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Bayesian econometrics employs Bayesian methods for inference about economic

questions using economic data. In the following, we briefly review these methods and

their applications.

Suppose a data vector X = (X1, ..., Xn) follows a distribution with a density func-

tion pn(x|θ) which is fully characterized by some parameter vector θ = (θ1, ..., θd)
′.

Suppose that the prior belief about θ is characterized by a density p(θ) defined over

a parameter space Θ, a subset of a Euclidian space Rd. Using Bayes’ rule to incor-

porate the information provided by the data, we can form posterior beliefs about the

parameter θ, characterized by the posterior density

pn(θ|X) = pn(X|θ)p(θ)c, c = 1/

∫

Θ

pn(X|θ̃)p(θ̃)dθ̃. (1)

The posterior density pn(θ|X), or simply pn(θ), describes how likely it is that a

parameter value θ has generated the observed data X. We can use the posterior

density to form optimal point estimates and optimal hypotheses tests. The notion

of optimality is minimizing mean posterior loss, using various loss functions. For

example, the posterior mean

θ̂ =

∫

Θ

θpn(θ)dθ, (2)

is the point estimate that minimizes posterior mean squared loss. The posterior

mode θ∗ is defined as the maximizer of the posterior density, and it is the decision

that minimizes the posterior mean Dirac loss. When the prior density is flat, the

posterior mode turns out to be the maximum likelihood estimator. The posterior

quantiles characterize the posterior uncertainty about the parameter, and they can

be used to form confidence regions for the parameters of interest (Bayesian credible
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regions). The posterior α-quantile θ̂j(α) for θj (the j-th component of the parameter

vector) is the number c such that
∫

Θ
1{θj ≤ c}pn(θ)dθ = α.

Properties of Bayesian procedures in both large and small samples are as good as

the properties of the procedures based on maximum likelihood. These properties have

been developed by Laplace (1818), Bickel and Yahav (1969), and Ibragimov and Has-

minskii (1981), among others. With mild regularity conditions (which hold in many

econometric applications), the properties include (a) consistency and asymptotic nor-

mality of the point estimates, including asymptotic equivalence and efficiency of the

posterior mean, mode, and median, (b) asymptotic normality of the posterior density,

and (c) asymptotically correct coverage of Bayesian confidence intervals, (d) average

risk optimality of Bayesian estimates in small and hence large samples. The regu-

larity conditions for properties (a) and (b) require that the true parameter θ0 is well

identified and that the data’s density pn(x|θ) is sufficiently smooth in the parameters.

Mathematically, property (a) means that

√
n(θ̂ − θ0) ≈

√
n(θ∗ − θ0) ≈

√
n(θ̂(1/2)− θ0) ≈d N(0, J−1), (3)

where J equals the information matrix limn− 1
n

∂2E ln pn(X|θ0)
∂θ∂θ′ , ≈ indicates agreement up

to a stochastic term that approaches zero in large samples, and ≈d N(0, J−1) means

“approximately distributed as a normal random vector with mean 0 and variance

matrix J−1.” These estimators are asymptotically efficient in the sense of having

smallest variance J−1 in the class of asymptotically unbiased estimators. Property

(b) is that pn(θ) is approximately equal to a normal density with mean θ̂ and variance

J−1/n. Property (c) means that in large samples

Prob[θ̂j(α/2) ≤ θ0j ≤ θ̂j(1− α/2)] ≈ 1− α. (4)

In non-regular cases, such as in structural auction and search models, consistency

and correct coverage properties also continue to hold (Chernozhukov and Hong 2004).

Property (d) is implied by the defining property of the Bayes estimators that they



minimize the posterior mean risk (Lehmann and Casella 1998). The property con-

tinues to hold in non-regular cases, which proved especially useful in non-regular

econometric models (Hirano and Porter 2003, Chernozhukov and Hong 2004).

The explicit dependency of Bayesian estimates on the prior is both a virtue and a

drawback. Priors allow us to incorporate information available from previous studies

and various economic restrictions. When no prior information is available, diffuse

priors can be used. Priors can have a large impact on inferential results in small

samples and in any other cases where the identifiability of parameters crucially relies

on restrictions brought by the prior. In such cases, selection of priors requires a sub-

stantial care: see Chamberlain and Imbens (2003, 2004) for an example concerning

simultaneous equations and Uhlig (2005) for an example dealing with sign restrictions

in structural vector autoregressions. On the other hand, priors should have little im-

pact on the inferential results when the identifiability of parameters does not crucially

rely on the prior and when sample sizes are large.

The appealing theoretical properties of Bayesian methods have been known for

many years, but computational difficulties prevented their wide use. Closed form

solutions for estimators such as (2) have been derived only for very special cases.

The recent emergence of Markov Chain Monte Carlo (MCMC) algorithms has dimin-

ished the computational challenge and made these methods attractive in a variety

of practical applications, see e.g. Robert and Casella (2004) and Liu (2001). The

idea of MCMC is to simulate a possibly dependent random sequence, (θ(1), ..., θ(B)),

called a chain, such that stationary density of the chain is the posterior density pn(θ).

Then we approximate integrals such as (2) by the averages of the chain, that is

θ̂ ≈ ∑B
k=1 θ(k)/B. For computation of posterior quantiles, we simply take empirical

quantiles of the chain. The leading MCMC method is the Metropolis-Hastings (MH)

algorithm, which includes, for example, the random walk algorithm with Gaussian

increments generating the candidate points for the chain. Such random walk is char-

acterized by an initial point u0 and a one-step move that consists of drawing a point η

according to a Gaussian distribution centered on the current point u with covariance



matrix σ2I, then, moving to η with probability ρ = min{pn(η)/pn(u), 1} and staying

at u with probability 1 − ρ. The MH algorithm is often combined with the Gibbs

sampler, where the latter updates components of θ individually or in blocks. The

Gibbs sampler can also speed up computation when the posterior for some compo-

nents of θ is available in a closed form. MCMC algorithms have been shown to be

computationally efficient in a variety of cases.

The classical econometric applications of Bayesian methods mainly dealt with the

classical linear regression model and the classical simultaneous equation model, which

admitted closed form solutions (Zellner 1996, Poirier 1995). The emergence of MCMC

has enabled researchers to attack a variety of complex non-linear problems. The

recent examples of important problems that have been solved using Bayesian methods

include: (1) discrete choice models (Albert and Chib 1993, Lancaster 2004), (2)

models with limited-dependent variables (Geweke 2005), (3) non-linear panel data

models with individual heterogeneity (McCulloch and Rossi 1994, Lancaster 2004),

(4) structural vector autoregressions in macroeconomics, including models with sign

restrictions (Uhlig 2005), (5) dynamic discrete decision processes (Geweke, Keane,

and Runkle 1997, Geweke 2005), (6) dynamic stochastic equilibrium models (Smets

and Wouters 2003, Del Negro and Schorfheide 2004), (7) time series models in finance

(Fiorentini, Sentana, and Shephard 2004, Johannes and Polson 2003), and (8) unit

root models (Sims and Uhlig 1991). Econometric applications of the methods are

rapidly expanding.

There are also recent developments that break away from the traditional paramet-

ric Bayesian paradigm. Ghosh and Ramamoorthi (2003) develop and review several

nonparametric Bayesian methods. Chamberlain and Imbens (2003) develop Bayesian

methods based on the multinomial framework of Ferguson (1973, 1974). In models

with moment restrictions and no parametric likelihood available, Chernozhukov and

Hong (2003) propose using an empirical likelihood function or a generalized method-

of-moment criterion function in place of the unknown likelihood pn(X|θ) in equation



(1). This permits the application of MCMC methods to a variety of moment con-

dition models. As a result there are a growing number of applications of the latter

approach to nonlinear simultaneous equations, empirical game-theoretic models, risk

forecasting, and asset-pricing models. The literature both on theoretical and practical

aspects of various non-parametric Bayesian methods is rapidly expanding.

The following bibliography includes some of the classical works as well as a sample

of contemporary works on the subject. The list is by no means exhaustive.
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Lehmann, E., and G. Casella (1998): Theory of Point Estimation. Springer.

Liu, J. S. (2001): Monte Carlo strategies in scientific computing, Springer Series in Statistics.

Springer-Verlag, New York.

McCulloch, R., and P. E. Rossi (1994): “An exact likelihood analysis of the multinomial probit

model,” J. Econometrics, 64(1-2), 207–240.

Poirier, D. J. (1995): Intermediate statistics and econometrics. MIT Press, Cambridge, MA, A

comparative approach.

Robert, C. P., and G. Casella (2004): Monte Carlo statistical methods, Springer Texts in

Statistics. Springer-Verlag, New York, second edn.

Sims, C. A., and H. Uhlig (1991): “Understanding unit rooters: a helicopter tour,” Econometrica,

59(6), 1591–1599.

Smets, F., and R. Wouters (2003): “An estimated dynamic stochastic general equilibrium model

of the euro area,” J. European Economic Association, 1, 527–549.

Uhlig, H. (2005): “What are the effects of monetary policy on output? Results from an agnostic

identification procedure,” Journal of Monetary Economics, 52, 381–419.

Zellner, A. (1996): An introduction to Bayesian inference in econometrics, Wiley Classics Library.

John Wiley & Sons Inc., New York, Reprint of the 1971 original, A Wiley-Interscience Publication.


