationships and an omitted variables bias formula analogous to those

for OLS. While misspecification of the CQF functional form does not affect the usefulness of QR,

it does have implications for inference. We also present a misspecification-robust distribution

theory for the QR process. This provides a foundation for simultaneous confidence intervals and

a basis for global tests of hypotheses about distributions.

An illustration using US. census data shows the sense in which QR fits the CQF. The

empirical example also shows that QR accurately captures changes in the wage distribution from

1980 to 2000. An important substantive finding is the sharp twist in schooling coefficients across

quantiles in the 2000 census. We use simultaneous confidence bands robust to misspecification,

to show that this pattern is highly significant. A related finding is that most inequality growth

after 1990 has been in the upper part of the wage distribution.

18The simultaneous bands take the form of β̂(τ)± κ̂(α) · robust std. error(β̂(τ)). Using the procedure described

in Corollary 2, we obtain estimates for κ̂(0.05) of 3.78, 3.70, and 3.99 for 1980, 1990, and 2000. The simultaneous

bands that impose correct specification take the form β̂(τ) ± κ0(α) · std. error(β̂(τ)), where κ0(α) is the α-

quantile of the supremum of (the absolute value of) a standardized tied-down Bessel process of order 1. For

example, κ0(0.05) = (9.31)1/2 = 3.05 from Table I in Andrews (1993).
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SUPPLEMENTARY APPENDIX.

A Proof of Theorems 3 and its Corollaries

The proof has two steps.19 The first step establishes uniform consistency of the sample QR process.

The second step establishes asymptotic Gaussianity of the sample QR process.20 For W = (Y, X),

let En [f(W )] denote n−1
∑n

i=1 f(Wi) and Gn [f(W )] denote n−1/2
∑n

i=1(f(Wi) − E [f(Wi)]). If f̂ is an

estimated function, Gn[f̂(W )] denotes n−1/2
∑n

i=1(f(Wi)− E [f(Wi)])f= bf .

A.1 Uniform consistency of β̂(·)

For each τ in T , β̂(τ) minimizes Qn(τ, β) := En [ρτ (Y −X ′β)− ρτ (Y −X ′β(τ))] . Define Q∞(τ, β) :=

E [ρτ (Y −X ′β)− ρτ (Y −X ′β(τ))] . It is easy to show that E‖X‖ < ∞ implies that E|ρτ (Y − X ′β) −
ρτ (Y − X ′β(τ))| < ∞. Therefore, Q∞(τ, β) is finite, and by the stated assumptions, it is uniquely

minimized at β(τ) for each τ in T .

We first show the uniform convergence, namely for any compact set B, Qn(τ, β) = Q∞(τ, β)+ op∗(1),

uniformly in (τ, β) ∈ T × B. This statement holds pointwise by the Khinchine law of large numbers.

The uniform convergence follows because |Qn(τ ′, β′) − Qn(τ ′′, β′′)| ≤ C1n · |τ ′ − τ ′′| + C2n · ‖β′ − β′′‖,
where C1n = 2 ·En‖X‖ · supβ∈B ‖β‖ = Op(1) and C2n = 2 ·En‖X‖ = Op(1). Hence the empirical process

(τ, β) 7→ Qn(τ, β) is stochastically equicontinuous, which implies the uniform convergence.

Next, we show uniform consistency. Consider a collection of closed balls BM (β(τ)) of radius M and

center β(τ), and let βM (τ) = β(τ) + δM (τ) · v(τ), where v(τ) is a direction vector with unity norm

‖v(τ)‖ = 1 and δM (τ) is a positive scalar such that δM (τ) ≥ M . Then uniformly in τ ∈ T , (M/δM (τ)) ·
(Qn(τ, βM (τ))−Qn(τ, β(τ)))

(a)

≥ Qn(τ, β∗M (τ)) − Qn(τ, β(τ))
(b)

≥ Q∞(τ, β∗M (τ)) − Q∞(τ, β(τ)) + op∗(1)
(c)
> εM + op∗(1), for some εM > 0; where (a) follows by convexity in β, for β∗M (τ) the point of the

boundary of BM (β(τ)) on the line connecting βM (τ) and β(τ); (b) follows by the uniform convergence

established above; and (c) follows since β(τ) is the unique minimizer of Q∞(β, τ) uniformly in τ ∈ T , by

convexity and assumption (iii). Hence for any M > 0, the minimizer β̂(τ) must be within M from β(τ)

uniformly for all τ ∈ T , with probability approaching one.

A.2 Asymptotic Gaussianity of
√

n(β̂(·)− β(·))

First, by the computational properties of β̂(τ), for all τ ∈ T , cf. Theorem 3.3 in Koenker and Bassett

(1978), we have that ‖En[ϕτ (Y − X ′β̂(τ))X]‖ ≤ const · supi≤n ‖Xi‖/n, where ϕτ (u) = τ − 1{u ≤ 0}.
Note that E‖Xi‖2+ε < ∞ implies supi≤n ‖Xi‖ = op∗(n1/2), since P

(
supi≤n ‖Xi‖ > n1/2

) ≤ nP (‖Xi‖ >

n1/2) ≤ nE‖Xi‖2+ε/n
2+ε
2 = o(1). Hence uniformly in τ ∈ T ,

√
nEn

[
ϕτ (Y −X ′β̂(τ))X

]
= op(1). (17)

19Basic concepts used in the proof, including weak convergence in the space of bounded functions, stochastic

equicontinuity, Donsker and Vapnik-C̆ervonenkis (VC) classes, are defined as in van der Vaart and Wellner (1996).
20The step does not rely on Pollard’s (1991) convexity argument, as it does not apply to the process case.
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Second, (τ, β) 7→ Gn [ϕτ (Y −X ′β) X] is stochastically equicontinuous over B × T , where B is any

compact set, with respect to the L2(P ) pseudometric

ρ((τ ′, β′), (τ ′′, β′′))2 := max
j∈1,...,d

E
[
(ϕτ ′ (Y −X ′β′)Xj − ϕτ ′′ (Y −X ′β′′)Xj)

2
]
,

for j ∈ 1, ..., d indexing the components of X. Note that the functional class {ϕτ (Y −X ′β) X, τ ∈ T , β ∈
B} is formed as (T −F)X, where F = {1{Y ≤ X ′β}, β ∈ B} is a VC subgraph class and hence a bounded

Donsker class. Hence T −F is also bounded Donsker, and (T −F)X is therefore Donsker with a square

integrable envelope 2 · maxj∈1,..d |X|j , by Theorem 2.10.6 in Van der Vaart and Wellner (1996). The

stochastic equicontinuity then is a part of being Donsker.

Third, by stochastic equicontinuity of (τ, β) 7→ Gn [ϕτ (Y −X ′β) X] we have that

Gn

[
ϕτ (Y −X ′β̂(τ))X

]
= Gn [ϕτ (Y −X ′β(τ))X] + op∗(1), in `∞(T ), (18)

which follows from supτ∈T ‖β̂(τ)−β(τ)‖ = op∗(1), and resulting convergence with respect to the pseudo-

metric supτ∈T ρ[(τ, β̂(τ)), (τ, β(τ))]2 = op(1). The latter is immediate from supτ∈T ρ [(τ, b(τ)), (τ, β(τ))]2 ≤
C3 · supτ∈T ‖b(τ)− β(τ)‖ ε

(2+ε) , where C3 = (f̄ · (E‖X‖2)1/2)
ε

2(2+ε) · (E‖X‖2+ε)
2

2+ε < ∞ and f̄ is the a.s.

upper bound on fY (Y |X). (This follows by the Hölder’s inequality and Taylor expansion.)

Further, the following expansion is valid uniformly in τ ∈ T

E [ϕτ (Y −X ′β)X]
∣∣∣

β=β̂(τ)
= [J(τ) + op(1)]

(
β̂(τ)− β(τ)

)
. (19)

Indeed, by Taylor expansion E [ϕτ (Y −X ′β)X] |β=β̂(τ) = E [fY (X ′b(τ)|X)XX ′] |b(τ)=β∗(τ)(β̂(τ) − β(τ)),

where β∗(τ) is on the line connecting β̂(τ) and β(τ) for each τ , and is different for each row of the Jacobian

matrix. Then, (19) follows by the uniform consistency of β̂(τ), and the assumed uniform continuity and

boundedness of the mapping y 7→ fY (y|x), uniformly in x over the support of X.

Fourth, since the left hand side (lhs) of (17) = lhs of n1/2(19)+ lhs of (18), we have that

op(1) = [J(·) + op(1)](β̂(·)− β(·)) +Gn[ϕ·(Y −X ′β(·))X]. (20)

Therefore, using that mineig [J(τ)] ≥ λ > 0 uniformly in τ ∈ T ,

sup
τ∈T

∥∥∥Gn[ϕτ (Y −X ′β(τ))X] + op(1)
∥∥∥ ≥ (

√
λ + op(1)) · sup

τ∈T

√
n‖β̂(τ)− β(τ)‖. (21)

Fifth, the mapping τ 7→ β(τ) is continuous by the implicit function theorem and stated assump-

tions. In fact, since β(τ) solves E [(τ − 1{Y ≤ X ′β})X] = 0, dβ(τ)/dτ = J(τ)−1E [X] . Hence τ 7→
Gn [ϕτ (Y −X ′β(τ)) X] is stochastically equicontinuous over T for the pseudo-metric given by ρ(τ ′, τ ′′) :=

ρ((τ ′, β(τ ′)), (τ ′′, β(τ ′′))). Stochastic equicontinuity of τ 7→ Gn [ϕτ (Y −X ′β(τ))X] and a multivariate

CLT imply that

Gn [ϕ·(Y −X ′β(·))X] ⇒ z(·) in `∞(T ), (22)

where z(·) is a Gaussian process with covariance function Σ(·, ·) specified in the statement of Theorem 3.

Therefore, the lhs of (21) is Op(n−1/2), implying supτ∈T ‖
√

n(β̂(τ)− β(τ))‖ = Op∗(1).

Finally, the latter fact and (20)-(22) imply that in `∞(T )

J(·)√n(β̂(·)− β(·)) = −Gn [ϕ·(Y −X ′β(·))] + op∗(1) ⇒ z(·). (23)

Q.E.D.
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A.3 Proof of Corollaries

Proof of Corollary 1. The result follows by the continuous mapping theorem in `∞(T ). Absolute

continuity of K follows from Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). Q.E.D.

Proof of Corollary 2. The result follows by absolute continuity of K. The consistency of subsampling

estimator of κ̂(α) follows from Theorem 2.2.1 and Corollary 2.4.1 in Politis, Romano and Wolf (1999),

for the case when V (τ) are known. When V (τ) is estimated consistently uniformly in τ ∈ T , the result

follows by an argument similar to the proof of Theorem 2.5.1 in Politis et. al. (1999). Q.E.D.

A.4 Uniform Consistency of Σ̂(·, ·) and Ĵ(·).

Here it is shown that under the conditions of Theorem 3 and the additional assumption that E‖X‖4 < ∞,

the estimates described in the main text are consistent uniformly in (τ, τ ′) ∈ T × T ′.21
First, recall that Ĵ(τ) = [1/(2hn)] · En[1{|Yi −X ′

iβ̂(τ)| ≤ hn} ·XiX
′
i]. We will show that

Ĵ(τ)− J(τ) = op∗(1) uniformly in τ ∈ T . (24)

Note that 2hnĴ(τ) = En[fi(β̂(τ), hn)], where fi(β, h) = 1{|Yi−X ′
iβ| ≤ h} ·XiX

′
i. For any compact set B

and positive constant H, the functional class {fi(β, h), β ∈ B, h ∈ (0,H]} is a Donsker class with a square-

integrable envelope by Theorem 2.10.6 in Van der Vaart and Wellner (1996), since this is a product of a

VC subgraph class {1{|Yi−X ′
iβ| ≤ h}, β ∈ B, h ∈ (0,H]} and a square integrable random matrix XiX

′
i

(recall E‖Xi‖4 < ∞ by assumption). Therefore, (β, h) 7→ Gn [fi(β, h)] converges to a Gaussian process in

`∞(B × (0,H]), which implies that supβ∈B,0<h≤H ‖En [fi(β, h)]−E [fi(β, h)] ‖ = Op∗(n−1/2). Letting B

be any compact set that covers ∪τ∈T β(τ), this implies supτ∈T ‖En[fi(β̂(τ), hn)]−E[fi(β, hn)]
∣∣
β=β̂(τ)

‖ =

Op∗(n−1/2). Hence (24) follows by using 2hnĴ(τ) = En[fi(β̂(τ), hn)], 1/(2hn) · E[fi(β, hn)]
∣∣
β=bβ(τ)

=

J(τ) + op(1), and the assumption h2
nn →∞.

Second, we can write Σ̂(τ, τ ′) = En[gi(β̂(τ), β̂(τ ′), τ, τ ′)XiX
′
i], where gi(β′, β′′, τ ′, τ ′′) = (τ − 1{Yi ≤

X ′
iβ
′})(τ ′ − 1{Yi ≤ X ′

iβ
′′}) ·XiX

′
i. We will show that

Σ̂(τ, τ ′)− Σ(τ, τ ′) = op∗(1) uniformly in (τ, τ ′) ∈ T × T . (25)

It is easy to verify that {gi(β′, β′′, τ ′, τ ′′), (β′, β′′, τ ′, τ ′′) ∈ B × B × T × T } is Donsker and hence a

Glivenko-Cantelli class, for any compact set B, e.g., using Theorem 2.10.6 in Van der Vaart and Wellner

(1996). This implies that En [gi(β′, β′′, τ ′, τ ′′)XiX
′
i] − E [gi(β′, β′′, τ ′, τ ′′)XiX

′
i] = op∗(1) uniformly in

(β′, β′′, τ ′, τ ′′) ∈ (B×B×T ×T ). The latter and continuity of E [gi(β′, β′′, τ ′, τ ′′)XiX
′
i] in (β′, β′′, τ ′, τ ′′)

imply (25). Q.E.D.

21Note that the result for bJ(τ) is not covered by Powell (1986) because his proof applies only pointwise in τ ,

whereas we require a uniform result.
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Figure 1: CQF and Weighting schemes in 1980 Census (US-born white and black men aged 40-49). Panels A - C plot the
Conditional Quantile Function, Linear Quantile Regression fit, and Chamberlain’s Minimum Distance fit for log-earnings
given years of schooling. Panels D - F plot QR weighting function (histogram × importance weights), importance weights
and density weights.
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                                   A. SCHOOLING COEFFICIENTS
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Figure 2: Schooling coefficients and conditional quantiles of log-earnings in 1980, 1990, and 2000 censuses (US-born white
and black mean aged 40-49). Panel A plots the quantile process for the coefficient of schooling in the QR of log-earnings on
years of schooling, race, and a quadratic function of experience; and robust simultaneous 95 % confidence bands. Panel B
plots simultaneous 95 % confidence bands for the QR approximation to the conditional quantile function given schooling,
race, and a quadratic function of experience. Horizontal lines correspond to OLS estimates of the schooling coefficients in
Panel A. In Panel B, covariates are evaluated at sample mean values for each year, and distributions are centered at median

earnings for each year (i.e., for each τ and year, E[X]0(bβ(τ)− bβ(.5)) is plotted).



Table 1: Comparison of CQF and QR-based

Interquantile Spreads

Interquantile Spread

90-10 90-50 50-10

Census Obs. CQ QR CQ QR CQ QR

A. Overall

1980 65,023 1.20 1.19 0.51 0.52 0.68 0.67

1990 86,785 1.35 1.35 0.60 0.61 0.75 0.74

2000 97,397 1.43 1.45 0.67 0.70 0.76 0.75

B. High School Graduates

1980 25,020 1.09 1.17 0.44 0.50 0.65 0.67

1990 22,837 1.26 1.31 0.52 0.55 0.74 0.76

2000 25,963 1.29 1.32 0.59 0.60 0.70 0.72

C. College Graduates

1980 7,158 1.26 1.19 0.61 0.54 0.65 0.64

1990 15,517 1.44 1.38 0.70 0.66 0.74 0.72

2000 19,388 1.55 1.57 0.75 0.80 0.80 0.78

Notes: US-born white and black men aged 40-49. Average

measures calculated using the distribution of the covariates

in each year. The covariates are schooling, race and a

quadratic function of experience. Sampling weights used

for 2000 Census.


