
Which Concepts Are Worth Extracting?

Arash Termehchy
Oregon State University

termehca@oregonstate.edu

Ali Vakilian
MIT

vakilian@mit.edu

Yodsawalai
Chodpathumwan,
Marianne Winslett
University of Illinois

ychodpa2,winslett@illinois.edu

ABSTRACT
It is well established that extracting and annotating occurrences of
entities in a collection of unstructured text documents with their
concepts improve the effectiveness of answering queries over the
collection. However, it is very resource intensive to create and
maintain large annotated collections. Since the available resources
of an enterprise are limited and/or its users may have urgent infor-
mation needs, it may have to select only a subset of relevant con-
cepts for extraction and annotation. We call this subset a concep-
tual design for the annotated collection. In this paper, we introduce
the problem of cost effective conceptual design, where given a col-
lection, a set of relevant concepts, and a fixed budget, one likes to
find a conceptual design that improves the effectiveness of answer-
ing queries over the collection the most. We prove that the problem
is generally NP-hard in the number of relevant concepts and pro-
pose two efficient approximation algorithms to solve the problem:
Approximate Popularity Maximization (APM for short) and Ap-
proximate Annotation-benefit Maximization (AAM for short). We
show that if there is not any constraints regrading the overlap of
concepts, APM is a fully polynomial time approximation scheme.
We also prove that if the relevant concepts are mutually exclusive,
APM has a constant approximation ratio and AAM is a fully poly-
nomial time approximation scheme. Our empirical results using
Wikipedia collection and a search engine query log validate the
proposed formalization of the problem and show that APM and
AAM efficiently compute conceptual designs. They also indicate
that in general APM delivers the optimal conceptual designs if the
relevant concepts are not mutually exclusive. Also, if the relevant
concepts are mutually exclusive, the conceptual designs delivered
by AAM improve the effectiveness of answering queries over the
collection more than the solutions provided by APM.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Schema and subschema

Keywords
Conceptual design; concept extraction; effective query answering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610496 .

<article>
... Michael Jeffrey Jordan is a former American professional
basketball player ...
</article>
<article>
... Michael Jordan is a full professor at the
University of California, Berkeley ...
</article>
<article>
... All six championship teams of Chicago Bulls were led by
Michael Jordan and Scottie Pippen ...

</article>

Figure 1: Wikipedia article excerpts

1. INTRODUCTION
Discovering structured data from large unstructured or semi-structured

document collections is an active research area in data manage-
ment [6]. A popular method of discovering structured data from
unstructured or semi-structured documents is semantic annotation:
extracting the mentions of named entities in a collection and an-
notating these mentions by their concepts [5, 7, 8, 23]. It is well
established that semantically annotating a collection improves the
effectiveness of answering queries over the collection [7]. Fig-
ure 2 depicts excerpts of semantically annotated Wikipedia arti-
cles (www.wikipedia.org) whose original and unannotated versions
are shown in Figure 1. Since the mentions to the entities named
Michael Jordan are disambiguated by their concepts, a query inter-
face can deliver more effective results for the queries about Michael
Jordan, the scientist, over the semantically annotated collection
than the unannotated one. We call the set of all concepts that have

<article>
... <athlete> Michael Jeffrey Jordan</athlete> is a former
<nationality> American </nationality> professional
basketball player ...
</article>
<article>
... <scientist> Michael I. Jordan </scientist> is a full
professor at the
<organization>
University of California, Berkeley
</organization> ...
</article>
<article>
... All six championship teams of
<organization> Chicago Bulls </organization> were led by
<athlete> Michael Jordan </athlete> and
<athlete> Scottie Pippen </athlete> ...
</article>

Figure 2: Semantically annotated Wikipedia article excerpts

at least one entity in the collection a conceptual domain (domain
for short). A possible domain for the articles shown in Figure 1 is
the set of concepts {athlete, scientist, position, organization, sport,
nationality}.

Intuitively, annotating all concepts in a domain will provide more
effective results for the input queries. Recent studies, however, in-
dicate that accurately annotating the entities of a concept in a large
collection requires developing, deploying, and maintaining com-
plex pieces of software, manual labor, and/or collecting training
data, which may take a long time and substantial amount of compu-
tational and financial resources [6, 2]. Given a concept, developers
have to design and write a program called an annotator or extractor
that finds and annotates all instances of the concept in the collec-
tion. One may write hand-tuned programming rules, such as reg-
ular expressions, that leverage formatting or language patterns in
the text to identify and extract instances of some concepts, such as
Email [6, 20]. However, formatting and language patterns for most
concepts, such as person or protein, are subtle and involve many
exceptions. In these cases, it is not unusual to have thousands of
rules to extract concepts [20]. Hence, developing and maintaining
annotating programs becomes extremely time-consuming [6].

One may also use machine learning methods for concept extrac-
tion [20, 6, 2]. Nevertheless, studies of several recent concept ex-
traction systems show that using and deploying machine learning
methods for concept extraction are also very time-consuming and
labor-intensive [2, 6]. In order to extract the instances of a con-
cept, developers have to first inspect the data set and identify a set
of clues, called features, which indicate if some terms in a doc-
ument refer to an instance of the concept. For instance, the oc-
currence of word said in a sentence may suggest that the subject
of the sentence refers to an instance of concept person. Then, de-
velopers have to write programs to extract these features from the
documents. Each concept extractor may use hundreds of features
[2, 20]. These efforts are more costly for concepts that are defined
in specific domains, such as geology and medicine, as they require
extensive collaborations between developers and scarce domain ex-
perts. As communication between developers and domain experts
is often ineffective, developers may have to spend a great deal of
time and sift through the data to find the relevant features [2].

After finding candidate features, developers have to perform fea-
ture selection: they have to analyze available features, remove some
of them, e.g., those that are highly correlated, and select a subset
of features that predict the instances of the concept accurately [2,
20]. Developers iterate the steps of finding, extracting, and revising
features and testing the annotation program several times in order
to create an annotation program with a reasonable accuracy [2]. Fi-
nally, since annotation modules need to perform complex text anal-
ysis, it may take days or weeks, plus a great deal of computational
resources, to execute them over a large collection [15, 24]. Thus,
users have to wait a long time for the development and execution of
extraction programs before they have a fully annotated collection.

Since the structure and content of documents in many domains
evolve over time, the annotation programs should be regularly rewrit-
ten and rerun to create an updated annotated collection [12]. Hence,
users have to wait a long time for annotation programs to be rewrit-
ten and rerun in order to pose their queries over an updated and
fully annotated collection [24].

The long delays to create and update fully annotated collections
are well recognized as an issue in concept extraction [24, 12]. They
are particularly problematic in domains with urgent information
needs [15, 24]. For example, an FBI agent who needs to query the
evolving content of Web sites and social media pages to find and
respond to new activities in human trafficking; a stock analyst who

has to respond to the changes in stock market in a timely fashion, or
an epidemiologist who must act quickly to control the spread of an
infectious disease cannot afford to wait for all annotation programs
to be (re-)written and (re-)executed [24].

Therefore, an enterprise may decide to select only a subset of the
concepts in the domain for annotation or re-annotation, to provide
a partially annotated collection relatively quickly. Users can pose
their queries over the partially annotated collection and get reason-
ably effective answers. Moreover, since the available financial or
computational resources of most enterprises are limited, they may
not be able to hire sufficient number of machine learning experts
and acquire computational resources to (re-)write and (re-)execute
the annotation programs for all concepts in their domains and se-
lect subsets of these domains for annotation. We call this subset of
concepts a conceptual design (design for short) for the annotated
collection.

Clearly, an enterprise wants to find a design whose required time
(or resources) for annotation does not exceed its limit on turnaround
time (or budget) and most improves the effectiveness of answering
queries over the annotated collection. Each concept may require
different amounts of time and resources for annotating its enti-
ties in a collection. For instance, an enterprise may use a freely
available and relatively simple annotation program from OpenNLP
(opennlp.apache.org) to discover the entities of concept Email, pur-
chase and deploy a more sophisticated annotation programs from
companies, such as ontotext.com, to annotated instances of concept
position, or develop and deploy in-house annotators to identify en-
tities of more domain specific concepts, such as athlete. The latter
annotators may require more financial resources and/or time to de-
velop and execute than the former one. This scenario suggests a
novel conceptual design problem: given a domain and a document
collection, we want to find a design for the collection that improves
the overall effectiveness of answers to input queries the most, while
its annotation costs do not exceed a given budget.

To the best of our knowledge, the choice of a cost effective de-
sign for a collection is generally guided only by intuition and has
not been studied before. In this paper, we introduce and formalize
the problem of cost effective conceptual design for semantic anno-
tation. Our formal treatment paves the way for systematic analysis
of the problem and shows that intuitively appealing heuristics such
as choosing the relatively less costly concepts and/or the ones that
appear most often in queries are not generally optimal, even for the
cases where all annotators have equal costs. In summary, we make
the following contributions:
• We formally analyze the impact of possibly inaccurate annota-

tion of a concept in a collection on the effectiveness of answer-
ing queries over the collection. We quantify this impact using
a function called Annotation Benefit for two categories of real-
world domains: the ones with mutually exclusive concepts and
the ones that do not have any constraints regrading the overlap
of concepts.
• We introduce and formally define the problem of cost effective

conceptual design for semantic annotation as maximizing the
value of the Annotation Benefit function over a set of concepts
in a domain given a limited time or budget. We prove that the
problem over both categories of domains is generally NP-hard
in the number of concepts in the domain.
• We propose two efficient approximation algorithms for the prob-

lem: Approximate Popularity Maximization (APM for short)
algorithm and and Approximate Annotation Benefit Maximiza-
tion (AAM for short) algorithm. We prove that the designs re-
turned by APM improve the effectiveness of answering queries

by at most a constant factor less than the optimal design over the
domains with mutually exclusive concepts and AAM algorithm
is a fully polynomial time approximation scheme in these do-
mains: the effectiveness improvement achieved by its designs
will get sufficiently close to the improvement achieved by op-
timal designs given sufficient running time. We also show that
APM is a fully polynomial time approximation scheme for the
domains without any constraint regarding the overlap of con-
cepts.
• Our extensive experiments over the collection of Wikipedia ar-

ticles, concepts from YAGO ontology [23], and queries from
the MSN query log [9] show that the Annotation Benefit for-
mula accurately quantifies the impact of a design on the amount
of improvement in the effectiveness of answering queries over
the annotated collection for both categories of domains.
• Our empirical results indicate that APM finds the optimal de-

signs for most cases where the domain does not have any con-
straint regrading the overlap of its concepts. They also show
that the designs delivered by the AAM algorithm improve the
effectiveness of answering queries more than the APM algo-
rithm across domains with mutually exclusive concepts. We
also show that both algorithms find these designs in reasonable
amounts of times for a preprocessing task.
• Because the complete information about the values of input pa-

rameters for AAM may not be available at design time, we ex-
plore the sensitivity of this algorithm to the errors in estimating
its input parameters and show that when using the input pa-
rameters computed over a small sample of the collection, AAM
still returns designs that are generally more effective than the
ones returned by APM over domains with mutually exclusive
concepts.

This paper is organized as follows. Section 2 describes the ba-
sic definitions and related works. Section 3 quantifies the impact
of a design on the improvement in the effectiveness of answering
queries over a collection annotated by the design. Section 4 intro-
duces the problem of cost effective conceptual design and explores
its hardness. Section 5 proposes efficient approximation algorithms
for the problem and explores their worst-case approximation ratios.
Section 6 contains the empirical results about the accuracy of the
Annotation Benefit function and the average approximation ratios
of the algorithms and Section 7 concludes the paper. A full ver-
sion of this paper containing proofs and more detailed description
of empirical studies can be found at [25].

2. BACKGROUND & BASIC DEFINITIONS

2.1 Related Work
Conceptual design is a topic of research in data management

[10]. Our work extends this line of research by introducing and
exploring the ability of a conceptual design in effectively answer-
ing input queries and its cost-effectiveness.

There is a large body of work on building and optimizing pro-
grams that extract entities of a given concept, and systems that
manage annotated collections [7, 6, 8, 5, 24, 2]. We build on this
work by offering a new pre-processing design phase that can be
followed by and coupled with any of these previously proposed ap-
proaches. Researchers have proposed several techniques to reduce
the execution time of SQL queries over existing databases whose
information comes from concept and relation extraction programs
[13, 15]. Similar systems optimize the use of information extrac-
tion programs to add missing data values to an existing database
[16]. These techniques generally improve execution time or stor-

age capacity by processing only the “promising” documents in the
collection that contain the information about the database relations,
instead of the whole collection. Our work differs in addressing the
issues raised at design time rather than query time. We also con-
sider ranking queries as opposed to SQL queries. Our model covers
other types of costs in annotation in addition to running-time and
storage space. Moreover, we explore using both structured data
(i.e. annotated documents) and unstructured data (i.e. unannotated
documents) in effectively answering queries.

The authors in [18] have proposed a cost effective methodology
for semi-automatic and concurrent construction of ontologies and
annotated XML schemas in Web service interfaces. Our work dif-
fers in studying the problem of automatically choosing a cost ef-
fective set of concepts from a domain for automatic annotation of a
collection.

2.2 Basic Definitions
Each concept is a set of named entities (entities for short). Some

examples of concepts are person, location, and organization. Abra-
ham Lincoln is an entity of concept person and Lincoln Square is
an entity of concept location. There may be several mentions of
an entity in a collection. For example, Michael Jeffrey Jordan and
Michael Jordan refer to the famous athlete in the collection shown
in Figure 2. We call these mentions, instances of the entity and for
brevity also the instances of its concept (athlete).

A domain may contain some constraints on the relationship be-
tween its concepts [1]. Concepts C1 and C2 are mutually exclusive
if and only if no entity belongs to both C1 and C2. For instance,
concepts person and location are mutually exclusive, as no entity
is both a person and a location. Our study of real world ontolo-
gies, such as DBPedia (wiki.dbpedia.org/Ontology), Schema.org
(schema.org), and YAGO indicates that mutually exclusive con-
cepts appear frequently in these ontologies. For example, in Schema.org
each entity should belong to only one of the concepts of Action,
BroadcastService, Class, CreativeWork, Event, Intangible, Med-
icalEntity, Organization, Person, Place, Product, and Property,
which are mutually exclusive. As another example, in DBPedia
different types of organizations, places, events, devices, and cre-
ative works are described by mutually exclusive concepts. Mu-
tually exclusive concepts are also easier to annotate via learning
based methods, as one can use the positive training examples of
one concept as negative training examples for other concepts [21].
When this constraint is available in the domain, we exploit it to
find the cost effective conceptual designs. Concepts in a domain
may have other types of relationships such as a subclass/superclass
relationship (e.g. person and scientist). Analyzing and solving the
problem of cost-effective conceptual design for concepts with other
types of relations is a larger undertaking and provides interesting
subjects for future work.

The function wCO maps each concept to a real number that re-
flects the amount of resources used to annotate instances of con-
cept C over collection CO. When the collection is clear from the
context, we simply denote the cost function as w. The resources
required for concept annotation may include the amount of time,
money, or manual labor spent on developing, training, or maintain-
ing an annotator for C, or the computational resources and time to
run the annotator over the collection. For example, an enterprise
may use the amount of money need to purchase annotators from
other companies (e.g. ontotext.com) as a cost function. It may also
predict the cost of annotator programs that are developed in house
using current techniques for predicting costs of software develop-
ment and maintenance [4]. Researchers have developed effective
methods to estimate the execution times of concept extractors [15]

In the absence of any evidence, one may assume that all concepts
require equal amount of resources for annotation. As shown in the
full version of this paper, it is still challenging to find cost effective
designs in this setting [25].

We assume that annotating certain concepts does not impact the
cost and accuracies of other concepts in the collection. The costs of
(re-)writing, (re-)running, and maintaining an extractor for a con-
cept are still considerable in most cases after coupling its extrac-
tion with other related concepts. For example, programmers have
to find, extract, and select a great deal of the relevant features for
each concept separately.

In this paper, we consider queries that seek information about
named entities [7]. Each query Q : (C, T) consists of the concept
of the referred-to entity C and a set of keywords T , which describe
the referred entity. Some examples of queries are (person, { Jor-
dan }) or (location, { Jordan attractions }). This type of query has
been widely used to search annotated collections [7, 11]. Empirical
studies on real world query logs indicate that the majority of entity
centric queries refer to a single entity [22]. Since this paper is the
starting effort to address the problem of cost effective conceptual
design, it is reasonable to start with the aforementioned class of
queries. Considering more complex queries that seek information
about relationships between several entities requires more sophisti-
cated models and algorithms, and therefore, it will require a series
of papers and is an interesting topic for future work.

3. THE BENEFIT OF A CONCEPTUAL DE-
SIGN

3.1 Objective Function
Let S be the design of annotated collectionCO andQ be a set of

queries over CO. We would like to quantify the degree by which
S improves the effectiveness of answering queries in Q over CO.
The value of this function should be larger for the designs that help
the query interface to answer a larger number of queries inQ more
effectively. It has been shown that most information needs over an-
notated collections are precision-oriented [8, 7]. Thus, we choose
the standard metric of precision at k (p@k for short) to measure
the effectiveness of answering queries over an annotated collection
[19]. The value of p@k for a query is the ratio of the number of rel-
evant answers in the top k returned answers for the query, divided
by k. Precision at k has also a simpler form than other precision
oriented metrics, such as Mean Reciprocal Rank (MRR) or Nor-
malized Discounted Cumulative Gain (NDCG), thus, it is easier to
optimize [19]. We average the values of p@k over queries in Q to
measure the amount of effectiveness in answering queries inQ.

3.2 Effectiveness Improvement for Queries of
Annotated Concepts

Let Q : (C, T) be a query in Q. If C is annotated, i.e. C ∈ S,
the query interface will find and return only the documents that
contain information about entities in C. It will then rank them
according to its ranking function, such as the traditional TF-IDF
scoring methods or learning to rank techniques [19]. Our model is
orthogonal to the method used to rank the candidate answers. An-
notating C in CO will help the query interface avoid non-relevant
results that otherwise may have been placed in the top k answers
for Q. We call the fraction of queries in Q whose concept is C the
popularity of C inQ. Let uQ be the function that maps concept C
to its popularity in Q. When Q is clear from the context, we sim-
ply use u instead of uQ. The portion of queries for which the query
interface returns only the documents about entities in their desired

concepts is
∑
C∈S u(C). Given all other conditions are the same,

the larger the value of
∑
C∈S u(C) is, the more likely it is that

the query interface will achieve a larger p@k value over queries in
Q. Hence, we may use

∑
C∈S u(C) to compare the degrees of

improvement in the value of p@k over queries in Q achieved by
various designs.

Annotators, however, may make mistakes in identifying the cor-
rect concepts for occurrences of entities in a collection [7]. An an-
notator may annotate some appearances of entities from concepts
other than C as the occurrences of entities in C. For instance, the
annotator of concept person may annotate Lincoln Building as a
person. The accuracy of annotating concept C over CO is the
number of correct annotations of C divided by the number of all
annotations of C in CO. We denote the accuracy of annotating C
over CO as prCO(C). When CO is clear from the context, we
show prCO(C) as pr(C). Given query Q : (C, T) and C ∈ S,
it is reasonable to assume that 1 − pr(C) of the top k results may
contain information about entities that do not belong to C. Hence,
we should refine our estimate to:∑

C∈S

u(C)pr(C) (1)

in order to reward the designs whose concepts are annotated more
accurately.

3.3 Effectiveness Improvement for Queries of
Unannotated Concepts

Given query Q : (C, T) ∈ Q, if C /∈ S, there is insufficient
meta-data information in the collection for the query interface to
identify the occurrences of the entities in C. Therefore, it may
view the concept name C and the keywords in T as a bag of words
and use some document ranking function to return the top k an-
swers for Q. We like to estimate the fraction of the results for Q
that contain a matching entity in concept C. Given all other con-
ditions are the same, the larger this fraction is, the more likely it is
that the query interface delivers more relevant answers, and there-
fore, a larger p@k value for Q. Based on the available constraints
on the relations between concepts in the domain, we provide two
different estimations of the fraction of the results forQ that contain
a matching entity in concept C.

Domains with mutually exclusive concepts: If the concepts
in the domain are mutually exclusive, the annotated concepts may
help the query interface to eliminate some non-relevant answers
from its results for Q. For example, assume that the instances of
concept location are annotated and the instances of concept person
are not annotated in the collection. As these concepts are mutu-
ally exclusive, given query (person, { Jordan }), query interface
can ignore matching instances like Jordan River for this query. Be-
cause text documents are coherent, they do not usually contain in-
formation about entities with similar or the same name but from
mutually exclusive concepts. For instance, it is unlikely to find a
document that contains information about both Jaguar, the vehicle,
and Jaguar, the animal. Hence, the query interface can eliminate
the candidate answers for Q whose matched terms are annotated
by concepts other than the concept of Q. By removing these non-
relevant answers from its ranked list, the query interface may im-
prove the value of p@k for Q.

In order to compute the fraction of candidate answers for Q
whose matching instances belong to C, we have to first calculate
the fraction of candidate answers that survive the elimination. This
ratio, however, may vary across different queries in Q as some
queries may have more candidate answers with matched annotated
instances from concepts in S than others. Estimating this ratio per

query is generally hard as it may require estimating and comput-
ing model parameters per query. Particularly, detailed information
about queries in a query workload such as their candidate answers
may not be always available. Hence, in order to have an estima-
tion which can be efficiently and effectively computed over a large
number of queries, we assume that all queries in Q have equal ra-
tios of candidate answers that contain matched instances of a cer-
tain concept in the domain. We, further, estimate this ratio for the
concept by the fraction of documents in the collection that contain
instances of the concept. Our empirical results using queries from
a real world search engine query log and collection, which are re-
ported in Section 6, show that in spite of these simplifying assump-
tions, our model effectively estimates the degrees of improvement
achieved by various designs for a collection.

Let dCO(E) denote the fraction of documents that contain in-
stances of concept E in collection CO. These instances may or
may not be annotated depending on whether E ∈ S. We call
dCO(E) the frequency of E over CO. When CO is clear from
the context, we denote the frequency of E as d(E). Given de-
sign S for collection CO, we want to compute the fraction of the
candidate answers for query Q : (C, T) that contain a matching
instance of concepts E /∈ S. In order to simplify our model, we
estimate this fraction as

∑
E/∈S d(E). Our experimental results in

Section 6.2 indicate that in spite of this simplification, our objective
function effectively captures the degree of improvement delivered
by a conceptual design over a collection. This portion of answers
will stay in the list of results for Q after the query interface elimi-
nates all candidate answers with matching instances from concepts
in S. Hence, the fraction of the candidate answers that contain a
matching instance of concept C in the list of answers for a query in
Q is d(C)∑

E/∈S d(E)
. Using this estimation and equation 1, we formally

define the function that estimates the likelihood of improvement for
the value of p@k for both queries that belong and queries that do
not belong to the conceptual design in a query workload over a
collection that is annotated by concepts in design S.

DEFINITION 3.1. Given domain C with mutually exclusive con-
cepts, query workloadQ, and conceptual design S ⊆ C, the anno-
tation benefit of S is:

AB(S) =
∑
C∈S

u(C)pr(C) +
∑
C/∈S

u(C)
d(C)∑
E/∈S d(E)

. (2)

Overall, the annotation benefit estimates the likelihood in improv-
ing users’ satisfaction by answering queries more precisely. The
larger the value of the annotation benefit is for design S over col-
lection CO, the more likely it is that Q will have a larger average
p@k over the version of CO annotated by concepts in S.

The first term of the annotation benefit in equation 3.1 reflects
the portion of queries for which the query interface returns only the
candidate answers with instances matching to the concept of the
query. It is larger for the concepts that are more frequently used in
queries. For example, let a domain contain concepts C1, C2, and
C3 where the instances of C1 appear in 90% of queries and 1% of
documents, the instances of C2 occur in 1% of queries and 90%
of documents, and the instances of C3 appear in 9% of queries
and 9% of documents. If all annotators have perfect accuracies
(i.e. pr(C)= 1, C ∈ {C1, C2, C3}), we have

∑
C∈{C1} u(C)

>
∑
C∈{C2} u(C). Although C1 appears in only 1% of docu-

ments, it is used in 90% of queries. Hence, it is more likely that the
query interface will answer the input queries more effectively if we
annotate the instances of C1 rather than C2 in the collection.

The second term represents the impact of annotating the con-
cepts in S on the likelihood of improving the precision of answer-
ing queries whose concepts are not in S. Given that the concept
of a query does not belong to S, the more frequent the concepts
in S in the collection are, the more non-relevant answers the query
interface can eliminate.

Domains without constraints regarding the overlap of con-
cepts: If there is not any constraint on the relations between con-
cepts in the domain, e.g. whether they are mutually exclusive or su-
perclass/subclass, the query interface has to examine all documents
in the collection to answer Q. For example, assume that a domain
contains concepts actress and director and the entities of actress
are annotated in the collection. Given query (director, { Rossellini
}), the query interface cannot filter out its matching instances from
concept actress like Isabella Rossellini because concepts actress
and director are not mutually exclusive. Thus, if the instances of
concept C are not annotated, C /∈ S, the fraction of candidate an-
swers of Q : (C, T) that contain a matching instance of concepts
C is d(C). Using equation 1, we formally define the function that
estimates the likelihood of improvement for the value of p@k for
all queries in a query workload over a collection that is annotated
by concepts in design S over domains without any constraint.

DEFINITION 3.2. Given domain C without any constraint, query
workload Q, and conceptual design S ⊆ C, the annotation benefit
of S is:

AB(S) =
∑
C∈S

u(C)pr(C) +
∑
C/∈S

u(C)d(C). (3)

Similar to the formula for annotation benefit in equation 2, the first
term of the annotation benefit in equation 3 reflects the group of
queries for which the query interface returns only the candidate an-
swers with instances matching to their concepts. The second term
of the annotation benefit in equation 3, however, is different from
the second term in equation 2 and represents the impact of the fre-
quency of a concept that is not in S on the likelihood of the preci-
sions of its queries.

Some domains may contain a mix of mutually exclusive and
overlapping concepts. Analyzing and solving the problem of cost-
effective conceptual design for such domains is a larger undertak-
ing, which requires more space than one paper and provides an
interesting subject for future work.

3.4 Estimating Input Parameters
According to Definitions 3.1 and 3, we need popularities, fre-

quencies, and accuracies of annotation for each concept in a do-
main, in order to compute the Annotation Benefit of a design over
the domain. These values, however, are not usually available be-
fore annotating the instances of concepts in the collection. Similar
issues arise in database query optimization, where the complete in-
formation about running times of operators in a query are not avail-
able before running the query [10].

Our empirical results indicate that it is sufficient to compute pop-
ularities, frequencies, and accuracies of annotating concepts over
only a sample of query workload or collection (e.g. 384 out of
about 1 million documents) in order to effectively estimate the val-
ues of Annotation Benefit function for designs in a domain. The
enterprise may use methods such as crowd sourcing to compute the
popularities and frequencies of concepts over such small samples.
These annotated documents may be also used as training data for
the annotation program of the concept if it is selected for anno-
tation. In some settings, a sample workload of queries with their

concepts is not available, i.e. we may have access only to pure key-
word queries. The enterprise can use the click-through information
of sample queries to effectively find their associated concepts [3].

An enterprise may use the Annotation Benefit function to choose
the concepts for which it should develop annotation programs, there-
fore, it may not know the accuracies of the annotation programs in
design time. Because one has to spend more time and resources
to develop a more accurate annotator, the accuracy of annotating a
concept somewhat represents the cost of developing its annotation
program. Hence, the enterprise may set the accuracy of annotating
a concept to a reasonable value that can be achieved using its asso-
ciated cost. It may also compute and compare the values of Anno-
tation Benefit for designs across multiple assignments of costs and
accuracies of annotating concepts in the domain.

4. THE COST EFFECTIVE CONCEPTUAL
DESIGN PROBLEM

Since the resources available to develop, maintain, and execute
concept annotators are limited, our goal is to find a conceptual
design S such that annotating the concepts in S in the queries
and collection maximizes the annotation benefit. For each con-
cept C ∈ C, we define the cost of annotation to reflect the amount
of resources required to annotate instances of the concept C in the
collection. Let B denote the amount of resources available to per-
form the annotation. Annotating a set of concepts S is feasible
if
∑
C∈S w(C) ≤ B. We formally define the annotation benefit

problem as follows.

PROBLEM 4.1. Given a domain C, the goal of the COST EF-
FECTIVE CONCEPTUAL DESIGN problem is to construct a con-
ceptual design S that maximizes the annotation benefit (AB) while
satisfying the constraint w(S) ≤ B.

In the case of domains with no constraints, we can rewrite the an-
notation benefit function as follows.

AB(S) =
∑
C∈S

u(C)pr(C) +
∑
C/∈S

u(C)d(C)

=
∑
C∈S

u(C)(pr(C)− d(C))

+
∑
C∈C

u(C)d(C).

where the term
∑
C∈C u(C)d(C) is independent of S. Since con-

cept annotation is an informative process, i.e. it annotates con-
cepts more effectively than a random algorithm, we have pr(C)−
d(C) > 0. Thus, the optimization problem in this setting is follow-
ing.

max
∑
C∈S

u(C)(pr(C)− d(C)), s.t.
∑
C∈S

w(C) ≤ B

Provided that we have n concepts in our domain, the COST EF-
FECTIVE CONCEPTUAL DESIGN problem over domains with no
constraints is essentially the same as the 0-1 KNAPSACK problem
with n objects, where the value of each objectOC is u(C)(pr(C)−
d(C)) and its weight is w(C). Since 0-1 KNAPSACK problem is
NP-hard, the the COST EFFECTIVE CONCEPTUAL DESIGN prob-
lem over domains with no constraints is also NP-hard.

We prove that the COST EFFECTIVE CONCEPTUAL DESIGN
problem is NP-hard for domains with mutually exclusive concepts
by a reduction from the following NP-complete variant of the PAR-
TITION problem [17].

PROBLEM 4.2. LetA = {a1, . . . , a2m} be a set of 2m positive
integers that sum up to 2A, such that for each a ∈ A, A

m+1
<

a < A
m−1

. The goal of this problem is to decide whether there
exists a set I ⊂ A such that

∑
a∈I a = A.

THEOREM 4.3. The COST EFFECTIVE CONCEPTUAL DESIGN
problem over a domain with mutually exclusive concepts is NP-
hard.

In the following section, we design efficient approximation algo-
rithms for the COST EFFECTIVE CONCEPTUAL DESIGN problem.

5. APPROXIMATION ALGORITHMS
A brute force algorithm for the COST EFFECTIVE CONCEPTUAL

DESIGN problem may take several days or weeks of computation
even if the domain contains only 50 concepts. In this section,
we design some efficient approximation algorithms for the COST
EFFECTIVE CONCEPTUAL DESIGN problem. Consider a maxi-
mization problem M. A polynomial time algorithm A is an α-
approximation to M if SOLA ≥ 1

α
OPTM, where SOLA is the

value of the solution returned by A and OPTM is the value of the
optimal solution toM.

5.1 Approximate Popularity Maximization Al-
gorithm (APM)

We can use available efficient algorithms with bounded approx-
imation ratios for the 0-1 KNAPSACK problem to solve the COST
EFFECTIVE CONCEPTUAL DESIGN problem over domains without
any constraint with the same approximation ratios. This algorithm
will solve a 0-1 KNAPSACK problem for concepts in the domain,
where the value of each concept is u(C)(pr(C) − d(C)) and its
weight is w(C). An algorithm for a maximization problem is a
Fully polynomial time approximation scheme (FPTAS) if its run-
ning time is polynomial in the size of the input and (1/ε) and its
approximation ratio is (1 + ε) for a given 0 < ε. Since 0-1 KNAP-
SACK problem is NP-hard, FPTAS is the best possible approxima-
tion for the problem, unless P = NP [14]. In our experiments,
we consider an FPTAS algorithm of 0-1 KNAPSACK problem de-
scribed in [14] that uses a dynamic programming approach. Thus
there is an FPTAS algorithm for COST EFFECTIVE CONCEPTUAL
DESIGN problem over domains with no constraint.

Moreover, we use the idea behind FPTAS algorithms of 0-1 KANP-
SACK problem to devise an algorithm for the COST EFFECTIVE
CONCEPTUAL DESIGN problem over domains with mutually ex-
clusive concepts. This algorithm ignores the improvement in ef-
fectiveness of answering the queries whose concepts are not in the
design of a collection. As discussed in Section 3, this improve-
ment is achieved by eliminating the non-relevant answers whose
concepts are in the design of the collection from the list of can-
didate answers for these queries. This degree of improvement is
represented by the second term of the annotation benefit function.
Hence, this algorithm picks a conceptual design S with maximum
value of

∑
C∈S u(C)pr(C). We call this modified problem the

POPULARITY MAXIMIZATION problem. More formally, given a
domain C, the POPULARITY MAXIMIZATION problem maximizes∑
C∈S u(C)pr(C) subject to

∑
C∈S w(C) ≤ B.

The following lemma shows that we can design a constant factor
approximation algorithm for the COST EFFECTIVE CONCEPTUAL
DESIGN problem by applying an algorithm with bounded approxi-
mation ratio for the POPULARITY MAXIMIZATION problem.

LEMMA 5.1. A ρ-approximation algorithm for the POPULAR-
ITY MAXIMIZATION problem is a (ρ + 1/prmin)-approximation

for the COST EFFECTIVE CONCEPTUAL DESIGN problem over
domains with mutually exclusive concepts, where prmin =
minC∈C pr(C).

In particular, if pr(C) = 1 for all C ∈ C, a ρ-approximation of the
POPULARITY MAXIMIZATION problem is a (ρ+1)-approximation
for the COST EFFECTIVE CONCEPTUAL DESIGN problem.

The POPULARITY MAXIMIZATION problem is also a version of
0-1 KNAPSACK problem with n objects, if we choose the value of
each objectOC to be u(C)pr(C) and its weight to bew(C). Thus,
in our experiments we use the FPTAS algorithm for Knapsack [14]
to solve this problem.

COROLLARY 5.2. An FPTAS algorithm that returns a (1 + ε)-
approximate solution to the POPULARITY MAXIMIZATION prob-
lem is a (1+ ε+1/prmin)-approximation algorithm for the COST
EFFECTIVE CONCEPTUAL DESIGN problem over domains with
mutually exclusive concepts whose running time is polynomial in
1
ε

and the number of concepts.

We call this algorithm the Approximate Popularity Maximiza-
tion (APM) algorithm.

5.2 Approximate Annotation Benefit Maximiza-
tion Algorithm (AAM)

In this section we present an FPTAS algorithm for the COST EF-
FECTIVE CONCEPTUAL DESIGN problem over the domains with
mutually exclusive concepts. Since in Theorem 4.3 we proved that
the problem is NP-hard, FPTAS is the optimal approximation guar-
antee for the problem unless P = NP . The algorithm is based on
the dynamic programing method of the 0-1 KNAPSACK problem
in addition to some scaling techniques. For simplicity in exposi-
tion of the algorithm, we assume that pr(C) = 1 for each C ∈ C.
However, in Remark 5.7 we state that our approach works for an ar-
bitrary pr function, given an additional property that usually holds
in practice.

Given a fixed constant N , we define the BOUNDED COST EF-
FECTIVE(N) problem as follows.

max
S

f(N,S) =
1

N
(N

∑
C∈S

u(C) +
∑

C∈C−S

u(C)d(C)) (4)

s.t.
∑

C∈C−S

d(C) ≤ N

∑
C∈C−S

w(C) ≤ B

In addition to the cost constraint that we had previously, BOUNDED
COST EFFECTIVE(N) has a constraint over frequency of docu-
ments. Let 〈C, B, d, u, w〉 be an instance of the COST EFFECTIVE
CONCEPTUAL DESIGN problem. For any value of N , the value of
the optimal solution of the BOUNDED COST EFFECTIVE(N) on
〈C, B, d, u, w〉 is not more than the optimal solution of the an-
notation benefit of COST EFFECTIVE CONCEPTUAL DESIGN on
〈C, B, d, u, w〉. Moreover, for a fixed N , the objective function of
the COST EFFECTIVE CONCEPTUAL DESIGN is a separable func-
tion. Thus it is easier to find the maximum value of BOUNDED
COST EFFECTIVE(N) for a fixed N rather than finding the op-
timal conceptual design of the COST EFFECTIVE CONCEPTUAL
DESIGN problem.

LEMMA 5.3. Let OPT be the value of the optimal solution of
the COST EFFECTIVE CONCEPTUAL DESIGN problem and let OPTbd

be the maximum value of an optimal solution of BOUNDED COST
EFFECTIVE(N) over different values of N . Then OPT = OPTbd.

Moreover, the same set of concepts (conceptual design) obtains the
optimal value in both functions.

Lemma 5.3 implies that in order to find a set with the maximum
annotation benefit we can instead solve BOUNDED COST EFFEC-
TIVE(N) for all different values of N and return the set that ob-
tains the maximum value. In other words, first we give an FPTAS
for BOUNDED COST EFFECTIVE(N), where N is a given fixed
value. The first step is to check whether for the given N there ex-
ists a feasible solution to BOUNDED COST EFFECTIVE(N). For
the given N , a feasible solution has to contain all concepts C that
d(C) > N . Let Srem = {C|d(C) > N} and Crem = C − Srem.
If w(Srem) > B, there is no feasible solution for BOUNDED COST
EFFECTIVE(N). Otherwise; we select all concepts in Srem and we
setBrem = B−w(Srem) to be the leftover budget. The problem is
equivalent to optimize the bounded problem on Crem, Brem andN .
Now, for each C ∈ Crem we have d(C) ≤ N . To solve BOUNDED
COST EFFECTIVE(N) optimally for the given N , we can apply
dynamic programming. Let Vinit(N) =

∑
C∈Crem u(C)d(C)/N .

We can rewrite the objective function of BOUNDED COST EFFEC-
TIVE(N) as follows: ∑

C∈S

v(C) + Vinit(N)

where v(C) = u(C)(1− d(C)/N) for each C ∈ Crem
Let Crem = {C1, · · · , Cn}. We define Q[i, P,X] to be the

minimum required cost that we must pay to obtain a solution of
BOUNDED COST EFFECTIVE(N) of value at least P − Vinit if we
are only allowed to annotate concepts from the first i concepts of
Crem. We can state the recursive relation of Q[i, P,X] as follows:

1. Q[0, 0, X] = 0 for all 0 ≤ X ≤ N

2. Q[0, P,X] =∞ for all P > 0 and 0 ≤ X ≤ N

3. Q[i, P,X] = min(Q[i− 1, P,X − d(Ci)],
Q[i− 1,min {P − v(Ci), 0} , X] + w(Ci))

To find the optimal solution of BOUNDED COST EFFECTIVE(N),
we need to find the maximum value of V such that Q[n, V,N] ≤
Brem. The running time of the described dynamic programming
is O(nV N) where V is the value of the optimal solution of the
bounded problem for the given N . The described dynamic pro-
gramming is pseudo-polynomial and we can convert it to an FPTAS
via scaling techniques.

LEMMA 5.4. There exists a (1 + ε)-approximation algorithm
to BOUNDED COST EFFECTIVE(N) which runs in O(Nn3/ε).

Although we need to satisfy the document frequency constraint of
BOUNDED COST EFFECTIVE(N),

∑
C∈Crem−S d(C) ≤ N , for a

given N we can allow S to violate the document frequency con-
straint by ε; our ultimate goal is to maximize the annotation benefit
of COST EFFECTIVE CONCEPTUAL DESIGN problem. Later we
show that the value of AB for a (1 + ε)-approximate solution of
BOUNDED COST EFFECTIVE(N), S, that violates the document
frequency constraint by at most ε is comparable to the optimal so-
lution of BOUNDED COST EFFECTIVEfor the given N .

LEMMA 5.5. There is a (1 + ε) approximation algorithm for
BOUNDED COST EFFECTIVE(N) that violates

∑
C∈Crem−S d(C) ≤

(1 + ε)N , and its running time is O(n4/ε2).

By Lemma 5.5, we have an algorithm that finds a solution Cs with
value at least (1+ε) times the optimal solution of BOUNDED COST

EFFECTIVE(N). However, Cs may violate the document frequency
constraint by ε. Suppose that Cs is the set returned by the algorithm
after performing the described scaling. Let Nr =

∑
C∈Cs d(C)

and let Ns be the value of N for which Cs is returned in our algo-
rithm (since we allow the algorithm to violate the constraint by ε,
Nr ≤ (1 + ε)Ns). Suppose that Co is the set with optimal value of
AB. Lemma 5.3 and 5.5 imply that AB(Co) ≤ (1 + ε)f(Ns, Cs).
Thus AB(Cs) = f(Nr, Cs) ≥ f(Ns, Cs)/(1 + ε) ≥ (1/(1 +
ε)2)AB(Co) ≥ (1 − 2ε)AB(Co) ≥ 1

(1+2ε)
AB(Co) where f is

the objective function of the BOUNDED COST EFFECTIVEproblem.
By maximizing BOUNDED COST EFFECTIVE(N) over all possible
values of N (0 < N ≤ Dtotal =

∑
C∈Crem d(C)), we can find

a (1 + ε)-approximation1 of the COST EFFECTIVE CONCEPTUAL

DESIGN problem in O(Dtotal
n4

ε2
).

THEOREM 5.6. The COST EFFECTIVE CONCEPTUAL DESIGN
problem admits an FPTAS algorithm.

Instead of checking all possible values ofN which lead to a pseudo-
polynomial algorithm, we can instead solve the relaxed version of
BOUNDED COST EFFECTIVEfor some specific values ofN (which
is polynomial in the size of input) and still guarantees a (1 − ε)-
approximation (in the relaxed version we allow the solution to vio-
late the document frequency constraint by a factor of ε). Consider
the set N = {N1, · · · , Np} such that Ni = Dmin(1/(1 − ε))i

where Dmin = minC∈Crem d(C) and Np−1 ≤ Dtotal ≤ Np. This
implies that p < log(1−ε)−1(Dtotal/Dmin) + 1 = (logDtotal −
logDmin)/(− log(1−ε))+1 < O((logDtotal)/ε), where the last
inequality comes from− log(1−ε) = − ln(1−ε)/ ln 2 > ε/ ln 2.
Thus the number of different values of N we need to examine is
polynomial in logDtotal and 1/ε. Suppose that (No, Co) is the
pair that maximizes f , i.e, OPT = f(No, Co). Let Ng be the
smallest member of N that is greater than No. Note that (Ng, Co)
is a feasible solution to f and since Ng > No, Ngf(Ng, Co) >
Nof(No, Co). Thus f(Ng, Co) > (No/Ng)OPT. The solution
returned by our algorithm is at least (1 − ε) times the maximum
of f for Ng . Since No > Ng−1, No/Ng ≥ Ng−1/Ng and thus
f(Ng, Co) ≥ (Ng−1/Ng)OPT ≥ (1 − ε)OPT. This implies the
value the maximum value of on Ng is at least (1 − ε)OPT ≥

1
(1+ε)

OPT. This fact along with Lemma 5.5 lead us to obtain an
FPTAS algorithm with runtime O((n4 logDtotal)/ε

3). Note that
logDtotal ≤ log(nDmax) ≤ logn + logDmax where Dmax =
maxC∈Cp d(C) and is polynomial in the size of input. Hence the
running time is bounded by O(n5/ε3).

REMARK 5.7. We assumed that pr(C) = 1 for all C ∈ C.
However, our approach also works for a realistic function pr. For
a given N , we define v(C) = u(C)(pr(C)− d(C)

N
) and the proof

holds as long as v(C) is a positive value for all concepts.

Table 1 summarizes the time complexities and approximation ra-
tios of the approximation algorithms over domains with mutually
exclusive concepts.

6. EXPERIMENTS

6.1 Experiment Setting
Domains: To validate the accuracy of the annotation benefit func-

tion and the effectiveness of our conceptual design algorithms, we
use concepts from YAGO ontology version 2008-w40-2 [23]. YAGO
organizes its concepts using IS-A (i.e. parent-child) relationships

1We let ε′ = 2ε.

Algorithm Approximation ratio Running time
APM 2 + ε O(n3/ε)

AAM 1 + ε O(n5/ε3)

Table 1: Approximation ratios and time complexities of approxi-
mation algorithms over domains with mutually exclusive concepts.

in a DAG with a single root. We define a level as a set of concepts
that have the same distance (in terms of the number of edges) from
the root of the ontology. Most levels in the DAG generally con-
tain a set of mutually exclusive concepts. We select three domains
from this ontology for our experiments. All concepts in each do-
main are mutually exclusive and have at least one instance in our
dataset. Domain M1 consists of 7 concepts from the third level of
the ontology. We further select two larger domains from the YAGO
ontology to evaluate the average-case performance ratios and effi-
ciency of our approximation algorithms. Domain M2 consists of 76
mutually exclusive concepts from the fourth level of the ontology,
such as location and event. Since we would like to evaluate our
algorithms over domains with more concrete concepts, we expand
some relatively abstract concepts such as whole to their descen-
dants on the sixth level of the ontology and created a third domain,
called domain M3. This domain consists of 87 concepts such as
person and animal. We also select an additional domain, called
N1, from the fifth level of YAGO with 10 concepts whose concepts
are not guaranteed to be mutually exclusive. We use this domain
to validate the annotation benefit formula for the domains with no
constraint and measure the empirical approximation ratio of APM
over these domains.
Dataset: We use a semantically annotated version of the Wikipedia
collection that is created from the October 8, 2008 dump of En-
glish Wikipedia articles [23]. This collection uses concepts from
the YAGO ontology. It contains 2,666,190 Wikipedia articles, of
which 1,470,661 are annotated. For each domain, we have selected
all documents that contains an annotation of a concept in the do-
main and created a dataset for that domain. The datasets for do-
main M1, M2, M3 and N1 contain 525,703, 399,792, 927,848 and
186,952 documents respectively. Each annotation contains a confi-
dence value that indicates the accuracy of the annotation. We have
used the average confidence values over all annotations of a concept
to compute its annotation accuracy. The accuracies of annotations
are between 0.75 and 0.95 for concepts in the selected domains.
Query Workload: We use a subset of the MSN query log whose
target URLs are Wikipedia articles [9]. Each query contains be-
tween 2 to 6 keywords and has one to two relevant answers. Be-
cause the query log does not list the concept behind each query,
we adopt an automatic approach to find the concepts associated
with the query. Given a domain, for each query we find the con-
cept from the domain whose instance(s) match the query terms in
its relevant answers. We ignore the queries that match instances
from multiple concepts in their relevant answers as these queries
do not comply with our query model. The effectiveness of answer-
ing some queries may not be improved from semantically anno-
tating the collection [7].For instance, all candidate answers for a
query may contain matched instances of the same concept. In or-
der to reasonably evaluate our algorithms, we have not considered
the queries whose rankings are the same over the unannotated ver-
sion and the fully annotated version (i.e. annotating all concepts in
the domain) of the collection. This method leads to collecting 98
(98 unique), 187 (118 unique), 1737 (972 unique), and 199 (138
unique) queries for domain M1, M2, M3, and N1 respectively. We
use two-fold cross validation to train the u values for concepts in

Frequency-based Cost Random Cost
Budget Oracle PM AM Oracle PM AM

0.1 0.146 0.146 0.146 0.190 0.188 0.190
0.2 0.207 0.207 0.207 0.208 0.205 0.208
0.3 0.218 0.218 0.218 0.216 0.216 0.216
0.4 0.218 0.218 0.218 0.218 0.218 0.218

Table 2: Average p@3 for Oracle, PM, and AM over domain M1.

each domain. Because some concepts may not appear in the query
workload, we smooth the u values using the Bayesian m-estimate
method with smoothing parameter 1 and uniform priors [19].
Retrieval System: We index the datasets using Lucene (lucene.apache.org
) and use BM25 as the underlying retrieval algorithm [19]. Given
a query, we first rank its candidate answers using BM25. Then, we
apply the information about the concepts in the query and docu-
ments to return the documents whose matching instances have the
same concept as the concept of the query or to filter out the non-
relevant candidate answers for the query if using domain M1, M2
and M3, as explained in Section 3. We performed our experiments
on a Linux server with 250 GB of main memory and two quad core
processors. We implemented our retrieval system and optimization
algorithms using JAVA 1.7.0_51.
Effectiveness Metric: Most queries in our query workloads have
one relevant answer. Hence, we measure the effectiveness of an-
swering queries over the dataset using precision at 3 (p@3). We
measures the statistical significance of our results using the paired-
t-test at a significant level of 0.05. The statistically significant im-
provements are marked in bold in the reported results.
Cost Metrics: We use two types of costs for concept annotation
development and maintenance in our experiments. We hypothesize
that the cost of building, running, and maintaining an annotator for
a concept may be proportional to its frequency as its instances may
appear in more diverse contexts in a collection, which may lead to a
larger number of rules/features for an annotator and longer running
time. We call this type of cost assignment frequency-based cost.
We also evaluate our algorithms by assigning randomly generated
costs to the concepts in a domain. We call this type of cost as-
signment random cost. We report the average p@3 over 40 sets of
random costs for each budget. We use a range of budgets between
0 and 1 with step size of 0.1, where 1 means sufficient budget to
annotate all concepts in a domain.

6.2 Model Validation
In this section, we investigate whether the Annotation Benefit

function accurately estimates the likelihood of improvement in ef-
fectiveness of answering queries over annotated collections.
Domain with mutually exclusive concepts: We use three algo-
rithms in this set of experiments. Given complete information about
the relevant answers of queries, Oracle checks all possible designs
in a domain whose costs do not exceed a fixed budget and deliv-
ers the design with maximum p@3 over all queries. Because the
designs returned by Oracle deliver the maximum possible effec-
tiveness for answering queries, we use its results to measure how
accurately practical methods predict the amount of improvement in
effectiveness of answering queries achieved by a design. AM is a
brute force algorithm that picks the design with maximum Anno-
tation Benefit over a domain given a fixed budget. An intuitively
appealing heuristic for finding a design is to select the concepts
that are most queried by users. The PM algorithm implements this
heuristic. PM is a brute force algorithm that finds the design with
the maximum value of

∑
C∈S u(C)pr(C) over a domain given

a fixed budget. Since all these algorithms use exhaustive search

methods, running them over a domain with a large number of con-
cepts is not practical. Thus, we evaluate these algorithms only over
domain M1. In order to precisely evaluate the estimation accuracy
of the Annotation Benefit function, we assume that AM has the
exact values of concept frequencies. We will explain how to esti-
mate the frequencies of concepts without fully annotating them in
Section 6.3.

Table 2 shows the values of p@3 over domain M1 delivered by
AM and PM using frequency-based and random costs. We have
omitted the results of Oracle, AM, and PM for budgets from 0.5-
0.9 in table 2, because their results are the same as the ones for
budget 0.4. Since the number of concepts in domain 1 is rather
small, there are few feasible solutions that can exhaust the budget,
given a modest or large budget. Hence, all algorithms find the same
or very similar designs for these budgets over domain M1. The
designs returned by Oracle, AM, and PM deliver the same values
of p@3 for answering queries over all budgets for frequency-based
cost. In this setting, AM and PM pick the same designs for all
budgets between 0.1 and 0.8. The designs selected by AM and
PM are different for budget 0.9. Nonetheless, both designs contain
6 out of 7 available concepts in the domain. Answering queries
over an annotated collection that contains annotation for all but one
of the concepts in the domain will be as effective as answering
queries over the fully annotated collection. Therefore, they both
achieve the same values of p@3. Further, the cost distribution in the
frequency based cost setting is very skewed in domain M1. Since
the number of concepts is rather small in domain M1 and the cost
distribution is skewed, there are very few feasible solutions that can
maximize the objective functions of either AM or PM given a small
budget. For example, with budget equal to 0.2, there are only two
feasible designs that exhaust the budget and one of them maximizes
the objective functions of both AM and PM.

Table 2 shows that the designs produced by AM deliver more
effective results for queries than the ones generated by PM for bud-
gets 0.1 - 0.2 using random costs. Since the cost distribution of ran-
dom costs is not as skewed as the cost distribution for frequency-
based costs, there are more feasible solutions for both objective
functions than the frequency-based cost setting for small budgets.
For example, PM and AM include causal agent and psychological
feature, respectively, in their designs for budget equal to 0.1. These
designs are not feasible in the frequency-based cost setting. Since
causal agent is quite frequent in the collection, the matching in-
stances of this concept appear in most of the top candidate answers
for queries with this concept. Hence, AM does only slightly worse
than PM in returning answers whose matching instances belong to
causal agent for queries with this concept. Because AM picks psy-
chological feature in its design, it is able to effectively answer the
queries from this concept. PM, however, does not pick this concept
in its design. Because this concept is not very frequent in the collec-
tion, the matching instances of most candidate answers for queries
with this concept belong to other concepts. Hence, the PM design
returns considerably less effective results for these queries than the
AM design. AM returns the same designs as Oracle for budgets 0.1
and 0.2 in the random cost setting. As the budget becomes larger,
both algorithms pick almost all useful (relatively popular and/or
relatively frequent) concepts. Thus, the ranking qualities provided
by the designs from these methods are almost the same for larger
budgets.

Domains without constraints regrading the overlap of con-
cepts: We use two algorithms in this set of experiments. Oracle
is the same algorithm used in validation experiments for domains
with mutually exclusive concepts. AM-N is a brute force algorithm
that picks the design with maximum Annotation Benefit over a do-

Frequency-based Cost Random Cost
Budget Oracle AM-N APM Oracle AM-N APM

0.1 0.191 0.191 0.191 0.173 0.173 0.160
0.2 0.229 0.229 0.229 0.205 0.205 0.196
0.3 0.238 0.238 0.238 0.230 0.230 0.230
0.4 0.238 0.238 0.238 0.235 0.235 0.235
0.5 0.238 0.238 0.238 0.237 0.237 0.237
0.6 0.238 0.238 0.238 0.238 0.238 0.238

Table 3: Average p@3 for Oracle, AM-N, and APM (ε = 0.001)
over Domain N1.

Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.146 0.146 0.196 0.230 0.145 0.145
0.2 0.177 0.207 0.203 0.237 0.164 0.165
0.3 0.218 0.218 0.205 0.239 0.175 0.176
0.4 0.218 0.218 0.203 0.241 0.183 0.196
0.5 0.218 0.218 0.237 0.241 0.175 0.198
0.6 0.218 0.218 0.239 0.241 0.202 0.202
0.7 0.218 0.218 0.241 0.241 0.202 0.202
0.8 0.211 0.218 0.235 0.241 0.202 0.202
0.9 0.218 0.218 0.241 0.241 0.202 0.202

Table 4: Average p@3 for AAM (with ε = 0.1) and APM (with
ε = 0.001) using frequency-based costs.

main with no constraint given a fixed budget. Since PM heuristic
is very similar to AM-N, we do not report its results in this sec-
tion. Table 3 shows the values of p@3 over domain N1 delivered
by Oracle and AM-N using frequency-based and random costs. All
results for budget 0.7-0.9 are omitted as they are the same as the
results over budget 0.6. Note that since the number of concepts in
domain N1 is larger than domain M1, this increases the running
time of Oracle. Due to limited amount of time, we perform the
experiment over domain N1 using 20 sets of random costs.

Overall, ranking quality delivered by AM-N is the same as Or-
acle. AM-N and Oracle pick the same design for all budgets for
frequency-based cost. Intuitively, more popular and accurately an-
notated concepts should deliver a better ranking quality for domains
without any constraint because query interface can use only the
annotations for the concept of each query to improve the ranking
quality of its answers. As opposed to the domain with mutually
exclusive concepts, query interface cannot use annotations of con-
cepts other that the concept in the query to filter non-relevant an-
swers. AM-N generally picks the same designs as Oracle for runs
of random costs. AM-N chooses different designs from Oracle in
a few runs, but the both designs lead to almost the same amount
of improvement in ranking qualities for queries. These results con-
firms our assumption that Annotation Benefit formula is suited as
an objective function for domains with not constraint.

6.3 Effectiveness of Approximation Algorithms
Parameters Estimation: In addition to the popularities (u) of con-
cepts in the query workload, AAM requires the value of the fre-
quency (d) for each concept in the collection. The exact frequency
of a concept, however, cannot be determined before annotating all
its instances. We estimate the frequencies of concepts using a small
sample of randomly selected documents from the collection. For
each domain, we calculate the frequency of each concept over a
random sample of 384 documents from the collection which corre-
sponds to an estimation error rate of 5% under the 95% confidence
level. Similar to computing concepts’ popularities, we smoothed
the value of d using Bayesian m-estimates with smoothing param-
eter of 1 and uniform priors.

Domain Domain M1 Domain M2 Domain M3
APM AAM APM AAM APM AAM

0.1 0.179 0.189 0.221 0.240 0.192 0.202
0.2 0.201 0.207 0.223 0.240 0.193 0.202
0.3 0.215 0.214 0.226 0.240 0.194 0.202
0.4 0.218 0.217 0.227 0.240 0.195 0.202
0.5 0.218 0.218 0.229 0.241 0.197 0.202
0.6 0.218 0.218 0.231 0.241 0.197 0.202
0.7 0.218 0.218 0.232 0.241 0.198 0.202
0.8 0.218 0.218 0.234 0.241 0.199 0.202
0.9 0.218 0.218 0.237 0.241 0.202 0.202

Table 5: Average p@3 of AAM (with ε = 0.3) and APM (with
ε = 0.001) using random costs.

Domains with mutually exclusive concepts: Tables 4 and 5 show
the values of p@3 for the APM and AAM algorithms for all mu-
tually exclusive domains using frequency-based and random costs,
respectively. Generally, the designs generated by AAM improve
the values of p@3 significantly more than the designs produced by
APM, over all domains and both types of cost metrics. As dis-
cussed in Section 3, the optimal design should balance three types
of impacts. First, it should contain the most popular concepts so the
query interface can return potentially relevant answers to as many
queries as possible. Second, if a concept is very frequent, most
candidate answers for queries with this concept contain matching
instances of this concept. Hence, if the concept is relatively costly,
the optimal design should not include these concepts as they may
not worth annotating. Third, it should contain relatively frequent
and relatively cheap concepts so that the query interface can elim-
inate many non-relevant answers from the list of results for the
queries whose concepts are not in the design.

In our experiments, the designs produced by APM have larger
overall popularities (u values) than the designs selected by AAM,
across all domains and cost metrics. We have observed that in gen-
eral the most popular concepts in users’ queries may not be the
most frequent ones in the collection. The designs picked by AAM
do not normally include the most popular concepts. Instead, they
contain a larger number of relatively popular concepts than the de-
signs selected by APM over all domains and cost metrics. Gener-
ally, relatively popular concepts are also rather frequent. Since the
overall frequencies of the designs produced by AAM are generally
larger than the ones selected by APM, they help the query inter-
face to eliminate more non-relevant answers from the results of the
queries whose concepts are not included in these designs. Because
these designs include relatively popular concepts, they also help the
query interface to return the relevant answers to a relatively large
number of queries.

In a small number of cases, the designs generated by APM de-
liver a larger p@3 than the ones produced by AAM. Although the
differences between AAM and APM in these cases are not statisti-
cally significant, it is interesting to explore the reasons behind these
improvements. The designs generated by APM for budget 0.3 and
0.4 over domain M1 using random costs deliver larger values of
p@3 than the designs of AAM. In both budgets, the relative effec-
tiveness improvement of APM over AAM in each budget is due to
a single run where APM selects a design with larger value of An-
notation Benefit than the design picked by AAM. This illustrates
the fact that both methods are approximation algorithms and some-
times they may return quite different answers from their optimal
solutions.

Generally, the differences between the values of p@3 achieved
by the designs of AAM and APM are smaller for larger budgets
across all domains and cost metrics. This is mainly due to the

fact that AAM and APM can afford to include most of the popular
and frequent concepts in their designs for medium or large bud-
gets. Adding the concepts that are rare in the collection or query
workload does not improve the effectiveness of answering queries
considerably. Because domain M1 has a relatively small number
of concepts, both algorithms pick similar designs given a smaller
amount of budget for this domain than other domains.

In some cases, the designs generated by APM deliver smaller
values of p@3 for larger budgets. For instance, the design for bud-
get 0.8 delivers a smaller value of p@3 than the one for budget 0.7
over domain M1 when frequency-based cost is used. Given suffi-
cient budget, APM may replace reasonably popular and frequent
concepts with more popular and less frequent concepts. As dis-
cussed in Section 3 and the beginning of this section, this may have
a negative impact on p@3 for answering queries over the annotated
collection.

The values of p@3 for the designs generated by AAM over do-
main M2 and domain M3 when random costs are used are almost
the same over all budgets greater than 0.1. The distribution of fre-
quencies and popularities of concepts are very skewed in these do-
mains, where relatively small number of concepts (e.g. 10 concepts
in domain M2) have a large portion of the total frequency and pop-
ularity in the domain. Since the costs are assigned randomly, in
most runs AAM is able to pick these concepts using a relatively
small budget. AAM adds new concepts to this set given larger bud-
gets. The new concepts, however, do not improve the effectiveness
of answering queries over the annotated collection.

APM cannot find the set of more popular concepts given a small
or moderate budget. The algorithm used in APM has two main
steps [17]. It separates concepts into two sets, popular and un-
popular. It then uses a dynamic programming method to find the
optimal solution from the set of popular concepts. If there are still
some budget left, it greedily picks concepts from the set of unpop-
ular concepts until the budget is exhausted. The decision of how to
partition concepts into these two sets is based on an approximation,
which is not accurate in many cases. Hence, in some cases the con-
cepts that belong to the optimal design may placed in the set of un-
popular concepts. The greedy algorithm used to pick the concepts
in the unpopular set sorts them based on the ratio of u(C)×pr(C)

w(C)
,

where u is the popularity, pr is the accuracy, and w is the cost of
concept C, and select the top concepts. This method leaves out
some desired concepts that are relatively popular but expensive.
Domains without constraints regrading the overlap of concepts:
We investigate the effectiveness of the version of APM algorithm
introduced in Section 5.1 for domains without any constraint. Ta-
ble 3 shows the values of p@3 over domain N1 delivered by Oracle,
AM-N and APM using frequency-based and random costs. Over-
all, the results delivered by APM are the same as that of Oracle and
AM-N except at budget 0.1 and 0.2 of random cost. APM generally
selects the same designs as that of PM. Hence, it delivers the same
ranking qualities as the optimal solutions. Since APM is an approx-
imation algorithm, it cannot find solutions that maximizes concept
popularity in some runs of random cost. For example, APM picks
the design consists of literary composition where AM-N picks the
design with series and dramatic composition in one of the runs.
The overall popularity of the latter design is larger than the former
one. Thus, APM cannot answer queries as effectively as AM-N
does. As the costs are quite skewed in frequency-based runs, APM
almost always picks the same designs as AM-N in these runs.

6.4 Efficiency of Approximation Algorithms
This section studies the efficiency and scalability of our approx-

imation algorithms. Due to limited space, we show the efficiency

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 1 2 2 - -

AAM Domain M2 1 5 102 - -
Domain M3 4 15 128 - -
Domain M1 1 2 2 2 5

APM Domain M2 1 2 2 3 12
Domain M3 4 14 15 15 23

Table 6: Average running times of AAM and APM (in minutes)

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 348 492 635 - -

AAM Domain M2 1667 6498 84139 - -
Domain M3 1326 5608 63466 - -
Domain M1 184 184 184 215 1976

APM Domain M2 184 184 184 215 4933
Domain M3 184 184 184 471 7732

Table 7: Average memory usages of AAM and APM (in MB)

and scalability of AAM and APM using only frequency-based costs
over domains M1, M2 and M3. Our experiments over the ran-
dom based costs show similar results for the scalability of the algo-
rithms. Since the running time and memory consumption of APM
is similar over the domains with mutually exclusive concepts and
the domains without any constraints, we report the scalability re-
sults for APM only over the domains with mutually exclusive con-
cepts.
Efficiency: Table 6 shows the average running time of APM and
AAM algorithms over domain M1, M2, and M3 with budget 0.1 to
0.9 using various several values between 0.5 - 0.001 for ε. As we
expect, the smaller the value of ε is, the longer the running times of
both algorithms are. APM is generally more efficient than AAM,
particularly for smaller values of ε. This observation confirms our
comparative analysis of the time complexities of these algorithms
in Section 5. We set the value of ε to 0.1 for AAM and 0.001
for APM in our experiments to evaluate the improvement in effec-
tiveness of answering queries achieved by the designs produced by
AAM and APM for frequency-based cost, reported in Section 6.3,
we set the value of ε to 0.1 and 0.001, respectively. According to
Table 6, the running times of the algorithms for these values of ε
are reasonable for a design-time task. As we have to run AAM 40
times per budget in the experiments using random costs, reported
in Section 6.3, we set the value of ε to 0.3 in AAM for these exper-
iments. Table 6 indicates that the running time of AAM with this
value of ε is reasonable for a design time task.

Both APM and AAM use dynamic programming method and
keep a table in the main memory to maintain the solutions of their
subproblems. Table 7 shows the average memory usage of APM
and AAM algorithms over domains M1, M2, and M3 using values
from 0.5 - 0.001 for ε. Similar to running time, the smaller the
value of ε is, the larger the memory AAM and APM need. Inter-

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 0.204 0.205 0.204 0.204 0.204

APM Domain M2 0.204 0.205 0.204 0.204 0.222
Domain M3 0.184 0.183 0.182 0.184 0.184
Domain M1 0.209 0.209 0.209 - -

AAM Domain M2 0.229 0.238 0.239 - -
Domain M3 0.188 0.188 0.188 - -

Table 8: Average p@3 over all budgets for AAM and APM using
different values of ε

estingly, AAM uses smaller amount of memory over domain M3
than M2 even though the size of M2 is smaller than M3. We have
found that the distributions of costs and frequencies of concepts in
domain M3 is more skewed than that of domain M2. Thus, the
size of Crem for domain M3 tends to be smaller than the one for
domain M2. Hence, the amount of memory space required to con-
struct the dynamic programming table for AAM in domain M3 is
smaller than the one for M2. The size of the main memory table
becomes very large (e.g for some budgets it exceeds the available
main memory) for ε ≤ 0.01 in AAM and for ε ≤ 0.001 in APM.
Our results in Section 6.3 indicates that one does not need such
small values for ε, particularly for AAM, in order to find effective
designs. Hence, in this paper we have not used such values for
epsilon for APM and AAM.
Scalability: One may have to set ε to values larger than 0.3 or 0.1
for AAM and 0.001 for APM in order to find the desired designs
for large domains in reasonable amount of time and using modest
memory overheads. Hence, we empirically examine the effect of
changes on the values of ε on the effectiveness of the algorithms.
Table 8 shows p@3 of APM and AAM algorithms over domain M2
and M3 using values between 0.5 and 0.001 for ε. The average
values of p@3 delivered by the designs of AAM is relatively stable
across different values of ε in both domains. Generally, the ranking
qualities delivered by the designs of AAM tends to improve when
using smaller value of ε. Table 8 shows that AAM with ε = 0.5
provides better ranking qualities than APM with smaller values of
ε = 0.5, and a comparable ranking quality to AAM using ε = 0.1.
With this choice of ε, AAM requires significantly less amount of
resources than the that of ideal value of ε or that of APM with ε =
0.001 while sustaining its effectiveness. Except for some cases,
e.g. ε = 0.5 in domain M3, we observe almost a similar trend in
the effect of the values for ε to in the effectiveness provided by the
designs of APM across all domains.

7. CONCLUSION
Annotating the occurrences of entities in an unstructured or semi-

structured text collection by their concepts improves the effective-
ness of answering queries over the collection. Nonetheless, anno-
tating the occurrences of a concept is resource intensive. Thus, an
enterprise may have to select a subset of the concepts for anno-
tation, called a conceptual design, whose cost of annotation does
not exceed its budget and improves the effectiveness of answering
queries the most. We formalized this problem, proved it to be NP-
hard, and proposed two efficient approximation algorithms for it:
Approximate Popularity Maximization (APM) and Approximate
Annotation-benefit Maximization (AAM). Our empirical studies
showed that APM and AAM efficiently compute conceptual de-
signs and return effective designs.

8. ACKNOWLEDGMENTS
We thank Soravit Changpinyo, Alan Xia, and Naga Varun Dasari

for their helps with data preparation and Wolfgang Nejdl and Elena
Demidova for providing the query workload. The authors are sup-
ported by NSF grants CCF-0938071, CCF-0938064, and CNS-
0716532. Arash Termehchy is also supported by a Yahoo! Key
Scientific Challenges Award.

9. REFERENCES
[1] S. Abiteboul et al. Web Data Management. Cambridge

University Press, 2011.
[2] M. Anderson et al. Brainwash: A Data System for Feature

Engineering. In CIDR, 2013.

[3] P. N. Bennett, K. Svore, and S. T. Dumais.
Classification-Enhanced Ranking. In WWW, 2007.

[4] B. Boehm, C. Abts, and S. Chulan. Software Development
Cost Estimation Approaches, A Survey. Annals of Software
Engineering, 10, 2000.

[5] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing Scoring
Functions and Indexes for Proximity Search in
Type-annotated Corpora. In WWW, 2007.

[6] L. Chiticariu et al. Enterprise information extraction: recent
developments and open challenges. In SIGMOD, 2010.

[7] J. Chu-Carroll et al. Semantic Search via XML Fragments: a
High-Precision Approach to IR. In SIGIR, 2006.

[8] S. Dill et al. SemTag and Seeker: Bootstrapping the Semantic
Web via Automated Semantic Annotation. In WWW, 2003.

[9] Elena Demidova and Xuan Zhou and Irina Oelze and
Wolfgang Nejdl. Evaluating Evidences for Keyword Query
Disambiguation in Entity Centric Database Search. In
DEXA, 2010.

[10] H. GarciaMolina, J. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2008.

[11] J. Graupmann, R. Schenkel, and G. Weikum. The
SphereSearch Engine for Unified Ranked Retrieval of
Heterogeneous XML and Web Documents. In VLDB, 2005.

[12] P. Gulhane et al. Web-Scale Information Extraction with
Vertex. In ICDE, 2011.

[13] J. Huang and C. Yu. Prioritization of Domain-Specific Web
Information Extraction. In AAAI, 2010.

[14] O. Ibarra and C. Kim. Fast Approximation Algorithms for
The Knapsack and Sum of Subset Problems. Journal of
ACM, 22, 1975.

[15] A. Jain, A. Doan, and L. Gravano. Optimizing SQL Queries
over Text Databases. In ICDE, 2008.

[16] P. Kanani and A. McCallum. Selecting Actions for
Resource-bounded Information Extraction using
Reinforcement Learning. In WSDM, 2012.

[17] B. Korte and R. Schrader. On the Existence of Fast
Approximation Schemes. O.L. Mangasarian, R.R. Meyer,
and S.M. Robinson (eds.) Nonlinear Programming,
Academic Press, New York, 41 - 437, 1981.

[18] P. Kungas and M. Dumas. Cost Effective Semantic
Annotation of XML Schemas and Web Service Interfaces. In
SCC, 2009.

[19] C. Manning, P. Raghavan, and H. Schutze. An Introduction
to Information Retrieval. Cambridge University Press, 2008.

[20] A. McCallum. Information Extraction: Distilling Structured
Data From Unstructured Text. ACM Queue, 2005.

[21] E. Riloff and R. Jones. Learning Dictionaries for Information
Extraction by Multi-level Bootstrapping. In AAAI, 1999.

[22] M. Sanderson. Ambiguous Queries: Test Collections Need
More Sense. In SIGIR, 2008.

[23] R. Schenkel, F. Suchanek, and G. Kasneci. YAWN: A
Semantically Annotated Wikipedia XML Corpus. In BTW,
2007.

[24] W. Shen, P. DeRose, R. McCann, A. Doan, and
R. Ramakrishnan. Toward Best-Effort Information
Extraction. In SIGMOD, 2008.

[25] A. Termehchy, A. Vakilian, Y. Chodpathumwan, and
M. Winslett. Cost Effective Conceptual Design for Semantic
Annotation. Technical report, Oregon State University, 2013.

