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Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling
• Data is often explicitly sparse. 

Examples: graphs, matrices, vectors, documents (as word vectors)
• Data is often implicitly sparse: in a different representation the data is 

explicitly sparse.
Examples: signals/images, topics, … 

Algorithmic advantage
• To improve performance (speed, quality, memory, …)
• Find sparse representation to reveal information about data

Examples: topics in documents, frequencies in Fourier analysis



Sparse Recovery

Problem. Given a vector/signal 𝑥𝑥 ∈ ℝ𝑛𝑛, find a sparse vector 𝑧𝑧
approximating 𝑥𝑥.
More formally, given 𝑥𝑥 ∈ ℝ𝑛𝑛 and integer 𝑘𝑘 ≥ 1, find 𝑧𝑧 s.t. 𝑧𝑧 has at most 𝑘𝑘
non-zeros ( 𝑧𝑧 0 ≤ 𝑘𝑘) s.t. 𝑧𝑧 − 𝑥𝑥 𝑝𝑝 is minimized for some 𝑝𝑝 ≥ 1.

What is the optimal offline solution?

How to solve in strict turnstile streaming for 𝑝𝑝 = 2 using �𝑂𝑂(𝑘𝑘) space?



Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.

Interesting when err2𝑘𝑘 𝑥𝑥 ≪ 𝑥𝑥 2

• err2𝑘𝑘 𝑥𝑥 = 0 iff 𝑥𝑥 0 ≤ 𝑘𝑘; so, related to distinct element problem.



Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.

• Space is proportional to desired output sparsity which is typically ≪ 𝑛𝑛.
• If 𝑥𝑥 is 𝑘𝑘-sparse vector, it will be exactly reconstructed.
• The solution is based on CountSketch

Theorem. There is a linear sketch of size 𝑂𝑂( 𝑘𝑘
𝜀𝜀2

 polylog 𝑛𝑛 ) that returns 𝑧𝑧 
such that 𝑧𝑧 0 ≤ 𝑘𝑘, and with high probability, 

𝑥𝑥 − 𝑧𝑧 2 ≤ 1 + 𝜀𝜀 ⋅ err2𝑘𝑘(𝑥𝑥)



Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.

Sparse Recovery (via CountSkecth):
let CS be a CountSketch with 𝑤𝑤 = 3𝑘𝑘

𝜀𝜀2
 and 𝑑𝑑 = Ω(log𝑛𝑛)

% during stream
process the stream and update CS

% after stream
compute all �𝑥𝑥𝑖𝑖 
output 𝑘𝑘 coordinates with largest estimates



Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.

Theorem. There is a linear sketch of size 𝑘𝑘
𝜀𝜀2

 polylog 𝑛𝑛  that returns 𝑧𝑧 such 
that 𝑧𝑧 0 ≤ 𝑘𝑘, and with high probability, 𝑥𝑥 − 𝑧𝑧 2 ≤ 1 + 𝜀𝜀 ⋅ err2𝑘𝑘(𝑥𝑥)

Lemma I. CountSketch w/ 𝑤𝑤 = 3𝑘𝑘
𝜀𝜀2

 and 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛) w.h.p. guarantees that
 ∀𝑖𝑖 ∈ [𝑛𝑛], �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≤ 𝜀𝜀

𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥)

Lemma II. Let 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑛𝑛 s.t. 𝑥𝑥 − 𝑦𝑦 ∞ ≤ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥). Then, 𝑥𝑥 − 𝑧𝑧 2 ≤

1 + 𝜀𝜀 ⋅ err2𝑘𝑘(𝑥𝑥), where 𝑧𝑧 is as follows: 𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 for 𝑘𝑘 largest absolute 
indices of 𝑦𝑦, and 𝑧𝑧𝑖𝑖 = 0 for the rest. 



Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.

Lemma I. CountSketch w/ 𝑤𝑤 = 3𝑘𝑘
𝜀𝜀2

 and 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛) w.h.p. guarantees that
 ∀𝑖𝑖 ∈ [𝑛𝑛], �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≤ 𝜀𝜀

𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥)



Lemma II. Let 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑛𝑛 s.t. 𝑥𝑥 − 𝑦𝑦 ∞ ≤ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥). Then, 𝑥𝑥 − 𝑧𝑧 2 ≤

1 + 𝜀𝜀 ⋅ err2𝑘𝑘(𝑥𝑥), where 𝑧𝑧 is as follows: 𝑧𝑧𝑖𝑖 = 𝑦𝑦𝑖𝑖 for 𝑘𝑘 largest absolute 
indices of 𝑦𝑦, and 𝑧𝑧𝑖𝑖 = 0 for the rest. 

Sparse Recovery under ℓ2 norm

Problem. Minimize err2𝑘𝑘(𝑥𝑥) = min
𝑧𝑧: 𝑧𝑧 0≤𝑘𝑘

𝑧𝑧 − 𝑥𝑥 2.



“Stronger” Guarantee for CountSketch

Analysis has two parts:
• First, similarly to the earlier analysis of CS, is to bound the variance 

and apply Chernoff but this time for all items other than 𝑘𝑘 largest 
coordinates.

• Second, we show that there is no collision with 𝑘𝑘 largest coordinates. 

Lemma I. CountSketch w/ 𝑤𝑤 = 3𝑘𝑘
𝜀𝜀2

 and 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛) w.h.p. guarantees that
 ∀𝑖𝑖 ∈ [𝑛𝑛], �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≤ 𝜀𝜀

𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥)



CountSketch Analysis

• Consider an item 𝑖𝑖 and fix a row ℓ. 
• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖 ] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ

𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ 
𝑍𝑍ℓ = 𝑔𝑔ℓ 𝑖𝑖 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖 = 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑗𝑗𝑌𝑌𝑗𝑗  

𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝔼𝔼[𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗] ⋅ 𝑓𝑓𝑗𝑗 
𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖   // pairwise independence of 𝑔𝑔ℓ 
Since 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝔼𝔼 𝑌𝑌𝑗𝑗 = 0

From Lecture 8



CountSketch Analysis: Variance

• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖 ] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ

𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ 
Var(𝑍𝑍ℓ) = 𝔼𝔼 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 2  

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑓𝑓𝑗𝑗
2

 

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 2𝑌𝑌𝑗𝑗2𝑓𝑓𝑗𝑗2 + ∑𝑗𝑗,𝑗𝑗′≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 𝑔𝑔ℓ 𝑗𝑗′ 𝑌𝑌𝑗𝑗𝑌𝑌𝑗𝑗′𝑓𝑓𝑗𝑗𝑓𝑓𝑗𝑗′  

Var(𝑍𝑍ℓ) =  ∑𝑗𝑗≠𝑖𝑖 𝑓𝑓𝑗𝑗2 𝔼𝔼[𝑌𝑌𝑗𝑗2] 
Var(𝑍𝑍ℓ) ≤ 𝑓𝑓 2

2/𝑤𝑤 
Using Chebyshev, Pr 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ Var(𝑍𝑍ℓ)

𝜀𝜀2 𝑓𝑓 2
2 ≤

1
𝜀𝜀2𝑤𝑤

≤ 1/3 From Lecture 8



Refining Analysis

𝑇𝑇big = 𝑗𝑗 𝑗𝑗 is one of the 𝑘𝑘 largest coordinates (in absolute value)} 
𝑇𝑇small = 𝑛𝑛 ∖ 𝑇𝑇big 

In particular, ∑𝑗𝑗∈𝑇𝑇small
𝑥𝑥𝑗𝑗2 = err2𝑘𝑘 𝑥𝑥

2

Lemma. Pr 𝑍𝑍ℓ − 𝑥𝑥𝑖𝑖 ≥ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥) ≤ 2/5.



Refining Analysis (contd.)

𝑍𝑍ℓ = 𝑔𝑔ℓ 𝑖𝑖 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑗𝑗∈𝑇𝑇big 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑗𝑗∈𝑇𝑇small
𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑥𝑥𝑗𝑗  

Let 𝐴𝐴big be the event that ℎℓ 𝑗𝑗 = ℎℓ(𝑖𝑖) for some 𝑗𝑗 ∈ 𝑇𝑇big and 𝑗𝑗 ≠ 𝑖𝑖.

• For every 𝑗𝑗 ≠ 𝑖𝑖, 𝑌𝑌𝑗𝑗 is the indicator variable whether 𝑗𝑗 is colliding with 𝑖𝑖 under ℎℓ

• Pr 𝑌𝑌𝑗𝑗 = 1
𝑤𝑤
≤ 𝜀𝜀2

3𝑘𝑘
 (by pairwise independence of ℎℓ)

• Let 𝑌𝑌 =  ∑𝑗𝑗∈𝑇𝑇big 𝑌𝑌𝑗𝑗 . By linearity of expectation, 𝔼𝔼 𝑌𝑌 ≤ 𝜀𝜀2/3.

• By Markov, Pr 𝐴𝐴big = Pr 𝑌𝑌 ≥ 1 ≤ 𝜀𝜀2/3

Lemma. W.p. at least 1 − 𝜀𝜀2/3, no big coordinate collide with 𝑖𝑖 under ℎℓ. 



Refining Analysis (contd.)

𝑍𝑍ℓ = 𝑔𝑔ℓ 𝑖𝑖 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑗𝑗∈𝑇𝑇big 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑗𝑗∈𝑇𝑇small
𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑥𝑥𝑗𝑗  

Similar to earlier analysis for CountSketch,

So, by union bound, for sufficiently small values of 𝜀𝜀,

Lemma. Pr 𝑍𝑍ℓ′ − 𝑥𝑥𝑖𝑖 ≥ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥) ≤ 1/3. 

𝑍𝑍ℓ′

Lemma. W.p. at least 1 − 𝜀𝜀2/3, no big coordinate collide with 𝑖𝑖 under ℎℓ. 

Lemma. Pr 𝑍𝑍ℓ − 𝑥𝑥𝑖𝑖 ≥ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥) ≤ 1

3
+ 𝜀𝜀2

3
≤ 2

5
.



High probability estimates

Recall �𝑥𝑥𝑖𝑖= median{𝑍𝑍1,⋯ ,𝑍𝑍𝑑𝑑},
• With 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛), applying Chernoff bound,

Pr �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≥
𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘 𝑥𝑥 ≤ 1/𝑛𝑛2

• By union bound, w.p. at least 1 − 1/𝑛𝑛, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≤ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘 𝑥𝑥  for all 𝑖𝑖 ∈ [𝑛𝑛]

Lemma. Pr 𝑍𝑍ℓ − 𝑥𝑥𝑖𝑖 ≥ 𝜀𝜀
𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥) ≤ 1

3
+ 𝜀𝜀2

3
≤ 2

5
.

Lemma. CountSketch with 𝑤𝑤 = 3𝑘𝑘
𝜀𝜀2

 and 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛) w.h.p. guarantees that
 ∀𝑖𝑖 ∈ [𝑛𝑛], �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 ≤ 𝜀𝜀

𝑘𝑘
⋅ err2𝑘𝑘(𝑥𝑥)



Dimensionality Reduction
JL Lemma and Subspace Embedding



Linear Sketching view of AMS-Sketch

- the sketch is mergeable.
- 𝑧𝑧𝑆𝑆∪𝑇𝑇 = 𝑧𝑧𝑆𝑆 + 𝑧𝑧𝑇𝑇

How to get the final estimate 
from the sketch 𝑧𝑧?

�𝐹𝐹2 = median𝑔𝑔=1…𝑘𝑘
1
𝑡𝑡
∑𝑗𝑗∈𝐺𝐺𝑔𝑔 𝑧𝑧𝑗𝑗

2  

where 𝐺𝐺1, … ,𝐺𝐺𝑘𝑘 are partition of 
the 𝑚𝑚 rows (𝑚𝑚 = 𝑡𝑡𝑡𝑡).

AMS-𝑭𝑭𝟐𝟐-Sketch:
     let 𝑚𝑚 = 𝑘𝑘 × 𝑡𝑡
     let Π be a 𝑚𝑚 × 𝑛𝑛 matrix with {−1, +1} entries
     (i) rows are independent and
 (ii) in each row, entries are 4-wise indep.
     𝑧𝑧 ← 0 is a 𝑚𝑚 × 1 vector initialized to 𝟎𝟎
     
     foreach item 𝒊𝒊𝒋𝒋 in the stream do:
        𝑧𝑧 ← 𝑧𝑧 + 𝑀𝑀𝑒𝑒𝒊𝒊𝒋𝒋
 
    return 𝑧𝑧 as sketch 

From Lecture 6



Linear Sketching view of AMS-Sketch (contd.)

• Geometric Interpretation
Given a vector 𝑥𝑥 ∈ ℝ𝑛𝑛, let 𝑀𝑀 be the random map such that 𝑧𝑧 = 𝑀𝑀𝑀𝑀 has 
the following properties:

• 𝔼𝔼 𝑧𝑧𝑖𝑖 = 0, 𝔼𝔼 𝑧𝑧𝑖𝑖2 = 𝑥𝑥 2
2 for each 𝑖𝑖 ∈ [𝑘𝑘] where 𝑘𝑘 is the number of rows.

• Each 𝑧𝑧𝑖𝑖2 is an estimate of length of 𝑥𝑥 in Euclidean norm.
• With 𝑘𝑘 = Θ(𝜀𝜀−2 log 1/𝛿𝛿 ), a 1 ± 𝜀𝜀 -estimate of 𝑥𝑥 2 can be driven via 

averaging and median technique.

In other words, 𝑥𝑥 is compressed as a 𝑘𝑘-dimensional vector 𝑧𝑧 that 
contains information to estimate 𝑥𝑥 2.
Do we need median trick? Is averaging enough? 



Distributional Johnson-Lindenstrauss Lemma

i. We can instead choose entries from {−1, +1} as well.
ii. Unlike AMS sketch, entries of Π are independent.

Basically, we’ve projected 𝑥𝑥 from ℝ𝑑𝑑 into ℝ𝑘𝑘 while preserving length to 
a (1 ± 𝜀𝜀)-factor.

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 , and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 



Distributional Johnson-Lindenstrauss Lemma

i. We can instead choose entries from {−1, +1} as well.
ii. Unlike AMS sketch, entries of Π are independent.

Basically, we’ve projected 𝑥𝑥 from ℝ𝑑𝑑 into ℝ𝑘𝑘 while preserving length to 
a (1 ± 𝜀𝜀)-factor.

Distributional JL Lemma. Fix 𝑥𝑥 ∈ ℝ𝑑𝑑 , and let Π ∈ ℝ𝑘𝑘×𝑑𝑑 be a matrix whose 
entries are chosen independently according to standard normal distribution 
𝓝𝓝(𝟎𝟎,𝟏𝟏). If 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), then with probability at least 1 − 𝛿𝛿, 

𝟏𝟏
𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 
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Metric JL Lemma. Let 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 be 𝑛𝑛 points in ℝ𝑑𝑑 . For any 𝜀𝜀 ∈ (0, 1
2
), there is 

a linear map 𝑓𝑓:ℝ𝑑𝑑 → ℝ𝑘𝑘 where 𝑘𝑘 ≤ 8𝜀𝜀−2 ln𝑛𝑛, such that for all 𝑖𝑖 ≠ 𝑗𝑗 ∈ [𝑛𝑛],

𝟏𝟏 − 𝜺𝜺 𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋 𝟐𝟐
≤ 𝒇𝒇(𝒗𝒗𝒊𝒊) − 𝒇𝒇(𝒗𝒗𝒋𝒋) 𝟐𝟐

≤ 𝟏𝟏 + 𝜺𝜺 𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋 𝟐𝟐

Dimensionality Reduction

• The linear map is simply given the random matrix Π; i.e., 𝒇𝒇 𝒗𝒗 = 𝚷𝚷𝒗𝒗
• The mapping is oblivious (to data)

Proof. Apply DJL with 𝛿𝛿 = 𝑛𝑛−2, and union bound over the 𝑛𝑛
2  vectors 

𝒗𝒗𝒊𝒊 − 𝒗𝒗𝒋𝒋, for all pairs 𝒊𝒊 ≠ 𝒋𝒋 ∈ [𝒏𝒏]. 



Proof of DJL and Metric JL



Normal Distribution (PDF)



Normal Distribution (CDF)



Lemma. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. 
Suppose 𝑋𝑋 ∼ 𝒩𝒩(𝜇𝜇𝑋𝑋,𝜎𝜎𝑋𝑋2) and 𝑌𝑌 ∼ 𝒩𝒩(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2). Let 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌. Then, 

𝒁𝒁 ∼ 𝓝𝓝(𝝁𝝁𝑿𝑿 + 𝝁𝝁𝒀𝒀,𝝈𝝈𝑿𝑿𝟐𝟐 + 𝝈𝝈𝒀𝒀𝟐𝟐)

Sum of Independent Normal Distribution 

Normal distribution is a stable distribution: adding two indep. r.v. within 
the same class gives a distribution inside the class. Other exist and 
useful in 𝑭𝑭𝒑𝒑 estimation for 𝒑𝒑 ∈ (𝟎𝟎,𝟐𝟐).

Corollary. Let 𝑋𝑋 and 𝑌𝑌 be independent random variables. Suppose 𝑋𝑋 ∼
𝒩𝒩(0,1) and 𝑌𝑌 ∼ 𝒩𝒩(0,1). Let 𝑍𝑍 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 where 𝑎𝑎, 𝑏𝑏 are arbitrary real 
numbers. Then, 𝒁𝒁 ∼ 𝓝𝓝(𝟎𝟎,𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐)



Random Gaussian Vector

One can consider higher dimensional normal distributions, also called 
multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: 𝑍𝑍 = (𝑍𝑍1, … ,𝑍𝑍𝑘𝑘) if 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1) for each 𝑖𝑖, 
and 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 are independent.

• Density function is 𝑓𝑓 𝑦𝑦1, … ,𝑦𝑦𝑘𝑘 = 1
2𝜋𝜋

𝑘𝑘
exp −𝑦𝑦12+⋯+𝑦𝑦𝑘𝑘

2

2
= 𝟏𝟏

𝟐𝟐𝟐𝟐

𝒌𝒌
𝒆𝒆− 𝒚𝒚 𝟐𝟐/𝟐𝟐

• Only depends on 𝑦𝑦 2

• The distribution is centrally symmetric. (can be used to generate a random unit 
vector in ℝ𝑘𝑘). 𝑈𝑈 = 𝑍𝑍

𝑍𝑍
 is uniform on the unit sphere.

• 𝔼𝔼 𝑍𝑍 2
2 = ∑𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖2 = 𝑘𝑘. Length is concentrated around 𝑘𝑘.
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Concentration of sum of squares of
normally distributed variables
𝝌𝝌𝟐𝟐(𝒌𝒌) distribution: distribution of sum of squares of 𝑘𝑘 independent 
standard normally distributed random variables,

𝑌𝑌 = ∑1≤𝑖𝑖≤𝑘𝑘 𝑍𝑍𝑖𝑖2 where each 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩(0,1)

• Recall Chernoff for bounded independent non-negative rv. 𝑍𝑍𝑖𝑖2 are not 
bounded, however, Chernoff bounds extend to sums of random 
variables with exponentially decaying tails.

Lemma. Let 𝑍𝑍1, … ,𝑍𝑍𝑘𝑘 be independent 𝒩𝒩(0,1) r.v.s. and let 𝑌𝑌 = ∑𝑖𝑖 𝑍𝑍𝑖𝑖2. Then, 
for 𝜀𝜀 ∈ (0,1/2), there is a constant 𝑐𝑐 such that,

𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝜺𝜺 𝟐𝟐𝒌𝒌 ≤ 𝒀𝒀 ≤ 𝟏𝟏 + 𝜺𝜺 𝟐𝟐𝒌𝒌 ≥ 𝟏𝟏 − 𝟐𝟐𝒆𝒆𝒄𝒄𝜺𝜺𝟐𝟐𝒌𝒌



Proof of DJL Lemma
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𝒌𝒌
𝚷𝚷𝒙𝒙

𝟐𝟐
= 𝟏𝟏 ± 𝜺𝜺 𝒙𝒙 𝟐𝟐 



Proof of DJL Lemma

Without loss of generality, assume 𝑥𝑥 2 = 1. 𝒁𝒁𝒊𝒊 = ∑𝒋𝒋=𝟏𝟏𝚷𝚷𝒊𝒊𝒊𝒊𝒙𝒙𝒊𝒊
 𝑍𝑍𝑖𝑖 ∼ 𝒩𝒩 0,1

 𝑍𝑍 is a random Gaussian vector in 𝑘𝑘 dimensions.

 𝑌𝑌 =  ∑𝑖𝑖 𝑍𝑍𝑖𝑖2. 𝑌𝑌’s distribution is 𝜒𝜒2(𝑘𝑘) since each coordinate is i.i.d. Gaussians.

 Hence, 𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝜺𝜺 𝟐𝟐𝒌𝒌 ≤ 𝒀𝒀 ≤ 𝟏𝟏 + 𝜺𝜺 𝟐𝟐𝒌𝒌 ≥ 𝟏𝟏 − 𝟐𝟐𝒆𝒆𝒄𝒄𝜺𝜺𝟐𝟐𝒌𝒌

 Since 𝑘𝑘 = Ω(𝜀𝜀−2 log 1/𝛿𝛿 ), 𝐏𝐏𝐏𝐏 𝟏𝟏 − 𝜺𝜺 𝟐𝟐𝒌𝒌 ≤ 𝒀𝒀 ≤ 𝟏𝟏 + 𝜺𝜺 𝟐𝟐𝒌𝒌 ≥ 𝟏𝟏 − 𝜹𝜹

 Therefore, 𝑧𝑧 2 = 𝑌𝑌/𝑘𝑘 has the property that with probability 1 − 𝛿𝛿,
𝑧𝑧 2 = (1 ± 𝜀𝜀) 𝑥𝑥 2
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