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Abstract

We study the classic set cover problem from the perspec-
tive of sub-linear algorithms. Given access to a collec-
tion of m sets over n elements in the query model, we
show that sub-linear algorithms derived from existing
techniques have almost tight query complexities.

On one hand, first we show an adaptation of the
streaming algorithm presented in [17] to the sub-linear
query model, that returns an α-approximate cover using
Õ(m(n/k)1/(α−1) + nk) queries to the input, where
k denotes the value of a minimum set cover. We
then complement this upper bound by proving that for
lower values of k, the required number of queries is
Ω̃(m(n/k)1/(2α)), even for estimating the optimal cover
size. Moreover, we prove that even checking whether
a given collection of sets covers all the elements would
require Ω(nk) queries. These two lower bounds provide
strong evidence that the upper bound is almost tight
for certain values of the parameter k.

On the other hand, we show that this bound is not
optimal for larger values of the parameter k, as there ex-
ists a (1 + ε)-approximation algorithm with Õ(mn/kε2)
queries. We show that this bound is essentially tight
for sufficiently small constant ε, by establishing a lower
bound of Ω̃(mn/k) query complexity.

Our lower-bound results follow by carefully design-
ing two distributions of instances that are hard to dis-
tinguish. In particular, our first lower bound involves a
probabilistic construction of a certain set system with
a minimum set cover of size αk, with the key property
that a small number of “almost uniformly distributed”
modifications can reduce the minimum set cover size
down to k. Thus, these modifications are not detectable
unless a large number of queries are asked. We believe
that our probabilistic construction technique might find
applications to lower bounds for other combinatorial op-
timization problems.
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1 Introduction

Set Cover is a classic combinatorial optimization prob-
lem, in which we are given a set (universe) of n el-
ements U = {e1, · · · , en} and a collection of m sets
F = {S1, · · · , Sm}. The goal is to find a set cover of U ,
i.e., a collection of sets in F whose union is U , of min-
imum size. Set Cover is a well-studied problem with
applications in operations research [16], information re-
trieval and data mining [32], learning theory [19], web
host analysis [9], and many others. Recently, this prob-
lem and other related coverage problems have gained a
lot of attention in the context of massive data sets, e.g.,
streaming model [32, 12, 10, 17, 7, 3, 24, 2, 5, 18] or
map reduce model [22, 25, 4].

Although the problem of finding an optimal solution
is NP-complete, a natural greedy algorithm which
iteratively picks the “best” remaining set (the set that
covers the most number of uncovered elements) is widely
used. The algorithm finds a solution of size at most
k lnn where k is the optimum cover size, and can be
implemented to run in time linear in the input size.
However, the input size itself could be as large as
Θ(mn), so for large data sets even reading the input
might be infeasible.

This raises a natural question: is it possible to solve
minimum set cover in sub-linear time? This question
was previously addressed in [28, 33], who showed that
one can design constant running-time algorithms by
simulating the greedy algorithm, under the assumption
that the sets are of constant size and each element
occurs in a constant number of sets. However, those
constant-time algorithms have a few drawbacks: they
only provide a mixed multiplicative/additive guarantee
(the output cover size is guaranteed to be at most k ·
lnn+ εn), the dependence of their running times on the
maximum set size is exponential, and they only output
the (approximate) minimum set cover size, not the
cover itself. From a different perspective, [20] (building
on [15]) showed that an O(1)-approximate solution to
the fractional version of the problem can be found in
Õ(mk2+nk2) time1. Combining this algorithm with the

1The method can be further improved to Õ(m+nk) (N. Young,
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randomized rounding yields an O(log n)-approximate
solution to Set Cover with the same complexity.

In this paper we initiate a systematic study of the
complexity of sub-linear time algorithms for set cover
with multiplicative approximation guarantees. Our
upper bounds complement the aforementioned result
of [20] by presenting algorithms which are fast when k is
large, as well as algorithms that provide more accurate
solutions (even with a constant-factor approximation
guarantee) that use a sub-linear number of queries2.
Equally importantly, we establish nearly matching lower
bounds, some of which even hold for estimating the
optimal cover size. Our algorithmic results and lower
bounds are presented in Table 1.

Data access model. As in the prior work [28, 33]
on Set Cover, our algorithms and lower bounds assume
that the input can be accessed via the adjacency-list
oracle.3 More precisely, the algorithm has access to the
following two oracles:

1. EltOf: Given a set Si and an index j, the oracle
returns the jth element of Si. If j > |Si|, ⊥ is
returned.

2. SetOf: Given an element ei and an index j, the
oracle returns the jth set containing ei. If ei
appears in less than j sets, ⊥ is returned.
This is a natural model, providing a “two-way” con-

nection between the sets and the elements. Further-
more, for some graph problems modeled by Set Cover
(such as Dominating Set or Vertex Cover), such or-
acles are essentially equivalent to the aforementioned
incident-list model studied in sub-linear graph algo-
rithms. We also note that the other popular access
model employing the membership oracle, where we can
query whether an element e is contained in a set S, is
not suitable for Set Cover, as it can be easily seen that
even checking whether a feasible cover exists requires
Ω(mn) time.

1.1 Overview of our results. In this paper we
present algorithms and lower bounds for the Set Cover
problem. The results are summarized in Table 1. The
NP-hardness of this problem (or even its o(log n)-
approximate version [13, 31, 1, 26, 11]) precludes the
existence of highly accurate algorithms with fast run-
ning times, while (as we show) it is still possible to de-
sign algorithms with sub-linear query complexities and
low approximation factors. The lower bound proofs hold

personal communication).
2Note that polynomial time algorithm with sub-logarithmic

approximation algorithms are unlikely to exist.
3In the context of graph problems, this model is also known

as the incidence-list model, and has been studied extensively, see
e.g., [8, 14, 6].

for the running time of any algorithm approximation set
cover assuming the defined data access model.

We present two algorithms with sub-linear number
of queries. First, we show that the streaming algorithm
presented in [17] can be adapted so that it returns

an O(α)-approximate cover using Õ(m(n/k)1/(α−1) +
nk) queries, which could be quadratically smaller than
mn. Second, we present a simple algorithm which is
tailored to the case when the value of k is large. This
algorithm computes an O(log n)-approximate cover in

Õ(mn/k) time (not just query complexity). Hence,
by combining it with the algorithm of [20], we get
an O(log n)-approximation algorithm that runs in time

Õ(m+ n
√
m).

We complement the first result by proving that
for low values of k, the required number of queries
is Ω̃(m(n/k)1/(2α)) even for estimating the size of the
optimal cover. This shows that the first algorithm is
essentially optimal for the values of k where the first
term in the runtime bound dominates. Moreover, we
prove that even the Cover Verification problem, which
is checking whether a given collection of k sets covers
all the elements, would require Ω(nk) queries. This
provides strong evidence that the term nk in the first
algorithm is unavoidable. Lastly, we complement the
second algorithm, by showing a lower bound of Ω̃(mn/k)
if the approximation ratio is a small constant.

1.2 Related work. Sublinear algorithms for Set
Cover under the oracle model have been previously
studied as an estimation problem; the goal is only to
approximate the size of the minimum set cover rather
than constructing one. Nguyen and Onak [28] consider
Set Cover under the oracle model we employ in this pa-
per, in a specific setting where both the maximum cardi-
nality of sets in F , and the maximum number of occur-
rences of an element over all sets, are bounded by some
constants s and t; this allows algorithms whose time and
query complexities are constant, (2(st)

4

/ε)O(2s), con-
taining no dependency on n or m. They provide an al-
gorithm for estimating the size of the minimum set cover
when, unlike our work, allowing both ln s multiplicative
and εn additive errors. Their result has been subse-
quently improved to (st)O(s)/ε2 by Yoshida et al. [33].
Additionally, the results of Kuhn et al. [21] on gen-
eral packing/covering LPs in the distributed LOCAL
model, together with the reduction method of Parnas
and Ron [30], implies estimating set cover size to within
a O(ln s)-multiplicative factor (with εn additive error),
can be performed in (st)O(log s log t)/ε4 time/query com-
plexities.

Set Cover can also be considered as a generalization
of the Vertex Cover problem. The estimation variant
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Problem Approximation Constraints Query Complexity Section

Set Cover

αρ+ ε α ≥ 2 Õ( 1
ε (m(nk )

1
α−1 + nk)) 4.2

ρ+ ε - Õ(mnkε2 ) 4.3

α k < ( n
logm )

1
4α+1 Ω̃(m(nk )1/(2α)) A

α
α ≤ 1.01

k = O( n
logm )

Ω̃(mnk ) 3.2

Cover
Verification

- k ≤ n/2 Ω(nk) 5

Table 1: A summary of our algorithms and lower bounds. We use the following notation: k ≥ 1 denotes the
size of the optimum cover; α ≥ 1 denotes a parameter that determines the trade-off between the approximation
quality and query/time complexities; ρ ≥ 1 denotes the approximation factor of a “black box” algorithm for set
cover used as a subroutine; We assume that α ≤ log n and m ≥ n.

of Vertex Cover under the adjacency-list oracle model
has been studied in [30, 23, 29, 33]. Set Cover has
been also studied in the sublinear space context, most
notably for the streaming model of computation [32,
12, 7, 3, 2, 5, 18, 10, 17]. In this model, there are
algorithms that compute approximate set covers with
only multiplicative errors. Our algorithms use some of
the ideas introduced in the last two papers [10, 17].

1.3 Overview of the Algorithms. The algorithmic
results presented in Section 4, use the techniques intro-
duced for the streaming Set Cover problem by [10, 17]
to get new results in the context of sub-linear time al-
gorithms for this problem. Two components previously
used for the set cover problem in the context of stream-
ing are Set Sampling and Element Sampling. Assum-
ing the size of the minimum set cover is k, Set Sampling
randomly samples Õ(k) sets and adds them to the main-
tained solution. This ensures that all the elements that
are well represented in the input (i.e., appearing in at
least m/k sets) are covered by the sampled sets. On the
other hand, the Element Sampling technique samples

roughly Õ(k/δ) elements, and finds a set cover for the
sampled elements. It can be shown that the cover for
the sampled elements covers a (1 − δ) fraction of the
original elements.

Specifically, the first algorithm performs a constant
number of iterations. Each iteration uses element
sampling to compute a “partial” cover, removes the
elements covered by the sets selected so far and recurses
on the remaining elements. However, making this
process work in sub-linear time (as opposed to sub-
linear space) requires new technical development. For
example, the algorithm of [17] relies on the ability to
test membership for a set-element pair, which generally
cannot be efficiently performed in our model.

The second algorithm performs only one round of

set sampling, and then identifies the elements that are
not covered by the sampled sets, without performing a
full scan of those sets. This is possible because with high
probability only those elements that belong to few input
sets are not covered by the sample sets. Therefore, we
can efficiently enumerate all pairs (ei, Sj), ei ∈ Sj , for
those elements ei that were not covered by the sampled
sets. We then run a black box algorithm only on the
set system induced by those pairs. This approach lets
us avoid the nk term present in the query and runtime
bounds for the first algorithm, which makes the second
algorithm highly efficient for large values of k.

1.4 Overview of the Lower Bounds. The
Set Cover lower bound for smaller optimal value
k. We establish our lower bound for the problem of esti-
mating the size of the minimum set cover, by construct-
ing two distributions of set systems. All systems in the
same distribution share the same optimal set cover size,
but these sizes differ by a factor α between the two dis-
tributions; thus, the algorithm is required to determine
from which distribution its input set system is drawn,
in order to correctly estimate the optimal cover size.
Our distributions are constructed by a novel use of the
probabilistic method. Specifically, we first probabilis-
tically construct a set system called median instance
(see Lemma 3.1): this set system has the property that
(a) its minimum set cover size is αk and (b) a small num-
ber of changes to the instance reduces the minimum set
cover size to k. We set the first distribution to be al-
ways this median instance. Then, we construct the sec-
ond distribution by a random process that performs the
changes (depicted in Figure 1) resulting in a modified
instance. This process distributes the changes almost
uniformly throughout the instance, which implies that
the changes are unlikely to be detected unless the algo-
rithm performs a large number of queries. We believe
that this construction might find applications to lower
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bounds for other combinatorial optimization problems.

The Set Cover lower bound for larger optimal
value k. Our lower bound for the problem of comput-
ing an approximate set cover leverages the construction
above. We create a combined set system consisting of
multiple modified instances all chosen independently at
random, allowing instances with much larger k. By the
properties of the random process generating modified
instances, we observe that most of these modified in-
stances have different optimal set cover solution, and
that distinguishing these instances from one another re-
quires many queries. Thus, it is unlikely for the algo-
rithm to be able to compute an optimal solution to a
large fraction of these modified instances, and therefore
it fails to achieve the desired approximation factor for
the overall combined instance.

The Cover Verification lower bound for a cover of
size k. For Cover Verification, however, we instead give
an explicit construction of the distributions. We first
create an underlying set structure such that initially, the
candidate sets contain all but k elements. Then we may
swap in each uncovered element from a non-candidate
set. Our set structure is systematically designed so
that each swap only modifies a small fraction of the
answers from all possible queries; hence, each swap is
hard to detect without Ω(n) queries. The distribution
of valid set covers is composed of instances obtained
by swapping in every uncovered element, and that of
non-covers is similarly obtained but leaving one element
uncovered.

2 Preliminaries for the Lower Bounds

First, we formally specify the representation of the set
structures of input instances, which applies to both
Set Cover and Cover Verification.

Our lower bound proofs rely mainly on the construc-
tion of instances that are hard to distinguish by the al-
gorithm. To this end, we define the swap operation that
exchanges a pair of elements between two sets, and how
this is implemented in the actual representation.

Definition 2.1. (swap operation) Consider two
sets S and S′. A swap on S and S′ is defined over
two elements e, e′ such that e ∈ S \ S′ and e′ ∈ S′ \ S,
where S and S′ exchange e and e′. Formally, after
performing swap(e, e′), S = (S ∪ {e′}) \ {e} and
S′ = (S′ ∪ {e}) \ {e′}. As for the representation via
EltOf and SetOf, each application of swap only
modifies 2 entries for each oracle. That is, if previously
e = EltOf(S, i), S = SetOf(e, j), e′ = EltOf(S′, i′),
and S′ = SetOf(e′, j′), then their new values change
as follows: e′ = EltOf(S, i), S′ = SetOf(e, j),
e = EltOf(S′, i′), and S = SetOf(e′, j′).

In particular, we extensively use the property that the
amount of changes to the oracle’s answers incurred by
each swap is minimal. We remark that when we perform
multiple swaps on multiple disjoint set-element pairs,
every swap modifies distinct entries and do not interfere
with one another.

Lastly, we define the notion of query-answer history,
which is a common tool for establishing lower bounds
for sub-linear algorithms under query models.

Definition 2.2. By query-answer history, we denote
the sequence of query-answer pairs 〈(q1, a1), (q2, a2),
. . . , (qr, ar)〉 recording the communication between the
algorithm and the oracles, where each new query
qi+1 may only depend on the query-answer pairs
(q1, a1), . . . , (qi, ai). In our case, each qi represents ei-
ther a SetOf query or an EltOf query made by the
algorithm, and each ai is the oracle’s answer to that
respective query according to the set structure instance.

3 Lower Bounds for the Set Cover Problem

In this section, we present lower bounds for Set Cover
both for small values of the optimal cover size k (in
Section 3.1), and for large values of k (in Section 3.2).
For low values of k, we prove the following theorem
whose proof is postponed to Appendix A.

Theorem 3.1. For 2 ≤ k ≤ ( n
16α logm )

1
4α+1 and 1 <

α ≤ log n, any randomized algorithm that solves the
Set Cover problem with approximation factor α and
success probability at least 2/3 requires Ω̃(m(n/k)

1
2α )

queries.

Instead, in Section 3.1 we focus on the simple set-
ting of this theorem which applies to approximation pro-
tocols for distinguishing between instances with mini-
mum set cover sizes 2 and 3, and show a lower bound of
Ω̃(mn) (which is tight up to a polylogarithmic factor)
for approximation factor 3/2. This simplification is for
the purpose of both clarity and also for the fact that
the result for this case is used in Section 3.2 to establish
our lower bound for large values of k.

High level idea. Our approach for establishing the
lower bound is as follows. First, we construct a median
instance I∗ for Set Cover, whose minimum set cover
size is 3. We then apply a randomized procedure
genModifiedInst, which slightly modifies the median
instance into a new instance containing a set cover of
size 2. Applying Yao’s principle, the distribution of
the input to the deterministic algorithm is either I∗

with probability 1/2, or a modified instance generated
thru genModifiedInst(I∗), which is denoted by D(I∗),
again with probability 1/2. Next, we consider the
execution of the deterministic algorithm. We show
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that unless the algorithm asks at least Ω̃(mn) queries,
the resulting query-answer history generated over I∗

would be the same as those generated over instances
constituting a constant fraction of D(I∗), reducing the
algorithm’s success probability to below 2/3. More
specifically, we will establish the following theorem.

Theorem 3.2. Any algorithm that can distinguish
whether the input instance is I∗ or belongs to D(I∗)
with probability of success greater than 2/3, requires
Ω(mn/ logm) queries.

Corollary 3.1. For 1 < α < 3/2, and k ≤ 3, any
randomized algorithm that approximates by a factor
of α, the size of the optimal cover for the Set Cover
problem with success probability at least 2/3 requires

Ω̃(mn) queries.

For simplicity, we assume that the algorithm has
the knowledge of our construction (which may only
strengthens our lower bounds); this includes I∗ and
D(I∗), along with their representation via EltOf and
SetOf. The objective of the algorithm is simply
to distinguish them. Since we are distinguishing a
distribution of instances D(I∗) against a single instance
I∗, we may individually upper bound the probability
that each query-answer pair reveals the modified part
of the instance, then apply the union bound directly.
However, establishing such a bound requires a certain
set of properties that we obtain through a careful design
of I∗ and genModifiedInst. We remark that our
approach shows the hardness of distinguishing instances
with with different cover sizes. That is, our lower bound
on the query complexity also holds for the problem
of approximating the size of the minimum set cover
(without explicitly finding one).

Lastly, in Section 3.2 we provide a construction uti-
lizing Theorem 3.2 to extend Corollary 3.1, establish the
following theorem on lower bounds for larger minimum
set cover sizes.

Theorem 3.3. For any sufficiently small approxima-
tion factor α ≤ 1.01 and k = O(m/ log n), any random-
ized algorithm that computes an α-approximation to the
Set Cover problem with success probability at least 0.99
requires Ω̃(mn/k) queries.

3.1 The Set Cover Lower Bound for Small Opti-
mal Value k

3.1.1 Construction of the Median Instance I∗.
Let F be a collection of m sets such that (independently
for each set-element pair (S, e)) S contains e with

probability 1 − p0, where p0 =
√

9 logm
n (note that

since we assume logm ≤ n/c for large enough c, we
can assume that p0 ≤ 1/2). Equivalently, we may
consider the incidence matrix of this instance: each
entry is either 0 (indicating e /∈ S) with probability
p0, or 1 (indicating e ∈ S) otherwise. We write
F ∼ I(U , p0) denoting the collection of sets obtained
from this construction.

Definition 3.1. (Median instance) An instance of
Set Cover, I, is a median instance if it satisfies all the
following properties.
(a) No two sets cover all the elements. (The size of its

minimum set cover is at least 3.)
(b) For any two sets the number of elements not covered

by the union of these sets is at most 18 logm.
(c) The intersection of any two sets has size at least

n/8.
(d) For any pair of elements e, e′, the number of sets S

s.t. e ∈ S but e′ /∈ S is at least m
√
9 logm
4
√
n

.

(e) For any triple of sets S, S1 and S2, |(S1∩S2)\S| ≤
6
√
n logm.

(f) For each element, the number of sets that do not

contain that element is at most 6m
√

logm
n .

Lemma 3.1. There exists a median instance I∗ satisfy-
ing all properties from Definition 3.1. In fact, with high
probability, an instance drawn from the distribution in
which Pr[e ∈ S] = 1− p0 independently at random, sat-
isfies the median properties.

The proof of the lemma follows from standard applica-
tions of concentration bounds. See the full version of
this paper for detailed proofs.

3.1.2 Distribution D(I∗) of Modified Instances
I ′ Derived from I∗. Fix a median instance I∗. We
now show that we may perform O(logm) swap opera-
tions on I∗ so that the size of the minimum set cover
in the modified instance becomes 2. Moreover, its in-
cidence matrix differs from that of I∗ in O(logm) en-
tries. Consequently, the number of queries to EltOf
and SetOf that induce different answers from those of
I∗ is also at most O(logm).

We define D(I∗) as the distribution of in-
stances I ′ generated from a median instance I∗ by
genModifiedInst(I∗) given below in Figure 1 as fol-
lows. Assume that I∗ = (U ,F). We select two different
sets S1, S2 from F uniformly at random; we aim to turn
these two sets into a set cover. To do so, we swap out
some of the elements in S2 and bring in the uncovered
elements. For each uncovered element e, we pick an
element e′ ∈ S2 that is also covered by S1. Next, con-
sider the candidate set that we may exchange its e with
e′ ∈ S2:
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Definition 3.2. (Candidate set) For any pair of el-
ements e, e′, the candidate set of (e, e′) are all sets
that contain e but not e′. The collection of candidate
sets of (e, e′) is denoted by Candidate(e, e′). Note that
Candidate(e, e′) 6= Candidate(e′, e) (in fact, these two
collections are disjoint).

genModifiedInst(I∗ = (U ,F)):

M← ∅
pick two different sets S1, S2 from F

uniformly at random
for each e ∈ U \ (S1 ∪ S2) do

pick e′ ∈ (S1 ∩ S2) \M uniformly at random
M←M∪ {e′}
Pick a random set S in Candidate(e, e′)
swap(e, e′) between S, S2

Figure 1: The procedure of constructing a modified
instance of I∗.

We choose a random set S from Candidate(e, e′),
and swap e ∈ S with e′ ∈ S2 so that S2 now
contains e. We repeatedly apply this process for all
initially uncovered e so that eventually S1 and S2 form
a set cover. We show that the proposed algorithm,
genModifiedInst, can indeed be executed without
getting stuck.

Lemma 3.2. The procedure genModifiedInst is well-
defined under the precondition that the input instance
I∗ is a median instance.

Proof. To carry out the algorithm, we must ensure that
the number of the initially uncovered elements is at
most that of the elements covered by both S1 and S2.
This follows from the properties of median instances
(Definition 3.1): |U \ (S1 ∪ S2)| ≤ 18 logm by property
(b), and that the size of the intersection of S1 and S2

is greater than n/8 by property (c). That is, in our
construction there are sufficiently many possible choices
for e′ to be matched and swapped with each uncovered
element e. Moreover, by property (d) there are plenty
of candidate sets S for performing swap(e, e′) with S2.

3.1.3 Bounding the Probability of Modifica-
tion. Let D(I∗) denote the distribution of instances
generated by genModifiedInst(I∗). If an algorithm
were to distinguish between I∗ or I ′ ∼ D(I∗), it must
find some cell in the EltOf or SetOf tables that would
have been modified by genModifiedInst, to confirm
that genModifiedInst is indeed executed; otherwise
it would make wrong decisions half of the time. We
will show an additional property of this distribution:

none of the entries of EltOf and SetOf are signifi-
cantly more likely to be modified during the execution
of genModifiedInst. Consequently, no algorithm may
strategically detect the difference between I∗ or I ′ with
the desired probability, unless the number of queries is
asymptotically the reciprocal of the maximum probabil-
ity of modification among any cells.

Define PElt−Set : U × F → [0, 1] as the probability
that an element is swapped by a set. More precisely,
for an element e ∈ U and a set S ∈ F , if e /∈ S in the
median instance I∗, then PElt−Set(e, S) = 0; otherwise,
it is equal to the probability that S swaps e. We note
that these probabilities are taken over I ′ ∼ D(I∗) where
I∗ is a fixed median instance. That is, as per Figure 1,
they correspond to the random choices of S1, S2, the
random matchingM between U \ (S1∪S2) and S1∩S2,
and their random choices of choosing each candidate
set S. We bound the values of PElt−Set via the following
lemma.

Lemma 3.3. For any e ∈ U and S ∈ F , PElt−Set(e, S) ≤
4800 logm

mn where the probability is taken over I ′ ∼ D(I∗).

Proof. Let S1, S2 denote the first two sets picked (uni-
formly at random) from F to construct a modified in-
stance of I∗. For each element e and a set S such that
e ∈ S in the basic instance I∗,

PElt−Set(e, S) = Pr[S = S2] ·Pr[e ∈ S1 ∩ S2]

·Pr[e matches to U \ (S1 ∪ S2) | e ∈ S1 ∩ S2]

+ Pr[S /∈ {S1, S2}]
·Pr[e ∈ S \ (S1 ∪ S2) | e ∈ S]

·Pr[S swaps e with S2 | e ∈ S \ (S1 ∪ S2)] .

where all probabilities are taken over I ′ ∼ D(I∗). Next
we bound each of the above six terms. Since we choose
the sets S1, S2 randomly, Pr[S = S2] = 1/m. We bound
the second term by 1. For the third term, since we
pick a matching uniformly at random among all possible
(maximum) matchings between U\(S1∪S2) and S1∩S2,
by symmetry, the probability that a certain element
e ∈ S1 ∩ S2 is in the matching is (by properties (b)
and (c) of median instances),

|U \ (S1 ∪ S2)|
|S1 ∩ S2|

≤ 18 logm

n/8
=

144 logm

n
.

We bound the fourth term by 1. To compute the fifth
term, let de denote the number of sets in F that do
not contain e. By property (f) of median instances, the
probability that e ∈ S is in S \ (S1 ∪ S2) given that
S /∈ {S1, S2} is at most,

de(de − 1)

(m− 1)(m− 2)
≤

36m2 · logmn
m2/2

=
72 logm

n
.
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Finally for the last term, note that by symme-
try, each pair of matched elements ee′ is picked by
genModifiedInst equiprobably. Thus, for any e ∈ S \
(S1∪S2), the probability that each element e′ ∈ S1∩S2

is matched to e is 1
|S1∩S2| . By properties (c)–(e) of me-

dian instances, the last term is at most

∑
e′∈(S1∩S2)\S

Pr[ee′ ∈M] · 1

|Candidate(e, e′)|

= |(S1 ∩ S2) \ S| · 1

|S1 ∩ S2|
· 1

Candidate(e, e′)

≤ 6
√
n logm · 1

n/8
· 1
m
√
9 logm
4
√
n

=
64

m
.

Therefore,

PElt−Set(e, S) ≤ 1

m
· 1 · 144 logm

n
+ 1 · 72 logm

n
· 64

m

≤ 4800 logm

mn
.

3.1.4 Proof of Theorem 3.2. Now we consider a
median instance I∗, and its corresponding family of
modified setsD(I∗). To prove the promised lower bound
for randomized protocols distinguishing I∗ and I ′ ∼
D(I∗), we apply Yao’s principle and instead show that
no deterministic algorithm A may determine whether
the input is I∗ or I ′ ∼ D(I∗) with success probability
at least 2/3 using r = o( mn

logm ) queries. Recall that

if A’s query-answer history 〈(q1, a1), . . . , (qr, ar)〉 when
executed on I ′ is the same as that of I∗, then A must
unavoidably return a wrong decision for the probability
mass corresponding to I ′. We bound the probability of
this event as follows.

Lemma 3.4. Let Q be the set of queries made by A on
I∗. Let I ′ ∼ D(I∗) where I∗ is a given median instance.
Then the probability that A returns different outputs on
I∗ and I ′ is at most 4800 logm

mn |Q|.

Proof of Theorem 3.2. If A does not output correctly
on I∗, the probability of success of A is less than 1/2;
thus, we can assume that A returns the correct answer
on I∗. This implies that A returns an incorrect solution
on the fraction of I ′ ∼ I ′(I∗) for which A(I∗) = A(I ′).
Now recall that the distribution in which we apply Yao’s
principle consists of I∗ with probability 1/2, and drawn
uniformly at random from D(I∗) also with probability

1/2. Then over this distribution, by Lemma 3.4,

Pr[A suceeds] ≤ 1− 1

2
PrI′∼D(I∗)[A(I∗) = A(I ′)]

≤ 1− 1

2

(
1− 4800 logm

mn
|Q|
)

=
1

2
+

2400 logm

mn
|Q|.

Thus, if the number of queries made by A is less
than mn

14400 logm , then the probability that A returns the
correct answer over the input distribution is less than
2/3 and the proof is complete.

3.2 The Set Cover Lower Bound for Large Op-
timal Value k. Our construction of the median in-
stance I∗ and its associated distribution D(I∗) of mod-

ified instances also leads to the lower bound of Ω̃(mnk )
for the problem of computing an approximate solution
to Set Cover. This lower bound matches the perfor-
mance of our algorithm for large optimal value k and
shows that it is tight for some range of value k, albeit it
only applies to sufficiently small approximation factor
α ≤ 1.01.

Proof overview. We construct a distribution over
compounds: a compound is a Set Cover instance that
consists of t = Θ(k) smaller instances I1, . . . , It, where
each of these t instances is either the median instance I∗

or a random modified instance drawn from D(I∗). By
our construction, a large majority of our distribution
is composed of compounds that contains at least 0.2t
modified instances Ii such that, any deterministic algo-
rithm A must fail to distinguish Ii from I∗ when it is
only allowed to make a small number of queries. A de-
terministic A can safely cover these modified instances
with three sets, incurring a cost (sub-optimality) of 0.2t.
Still, A may choose to cover such an Ii with two sets to
reduce its cost, but it then must err on a different com-
pound where Ii is replaced with I∗. We track down the
trade-off between the amount of cost that A saves on
these compounds by covering these Ii’s with two sets,
and the amount of error on other compounds its scheme
incurs. A is allowed a small probability δ to make er-
rors, which we then use to upper-bound the expected
cost that A may save, and conclude that A still incurs
an expected cost of 0.1t overall. We apply Yao’s princi-
ple (for algorithms with errors) to obtain that random-
ized algorithms also incur an expected cost of 0.05t, on
compounds with optimal solution size k ∈ [2t, 3t], yield-
ing the impossibility result for computing solutions with
approximation factor α = k+0.1t

k > 1.01 when given in-
sufficient queries.
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3.2.1 Overall Lower Bound Argument Com-
pounds. Consider the median instance I∗ and its as-
sociated distribution D(I∗) of modified instances for
Set Cover with n elements and m sets, and let t = Θ(k)
be a positive integer parameter. We define a compound
I = I(I1, I2, . . . , It) as a set structure instance consist-
ing of t median or modified instances I1, I2, . . . , It, form-
ing a set structure (U t,F t) of n′ , nt elements and
m′ , mt sets, in such a way that each instance Ii oc-
cupies separate elements and sets. Since the optimal
solution to each instance Ii is 3 if Ii = I∗, and 2 if Ii
is any modified instance, the optimal solution for the
compound is 2t plus the number of occurrences of the
median instance; this optimal objective value is always
Θ(k).

Random distribution over compounds. Employing
Yao’s principle, we construct a distribution D of com-
pounds I(I1, I2, . . . , It): it will be applied against any
deterministic algorithm A for computing an approxi-
mate minimum set cover, which is allowed to err on at
most a δ-fraction of the compounds from the distribu-
tion (for some small constant δ > 0). For each i ∈ [t],
we pick Ii = I∗ with probability c/

(
m
2

)
where c > 2 is

a sufficiently large constant. Otherwise, simply draw a
random modified instance Ii ∼ D(I∗). We aim to show
that, in expectation over D, A must output a solution
that of size Θ(t) more than the optimal set cover size of
the given instance I ∼ D.

A frequently leaves many modified instances
undetected. Consider an instance I containing at least
0.95t modified instances. These instances constitute
at least a 0.99-fraction of D: the expected number of
occurrences of the median instance in each compound
is only c/

(
m
2

)
· t = O(t/m2), so by Markov’s inequality,

the probablity that there are more than 0.05t median
instances is at most O(1/m2) < 0.01 for large m. We
make use of the following useful lemma, whose proof is
deferred to Section 3.2.2. In what follow, we say that
the algorithm “distinguishes” or “detects the difference”
between Ii and I∗ if it makes a query that induces
different answers, and thus may deduce that one of Ii or
I∗ cannot be the input instance. In particular, if Ii = I∗

then detecting the difference between them would be
impossible.

Lemma 3.5. Fix M ⊆ [t] and consider the distribution
over compounds I(I1, . . . , It) with Ii ∼ D(I∗) for i ∈M
and Ii = I∗ for i /∈ M . If A makes at most o( mntlogm )
queries to I, then it may detect the differences between
I∗ and at least 0.75t of the modified instances {Ii}i∈M ,
with probability at most 0.01.

We apply this lemma for any |M | ≥ 0.95t (although the
statement holds for any M , even vacuously for |M | <

0.75t). Thus, for 0.99 ·0.99 > 0.98-fraction of D, A fails
to identify, for at least 0.95t − 0.75t = 0.2t modified
instances Ii in I, whether it is a median instance or
a modified instance. Observe that the query-answer
history of A on such I would not change if we were to
replace any combination of these 0.2t modified instances
by copies of I∗. Consequently, if the algorithm were to
correctly cover I by using two sets for some of these
Ii, it must unavoidably err (return a non-cover) on the
compound where these Ii’s are replaced by copies of the
median instance.

Charging argument. We call a compound I tough
if A does not err on I, and A fails to detect at least
0.2tmodified instances; denote by Dtough the conditional
distribution of D restricted to tough instances. For
tough I, let cost(I) denote the number of modified
instances Ii that the algorithm decides to cover with
three sets. That is, for each tough compound I, cost(I)
measures how far the solution returned by A is, from
the optimal set cover size. Then, there are at least
0.2t − cost(I) modified instances Ii that A chooses
to cover with only two sets despite not being able
to verify whether Ii = I∗ or not. Let RI denote
the set of the indices of these modified instances, so
|RI| = 0.2t − cost(I). By doing so, A then errs on the
replaced compound r(I, RI), denoting the compound
similar to I, except that each modified instance Ii for
i ∈ RI is replaced by I∗. In this event, we say that
the tough compound I charges the replaced compound
r(I, RI) via RI. Recall that the total error of A is δ:
this quantity upper-bounds the total probability masses
of charged instances, which we will then manipulate to
obtain a lower bound on EI∼D[cost(I)].

Instances must share optimal solutions for R
to charge the same replaced instance. Observe
that many tough instances may charge to the same
replaced instance: we must handle these duplicities.
First, consider two tough instances I1 6= I2 charing
the same Ir = r(I1, R) = r(I2, R) via the same R =
RI1 = RI2 . As I1 6= I2 but r(I1, R) = r(I2, R), these
tough instances differ on some modified instances with
indices in R. Nonetheless, the query-answer histories
of A operating on I1 and I2 must be the same as
their instances in R are both indistinguishable from
I∗ by the deterministic A. Since A does not err on
tough instances (by definition), both tough I1 and
I2 must share the same optimal set cover on every
instance in R. Consequently, for each fixed R, only
tough instances that have the same optimal solution for
modified instances in R may charge the same replaced
instance via R.

Charged instance is much heavier than charg-
ing instances combined. By our construction of
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I(I1, . . . , It) drawn from D, Pr[Ii = I∗] = c/
(
m
2

)
for

the median instance. On the other hand,
∑`
j=1 Pr[Ii =

Ij ] ≤ (1 − c/
(
m
2

)
) · (1/

(
m
2

)
) < 1/

(
m
2

)
for modified in-

stances I1, . . . , I` sharing the same optimal set cover,
because they are all modified instances constructed to
have the two sets chosen by genModifiedInst as their
optimal set cover: each pair of sets is chosen uniformly
with probability 1/

(
m
2

)
. Thus, the probability that I∗

is chosen is more than c times the total probability that
any Ij is chosen. Generalizing this observation, we con-
sider tough instances I1, I2, . . . ,I` charging the same Ir
via R, and bound the difference in probabilities that Ir
and any Ij are drawn. For each index in R, it is more
than c times more likely for D to draw the median in-
stance, rather than any modified instances of a fixed op-
timal solution. Then, for the replaced compound Ir that
A errs, p(Ir) ≥ c|R| ·

∑`
j=1 p(I

j) (where p denotes the

probability mass in D, not in Dtough). In other words,
the probability mass of the replaced instance charged
via R is always at least c|R| times the total probability
mass of the charging tough instances.

Bounding the expected cost using δ. In our
charging argument by tough instances above, we only
bound the amount of charges on the replaced instances
via a fixed R. As there are up to 2t choices for R,
we scale down the total amount charged to a replaced
instance by a factor of 2t, so that

∑
tough I c

|RI|p(I)/2t

lower bounds the total probability mass of the replaced
instances that A errs.

Let us first focus on the conditional distribution
Dtough restricted to tough instances. Recall that at least
a (0.98− δ)-fraction of the compounds in D are tough:
A fails to detect differences between 0.2t modified
instances from the median instance with probability
0.98, and among these compounds, A may err on at
most a δ-fraction. So in the conditional distribution
Dtough over tough instances, the individual probability

mass is scaled-up to ptough(I) ≤ p(I)
0.98−δ . Thus,

∑
tough I c

|RI|p(I)

2t
≥
∑

tough I c
|RI|(0.98− δ)ptough(I)

2t

=
(0.98− δ)EI∼Dtough

[
c|RI|

]
2t

.

As the probability mass above cannot exceed the
total allowed error δ, we have

δ

0.98− δ
· 2t ≥ EI∼Dtough

[
c|RI|

]
≥ EI∼Dtough

[
c0.2t−cost(I)

]
≥ c0.2t−EI∼Dtough [cost(I)],

where Jensen’s inequality is applied in the last step

above. So,

EI∼Dtough [cost(I)] ≥ 0.2t−
t+ log δ

0.98−δ
log c

=

(
0.2− 1

log c

)
t−

log δ
0.98−δ

log c
≥ 0.11t,

for sufficiently large c (and m) when choosing δ = 0.02.
We now return to the expected cost over the entire

distribution I. For simplicity, define cost(I) = 0
for any non-tough I. This yields EI∼D[cost(I)] ≥
(0.98 − δ)EI∼Dtough [cost(I)] ≥ (0.98 − δ) · 0.11t ≥ 0.1t,
establishing the expected cost of any deterministic A
with probability of error at most 0.02 over D.

Establishing the lower bound for randomized
algorithms. Lastly, we apply Yao’s principle4 to
obtain that, for any randomized algorithm with error
probability δ/2 = 0.01, its expected cost under the
worst input is at least 1

2 · 0.1t = 0.05t. Recall now that
our cost here lower-bounds the sub-optimality of the
computed set cover (that is, the algorithm uses at least
cost more sets to cover the elements than the optimal
solution does). Since our input instances have optimal
solution k ∈ [2t, 3t] and the randomized algorithm
returns a solution with cost at least 0.05t in expectation,
it achieves an approximation factor of no better than
α = k+0.05t

k > 1.01 with o( mntlogm ) queries. Theorem 3.3
then follows, noting the substitution of our problem size:
mnt
logm = (m′/t)(n′/t)t

log(m′/t) = Θ( m′n′

k′ logm′ ).

3.2.2 Proof of Lemma 3.5 First, we recall the
following result from Lemma 3.4 for distinguishing
between I∗ and a random I ′ ∼ D(I∗).

Corollary 3.2. Let q be the number of queries made
by A on Ii ∼ D(I∗) over n elements and m sets, where
I∗ is a median instance. Then the probability that A
detects a difference between Ii and I∗ in one of its
queries is at most 4800q logm

mn .

Marbles and urns. Fix a compound I(I1, . . . , It).
Let s , mn

4800 logm , and then consider the following,
entirely different, scenario. Suppose that we have t
urns, where each urn contains s marbles. In the ith

urn, in case Ii is a modified instance, we put in this
urn one red marble and s − 1 white marbles; otherwise
if Ii = I∗, we put in s white marbles. Observe that
the probability of obtaining a red marble by drawing q

4Here we use the Monte Carlo version where the algorithm may
err, and use cost instead of the time complexity as our measure of

performance. See, e.g., Proposition 2.6 in [27] and the description
therein.
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marbles from a single urn without replacement is exactly
q/s (for q ≤ s). Now, we will relate the probability of
drawing red marbles to the probability of successfully
distinguishing instances. We emphasize that we are
only comparing the probabilities of events for the sake
of analysis, and we do not imply or suggest any direct
analogy between the events themselves.

Corollary 3.2 above bounds the probability that the
algorithm successfully distinguishes a modified instance
Ii from I∗ with 4800q logm

mn = q/s. Then, the probability
of distinguishing between Ii and I∗ using q queries, is
bounded from above by the probability of obtaining a
red marble after drawing q marbles from an urn. Conse-
quently, the probability that the algorithm distinguishes
3t/4 instances is bounded from above by the probabil-
ity of drawing the red marbles from at least 3t/4 urns.
Hence, to prove that the event of Lemma 3.5 occurs
with probability at most 0.01, it is sufficient to upper-
bound the probability that an algorithm obtains 3t/4
red marbles by 0.01.

Consider an instance of t urns; for each urn i ∈ [t]
corresponding to a modified instance Ii, exactly one of
its s marbles is red. An algorithm may draw marbles
from each urn, one by one without replacement, for
potentially up to s times. By the principle of deferred
decisions, the red marble is equally likely to appear in
any of these s draws, independent of the events for other
urns. Thus, we can create a tuple of t random variables
T = (T1, . . . , Tt) such that for each i ∈ [t], Ti is chosen
uniformly at random from {1, . . . , s}. The variable Ti
represents the number of draws required to obtain the
red marble in the ith urn; that is, only the T th

i draw from
the ith urn finds the red marble from that urn. In case Ii
is a median instance, we simply set Ti = s+1 indicating
that the algorithm never detects any difference as Ii and
I∗ are the same instance.

We now show the following two lemmas in order to
bound the number of red marbles the algorithm may
encounter throughout its execution.

Lemma 3.6. Let b > 3 be a fixed constant and define
Thigh = {i | Ti ≥ s

b}. If t ≥ 14b, then |Thigh| ≥ (1− 2
b )t

with probability at least 0.99.

Proof. Let Tlow = {1, . . . , t} \ Thigh. Notice that for
the ith urn, Pr[i ∈ Tlow] < 1

b independently of other
urns, and thus |Tlow| is stochastically dominated by
B(t, 1b ), the binomial distribution with t trials and
success probability 1

b . Applying Chernoff bound, we
obtain

Pr

[
|Tlow| ≥

2t

b

]
≤ e− t

3b < 0.01.

Hence, |Thigh| ≥ t − 2t
b = (1 − 2

b )t with probability at
least 0.99, as desired.

Lemma 3.7. If the total number of draws made by the
algorithm is less than (1 − 3

b ) stb , then with probability
at least 0.99, the algorithm will not obtain red marbles
from at least t

b urns.

Proof. If the total number of such draws is less than
(1− 3

b ) stb , then the number of draws from at least 3t
b urns

is less than s
b each. Assume the condition of Lemma 3.6:

for at least (1− 2
b )t urns, Ti ≥ s

b . That is, the algorithm
will not encounter a red marble if it makes less than
s
b draws from such an urn. Then, there are at least t

b
urns with Ti ≥ s

b from which the algorithm makes less
than s

b draws, and thus does not obtain a red marble.
Overall this event holds with probability at least 0.99
due to Lemma 3.6.

We substitute b = 4 and assume sufficiently large
t. Suppose that the deterministic algorithm makes less
than (1− 3

4 ) st4 = st
16 queries, then for a fraction of 0.99 of

all possible tuples T , there are t/4 instances Ii that the
algorithm fails to detect their differences from I∗: the
probability of this event is lower-bounded by that of the
event where the red marbles from those corresponding
urns i are not drawn. Therefore, the probability that the
algorithm makes queries that detect differences between
I∗ and more than 3t/4 instances Ii’s is bounded by 0.01,
concluding our proof of Lemma 3.5.

4 Sub-Linear Algorithms for the Set Cover
Problem

In this paper, we present two different approximation al-
gorithms for Set Cover with sub-linear query in the ora-
cle model: smallSetCover and largeSetCover. Both
of our algorithms rely on the techniques from the re-
cent developments on Set Cover in the streaming model.
However, adopting those techniques in the oracle model
requires novel insights and technical development.

Throughout the description of our algorithms, we
assume that we have access to a black box subroutine
that given the full Set Cover instance (where all mem-
bers of all sets are revealed), returns a ρ-approximate
solution5.

The first algorithm (smallSetCover) returns a
(αρ+ε) approximate solution of the Set Cover instance

using Õ( 1
ε (m(nk )

1
α−1 + nk)) queries, while the second

algorithm (largeSetCover) achieves an approximation

factor of (ρ + ε) using Õ(mnkε2 ) queries, where k is the
size of the minimum set cover. These algorithms can be
combined so that the number of queries of the algorithm
becomes asymptotically the minimum of the two:

5The approximation factor ρ may take on any value between 1
and Θ(logn) depending on the computational model one assumes.
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Theorem 4.1. There exists a randomized algorithm
for Set Cover in the oracle model that w.h.p.6 com-
putes an O(ρ log n)-approximate solution and uses

Õ(min{m
(
n
k

)1/ logn
+nk , mn

k }) = Õ(m+n
√
m) num-

ber of queries.

4.1 Preliminaries. Our algorithms use the following
two sampling techniques developed for Set Cover in
the streaming model [10]: Element Sampling and Set
Sampling. The first technique, Element Sampling,
states that in order to find a (1 − δ)-cover of U w.h.p.,
it suffices to solve Set Cover on a subset of elements of
size Õ(ρk logm

δ ) picked uniformly at random. It shows
that we may restrict our attention to a subproblem with
a much smaller number of elements, and our solution
to the reduced instance will still cover a good fraction
of the elements in the original instance. The next
technique, Set Sampling, shows that if we pick ` sets
uniformly at random from F in the solution, then each
element that is not covered by any of picked sets w.h.p.
only occurs in Õ(m` ) sets in F ; that is, we are left
with a much sparser subproblem to solve. The formal
statements of these sampling techniques are as follows.
See [10] for the proofs.

Lemma 4.1. (Element Sampling) Consider an in-
stance of Set Cover on (U , F) whose optimal cover
has size at most k. Let Usmp be a subset of U of

size Θ
(
ρk logm

δ

)
chosen uniformly at random, and let

Csmp ⊆ F be a ρ-approximate cover for Usmp. Then,
w.h.p. Csmp covers at least (1− δ)|U| elements.

Lemma 4.2. (Set Sampling) Consider an instance
(U ,F) of Set Cover. Let Frnd be a collection of ` sets
picked uniformly at random. Then, w.h.p. Frnd covers
all elements that appear in Ω(m logn

` ) sets of F .

4.2 The smallSetCover Algorithm. The algo-
rithm of this section is a modified variant of the stream-
ing algorithm of Set Cover in [17] that works in the
sublinear query model. Similarly to the algorithm
of [17], our algorithm smallSetCover considers differ-
ent guesses of the value of an optimal solution (ε−1 log n
guesses) and performs the core iterative algorithm iter-
SetCover for all of them in parallel. For each guess
` of the size of an optimal solution, the iterSetCover
goes through 1/α iterations and by applying Element
Sampling, guarantees that w.h.p. at the end of each it-
eration, the number of uncovered elements reduces by

6An algorithm succeeds with high probability (w.h.p.) if its
failure probability can be decreased to n−c for any constant c > 0

without affecting its asymptotic performance, where n denotes
the input size.

a factor of n−1/α. Hence, after 1/α iterations all ele-
ments will be covered. Furthermore, since the number
of sets picked in each iteration is at most `, the final so-
lution has at most ρ` sets where ρ is the performance of
the offline block algOfflineSC that iterSetCover uses
to solve the reduced instances constructed by Element
Sampling.

Although our general approach in iterSetCover is
similar to the iterative core of the streaming algorithm
of Set Cover, there are challenges that we need to
overcome so that it works efficiently in the query model.
Firstly, the approach of [17] relies on the ability to test
membership for a set-element pair when executing its
set filtering subroutine: given a subset S, the algorithm
of [17] requires to compute |S ∩ S| which cannot be
implemented efficiently in the query model (in the
worst case, requires m|S| queries). Instead, here we
employ the set sampling which w.h.p. guarantees that
the number of sets that contain an (yet uncovered)
element is small.

Next challenge is achieving m(n/k)1/(α−1) + nk
query bound for computing an α-approximate solu-
tion. As mentioned earlier, both our approach and
the algorithm of [17] need to run the algorithm in
parallel for different guesses ` of the size of an opti-
mal solution. However, since iterSetCover performs
m(n/`)1/(α−1) + n` queries, if smallSetCover invokes
iterSetCover with guesses in an increasing order then
the query complexity becomes mn1/(α−1) + nk; on the
other hand, if it invokes iterSetCover with guesses in
a decreasing order then the query complexity becomes
m(n/k)1/(α−1) + mn! To solve this issue, smallSet-
Cover performs in two stages: in the first stage, it finds
a (log n)-estimate of k by invoking iterSetCover us-
ing m + nk queries (assuming guesses are evaluated in
an increasing order) and then in the second rounds it
only invokes iterSetCover with approximation factor
α in the smallerO(log n)-approximate region around the
(log n)-estimate of k computed in the first stage. Thus,
in our implementation, besides the desired approxima-
tion factor, iterSetCover receives an upper bound and
a lower bound on the size of an optimal solution.

Now, we provide a detailed description of
iterSetCover. It receives α, ε, l and u as its arguments,
and it is guaranteed that the size of an optimal cover
of the input instance, k, is in [l, u]. Note that the algo-
rithm does not know the value of k and the sampling
techniques described in Section 4.1 rely on k. There-
fore, the algorithm needs to find a (1+ε) estimate7 of k
denoted as `. This can be done by trying all powers of

7The exact estimate that the algorithm works with is a
(1 + ε

2ρα
) estimate.
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(1 + ε) in [l, u]. The parameter α denotes the trade-off
between the query complexity and the approximation
guarantee that the algorithm achieves. Moreover, we as-
sume that the algorithm has access to a ρ-approximate
black box solver of Set Cover.

iterSetCover first performs Set Sampling to cover

all elements that occur in Ω̃(m/`) sets. Then it
goes through α − 2 iterations and in each iteration,
it performs Element Sampling with parameter δ =

Õ((`/n)1/(α−1)). By Lemma 4.1, after (α−2) iterations,

w.h.p. only `
(
n
`

)1/(α−1)
elements remain uncovered, for

which the algorithm finds a cover by invoking the of-
fline set cover solver. The parameters are set so that all
(α − 1) instances that are required to be solved by the
offline set cover solver (the (α− 2) instances costructed
by Element Sampling and the final instance) are of size

Õ(m
(
n
`

)1/(α−1)
).

In the rest of this section, we show that small-
SetCover w.h.p. returns an almost (ρα)-approximate
solution of Set Cover(U ,F) with query complexity

Õ(m
(
n
k

) 1
α−1 + nk) where k is the size of a minimum

set cover.

Theorem 4.2. The smallSetCover algorithm outputs
a (αρ + ε)-approximate solution of Set Cover(U ,F)

using Õ( 1
ε (m(n/k)

1
α−1 +nk)) number of queries w.h.p.,

where k is the size of an optimal solution of (U ,F).

To analyze the performance of smallSetCover,
first we need to analyze the procedures invoked by
smallSetCover: iterSetCover and algOfflineSC.
The procedure algOfflineSC(S, `) receives as an input
a subset of elements S and an estimate on the size of an
optimal cover of S using sets in F . The algOfflineSC
algorithm first determines all occurrences of S in F .
Then it invokes a black box subroutine that returns a
cover of size at most ρ` (if there exists a cover of size `
for S) for the reduced Set Cover instance over S.

Moreover, we assume that all subroutines have
access to the EltOf and SetOf oracles, |U| and |F|.

Lemma 4.3. Suppose that each e ∈ S appears in Õ(m` )
sets of F and lets assume that there exists a set of ` sets
in F that covers S. Then algOfflineSC(S, `) returns a

cover of size at most ρ` of S using Õ(m|S|` ) queries.

Proof. Since each element of S is contained by Õ(m` )
sets in F , the information required to solve the reduced

instance on S can be obtained by Õ(m|S|` ) queries (i.e.

Õ(m` ) SetOf query per element in S).

Lemma 4.4. The cover constructed by the outer loop of
iterSetCover(α, ε, l, u) with the parameter ` > k, sol`,
w.h.p. covers U .

iterSetCover(α, ε, l, u):

B Try all (1 + ε
2αρ )-approximate guesses of k

for ` ∈ {(1 + ε
2αρ )i | log1+ ε

2αρ
l ≤ i ≤ log1+ ε

2αρ
u}

do in order:
sol` ← collection of ` sets picked

uniformly at random B Set Sampling
Urem ← U \

⋃
r∈sol` r B n` EltOf

repeat (α− 2) times

S← sample of Urem of size Õ(ρ`
(
n
`

) 1
α−1 )

D ← algOfflineSC(S, `)
if D = null then

break B Try the next value of `
sol` ← sol`

⋃
D

Urem ← Urem \
⋃

r∈D r B ρn` EltOf

if |Urem| ≤ `
(
n
`

)1/(α−1)
B Feasibility Test

D ← algOfflineSC(Urem, `)
if D 6= null then

sol` ← sol`
⋃
D

return sol`

Figure 2: iterSetCover is the main procedure of the
smallSetCover algorithm for the Set Cover problem.

Proof. After picking ` sets uniformly at random, by
Set Sampling (Lemma 4.2), w.h.p. each element that is

not covered by the sampled sets appears in Õ(m` ) sets
of F . Next, by Element Sampling (Lemma 4.1 with

δ =
(
`
n

)1/(α−1)
), at the end of each inner iteration,

w.h.p. the number of uncovered elements decreases by

a factor of
(
`
n

)1/(α−1)
. Thus after at most (α − 2)

iterations, w.h.p. less than `
(
n
`

)1/(α−1)
elements remain

uncovered. Finally, algOfflineSC is invoked on the
remaining elements; hence, sol` w.h.p. covers U .

Next we analyze the query complexity and the ap-
proximation guarantee of iterSetCover. As we only
apply Element Sampling and Set Sampling polynomi-
ally many times, all invocations of the corresponding
lemmas during an execution of the algorithm must suc-
ceed w.h.p., so we assume their high probability guaran-
tees for the proofs in rest of this section.

Lemma 4.5. Given that l ≤ k ≤ u
1+ε/(2αρ) ,

w.h.p. iterSetCover(α, ε, l, u) finds a (ρα + ε)-
approximate solution of the input instance using
Õ
(
1
ε (m(nl )1/(α−1) + nk)

)
queries.

Proof. Let `k = (1 + ε
2αρ )

dlog1+ ε
2αρ

ke
be the smallest

power of 1 + ε
2αρ greater than or equal to k. Note

that it is guaranteed that `k ∈ [l, u]. By Lemma 4.4,
iterSetCover terminates with a guess value ` ≤ `k. In
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algOfflineSC(S, `):

FS ← ∅
for each element e ∈ S do

Fe ← the collection of sets containing e
FS ← FS ∪ Fe

D ← solution of size at most ρ` for Set Cover
on (S,FS) constructed by the black box solver

B If there exists no such cover, then D = null
return D

Figure 3: algOfflineSC(S, `) invokes a black box that
returns a cover of size at most ρ` (if there exists a cover
of size ` for S) for the Set Cover instance that is the
projection of F over S.

the following we compute the query complexity of the
run of iterSetCover with a parameter ` ≤ `k.

Set Sampling component picks ` sets and then
update the set of elements that are not covered by those
sets, Urem, using O(n`) EltOf queries. Next, in each
iteration of the inner loop, the algorithm samples a
subset S of size Õ

(
`(n/`)1/(α−1)

)
from Urem. Recall

that, by Set Sampling (Lemma 4.2), each e ∈ S ⊂ Urem
appears in at most Õ(m/`) sets. Since each element in

Urem appears in Õ(m/`), algOfflineSC returns a cover

D of size at most ρ` using Õ
(
m (n/`)

1/(α−1)
)
SetOf

queries (Lemma 4.3). By the guarantee of Element
Sampling (Lemma 4.1), the number of elements in Urem
that are not covered by D is at most (`/n)1/(α−1)|Urem|.
Finally, at the end of each inner loop, the algorithm
updates the set of uncovered elements Urem by using
Õ(n`) EltOf queries. The Feasibility Test which is
passed w.h.p. for ` ≤ `k ensures that the final run
of algOfflineSC performs Õ(m(n/`)1/(α−1)) SetOf
queries. Hence, the total number of queries performed
in each iteration of the outer loop of iterSetCover with

parameter ` ≤ `k is Õ
(
m (n/`)

1/(α−1)
+ n`

)
.

By Lemma 4.4, if `k ≤ u, then the outer loop of
iterSetCover is executed for l ≤ ` ≤ `k before it
terminates. Thus, the total number of queries made
by iterSetCover is:

log1+ ε
2αρ

`k∑
i=dlog1+ ε

2αρ
le

Õ(m

(
n

(1 + ε
2αρ )i

) 1
α−1

+ n(1 +
ε

2αρ
)i)

= Õ

(
m
(n
l

) 1
α−1

(
log1+ ε

2αρ

`k
l

)
+

n`k
ε/(ρα)

)
= Õ

(
1

ε

(
m
(n
l

)1/(α−1)
+ nk

))
.

Now, we show that the number of sets returned

by iterSetCover is not more than (αρ + ε)`k. Set
Sampling picks ` sets and each run of algOfflineSC
returns at most ρ` sets. Thus the size of the solution
returned by iterSetCover is at most (1+(α−1)ρ)`k <
(αρ+ ε)k.

Next, we prove the main theorem of the section.

smallSetCover(α, ε):

sol← iterSetCover(log n, 1, 1, n)
k′ ← |sol| B Find a ρ log n estimate of k.

return iterSetCover(α, ε, b k′

ρ lognc, dk
′(1 + ε

2αρ )e)

Figure 4: The description of the smallSetCover algo-
rithm.

Proof of Theorem 4.2. The algorithm smallSetCover
first finds a (ρ log n)-approximate solution of

Set Cover(U ,F), sol, with Õ(m + nk) queries by
calling iterSetCover(log n, 1, 1, n). Having that
k ≤ k′ = |sol| ≤ (ρ log n)k, the algorithm calls
iterSetCover with α as the approximation factor and
[bk′/(ρ log n)c, dk′(1 + ε

2αρ )e] as the range containing
k. By Lemma 4.5, the second call to iterSetCover
in smallSetCover returns a (αρ + ε)-approximate
solution of Set Cover(U ,F) using the following number
of queries:

Õ(
1

ε
(m(

n
k

ρ logn

)
1

α−1 + nk)) = Õ(
1

ε
(m(

n

k
)

1
α−1 + nk)).

4.3 The largeSetCover Algorithm. The second
algorithm, largeSetCover, works strictly better than
smallSetCover for large values of k (k ≥

√
m). The

advantage of largeSetCover is that it does not need
to update the set of uncovered elements at any point
and simply avoids the additive nk term in the query
complexity bound; the result of Section 5 suggests
that the nk term may be unavoidable if one wishes
to maintain the uncovered elements. Note that the
guarantees of largeSetCover is that at the end of the
algorithm, w.h.p. the ground set U is covered.

The algorithm largeSetCover, given in Figure 5,
first randomly picks ε`/3 sets. By Set Sampling
(Lemma 4.2), w.h.p. every element that occurs in

Ω̃(m/(ε`)) sets of F will be covered by the picked sets.
It then solves the Set Cover instance over the elements
that occur in Õ(m/(ε`)) sets of F by an offline solver of

Set Cover using Õ(m/(ε`)) queries; note that this set of
elements may include some already covered elements. In
order to get the promised query complexity, largeSet-
Cover enumerates the guesses ` of the size of an optimal
set cover in the decreasing order. The algorithm returns
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feasible solutions for ` ≥ k and once it cannot find a fea-
sible solution for `, it returns the solution constructed
for the previous guess of k, i.e., `(1 + ε/(3ρ)). Since

largeSetCover performs Set Sampling for Õ(ε−1) it-
erations, w.h.p. the total query complexity of largeSet-
Cover is Õ(mn/(kε2)). Note that testing whether the

number of occurrences of an element is Õ(m/(ε`)) only
requires a single query, namely SetOf(e, cm logn

ε` ).

largeSetCover(ε):

B Try all (1 + ε
3ρ )-approximate gueses of k

for ` ∈ {(1 + ε
3ρ )i | 0 ≤ i ≤ log1+ ε

3ρ
n}

do in the decreasing order:
rnd` ← collection of ε`

3 sets picked uniformly
at random B Set Sampling

Frare ← ∅ B intersection with rare elements
for e ∈ U do

if e appears in <cm logn
ε` sets then

B Size Test: SetOf(e, cm logn
ε` )

Fe ← collection of sets containing e

B Õ(mε` ) SetOf queries
Frare ← Frare ∪ Fe, S← S

⋃
{e}

D ← solution of Set Cover(S,Frare) returned
by a ρ-approximate black box algorithm
if |D| ≤ ρ` then sol← rnd` ∪ D
else return sol

B solution for the previous value of `

Figure 5: A (ρ + ε)-approximation algorithm for
the Set Cover problem. We assume that the algo-
rithm has access to EltOf and SetOf oracles for
Set Cover(U ,F), as well as |U| and |F| .

We now prove the desired performance of largeSet-
Cover.

Lemma 4.6. largeSetCover returns a (ρ + ε)-
approximate solution of Set Cover(U ,F) w.h.p.

Proof. The algorithm largeSetCover tries to construct
set covers of decreasing sizes until it fails. Clearly, if
k ≤ ` then the black box algorithm finds a cover of
size at most ρ` for any subset of U , because k sets are
sufficient to cover U . In other words, the algorithm
does not terminate with ` ≥ k. Moreover, since the
algorithm terminates when ` is smaller than k, the size
of the set cover found by largeSetCover is at most
( ε3 + ρ)(1 + ε

3ρ )` < ( ε3 + ρ)(1 + ε
3ρ )k < (ρ+ ε)k.

Lemma 4.7. The number of queries made by
largeSetCover is Õ(mnkε2 ).

Proof. The value of ` in any successful iteration of the
algorithm is greater than k/(ρ+ ε); otherwise, the size

of the solution constructed by the algorithm is at most
(ρ+ ε)` < k which is a contradiction.

Set Sampling guarantees that w.h.p. each uncovered

element appears in Θ̃(m/ε`) sets and thus the algorithm

needs to perform Õ(mnε` ) SetOf queries to construct
Frare. Moreover, the number of required queries in
the size test step is O(n) because we only need one
SetOf query per each element in U . Thus, the query
complexity of largeSetCover(ε) is bounded by

log1+ ε
3ρ
n∑

i=log1+ ε
3ρ

k
ρ+ε

Õ

(
(n+

mn

ε(1 + ε
3ρ )i

)

)

= Õ
(

(n+
mn

εk
) log1+ ε

3ρ

n

k

)
= Õ

(mn
kε2

)
.

5 Lower Bound for the Cover Verification
Problem

In this section, we give a tight lower bound on a feasibil-
ity variant of the Set Cover problem which we refer to
as Cover Verification. In Cover Verification(U ,F ,Fk),
besides a collection of m sets F and n elements U , we
are given indices of k sets Fk ⊆ F , and the goal is to
determine whether they are covering the whole universe
U or not. We note that, throughout this section, the
parameter k is a candidate for, but not necessarily the
value of, the size of the minimum set cover.

A naive approach for this decision problem is to
query all elements in the given k sets and then check
whether they cover U or not; this approach requires
O(nk) queries. However, in what follows we show that
this approach is tight and no randomized protocol can
decide whether the given k sets cover the whole universe
with probability of success at least 0.9 using o(nk)
queries.

Theorem 5.1. Any (randomized) algorithm for decid-
ing whether a given k = Ω(log n) sets covers all ele-
ments with probability of success at least 0.9, requires
Ω(nk) queries.

While this lower bound does not directly lead to
a lower bound on Set Cover, it suggests that verifying
the feasibility of a solution may even be more costly
than finding the approximate solution itself; any algo-
rithm bypassing this Ω(nk) lower bound may not solve
Cover Verification as a subroutine.

We prove our lower bound by designing the Yes and
No instances that are hard to distinguish, such that
for a Yes instance, the union of the given k sets is U ,
while for a No instance, their union only covers n − 1
elements. Each Yes instance is indistinguishable from
a good fraction of No instances. Thus any algorithm
must unavoidably answer incorrectly on half of these

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



fractions, and fail to reach the desired probability of
success.

5.1 Underlying Set Structure. Our instance con-
tains n sets and n elements (so m = n), where the first
k sets forms Fk, the candidate for the set cover we wish
to verify. We first consider the incidence matrix rep-
resentation, such that the rows represent the sets and
the columns represent the elements. We focus on the
first n/k elements, and consider a slab, composing of
n/k columns of the incidence matrix. We define a basic
slab as the structure illustrated in Figure 6 (for n = 12
and k = 3), where the cell (i, j) is white if ej ∈ Si,
and is gray otherwise. The rows are divided into blocks
of size k, where first block, the query block, contains
the rows whose sets we wish to check for coverage; no-
tice that only the last element is not covered. More
specifically, in a basic slab, the query block contains sets
S1, . . . , Sn/k, each of which is equal to {e1, . . . , en/k−1}.
The subsequent rows form the swapper blocks each con-
sisting of n/k sets. The rth swapper block consists of
sets S(r+1)n/k+1, . . . , S(r+2)n/k, each of which is equal
to {e1, . . . , en/k} \ {er}.

q
u
er

y

b
lo

ck

sw
a
p

p
er

b
lo

ck
1

sw
a
p

p
er

b
lo

ck
2

sw
a
p

p
er

b
lo

ck
3

e1 e2 e3 e4

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

e1 e2 e3 e4

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Figure 6: A basic slab and an example of a swapping
operation.

We perform one swap in this slab. Consider a
parameter (x, y) representing the index of a white cell
within the query block. We exchange the color of this
white cell with the gray cell on the same row, and
similarly exchange the same pair of cells on swapper
block y. An example is given in Figure 6; the dashed
blue rectangle corresponds to the indices parameterizing
possible swaps, and the red squares mark the modified
cells. This modification corresponds to a single swap
operation; in this example, choosing the index (3, 2)

slab 1 slab 2 slab 3

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

Figure 7: A example structure of a Yes instance; all
elements are covered by the first 3 sets.

swaps (e2, e4) between S3 and S9. Observe that there
are k × (n/k − 1) = n − k possible swaps on a single
slab, and any single swap allows the query sets to cover
all n/k elements.

Lastly, we may create the full instance by placing
all k slabs together, as shown in Figure 7, shifting the
elements’ indices as necessary. The structure of our
sets may be specified solely by the swaps made on
these slabs. We define the structure of our instances
as follows.
• For a Yes instance, we make one random swap on

each slab. This allows the first k sets to cover all
elements.

• For a No instance, we make one random swap on
each slab except for exactly one of them. In that
slab, the last element is not covered by any of the
first k sets.
Now, to properly define an instance, we must

describe our structure via EltOf and SetOf. We first
create a temporary instance consisting of k basic slabs,
where none of the cells are swapped. Create EltOf and
SetOf lists by sorting each list in an increasing order
of indices. Each instance from the above construction
can then be obtained by applying up to k swaps on this
temporary instance.

5.2 Proof of Theorem 5.1. Observe that according
to our instance construction, the algorithm may verify,
with a single query, whether a certain swap occurs in a
certain slab. Namely, it is sufficient to query an entry
of EltOf or SetOf that would have been modified by
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that swap, and check whether it is actually modified or
not. For simplicity, we assume that the algorithm has
the knowledge of our construction. Further, without
loss of generality, the algorithm does not make multiple
queries about the same swap, or make a query that is
not corresponding to any swap.

We employ Yao’s principle as follows: to prove a
lower bound for randomized algorithms, we show a lower
bound for any deterministic algorithm on a fixed distri-
bution of input instances. Let s = n − k be the num-
ber of possible swaps in each slab; assume s = Θ(n).
We define our distribution of instances as follows: each
of the sk possible Yes instances occurs with probability
1/(2sk), and each of the ksk−1 possible No instances oc-
curs with probability 1/(2ksk−1). Equivalently speak-
ing, we create a random Yes instance by making one
swap on each basic slab. Then we make a coin flip:
with probability 1/2 we pick a random slab and undo
the swap on that slab to obtain a No instance; otherwise
we leave it as a Yes instance. To prove by contradiction,
assume there exists a deterministic algorithm that solves
the Cover Verification problem over this distribution of
instances with r = o(sk) queries.

Consider the Yes instances portion of the distribu-
tion, and observe that we may alternatively interpret
the random process generating them as as follows. For
each slab, one of its s possible swaps is chosen uniformly
at random. This condition again follows the scenario
considered in Section 3.2: we are given k urns (slabs) of
each consisting of s marbles (possible swap locations),
and aim to draw the red marble (swapped entry) from
a large fraction of these urns. Following the proof of
Lemmas 3.6-3.7, we obtain that if the total number of
queries made by the algorithm is less than (1 − 3

b ) skb ,
then with probability at least 0.99, the algorithm will
not see any swaps from at least k

b slabs.
Then, consider the corresponding No instances

obtained by undoing the swap in one of the slabs of the
Yes instance. Suppose that the deterministic algorithm
makes less than (1 − 3

b ) skb queries, then for a fraction
of 0.99 of all possible tuples T , the output of the Yes
instance is the same as the output of 1

b fraction of No
instances, namely when the slab containing no swap is
one of the k

b slabs that the algorithm has not detected a
swap in the corresponding Yes instance; the algorithm
must answer incorrectly on half of the corresponding
weight in our distribution of input instances. Thus the
probability of success for any algorithm with less than
(1− 3

b ) skb queries is at most

1−Pr

[
|Thigh| ≥ (1− 2

b
)k

]
(
1

b
)(

1

2
) ≤ 1− 0.495

b
< 0.9,

for a sufficiently small constant b > 3 (e.g. b = 4). As

s = Θ(n) and by Yao’s principle, this implies the lower
bound of Ω(nk) for the Cover Verification problem.
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A Generalized Lower Bounds for the Set Cover
Problem

In this section we generalize the approach of Section 3
and prove our main lower bound result (Theorem 3.1)
for the number of queries required for approximating
with factor α the size of an optimal solution to the
Set Cover problem, where the input instance contains
m sets, n elements, and a minimum set cover of size k.
The structure of our proof is largely the same as the
simplified case, but the definitions and the details of
our analysis will be more complicated. The size of the
minimum set cover of the median instance will instead
be at least αk + 1, and genModifiedInst reduces this
down to k. We now aim to prove the following statement
which implies the lower bound in Theorem 3.1.

Theorem A.1. Let k be the size of an optimal so-
lution of I∗ such that 1 < α ≤ log n and 2 ≤

k ≤
(

n
16α logm

) 1
4α+1

. Any algorithm that distinguishes

whether the input instance is I∗ or belongs to D(I∗) with

probability of success at least 2/3 requires Ω̃(m(nk )1/(2α))
queries.

A.1 Construction of the Median Instance I∗.
Let F be a collection of m sets such that independently
for each set-element pair (S, e), S contains e with
probability 1 − p0, where we modify the probability to

p0 =
(

8(αk+2) logm
n

)1/(αk)
. We start by proving some

inequalities involving p0 that will be useful later on,
which hold for any k in the assumed range.

Lemma A.1. For 2 ≤ k ≤
(

n
16α logm

) 1
4α+1

, we have
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that
(a) 1− p0 ≥ pk/40 ,

(b) p
k/4
0 ≤ 1/2,

(c)
pk0

(1−p0)2 ≤
(

8(αk+2) logm
n

) 1
2α

.

Proof. Recall as well that α > 1. In the given range
of k, we have k4α ≤ n

16αk logm ≤
n

8(αk+2) logm because

kα ≥ 2. Thus

p0 =

(
8(αk + 2) logm

n

) 1
αk

≤
(

1

k4α

) 1
αk

= k−4/k.

Next, rewrite k−4/k = e−
4 ln k
k and observe that 4 ln k

k ≤
4
e < 1.5. Since e−x ≤ 1 − x

2 for any x < 1.5, we have

p0 ≤ e−
4 ln k
k < 1 − 2 ln k

k . Further, p
k/4
0 ≤ e− ln k = 1/k.

Hence p0 + p
k/4
0 ≤ 1− 2 ln k

k + 1
k ≤ 1, implying the first

statement.
The second statement easily follows as p

k/4
0 ≤ 1/k ≤

1/2 since k ≥ 2. For the last statement, we make use of
the first statement:

pk0
(1− p0)2

≤ pk0

(p
k/4
0 )2

= p
k/2
0 =

(
8(αk + 2) logm

n

) 1
2α

which completes the proof of the lemma.

Next, we give the new, generalized definition of
median instances.

Definition A.1. (Median instance) An instance of
Set Cover, I = (U ,F), is a median instance if it
satisfies all the following properties.
(a) No αk sets cover all the elements. (The size of its

minimum set cover is greater than αk.)
(b) The number of uncovered elements of the union of

any k sets is at most 2npk0 .
(c) For any pair of elements e, e′, the number of sets

S ∈ F s.t. e ∈ S but e′ /∈ S is at least
(1− p0)p0m/2.

(d) For any collection of k sets S1, · · · , Sk, |Sk ∩ (S1 ∪
· · · ∪ Sk−1)| ≥ (1− p0)(1− pk−10 )n/2.

(e) For any collection of k+1 sets S, S1, · · · , Sk, |(Sk∩
(S1 ∪ · · · ∪ Sk−1)) \ S| ≤ 2p0(1− p0)(1− pk−10 )n.

(f) For each element, the number of sets that do not
contain the element is at most (1 + 1

k )p0m.

Lemma A.2. For k ≤ min{
√

m
27 lnm , (

n
16α logm )

1
4α+1 },

there exists a median instance I∗ satisfying all the
median properties from Definition A.1. In fact, most
of the instances constructed by the described randomized
procedure satisfy the median properties.

Proof. The lemma follows from applying the union
bound on the results of Lemmas A.3–A.8.

The proofs of the Lemmas A.3–A.8 follow from
standard applications of concentration bounds. See the
full version of this paper for detailed proofs.

Lemma A.3. With probability at least 1 − m−2 over
F ∼ I(U , p0), the size of the minimum set cover of the
instance (F ,U) is at least αk + 1.

Lemma A.4. With probability at least 1 − m−2 over
F ∼ I(U , p0), any collection of k sets has at most 2npk0
uncovered elements.

Lemma A.5. Suppose that F ∼ I(U , p0) and let e, e′

be two elements in U . Given k ≤
(

n
16α logm

) 1
4α+1

, with

probability at least 1 −m−2, the number of sets S ∈ F
such that e ∈ S but e′ /∈ S is at least mp0(1− p0)/2.

Lemma A.6. Suppose that F ∼ I(U , p0) and let
S1, · · · , Sk be k different sets in F . Given k ≤(

n
16α logm

) 1
4α+1

, with probability at least 1−m−2, |Sk ∩
(S1 ∪ · · · ∪ Sk−1)| ≥ (1− p0)(1− pk−10 )n/2.

Lemma A.7. Suppose that F ∼ I(U , p0) and let
S1, · · · , Sk and S be k + 1 different sets in F . Given

k ≤
(

n
16α logm

) 1
4α+1

, with probability at least 1 −m−2,

|(Sk ∩ (S1 ∪ · · · ∪ Sk−1)) \ S| ≤ 2p0(1− p0)(1− pk−10 )n.

Lemma A.8. Given that k ≤
(

n
16α logm

) 1
4α+1

, for each

element, the number of sets that do not contain the
element is at most (1 + 1

k )p0m.

A.2 Distribution D(I∗) of the Modified In-
stances Derived from I∗. Fix a median instance
I∗. We now show that we may perform Õ(n1−1/αk1/α)
swap operations on I∗ so that the size of the mini-
mum set cover in the modified instance becomes k.
So, the number of queries to EltOf and SetOf that
induce different answers from those of I∗ is at most
Õ(n1−1/αk1/α). We define D(I∗) as the distribution of
instances I ′ that is generated from a median instance
I∗ by genModifiedInst(I∗) given below in Figure 8.
The main difference from the simplified version are that
we now select k different sets to turn them into a set
cover, and the swaps may only occur between Sk and
the candidates.

Lemma A.9. The procedure genModifiedInst is well-
defined under the precondition that the input instance I∗

is a median instance.

Proof. To carry out the algorithm, we must ensure that
the number of the initially uncovered elements is at
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genModifiedInst(I∗ = (U ,F)):

M← ∅
pick k different sets S1, · · ·Sk from F

uniformly at random
for each e ∈ U \ (S1 ∪ · · · ∪ Sk) do

pick e′ ∈ (Sk ∩ (S1 ∪ · · · ∪ Sk−1)) \M
uniformly at random

M←M∪ {ee′}
pick a random set S in Candidate(e, e′)
swap(e, e′) between S, Sk

Figure 8: The procedure of constructing a modified
instance of I∗.

most that of the elements covered by both Sk and
some other set from S1, . . . , Sk−1. Since I∗ is a median
instance, by properties (b) and (d) from Definition A.1,
these values satisfy |U \ (S1 ∪ · · · ∪ Sk)| ≤ 2pk0n and
|Sk ∩ (S1 ∪ · · · ∪ Sk−1)| ≥ (1 − p0)(1 − pk−10 )n/2,

respectively. By Lemma A.1, p
k/4
0 ≤ 1/2. Using this

and Lemma A.1 again,

(1− p0)(1− pk−10 )n/2 ≥ pk/40 · pk/40 · n/2

≥ pk/20 n/2 ≥ 2pk0n.

That is, in our construction there are sufficiently many
possible choices for e′ to be matched and swapped with
each uncovered element e. Moreover, since I∗ is a
median instance, |Candidate(e, e′)| ≥ (1− p0)p0m/2 (by
property (c)), and there are plenty of candidates for
each swap.

A.2.1 Bounding the Probability of Modifica-
tion. Similarly to the simplified case, define PElt−Set :
U × F → [0, 1] as the probability that an element is
swapped by a set, and upper bound it via the following
lemma.

Lemma A.10. For any e ∈ U and S ∈ F ,

PElt−Set(e, S) ≤ 64pk0
(1−p0)2m where the probability is taken

over the random choices of I ′ ∼ D(I∗).

Proof. Let S1, . . . , Sk denote the first k sets picked
(uniformly at random) from F to construct a modified
instance of I∗. For each element e and a set S such that
e ∈ S in the basic instance I∗,

PElt−Set(e, S) = Pr[S = Sk] ·Pr
[
e ∈ ∪i∈[k−1]Si | e ∈ Sk

]
·Pr

[
e matches to U \ (∪i∈[k]Si) | e ∈ Sk ∩ (∪i∈[k−1]Si)

]
+ Pr[S /∈ {S1, . . . , Sk}] ·Pr

[
e ∈ S \ (∪i∈[k]Si) | e ∈ S

]
·Pr[S swaps e with Sk | e ∈ S \ (S1 ∪ · · · ∪ Sk)] ,

where all probabilities are taken over I ′ ∼ D(I∗). Next
we bound each of the above six terms. Clearly, since
we choose the sets S1, · · · , Sk randomly, Pr[S = Sk] =
1/m. We bound the second term by 1. Next, by
properties (b) and (d) of median instances, the third
term is at most

|U \ (∪i∈[k]Si)|
|Sk ∩ (∪i∈[k−1]Si)|

≤ 2pk0n

(1− p0)(1− pk−10 )n2
≤ 4pk0

(1− p0)2
.

We bound the fourth term by 1. Let de denote the
number of sets in F that do not contain e. Using
property (f) of median instances, the fifth term is at
most

de(de − 1) · · · (de − k + 1)

(m− 1)(m− 2) · · · (m− k)
≤
(

de
m− 1

)k
≤ (

(1 + 1/k)p0m

m(1− 1
k+1 )

)k ≤ e2pk0 ,

Finally for the last term, note that by symme-
try, each pair of matched elements ee′ is picked by
genModifiedInst equiprobably. Thus, for any e ∈
S \(S1∪· · ·∪Sk), the probability that each element e′ ∈
Sk∩(S1∪· · ·∪Sk−1) is matched to e is 1

|Sk∩(S1∪···∪Sk−1)| .

By properties (c)-(e) of median instances, the last term
is at most∑
e′∈(Sk∩(∪i∈[k−1]Si))\S

Pr[ee′ ∈M] ·Pr[(S, Sk) swap (e, e′)]

≤ |(Sk ∩ (∪i∈[k−1]Si)) \ S| ·
1

|Sk ∩ (∪i∈[k−1]Si)|

· 1

|Candidate(e, e′)|

≤ 2p0(1− p0)(1− pk−10 )n · 1

(1− p0)(1− pk−10 )n/2

· 1

p0(1− p0)m/2

≤ 8

(1− p0)m

Therefore,

PElt−Set(e, S) ≤ 1

m
· 1 · 4pk0

(1− p0)2
+ 1 · e2pk0 ·

8

(1− p0)m

≤ 4pk0
(1− p0)2

+
60pk0

(1− p0)m
≤ 64pk0

(1− p0)2m
.

A.3 Proof of Theorem A.1. The remaining part of
our proof follows that of the simplified version almost
exactly.
Proof of Theorem A.1. Applying the same argument as
that of Lemma 3.4, we derive that the probability that
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A returns different outputs on I∗ and I ′ is at most

Pr[A(I∗) 6= A(I ′)] ≤
|Q|∑
t=1

Pr[ansI∗(qt) 6= ansI′(qt)]

≤
|Q|∑
t=1

PElt−Set(e(qt), S(qt))

≤ 64pk0
m(1− p0)2

|Q|,

via the result of Lemma A.10. Then, over the distribu-
tion in which we applied Yao’s lemma, we have

Pr[A succeeds] ≤ 1− 1

2
PrI′∼D(I∗)[A(I∗) = A(I ′)]

≤ 1− 1

2

(
1− 64pk0

m(1− p0)2
|Q|
)

=
1

2
+

32pk0
m(1− p0)2

|Q|

≤ 1

2
+

32

m

(
8(kα+ 2) logm

n

) 1
2α

|Q|

where the last inequality follows from Lemma A.1.
Thus, if the number of queries made by A is less
than m

192 ( n
8(kα+2) logm )1/(2α), then the probability that

A returns the correct answer over the input distribution
is less than 2/3 and the proof is complete.
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