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Abstract

In program evaluation studies, important hypotheses concerning how a treat-
ment or a social program affects the distribution of an outcome of interest
can be tested using statistics derived from empirical conditional quantile
processes. This paper develops simple and practical tests for verifying these
hypotheses. The critical values for these tests are obtained by subsampling
appropriately recentered empirical quantile regression processes. The result-
ing tests have not only good power and size properties, but also a much wider
applicability than the available methods based on Khmaladzation. Of inde-
pendent interest is also the use of recentering in subsampling, which leads
to substantial improvements in the finite-sample power of the tests relative
to the canonical (uncentered) subsampling. This can be attributed theoreti-
cally to an improvement in Bahadur efficiency that the recentering provides
in the testing context. The new inference approach is illustrated through a
reanalysis of the Pennsylvania reemployment bonus experiment.

AMS (2000) subject classification. 62-07, 62P20, 62G09, 62G10, 62M99.
Keywords and phrases. Quantile regression, subsampling, Kolmogorov-
Smirnov test.

1 Introduction

Beginning with the early work of Quetelet on growth charts, conditional
quantile models have provided a valuable method of statistical analysis.
This is especially true for program evaluation studies in biometrics and
econometrics, where conditional quantile methods help analyse how treat-
ments or social programs affect the outcome distributions of interest. Basic
approaches for conditional quantile estimation, proposed in Bhattacharya
(1963), Chaudhuri (1991), Doksum (1974), Hogg (1975), Koenker and Bas-
sett (1978), and Portnoy (1997) facilitate this analysis. In addition, there
are methods, developed in Buchinsky and Hahn (1998), Honoré, Khan and
Powell (2002), Portnoy (2003) and Powell (1986), that account for censoring
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of the outcome variable as well as methods, suggested in Abadie, Angrist,
and Imbens (2002), Chernozhukov and Hansen (2004, 2005), Chesher (2003),
and Firpo (2004), that deal with other types of sample selectivity and endo-
geneity.

This paper develops inferential methods based on conditional quantile
estimators, with special emphasis on the tests of hypotheses that arise in
program evaluation studies. In particular, we focus on (i) tests of a stochas-
tic dominance, (ii) tests of treatment effect significance, (iii) tests of treat-
ment effect heterogeneity, and (iv) other specification tests (see, e.g., Abadie,
2002, Heckman, Smith and Clements, 1997, and McFadden, 1989 for ad-
ditional motivation). These hypotheses involve conditional quantile func-
tions and other parameters of the conditional distribution. The tests are
formulated like Kolmogorov-Smirnov (KS) and Cramér-von-Misses-Smirnov
(CMS) type tests, based on empirical conditional quantile functions. How-
ever, in many interesting applications the presence of estimated nuisance
parameters, dependent data, or other features of the model jeopardizes the
“distribution-free” character of these tests (this problem is usually referred
to as the Durbin problem), which makes it difficult to use these tests in
empirical work.

In the case of estimated nuisance parameters, the Durbin problem can
be overcome by using a martingale transformation proposed by Khmaladze
(1988). This procedure uses recursive projections to annihilate the compo-
nent in the inference process due to the estimation of the unknown nuisance
parameters, yielding a martingale that has a standard limit distribution.
Koenker and Xiao (2002) have developed the Khmaladzation procedure for
conditional quantiles.

Here we suggest a simple resampling alternative that (i) does not require
the somewhat complex Khmaladze transformation, (ii) does not require the
estimation of the nonparametric nuisance functions needed in Khmaladze
approach, (iii) applies beyond the (local-to) location-scale regression models
required in Koenker and Xiao (2002), (iv) has good size and better power
than Khmaladzation, at least in the examples considered, (v) is robust to
general forms of serial dependence in the data, to which Khmaladzation is
not immune, and (vi) is computationally and practically attractive. In sum-
mary, the approach is a useful complement to Khmaladzation and is aimed
at substantively expanding the scope of empirical inference using quantile
regression methods.

Our testing approach is based on KS and CMS statistics, which are
defined on the empirical quantile regression process. The critical values are
obtained by subsampling the “mimicking” KS and CMS statistics, which are
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defined on an appropriately recentered empirical quantile regression process.
Suppose that the original KS or CMS statistics have a limit distribution H
under the null hypothesis. Then, the mimicking statistics have distribution
H under both the null and local alternatives. Hence, in order to estimate
H correctly, regardless of whether the null is true or fails locally, we resam-
ple the mimicking statistics. As a result, H as well as the entire null law of
the empirical quantile process are correctly estimated under local departures
from the null. It should be noted that our procedure differs from the canon-
ical subsampling for testing procedures, developed in Politis and Romano
(1994), precisely in the use of recentering inside the resampled statistics.
This recentering not only improves considerably the finite sample power of
the subsampling based tests, but also makes the performance of the method
practically insensitive to the choice of the subsample size.

To illustrate the utility of the approach, we briefly revisit the Penn-
sylvania re-employment bonus experiment conducted in the 1980’s by the
U.S. Department of Labor in order to test the incentive effects of alternative
compensation schemes for unemployment insurance (UI). In these controlled
experiments, UI claimants were randomly offered a cash bonus if they found
a job within some prespecified period of time. Our goal is to evaluate the
impact of such a scheme on the distribution of the unemployment duration.
We find that the bonus offer creates a first order stochastic dominance effect
on this distribution, reducing durations at nearly all quantiles. This result
usefully complements other findings reported in Koenker and Xiao (2002).

The rest of the paper is organized as follows. Section 2 introduces the
general testing problem, gives some illustrative examples, and describes the
Durbin problem in the context of quantile process inference. Section 3
presents the subsampling test and its implementation. Sections 4 and 5
give numerical examples and an empirical application.

2 The Testing Problem

Important questions posed in the econometric and statistical literature
concern the nature of the impact of a policy intervention or treatment on
the outcome distributions of interest; such as, for example, whether a pol-
icy exerts a significant effect, a constant vs. heterogeneous effect, or a
stochastically dominant effect; see, e.g., Doksum (1974), Koenker and Xiao
(2002), Abadie (2002), Heckman, Smith and Clements (1997), and McFad-
den (1989). Methods based on conditional quantiles offer a good way of
learning about these distributional phenomena.

Suppose Y is a real outcome variable, and X a vector of regressors.
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The vector X will typically include policy variables, D, other controls, and
interactions. For the sake of concreteness and to present examples below,
we can think of D as just a policy or treatment indicator, and the other
components of X, denoted by X−1, as a set of other observed characteristics.
The testing framework discussed below can be easily adjusted to incorporate
more general models and interactions.

Let FY |X(y) and F−1
Y |X(τ) = inf{y : FY |X(y) ≥ τ} denote the conditional

distribution function and the τ -quantile of Y given X, respectively. The
basic conditional quantile model, introduced in Hogg (1975), takes the linear
form:

F−1
Y |X(τ) = X ′βn(τ),

for all quantiles of interest τ ∈ T , where T is a closed subinterval of (0, 1).
In order to facilitate a local power analysis, the parameter βn(τ) is allowed
to depend on the sample size, n. This specification corresponds to a random
coefficients model Y = X ′βn(U), where U ∼ U(0, 1) conditional on X. This
is a standard model in quantile regression analysis and allows the regressors
to affect the entire shape of the conditional distribution, encompassing the
classical (location-shift) regression model as a special case.

We consider the following general null hypothesis:

R(τ)β0(τ) − r(τ) = 0, τ ∈ T , (1)

where R(τ) denotes q × p matrix, with q ≤ p = dim(β), and r(τ) is a q × 1
vector. We assume that the functions R(τ) and r(τ) are continuous in τ over
T , and that β0(τ) ≡ limn βn(τ) exists and is continuous in τ over T . In the
examples of interest, the components R(τ) and r(τ) are defined as functions
of the conditional distribution and thus need to be estimated. The estimates
will be denoted as R̂(τ) and r̂(τ). This hypothesis embeds several interesting
hypotheses about the parameters of the conditional quantile function, as
illustrated in the examples presented below.

Our discussion focuses on tests derived from the quantile regression pro-
cess β̂n(·) defined, following Koenker and Bassett (1978), as

β̂n(τ) = arg min
β∈Rd

n∑
t=1

ρτ

(
Yi − X ′

iβ
)
, τ ∈ T , (2)

where ρτ (u) = u(τ − I(u < 0)). Other estimators mentioned in the in-
troduction could also be considered instead, depending on the problem at
hand. The regularity conditions presented below allow for a rich variety of
underlying conditional quantile estimators.
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We next consider the basic inference (empirical) process:

vn(τ) = R̂(τ)β̂n(τ) − r̂(τ), (3)

and derive from it test statistics, Sn = f(vn(·)), where

Sn =
√

n sup
τ∈T

‖vn(τ)‖
�V (τ), Sn = n

∫
T
‖vn(τ)‖2

�V (τ)
dτ ; (4)

for KS and CMS, respectively. Here, ‖a‖V denotes
√

a′V a; V̂ (τ) is a sym-
metric weight matrix, such that V̂ (τ) = V (τ) + op(1), uniformly in τ , where
V (τ) is a positive definite and continuous symmetric matrix, uniformly in τ .
Section 3 provides details concerning the choice of V (τ) and V̂ (τ).

In order to introduce some specific examples, we consider the model
F−1

Y |D,X(τ) = Dβ1(τ) + X ′
−1β−1(τ), where D denotes a policy or treatment

variable, the impact of which we would like to analyse. In particular, D can
be thought of as an indicator of treatment receipt or of program participa-
tion.

Example 1. (The Hypothesis of a Significant Effect.) A basic hypothesis
is that the treatment impact summarized by β1(τ) differs from zero at least
for some τ . This hypothesis fits in the stated general hypothesis with R(τ) =
R = [1, 0, ...] and r(τ) = 0.

Example 2. (The Hypothesis of a Constant Effect vs. Heterogeneous
Effects.) Another important hypothesis is whether the treatment impact
does not vary across quantiles, i.e. β1(τ) = β for some unknown β for all
τ . In this case, R(τ) = R = [1, 0, ...] and r(τ) = β. We can estimate
the component r(τ) = β in this case by

∫
T β̂1n(τ). The alternative is the

hypothesis of heterogeneous effect, i.e. β1(τ) varies across τ .

Example 3. (The Hypothesis of Stochastic Dominance). The test of
stochastic dominance in the model stated above involves the dominance com-
posite null β1(τ) ≥ 0, for all τ ∈ T , versus the non-dominance alternative
β1(τ) < 0, for some τ ∈ T . In this case, the least favourable null involves
r(τ) = 0 and R = −[1, 0...]. A signed version of the KS statistic,

Sn =
√

n · sup
τ∈T

(
−sign (β̂1n(τ))‖β̂1n(τ)‖

�V (τ)

)
,

can be used to test this hypothesis.
In what follows, we use P ∗

n to denote outer probability, which possibly
depends on the sample size n, and ⇒ to denote weak convergence under P ∗

n
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in the space of bounded functions �∞(T ). We maintain the following main
assumptions:

A.1 For each n, (Yt,Xt, t ≥ 1) is a stationary and strongly mixing sequence
on the probability space (Ω,F , Pn).1

A.2 The law of the data (Yt,Xt, 1 ≤ t ≤ n), denoted by P [n]
n , is con-

tiguous to P [n], for some fixed probability measure P . Furthermore,
R(τ)βn(τ) − r(τ) = g(τ), where for a fixed continuous function p(τ) :
T → R

q either (a) g(τ) = p(τ)/
√

n for each n, or (b) g(τ) = p(τ) 
≡ 0
for each n.

A.3 (a) Under any local alternative A.2(a), the quantile estimates and nui-
sance parameter estimates satisfy:

√
n(β̂n(·)−βn(·)) ⇒ b(·),

√
n(R̂(·)−

R(·)) ⇒ ρ(·),
√

n(r̂(·) − r(·)) ⇒ ς(·), jointly in �∞(T ), where (b, ρ, ς)
is a zero mean continuous Gaussian process with a non-degenerate co-
variance kernel. (b) Under any global alternative A.2(b), the same
holds, except that the limit (b̃, ρ̃, ς̃) does not need to have the same
distribution as in A.3(a), and may depend on the alternative.

These assumptions immediately yield the following proposition, which
describes the limit distribution of the inference process and derived tests
statistics.

Proposition 1. 1. Under conditions A.1, A.2(a), A.3, in �∞(T ),

√
nvn(·) ⇒ v(·) = v0(·) + p(·), v0(·) ≡ u(·) + d(·),

where u(τ) = R(τ)b(τ) and d(τ) = (ρ(τ)β0(τ) − ς(τ)) . Under the null hy-
pothesis, p = 0, the test statistic Sn, defined in (4), converges in distribution
to S ≡ f(v0(·)).

2. Under the conditions A.1, A.2(b), A.3,
√

n(vn(·) − g(·)) ⇒ ṽ(·) ≡
ũ(·)+ d̃(·), where ũ(τ) = R(τ)b̃(τ) and d̃(τ) = (ρ̃(τ)β̃0(τ)− ς̃(τ)). Moreover,
Sn converges in probability to +∞.

Let us first discuss the conditions required for this proposition. Con-
dition A.1 allows for a wide variety of data processes, including i.i.d. and
stationary time series data. Strong mixing is sufficient, but not necessary,

1That is, (Yt, Xt, t ≥ 1) satisfies supA,B,n,m≥1 |Pn(A ∩ B) − Pn(A)Pn(B)| → 0 as
k → ∞, for A and B ranging over σ-fields generated respectively by (Yt, Xt, 1 ≤ t ≤ m)
and (Yt, Xt, m + k ≤ t < ∞).
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for consistency of subsampling. Stationarity can be replaced by more general
stability conditions, see e.g. Chapter 4 in Politis, Romano and Wolf (1999).

Conditions A.2(a) and A.2(b) formulate local and global alternatives.
Condition A.3 is a general condition that requires the parameters of the
empirical conditional quantile processes and of the null hypothesis to be
asymptotically Gaussian processes. These assumptions are implied by a
variety of conditions in the literature; see, e.g., Portnoy (1991) for the treat-
ment of quantile regression processes (2) under general forms of dependence
and heterogeneity.

Assumptions A.1-A.3 are substantially more general than the assump-
tions imposed in Koenker and Xiao (2002) in order to implement the Khmal-
adzation approach, which include i.i.d. sampling and (local-to) a location-
scale model in all the covariates. These stronger assumptions are not neces-
sary in any of the previous examples. The Khmaladzation method developed
in Koenker and Xiao (2002) does not apply outside these special settings.

Proposition 1 shows that the limit inference process v(·) is the sum of
three components, u(·), d(·), and p(·). The usual component u(·) is typically
a Gaussian process with a non-standard covariance kernel, so its distribu-
tion can not be feasibly simulated. This problem may be assumed away by
imposing i.i.d. conditions. However, the problem does not go away, once
the data is a general time series or the quantile regression model is misspec-
ified (in which case the model is interpreted as an approximation). Portnoy
(1991) provides expressions for the covariance kernel in time series settings,
and Angrist, Chernozhukov and Fernández-Val (2005) analyse the misspec-
ified case. In such important setting, the Khmaladzation approach is not
valid in its present form. The component d(·) is the Durbin component that
is present because R(·) and r(·) are estimated. Khmaladzation is often used
to eliminate this component. The component p(·), which describes devia-
tions from the null, determines the power of the tests. As Koenker and Xiao
(2002) show, the Khmaladzation inadvertently removes some portion of this
component.

Khmaladzation requires estimation of several nonparametric nuisance
functions that appear as deterministic components of d(·). Koenker and
Xiao (2002) develop their procedure for a location-scale shift model, where
the nuisance function is scalar-valued by assumption, greatly facilitating the
implementation.

In the next section, we describe a simple approach that is very useful in
practice and does not require estimation of nuisance functions. The approach
has a much wider applicability than Khmaladzation does.
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3 Resampling Test and Its Implementation

3.1. The test. Our approach is based on the “mimicking” inference
process v̄(·) and the corresponding test statistic Sn:

v̄n(τ) = vn(τ) − g(τ), Sn = f(v̄n(·)).

Proposition 2. Given A.1, A.2(a), A.3
√

nv̄n(·) ⇒ v0(·), and Sn ⇒
S. 2. Given A.1, A.2(b), A.3

√
nv̄n(τ) ⇒ v̄(·) = ũ(·) + d̃(·), and Sn ⇒

S ≡ f(v̄(·)).
Under local alternatives, the statistic Sn correctly mimics the null be-

haviour of Sn, even when the null hypothesis is false. This does not happen
under global alternatives, but this is not important for the consistency of
the test. In what follows we use vn(τ) itself to “estimate” g(τ), and use sub-
sampling to estimate consistently the distribution of S, which equals that of
S under the null hypothesis. We describe the test in two steps.

Step 1. For cases when Wt = (Yt,Xt) is i.i.d., construct all possible
subsets of size b. The number of such subsets Bn is “n choose b.” For cases
when {Wt} is a time series, construct Bn = n − b + 1 subsets of size b of
the form {Wi, ...,Wi+b−1}. Compute the inference process vn,b,i(·), for each
i-th subset, i ≤ Bn. (In practice, a smaller number Bn of randomly chosen
subsets can also be used, provided that Bn → ∞ as n → ∞).

Denote by vn the inference process computed over the entire sample;
and by vn,b,i the inference process computed over the i-th subset of data,
and define:

Ŝn,b,i ≡ sup
τ∈T

√
b‖vn,b,i(τ) − vn(τ)‖�V (τ)

or,

Ŝn,b,i ≡ b

∫
T
‖vn,b,i(τ) − vn(τ)‖2

�V (τ)
dτ,

for cases when Sn is KS or CMS statistics, respectively. Define

G(x) ≡ Pr{S ≤ x} and H(x) ≡ Pr{S ≤ x}.

Note that as b/n → 0 and b → ∞,
√

b‖vn(·) − g(·)‖ =
√

b · Op(1/
√

n) =
op(1), including when g(τ) = p(τ)/

√
n. As a result,

√
b‖(vn,b,i(·) − g(·)) +
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(g(·)− vn(·))‖ =
√

b‖vn,b,i(·)− g(·)‖+ op(1), uniformly in i. The distribution
of Ŝn,b,i can then consistently estimate G, which coincides with H under the
null and local alternatives. Thus, the following step is clear.

Step 2. Estimate G(x) by Ĝn,b(x) = B−1
n

∑Bn
i=1 1{Ŝn,b,i(τ) ≤ x}.

Obtain the critical value as the (1 − α)-th quantile of Ĝn,b, cn,b(1 − α) =
Ĝ−1

n,b(1 − α). Finally, reject the null hypothesis if Sn > cn,b(1 − α).

Theorem 1. Given A.1 - A.3 as b/n → 0, b → ∞, n → ∞, Bn → ∞,

(i) When the null hypothesis is true, p = 0, if H is continuous at H−1(1−
α):

cn,b(1 − α)
P∗

n−→ H−1(1 − α), P ∗
n(Sn > cn,b(1 − α)) → α.

(ii) Under any local alternative A.2(a), p 
≡ 0, if H is continuous at
H−1(1 − α):

cn,b(1 − α)
P∗

n−→ H−1(1 − α), P ∗
n(Sn ≤ cn,b(1 − α)) → 1 − β,

where β = Pr (f(v0(·) + p(·)) > H−1(1 − α)) > α.

(iii) Under the global alternative A.2(b), if G is continuous at G−1(1 − α):

cn,b(1 − α)
P∗

n−→ G−1(1 − α), P ∗
n(Sn ≤ cn,b(1 − α)) → 0.

(iv) H(x) and G(x) are continuous if the covariance function of v0(·) and
v̄(·) is nondegenerate.

Theorem 1 shows that the test based on subsampling asymptotically has
correct level, is consistent against global alternatives, has nontrivial power
against root-n alternatives, and has the same power as the test with known
critical value. Furthermore as ‖p(τ)‖ → ∞, the power β goes to one.

It is useful to comment on the use of recentering in subsampling. Under
global alternatives, the critical value cn,b used in the subsampling test with
recentering converges to a constant; in contrast, the critical value obtained
by the canonical subsampling test without recentering (Politis, Romano and
Wolf, 1999) diverges to ∞ at the rate

√
b. Therefore, both tests are con-

sistent, but this observation suggests that the canonical test should be less
efficient in the Bahadur sense and, of course, less powerful in finite sam-
ples. Computational experiments confirm this observation. However, note
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that under local alternatives, the critical values of both tests converge to the
same value. Therefore, both tests have identical Pitman efficiency.

3.2. Practical considerations. It may be sometimes more practical to use
a grid Tn in place of T with the largest cell size δn → 0 as n → ∞.

Corollary 1. Propositions 1 and 2 and Theorems 1 and 2 are valid for
the piece-wise constant approximations of the finite-sample processes, given
that δn → 0 as n → ∞.

3.3. Estimation of V (τ). In order to increase the testing power we could
set

V (τ) = [Ω(τ)]−1 ≡ Var [v̄(τ)]−1 ,

which is an Anderson-Darling type weight. It is also convenient to use sub-
sampling itself to estimate Ω(τ). Under asymptotic integrability conditions,
the subsampling variance matrix is a consistent estimate of Ω(τ). With-
out integrability conditions, we can estimate Ω(τ) using trimmed moments
in conjunction with asymptotic normality. Another useful method is the
quantile approach that uses interquantile ranges of the components v̄j(τ)
and v̄k(τ) + v̄j(τ), along with normality, to determine the variance matrix
of v̄(τ) = (v̄j(τ), j = 1, ..., q) . We shall focus only on the first approach
for the sake of brevity. This is the approach we use in simulations and in
the empirical section. However, the validity of the trimmed moments and
quantile approaches is immediate from Theorem 2 that shows the uniform
in τ consistency of the estimates of the key ingredients.

Theorem 2 establishes four results. The first result states that the sub-
sampling law of

√
b (vi,b,n(·) − vn(·)) converges weakly to that of v̄(·), which

is a direct consequence of the ingenious results of Politis, Romano and Wolf
(1999). The second result provides consistent estimates of the truncated
moments of v̄(·), using the corresponding quantities of the subsampling law.
The third result shows the convergence of untrimmed moments, assuming
uniform integrability conditions. The fourth states the convergence of sub-
sampling percentiles uniformly in the quantile index τ .

Define the notation xm ≡ (x1, ..., xp)m ≡ xm1
1 × ... × x

mp
p for any m =

(m1, ...,mp) valued on nonnegative integers. A simple estimate of the (un-
trimmed) moment is given by:

ELn,b

[√
b (vi,b,n(τ) − vn(τ))

]m
=

1
Bn

Bn∑
i=1

[√
b (vi,b,n(τ) − vn(τ))

]m
,
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where Ln,b denotes the sub-sampling law of
√

b(vi,b,n(·)−vn(·)). Using various
m we can obtain estimates of variance, covariance, and other moments of
v̄(τ).

Next, in order to discuss the trimmed moments as well as forthcoming
formal results, define the following notation. Let τ �→ v(τ) be an element of
�∞(T ), and L(c, k) be a class of Lipschitz functions ϕ : �∞(T ) → R

K that
satisfy:

‖ϕ(v) − ϕ(v′)‖ ≤ c · sup
τ

‖v(τ) − v′(τ)‖, ‖ϕ(v)‖ ≤ k,

where c and k are suitably chosen positive constants. For probability laws Q
and Q′, define the bounded Lipschitz metric as ρBL(Q,Q′) = supϕ∈L ‖EQϕ−
EQ′ϕ‖. Consider a trimming function fK(x) ≡ min(max(−K,x),K), where
K > 0 and x ∈ R. A motivating example for ϕ is ϕ(v) = fK(τ)(v(τ)m),
where K(τ) ≤ K for all τ , which defines all kinds of trimmed moments and
correlations. E.g.

ELn,b

[
fK

{[√
b (vi,b,n(τ) − vn(τ))

]m}]
=

1
Bn

Bn∑
i=1

[
fK

{[√
b (vi,b,n(τ) − vn(τ))

]m}]
,

where Ln,b symbolically denotes the subsampling law of
√

b(vi,b,n(·)− vn(·)).

Theorem 2. Under conditions A.1-A.3

(i) letting L and L0 denote the laws of v̄(·) and v0(·) in �∞(T ), respec-
tively,

ρBL(Ln,b, L)
P ∗

n−→ 0,

and L equals L0 under local alternatives.

(ii)

sup
τ∈T

∣∣∣ELn,b

[
fK

{[√
b(vi,b,n(τ) − vn(τ))

]m}]
− EL

[
fK

{[
v̄(τ)

]m}] ∣∣∣ P∗
n−→ 0.

(iii) The trimming in (ii) can be dropped if uniformly in P ∈ {Pn, n > n0}
for some constants n0 and n1:2{

sup
τ∈T

|{
√

J (vJ(τ) − gP (τ))}m|, J ≥ n1

}
are uniformly integrable.

2In this formula the departure from the null in A.2 g(τ ) is indexed by probability
measure P to emphasize this dependence for clarity.
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(iv) For ν̄(τ) ≡
√

b (vi,n,b(τ) − vn(τ)) for all j, k

sup
τ∈T

∣∣∣Qν̄(τ)j
(p|Lb,n) − Qv̄(τ)j

(p|L)
∣∣∣ P ∗

n−→ 0,

sup
τ∈T

∣∣∣Qν̄(τ)j+ν̄(τ)k
(p|Lb,n) − Qv̄(τ)j+v̄(τ)k

(p|L)
∣∣∣ P ∗

n−→ 0,

if v(·) has a nondegenerate covariance function. Here QZ(p|L) denotes
the p-th quantile of the random scalar Z under the probability law L.

The integrability imposed in (iii) is a fairly weak condition in practical
situations. Under stronger uniform integrability conditions than in (iii),
imposed on the higher order powers of the inference process, it is possible
to strengthen the convergence in (iii) to convergence in the mean squared
sense. This can be done by adopting the arguments of Carlstein (1986) and
Fukuchi (1999) developed for the random variable case.

3.4. Choice of block size. In Sakov and Bickel (2000) and in Politis,
Romano and Wolf (1999) various rules are suggested for choosing the ap-
propriate subsample size. Politis, Romano and Wolf (1999) focus on the
calibration and minimum volatility methods. The calibration method in-
volves picking the optimal block size and appropriate critical values on the
basis of simulation experiments conducted with a model that approximates
the situation at hand. The minimum volatility method involves picking
(or combining) among the block sizes that yield more stable critical val-
ues. More detailed suggestions emerge from Sakov and Bickel (2000), who
suggest choosing b ∝ n1/2 in the case of the replacement version of subsam-
pling applied to a sample quantile. Our own experiments indicated that this
rule works well in the present context. Specifically, we used a similar rule
b = m + n1/c, where m is the minimal plausible sample size and c can be
set to 2. In the simulation experiments, we also use c = 4 to have cheaper
computations.

4 A Computational Example

In this section we conduct computational experiments to assess the size
and power properties of the tests in finite samples. To help us compare
the performance of the resampling tests with the alternative tests based
on Khmaladzation without prejudicing against the latter, we use the same
design as in Koenker and Xiao (2002). In particular, we consider 36 differ-
ent scenarios of the location-shift hypothesis in Example 2. The data are
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generated from the model:

Yi = α + βDi + σ(Di) · εi,

σ(Di) = γ0 + γ1 · Di,

εi ∼ N(0, 1), Di ∼ N(0, 1),
α = 0, β = 1, γ0 = 1.

Under the null hypothesis γ1 = 0. We examine the empirical rejection
frequencies for 5% nominal level tests for different choices of sample size
n, sub-sample block b, and heteroscedasticity parameter γ1. The sample
size ranges from n = 100 to n = 800. To demonstrate the robustness of the
technique with respect to the sub-sample size, we use the replacement version
of subsampling with choices of the block size b = 20+n1/4, b = 20+n1/(2+ε),3

for ε = 0.01, b = n/4, and b = n; where b = n corresponds to the n out
of n bootstrap. In constructing the test, we use the OLS estimate for β̂
and an equally spaced grid of 19 quantiles Tn = {.05, .10, ..., .95}. When
γ1 = 0 the model is a location-shift model, and the rejection rates yield
the empirical sizes. When γ1 
= 0 the model is heteroscedastic, and the
rejection rates give the empirical powers. We use 1000 replications in each
of the simulations, and employ Bn = 250 bootstrap repetitions within each
replication to compute the critical values.4

Table 1. Empirical Rejection Frequencies for 5% level Khmaladze Test

(Kolmogorov-Smirnov Statistic)*

H = .5 Bofinger H = .6 Bofinger
γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

n = 100 .101 .264 .804 .035 .211 .755
n = 400 .054 .812 1 .043 .809 1
n = 800 .053 .982 1 .050 .969 1

H = .7 Bofinger H = 1 Bofinger
γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

n = 100 .016 .126 .641 .009 .053 .197
n = 400 .035 .632 1 .023 .412 .997
n = 800 .049 .924 1 .041 .792 1

*Results extracted from Koenker and Xiao (2002). H denotes the different bandwidth

choices relative to Bofinger rule.

3The replacement and nonreplacement subsampling here are equivalent with probability
converging to 1 if b2/n → 1, so our formal results cover only these first two schemes.

4The maximal simulation standard error for the empirical sizes and powers of the tests
is max0≤p≤1

�
p(1 − p)/1000 ≈ .016.
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Table 2. Empirical Rejection Frequencies for 5% resampling test

(Cramér-Von-Mises-Smirnov Statistic),

using 250 bootstrap draws and 1000 repetitions.*

b = 20 + n1/4 b = 20 + n1/2.01

γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

A - CENTERED

n = 100 .012 .454 .996 .038 .497 .996
n = 400 .049 .991 1 .057 .996 1
n = 800 .059 1 1 .062 1 1

B - UNCENTERED (CANONICAL)

n = 100 .009 .185 .888 .015 .166 .855
n = 400 .043 .986 1 .043 .987 1
n = 800 .057 1 1 .053 1 1

b = n b = n/4
γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

A - CENTERED

n = 100 .030 .502 .998 .029 .483 .994
n = 400 .062 .997 1 .063 .995 1
n = 800 .076 1 1 .078 1 1

B - UNCENTERED (CANONICAL)

n = 100 0 0 0 .013 .212 .889
n = 400 0 0 .159 .011 .948 1
n = 800 0 .001 .768 .011 1 1

*All the results are reproducible and the programs are available from the authors. Maximal

simulation s.e. = .016.

Table 1 reports the results for the KS test based on Khmaladzation, ex-
tracted from Koenker and Xiao (2002), for the different values of n and γ1

considered here. Tables 2 and 3 give the results for the subsampling tests
based on CMS statistic and KS statistic, respectively. For the CMS statistic
we add an adjustment of 1.96 times an estimate of the standard error of
the subsampling quantile estimate cn,b to account for the finite number of
bootstrap repetitions Bn. For the KS statistic, we find that the bias has
the opposite direction. We adjust the quantile estimate cn,b by subtract-
ing 1.96 times the standard error. For each statistic, we calculate rejection
frequencies using the canonical (uncentered) subsampling test of Politis, Ro-
mano, and Wolf (1999) (Panel B), and the recentered version proposed here
(Panel A).

Overall, the resampling tests are quite powerful and have small size
distortions even in small samples. The results also suggest that resam-
pling procedures substantively outperform the Khmaladzation procedures in
terms of power. Notably, for the model considered, even using a very small
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sub-sample size, b = 20+n1/4, leads to reliable, powerful, and computation-
ally attractive inference. Our main proposal, the recentered subsampling
test, in addition to having a considerably better power than other methods,
makes the resampling method quite robust to variations of subsample size.
This is not the case for the uncentered subsampling.

Table 3. Empirical Rejection Frequencies for 5% resampling test

(Kolmogorov-Smirnov Statistic),

using 250 bootstrap draws and 1000 repetitions.*

b = 20 + n1/4 b = 20 + n1/2.01

γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

A - CENTERED

n = 100 .005 .217 .955 .009 .221 .962
n = 400 .026 .962 1 .023 .965 1
n = 800 .032 1 1 .046 1 1

B - UNCENTERED (CANONICAL)

n = 100 .004 .116 .684 .007 .084 .572
n = 400 .038 .947 1 .021 .923 1
n = 800 .032 1 1 .049 1 1

b = n b = n/4
γ = 0 γ = .2 γ = .5 γ = 0 γ = .2 γ = .5

A - CENTERED

n = 100 .005 .207 .975 .008 .213 .960
n = 400 .020 .976 1 .028 .979 1
n = 800 .036 1 1 .041 1 1

B - UNCENTERED (CANONICAL)

n = 100 0 0 0 .006 .108 .675
n = 400 0 0 0 .010 .807 1
n = 800 0 0 0 .016 .994 1

*All the results are reproducible and the programs are available from the authors.

Maximal simulation s.e. = .016.

Table 4 reports empirical sizes for the resampling tests using larger sam-
ple sizes. Here, the smallest sub-sample blocks yield good sizes, whereas
increasing the sub-sample blocks can create size distortions of up to 4% in
the CMS test, which also vanish quite slowly as n grows. A potential draw-
back of our method, shared also by the tests based on Khmaladzation, is
that some finite sample adjustments are needed to size-correct the critical
values. In results not reported, we find that the adjustment is sensitive to the
number of bootstrap repetitions Bn.5 In practice, we recommend calibrating

5Results for Tables 2 to 4 using unadjusted tests are available from the authors upon
request.
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the adjustment to the situation at hand, or to use a conservative strategy
based on the unadjusted KS statistic, which in our experience always yields
empirical sizes smaller than the nominal levels of the test.

Table 4. Empirical Rejection Frequencies for 5% resampling test (γ = 0),
using 250 bootstrap draws and 1000 repetitions.*

b = 20 + n1/4 b = 20 + n1/2.01

b CMS KS b CMS KS

A - CENTERED

n = 1000 26 .041 .029 52 .071 .046
n = 2000 27 .049 .038 64 .061 .043
n = 5000 29 .052 .029 90 .074 .060
n = 10000 30 .054 .036 118 .086 .068

B - UNCENTERED (CANONICAL)

n = 1000 26 .043 .026 52 .058 .045
n = 2000 27 .048 .038 64 .045 .040
n = 5000 29 .049 .030 90 .063 .059
n = 10000 30 .049 .036 118 .081 .068

*All the results are reproducible and the programs are available from the authors.

Maximal simulation s.e. = .016.

5 An Empirical Application

To illustrate the present approach, we re-analyse the Pennsylvania re-
employment bonus experiment by expanding on the empirical questions con-
sidered in Koenker and Xiao (2002). This experiment was conducted in the
1980’s by the U.S. Department of Labor6 in order to test the incentive effects
of an alternative compensation scheme for unemployment insurance (UI). In
this experiment, UI claimants were randomly offered a cash bonus if they
found a job within some pre-specified period of time and if the job was re-
tained for a specified duration. The main goal was to evaluate the impact
of such a scheme on the unemployment duration.

As in Koenker and Xiao (2002) we restrict attention to the compensa-
tion schedule that includes a lump-sum payment of six times the weekly
unemployment benefit for claimants who establish the reemployment within
12 weeks (in addition to the usual weekly benefits). The definition of the
unemployment spell includes one waiting week, with the maximum of unin-
terrupted full weekly benefits of 27.

6There is a significant empirical literature focusing on the analysis of this and other
similar experiments, see e.g. the review of Meyer (1995).
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The model under consideration is a linear conditional quantile model for
the logarithm of duration:

Qlog(T )(τ |X) = α(τ) + δ(τ)D + X ′
−1β(τ),

where T is the duration of unemployment, D is the indicator of the bonus
offer, and X−1 is a set of socio-demographic characteristics (age, gender,
number of dependents, location within the state, existence of recall expec-
tations, and type of occupation). Further details are given in Koenker and
Bilias (2001).
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Figure 1. Quantile Treatment Effect for Unemployment Duration

The three basic hypotheses, described in Table 5, include:

• treatment effect is insignificant across a portion of the distribution
(T = [.15, .85]),

• treatment effect is constant across most of the distribution (T =
[.15, .85]),

• treatment effect is unambiguously beneficial: δ(τ) < 0 for all τ ∈ T .

We implemented the subsampling test following the procedure described
in Section 3, and report the results in Table 5. We used b = 3000 as the
subsample size and did not consider subsamples of smaller sizes, because they
often yielded singular designs (many of X−1 are dummy variables taking on
positive value with probability 2 − 10%).7

7For this application, we use 10,000 bootstrap repetitions to obtain the critical values.
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Table 5. Results of the tests for the re-employment bonus experiment, using

b = 3, 000 and recentered subsampling with replacement.*

Hypothesis Null Alternative KS Statistic 5% Critical Value Decision

No effect δ(τ ) = 0 δ(τ ) �= 0 3.76 3.21 Reject
Location
shift

δ(τ ) = δ δ(τ ) �= δ 2.96 2.92 Reject

Dominance
effect

δ(τ ) ≤ 0 δ(τ ) > 0,
for some τ

-.23 2.11 Accept

*Critical values obtained using 10,000 bootstrap repetitions.

The first two hypotheses are decisively rejected, supporting the earlier
conclusions of Koenker and Xiao (2002) reached using Khmaladzation tech-
niques. The hypothesis of stochastic dominance, the third one, is decisively
supported.8 Thus, the bonus offer creates a first order stochastic domi-
nance effect on the unemployment duration, suggesting that the program
is unambiguously beneficial from this point of view. These additional re-
sults complement, in an interesting way, the set of inference results given in
Koenker and Xiao (2002).

6 Conclusion

A simple and practical resampling test is offered as an alternative to
the Khmaladzation technique, suggested in Koenker and Xiao (2002). This
alternative has good power and does not require non-parametric estimation
of nuisance functions. It applies to both i.i.d. and time series data. Finite-
sample experiments provide a strong evidence in support of this technique
and an empirical illustration shows its utility.

Appendix A

Throughout the appendix, w.p. → 1 means “with (inner) probability
converging to one”.

Proof of Proposition 1 and 2. The results are immediate from
A.1-A.3 by the continuous mapping theorem. �

8Unadjusted critical values for the KS statistics lead to the same conclusions about the
tests. Test based on uncentered subsampling, however, do not reject any of the hypotheses
reflecting the lower power of this procedure against local departures of the null hypotheses.
These results are available from the authors upon request.
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Proof of Theorem 1. We give the proof for the KS statistic. Exten-
sions to other statistics defined in the text are straightforward.

I.To prove (i)- (iii), define Ġn,b(x) and write out Ĝn,b(x) as

Ġn,b(x) = B−1
n

∑
i≤Bn

1
[
Ai ≤ x

]
,

Ĝn,b(x) = B−1
n

∑
i≤Bn

1
[
Âi ≤ x

]
,

where

Ai = sup
τ∈T

∥∥∥V 1/2(τ)
(√

b(vi,b,n(τ) − g(τ))
) ∥∥∥,

Âi = sup
τ∈T

∥∥∥V̂ 1/2(τ)
(√

b(vi,b,n(τ) − g(τ)) +
√

b(g(τ) − vn(τ))
) ∥∥∥.

Next collect two facts: Fact 1, uniformly in i

1

λ̇
1/2
n

≤

∥∥∥V̂ 1/2(τ)
(√

b(vi,b,n(τ) − g(τ)) +
√

b(g(τ) − vn(τ))
) ∥∥∥∥∥∥V 1/2(τ)

(√
b(vi,b,n(τ) − g(τ)) +

√
b(g(τ) − vn(τ))

) ∥∥∥ ≤ λ̄1/2
n ,

where

λ̄n = sup
τ

maxeig
(
V −1/2(τ)V̂ (τ)V −1/2(τ)

)

and

λ̇n = sup
τ

maxeig
(
V̂ −1/2(τ)V (τ)V̂ −1/2(τ)

)
by equality 10 on p.460 in Amemiya (1985).9 Fact 2 follows from Fact 1 and
by |‖A‖ − ‖w‖| ≤ ‖A + w‖ ≤ ‖A‖ + ‖w‖,

1[Ai < (x/un − wn)] ≤ 1[ �Ai < x] ≤ 1[Ai < (x/ln + wn)]

where ln = 1/λ̇1/2
n , un = λ̄

1/2
n , and wn is defined below.

By A.2, A.3, and assumptions on V̂ (τ) and V (τ)

wn ≡ sup
τ

√
b
∥∥∥V 1/2(τ)(vn(τ) − g(τ))

∥∥∥ = Op(
√

b/
√

n)
P ∗

n−→ 0,

qn ≡ max[|un − 1|, |ln − 1|] P ∗
n−→ 0.

9λ = supx x′Ax/x′x equals the maximum eigenvalue (characteristic root) of the sym-
metric matrix A.
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Thus 1(En) = 1 wp→ 1, where En ≡ {wn, qn ≤ δ} for any δ > 0.
II. We have that EPn [Ġn,b(x)] = Pn(Sb ≤ x) by non-replacement sam-

pling. Conclude that Ġn,b(x)
P ∗

n−→ G(x) by contiguity and a law of large
numbers. In the i.i.d. case, the law of large numbers is that for U-statistics
of degree b; and for the time series case, the law of large numbers is the one
stated in Theorem 3.2.1 in Politis and Romano and Wolf (1999).

Using I, for small enough ε > 0 there is δ > 0, so that by fact 2: Ġn,b(x−
ε)1(En) ≤ Ĝn,b(x)1(En) ≤ Ġn,b(x+ε)1(En), so that with probability tending
to one: Ġn,b(x− ε) ≤ Ĝn,b(x) ≤ Ġn,b(x+ ε). Next, note that x = G−1(1−α)
is a continuity point by assumption. Pick ε > 0 so that [x − ε, x + ε] are

continuity points of G(x). For such small enough ε, Ġn,b(x+c)
P ∗

n−→ G(x+c),
for c = ±ε, which implies G(x − ε) − ε ≤ Ĝn,b(x) ≤ G(x + ε) + ε w.p. → 1.

Since ε can be set arbitrarily small, conclude that Gn,b(x)
P ∗

n−→ G(x).
Convergence of quantiles is implied by the convergence of distribution

functions at continuity points.
Coverage results follow from the definition of weak convergence.
Finally, that β > α follows by an Anderson’s Lemma for Banach spaces,

Lemma 3.11.4 in van der Vaart and Wellner (1996).
III. (iv) follows from Theorem 11.1 of Davydov, Lifshits, and Smordina

(1998) by A.3. �

Proof of Theorem 2. To show (i): the proof is a direct corollary of
Theorem 7.3.1 in Politis, Romano and Wolf (1999).

To show (ii): the convergence of truncated moments follows from the
definition of ρBL.

To show (iii): we use direct arguments. Let

v̄i,b,n(·) ≡ vi,b,n(·) − vn(·), and f c
K(x) ≡ x − fK(x),

and write

ELb,n

[
(
√

bv̄i,b,n(τ))m
]

= ELb,n

[
fK{(

√
bv̄i,b,n(τ))m}

]
︸ ︷︷ ︸

I

+ ELb,n

[
f c

K{(
√

bv̄i,b,n(τ))m}
]

︸ ︷︷ ︸
II

.

For any given K, the term ELn,bI converges uniformly in τ to EP [fK{v̄(τ)m}]
by part (ii). Thus, it suffices to show that for any ε > 0, there is K > 0 such
that

(a) sup
τ∈T

|ELb,n
II| ≤ ε wp → 1, and (b) EP sup

τ∈T
|f c

K{v̄(τ)m}| ≤ ε.
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(b) is immediate by the uniform integrability. To show (a), for any given
ε > 0 and δ > 0

limnP ∗
n

[
sup
τ∈T

∣∣∣ELb,n
II

∣∣∣ > ε

]
(1)

≤ limnP ∗
n

[
ELb,n

sup
τ∈T

∣∣∣II
∣∣∣ > ε

]
(2)

≤ limn

[
EP∗

n
sup
τ∈T

∣∣∣f c
K

{[√
bv̄i,b,n(τ)

]m} ∣∣∣]/
ε

≤limn

[
EP∗

n
sup
τ∈T

∣∣∣f c
K

{[√
b(vi,b,n(τ) − gPn(τ))

]m} ∣∣∣
+ EP∗

n
sup
τ∈T

∣∣∣f c
K

{[√
b (vn(τ) − gPn(τ))

]m} ∣∣∣]/
ε

≤limn 2 · max
Jn∈{b,n}

[
EP∗

n
sup
τ∈T

∣∣∣f c
K

{[√
Jn (vJn(τ) − gPn(τ))

]m} ∣∣∣]/
ε

(3)

≤δ,

where (1) is by Jensen; (2) is by Markov and

EP ∗

[
ELb,n

sup
τ∈T

∣∣∣f c
K

{[√
bv̄i,b,n(τ)

]m} ∣∣∣] = EP ∗

[
sup
τ∈T

∣∣∣f c
K

{[√
bv̄i,b,n(τ)

]m} ∣∣∣] ,

by non-replacement sampling and stationarity; (3) follows by picking K
sufficiently large such that

sup
P∈{Pn,n≥n0}

sup
Jn>n1

[
EP∗ sup

τ∈T

∣∣∣f c
K

{[√
Jn (vJn(τ) − gPn(τ))

]m} ∣∣∣] ≤ 1
2
· δ · ε,

by the uniform integrability.
To show (iv), define, for ν̄(τ) =

√
b(vi,b,n(τ) − vn(τ)),

G(x; τ) = PL{v̄(τ)j ≤ x} and Gn(x; τ) = PLb,n
{ν̄(τ)j < x}.

Denote by fK(y) a smooth approximation of the indicator function 1(y < 0)
that disagrees with 1(y < 0) only on the set K = [0, δ] for δ > 0, such that
y �→ fK(y) ∈ L(c(δ), k(δ)). Then by part (i)

sup
(τ,x)∈T ×X

∣∣∣EL{fK(v̄(τ)j − x)} − ELb,n
{fK(ν̄(τ)j − x)}

∣∣∣ P ∗
n−→ 1,

where X is any fixed compact set. Using this fact and that the asymp-
totic limit v(·)j is a nondegenerate Gaussian process on the compact set
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(each coordinate of which, v(τ)j , has, uniformly in τ , uniformly bounded
density, which rules out point masses), a standard smoothing argument de-

livers: sup(τ,x)∈T ×X |G(x; τ) − Gn(x; τ)| P ∗
n−→ 0, which by Lemma 1 implies

supτ∈T |G−1
n (p; τ) − G−1(p; τ)| P ∗

n−→ 0. A similar argument is applied to any
sum of two components v(τ)j + v(τ)k. �

This lemma is a simple generalization of a well-known result.

Lemma 1. Suppose {Gn(x|τ), τ ∈ T } is a collection of distribution func-
tions indexed by τ , and G(x|τ) is also a cdf such that G−1(p|τ) is uniformly
continuous in (p, τ), for (p, τ) ∈ P × T , P ⊂ [0, 1]. Suppose also that

sup
(τ,x)∈T ×X

∣∣∣Gn(x|τ) − G(x|τ)
∣∣∣ P ∗

n−→ 0.

Then, for any p such that: ∪τ∈T {G−1(p ± δ|τ)} ∈ X for some δ > 0, we
have that:

sup
τ∈T

∣∣∣G−1
n (p|τ) − G−1(p|τ)

∣∣∣ P ∗
n−→ 0.

Proof. By assumption, wp → 1, uniformly in τ

Gn(G−1(p′|τ)|τ) − ε < p′︸︷︷︸
G(G−1(p′|τ)|τ)

< Gn(G−1(p′|τ)|τ) + ε,

uniformly in p′ ∈ {p, p − ε, p + ε}, for some fixed p. Since Gn is cadlag, this
inequality implies:

G−1
n (p′ + ε|τ) ≥ G−1(p′|τ) ≥ G−1

n (p′ − ε|τ).

Apply this inequality to p′ ∈ {p, p − 2ε, p + 2ε}, and conclude that wp → 1,
uniformly in τ

G−1(p + 2ε|τ) ≥ G−1
n (p + ε|τ) ≥ G−1(p|τ) ≥ G−1

n (p − ε|τ) ≥ G−1(p − 2ε|τ).
(5)

Also by monotonicity

G−1
n (p + ε|τ) ≥ G−1

n (p|τ) ≥ G−1
n (p − ε|τ). (6)



Subsampling inference on quantile regression processes 275

By assumption we can set ε arbitrarily small so that uniformly in τ

|G−1(p + 2ε|τ) − G−1(p − 2ε|τ)| < ε. (7)

Thus (5)-(7) imply supτ∈T

∣∣∣G−1
n (p|τ) − G−1(p|τ)

∣∣∣ < ε wp → 1. �.
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