Set Cover in Sub-linear Time

Piotr Indyk
MIT

Sepideh Mahabadi
Columbia University

Ronitt Rubinfeld
MIT/TAU

Ali Vakilian
MIT

Anak Yodpinyanee
MIT
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m subset of $\mathcal{U} = \{1, \ldots, n\}$
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:
- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:
Set Cover Problem

Input: Collection \mathcal{F} of sets $S_1, ..., S_m$ subset of $\mathcal{U} = \{1, ..., n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:
- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:
- NP-hard
- Greedy $(\ln n)$-approximation algorithm
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:
- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:
- NP-hard
- Greedy $(\ln n)$-approximation algorithm
- Can’t do better unless $P=NP$

[LY91][RS97][Fei98][AMS06][DS14]
Set Cover for Massive Data

• Previously studied in the massive data models
 • Application in “Big Data”: Clustering, Data Mining, ...
Set Cover for Massive Data

• Previously studied in the massive data models
 • Application in “Big Data”: Clustering, Data Mining, ...
 • Introduced by [Saha and Getoor 09] in the streaming model, has been further studied: [ER’14, DIMV’14, CW’16, HIMV’16, AKL’16, A’17, MV’17, IMRUVVY’17]
Set Cover for Massive Data

• Previously studied in the massive data models
 • Application in “Big Data”: Clustering, Data Mining, ...
 • Introduced by [Saha and Getoor 09] in the streaming model, has been further studied: [ER’14, DIMV’14, CW’16, HIMV’16, AKL’16, A’17, MV’17, IMRUVY’17]

• In this Talk: Sublinear time algorithm for Set Cover
Sub-linear Time Set Cover

Data Access Model?
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]

- \(\text{EltOf}(S, i) \): \(i \)th element in \(S \)
- \(\text{SetOf}(e, j) \): \(j \)th set containing \(e \)
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]

• No assumption on the order

EltOf(S, i): i-th element in S
SetOf(e, j): j-th set containing e
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]
• No assumption on the order
• Incidence list in (sub-linear) algorithms for graphs

EltOf(S, i): i-th element in S
SetOf(e, j): j-th set containing e
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]
- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

$\text{EltOf}(S, i)$: ith element in S
$\text{SetOf}(e, j)$: jth set containing e
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]

- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

Prior Results

\[
\text{EltOf}(S, i): \text{ith element in S} \\
\text{SetOf}(e, j): \text{jth set containing e}
\]
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]

- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

Prior Results

- [Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]
 - Constant queries, if degree is constant
Sub-linear Time Set Cover

Data Access Model \[\text{NO’08, YYI’12}\]
- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

Prior Results
- [Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]
 - Constant queries, if degree is constant

- Output the size, not cover
- Mixed additive/multiplicative approximation
Sub-linear Time Set Cover

Data Access Model [NO’08, YYI’12]
- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

Prior Results
- [Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]
 - Constant queries, if degree is constant
- [Koufogiannakis, Young’14][Grigoriadis, Kachiyan’95]:
 - Find $(1 + \epsilon)$-approximate fractional solution, then perform randomized rounding to achieve $O(\log n)$-approximation

\begin{align*}
\text{EltOf}(S, i) & : i\text{th element in } S \\
\text{SetOf}(e, j) & : j\text{th set containing } e
\end{align*}
Sub-linear Time Set Cover

Data Access Model \[\text{NO’08, YYI’12} \]
- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in \(mn\)

Prior Results
- \[\text{Nguyen, Onak’08, Yoshida, Yamamoto, Ito’12}\]
 - Constant queries, if degree is constant
- \[\text{Koufogiannakis, Young’14, Grigoriadis, Kachiyan’95}\]:
 - Find \((1 + \varepsilon)\)-approximate *fractional solution*, then perform *randomized rounding* to achieve \(O(\log n)\)-approximation
 - \(O(mk^2 + nk^2)\) (can be improved to \(O(m + nk)\))

\(n = \text{number of elements} \quad m = \text{number of sets} \quad k = \text{size of the optimal solution}\)
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ \n $k = O(n/\log m)$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>$-$</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

$\rho = \text{approximation factor for offline Set Cover}$

$n = \text{number of elements} \quad m = \text{number of sets} \quad k = \text{size of the optimal solution}$
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ $k = O(n/\log m)$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>–</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

ρ = approximation factor for offline **Set Cover**

n = number of elements

m = number of sets

k = size of the optimal solution
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ \newline $k = \Theta(n/\log m)$</td>
</tr>
<tr>
<td></td>
<td>$-$</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

Cover Verification: given **k sets**, verify whether their **union** covers the universe.

$\rho = \text{approximation factor for offline Set Cover}$

$n = \text{number of elements} \quad m = \text{number of sets} \quad k = \text{size of the optimal solution}$
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha - 1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha + 1}}$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ $k = O(n/\log m)$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>$-$</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

Cover Verification: given k sets, verify whether their union covers the universe.

ρ = approximation factor for offline **Set Cover**

n = number of elements m = number of sets k = size of the optimal solution
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>(\alpha \rho + 1)</td>
<td>(\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha - 1}} + nk \right))</td>
<td>(\alpha \geq 2)</td>
</tr>
<tr>
<td></td>
<td>(\rho + 1)</td>
<td>(\tilde{O} \left(\frac{mn}{k} \right))</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right))</td>
<td>(k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha + 1}})</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>–</td>
<td>(\tilde{\Omega}(nk))</td>
<td>(k \leq n/2)</td>
</tr>
</tbody>
</table>

Cover Verification: given \(k\) sets, verify whether their union covers the universe.

\(\rho\) = approximation factor for offline **Set Cover**

\(n = \text{number of elements}\) \(m = \text{number of sets}\) \(k = \text{size of the optimal solution}\)
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>(\alpha \rho + 1)</td>
<td>(\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right))</td>
<td>(\alpha \geq 2)</td>
</tr>
<tr>
<td></td>
<td>(\rho + 1)</td>
<td>(\tilde{O} \left(\frac{mn}{k} \right))</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right))</td>
<td>(k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}})</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>(\alpha)</td>
<td>(\tilde{\Omega} \left(\frac{mn}{k} \right))</td>
<td>(\alpha \leq 1.01), (k = O(n/\log m))</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>(\tilde{\Omega}(nk))</td>
<td>(k \leq n/2)</td>
</tr>
</tbody>
</table>

Cover Verification: given \(k \) sets, verify whether their union covers the universe.

- \(\rho \) = approximation factor for offline **Set Cover**
- \(n \) = number of elements
- \(m \) = number of sets
- \(k \) = size of the optimal solution
Our Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>(\alpha \rho + 1)</td>
<td>(\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right))</td>
<td>(\alpha \geq 2)</td>
</tr>
<tr>
<td></td>
<td>(\rho + 1)</td>
<td>(\tilde{O} \left(\frac{mn}{k} \right))</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right))</td>
<td>(k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}})</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>–</td>
<td>(\tilde{\Omega}(nk))</td>
<td>(k \leq n/2)</td>
</tr>
</tbody>
</table>

Cover Verification: given \(k \) sets, verify whether their union covers the universe.

\(\rho \) = approximation factor for offline **Set Cover**

\(n \) = number of elements \(m \) = number of sets \(k \) = size of the optimal solution
This Talk

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.
High Level Plan

1. Construct a **basic instance** I^*
 - Minimum set cover size is at least 3
High Level Plan

1. Construct a **basic instance** I^*
 - Minimum set cover size is at least 3
2. **Randomized Procedure** on I^* to get a **modified instance** I
 - Minimum set cover size is 2
High Level Plan

1. Construct a **basic instance** I^*
 - Minimum set cover size is at least 3
2. **Randomized Procedure** on I^* to get a **modified instance** I
 - Minimum set cover size is 2
 - I^* and I only **differ in a few positions**
 - The differences are **distributed almost uniformly** at random
High Level Plan

1. Construct a basic instance I^*
 • Minimum set cover size is at least 3
2. Randomized Procedure on I^* to get a modified instance I
 • Minimum set cover size is 2
 • I^* and I only differ in a few positions
 • The differences are distributed almost uniformly at random

Distance of two instances

is proportional to

Number of positions SetOf and EltOf oracles differ in
High Level Plan

1. Construct a **basic instance** I^*
 - Minimum set cover size is at least 3
2. **Randomized Procedure** on I^* to get a **modified instance** I
 - Minimum set cover size is 2
 - I^* and I only **differ in a few positions**
 - The differences are **distributed almost uniformly** at random

Applying Yao’s Principle

Input distribution: Flip an unbiased coin,
1. Head \rightarrow input is I^* (i.e. w.p. 1/2)
2. Tail \rightarrow input is a random modified instance I generated from I^*
High Level Plan

1. Construct a **basic instance** I^*
 - Minimum set cover size is at least 3
2. **Randomized Procedure** on I^* to get a **modified instance** I
 - Minimum set cover size is 2
 - I^* and I only **differ in a few positions**
 - The differences are **distributed almost uniformly** at random

Input distribution: Flip an unbiased coin,
1. Head \rightarrow input is I^* (i.e. w.p. 1/2)
2. Tail \rightarrow input is a random modified instance I generated from I^*

Any deterministic algorithm that returns the correct output with success probability $\geq 2/3$ requires $\Omega\left(\frac{mn}{\log m}\right)$ queries
The Basic Instance

Construction: For every S, e the set S contains e with probability $1 - p_0$ where

$$p_0 = \sqrt{\frac{9 \log m}{n}}$$
The Basic Instance

Construction: For every S, e the set S contains e with probability $1 - p_0$ where

$$p_0 = \sqrt{\frac{9 \log m}{n}}$$

Most of such instances have the following properties:

1. No two sets cover all elements
2. For any two sets, the number of uncovered elements is $O(\log m)$
3. The intersection size is at least $\Omega(n)$
4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
5. For any pair of elements, the number of sets containing only the first element is at least $\frac{m \sqrt{9 \log m}}{4 \sqrt{n}}$
6. For any three sets, the number of elements in the first two but not in the third one is at least $6 \sqrt{n \log m}$
The Basic Instance

Construction: For every S, e the set S contains e with probability $1 - p_0$ where

$$p_0 = \sqrt{\frac{9 \log m}{n}}$$

Most of such instances have the following properties:

1. No two sets cover all elements
2. For any two sets, the number of uncovered elements is $O(\log m)$
3. The intersection size is at least $\Omega(n)$
4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
5. For any pair of elements, the number of sets containing only the first element is at least $\frac{m \sqrt{9 \log m}}{4 \sqrt{n}}$
6. For any three sets, the number of elements in the first two but not in the third one is at least $6 \sqrt{n \log m}$
The Basic Instance

Sets

Elements

\[e \in S \]
\[e \notin S \]
Generating a Modified Instance
Generating a Modified Instance

\[U = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

\[S_1 = \{e_2, e_3, \ldots\} \]

\[S_2 = \{e_2, e_4, \ldots\} \]
Generating a Modified Instance

\[\mathcal{U} = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in \mathcal{U} \setminus (S_1 \cup S_2) \),
 \[
 S_1 = \{e_2, e_3, \ldots\}

 S_2 = \{e_2, e_4, \ldots\}

\]
Generating a Modified Instance

\[u = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in u \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)

\[S_1 = \{e_2, e_3, \ldots\} \]
\[S_2 = \{e_2, e_4, \ldots\} \]
Generating a Modified Instance

\[U = \{ e_1, e_2, e_3, e_4, \ldots \} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)

\[S_1 = \{ e_2, e_3, \ldots \} \]

\[S_2 = \{ e_2, e_4, \ldots \} \]
Generating a Modified Instance

\[U = \{ e_1, e_2, e_3, e_4, \ldots \} \]

Pick \(S_1 \) and \(S_2 \) in the \textbf{basic instance} uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)

\[S_1 = \{ e_2, e_3, \ldots \} \]
\[S_2 = \{ e_2, e_4, \ldots \} \]
\[S_3 = \{ e_1, e_4, \ldots \} \]
Generating a Modified Instance

\[U = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)
Generating a Modified Instance

Pick S_1 and S_2 in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered $e_1 \in \mathcal{U} \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove a random $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

\[
\mathcal{U} = \{e_1, e_2, e_3, e_4, \ldots\}
\]

$S_1 = \{e_2, e_3, \ldots\}$

$S_2 = \{e_2, e_4, \ldots\}$

$S_3 = \{e_1, e_4, \ldots\}$
Generating a Modified Instance

\[\mathcal{U} = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in \mathcal{U} \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

\[S_1 = \{e_2, e_3, \ldots\} \]
\[S_2 = \{e_1, e_4, \ldots\} \]
\[S_3 = \{e_2, e_4, \ldots\} \]
Generating a Modified Instance

\[U = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

\(S_1 = \{e_2, e_3, \ldots\} \)

\(S_2 = \{e_2, e_4, \ldots\} \)

\(S_3 = \{e_1, e_4, \ldots\} \)
Generating a Modified Instance

\[\mathcal{U} = \{e_1, e_2, e_3, e_4, \ldots\} \]

- \(S_1 \) and \(S_2 \) in the **basic instance** uniformly at random and turn them into a set cover.
- For an uncovered \(e_1 \in \mathcal{U} \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

\(S_1 = \{e_2, e_3, \ldots\} \)
\(S_2 = \{e_2, e_4, \ldots\} \)
\(S_3 = \{e_1, e_4, \ldots\} \)

“swap” operation
Generating a Modified Instance

\[U = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the basic instance uniformly at random and turn them into a set cover.

• For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 • Add \(e_1 \) to \(S_2 \)
 • Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 • Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 • \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

In a swap operation: only four positions change in the query access model.
Generating a Modified Instance

Pick S_1 and S_2 in the basic instance uniformly at random and turn them into a set cover.

- For an uncovered $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove a random $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$U = \{e_1, e_2, e_3, e_4, \ldots\}$

$S_1 = \{e_2, e_3, \ldots\}$

$S_2 = \{e_2, e_4, \ldots\}$

$S_3 = \{e_1, e_4, \ldots\}$

In a swap operation: only four positions change in the query access model.
Generating a Modified Instance

\[U = \{ e_1, e_2, e_3, e_4, \ldots \} \]

\[S_1 = \{ e_2, e_3, \ldots \} \]

\[S_2 = \{ e_2, e_4, \ldots \} \]

\[S_3 = \{ e_1, e_4, \ldots \} \]

Pick \(S_1 \) and \(S_2 \) in the basic instance uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in U \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

- Performing the swap operation for all \(U \setminus (S_1 \cup S_2) \), \(S_1 \cup S_2 \) becomes \(U \)
Generating a Modified Instance

\[\mathcal{U} = \{e_1, e_2, e_3, e_4, \ldots\} \]

Pick \(S_1 \) and \(S_2 \) in the basic instance uniformly at random and turn them into a set cover.

- For an uncovered \(e_1 \in \mathcal{U} \setminus (S_1 \cup S_2) \),
 - Add \(e_1 \) to \(S_2 \)
 - Remove a random \(e_2 \in S_2 \cap S_1 \) from \(S_2 \)
 - Pick a random set \(S_3 \) that contains \(e_1 \) but not \(e_2 \)
 - \(S_2 \) and \(S_3 \) swap \(e_1 \) and \(e_2 \)

- Performing the swap operation for all \(\mathcal{U} \setminus (S_1 \cup S_2) \), \(S_1 \cup S_2 \) becomes \(\mathcal{U} \)
- The resulting and the initial instances only differ in \(O(\log m) \) positions
Overall Argument

Lemma: For any set S and any element e, the probability that (e,S) participates in a swap is almost uniform, i.e., $O\left(\frac{\log m}{mn}\right)$.

- Using the properties of basic instances and the randomized procedure for generating modified instances

Input:
- W.p. $\frac{1}{2}$ the input is the basic instance I^*
- W.p. $\frac{1}{2}$ the input is a randomly generated modified instance I from I^*
Overall Argument

Lemma: For any set S and any element e, the probability that (e,S) participates in a swap is almost uniform, i.e., $O\left(\frac{\log m}{mn}\right)$.

- Using the properties of basic instances and the randomized procedure for generating modified instances

Input:
- W.p. $\frac{1}{2}$ the input is the basic instance I^*
- W.p. $\frac{1}{2}$ the input is a randomly generated modified instance I from I^*

Theorem: Any randomized algorithm that with probability at least $2/3$ distinguishes whether the minimum set cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.
Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha - 1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
<td></td>
</tr>
<tr>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>$-$</td>
<td></td>
</tr>
<tr>
<td>Set Cover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha + 1}}$</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ $k = O(n/\log m)$</td>
<td></td>
</tr>
<tr>
<td>Cover Verification</td>
<td>$-$</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

Remark:
- For larger values of α, change the construction of basic instance and modified instances slightly
Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>αρ + 1</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>ρ + 1</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
</tbody>
</table>
| **Cover Verification**| – | $\tilde{\Omega} (nk)$ | $\alpha \leq 1.01
 k = O(n/\log m)$ |
| | | | $k \leq n/2$ |

Remark:
- For larger values of α, change the construction of basic instance and modified instances slightly
- The lower bound works for the corresponding estimation problem
Open Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\Omega \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
</tbody>
</table>
| | α | $\Omega \left(\frac{mn}{k} \right)$ | $\alpha \leq 1.01$
\quad | \quad | $k = O(n/\log m)$ |
| Cover Verification | – | $\Omega(nk)$ | $k \leq n/2$ |

- Improve the bounds for the corresponding estimation problem
Open Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{1 \over \alpha-1} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>$-$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{1 \over 2\alpha} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{1 \over 4\alpha+1}$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$; $k = O(n/\log m)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

- Improve the bounds for the corresponding estimation problem

Best upper bound: $\tilde{O}(mn/k)$
Best lower bound: $\tilde{\Omega}(mn/k^2)$
Open Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha-1}} + nk \right)$</td>
<td>$\alpha \geq 2$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
<td>$k \leq \left(\frac{n}{\log m} \right)^{\frac{1}{4\alpha+1}}$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
<td>$\alpha \leq 1.01$ (k = O(n/\log m))</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>–</td>
<td>$\tilde{\Omega}(nk)$</td>
<td>$k \leq n/2$</td>
</tr>
</tbody>
</table>

- Improve the bounds for the corresponding estimation problem
- Prove a lower bound of $\Omega(nk)$ for the set cover problem as well
Open Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approximation</th>
<th>Query Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Cover</td>
<td>$\alpha \rho + 1$</td>
<td>$\tilde{O} \left(m \left(\frac{n}{k} \right)^{\frac{1}{\alpha - 1}} + nk \right)$</td>
</tr>
<tr>
<td></td>
<td>$\rho + 1$</td>
<td>$\tilde{O} \left(\frac{mn}{k} \right)$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(m \left(\frac{n}{k} \right)^{\frac{1}{2\alpha}} \right)$</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>$\tilde{\Omega} \left(\frac{mn}{k} \right)$</td>
</tr>
<tr>
<td>Cover Verification</td>
<td>$-$</td>
<td>$\tilde{\Omega}(nk)$</td>
</tr>
</tbody>
</table>

- Improve the bounds for the corresponding estimation problem
- Prove a lower bound of $\Omega(nk)$ for the set cover problem as well