Algorithms for Big Data (FALL 25)

Lecture 9

APPLICATIONS OF SKETCHING AND DIMENSIONALITY REDUCTION

ALI VAKILIAN (vakilian@vt.edu)

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

Data is often explicitly sparse.

Examples: graphs, matrices, vectors, documents (as word vectors)

• Data is often *implicitly* sparse: in a different representation the data is explicitly sparse.

Examples: signals/images, topics, ...

Algorithmic advantage

- To improve performance (speed, quality, memory, ...)
- Find sparse representation to reveal information about data

Examples: topics in documents, frequencies in Fourier analysis

Sparse Recovery

Problem. Given a vector/signal $x \in \mathbb{R}^n$, find a sparse vector z approximating x.

More formally, given $x \in \mathbb{R}^n$ and integer $k \ge 1$, find z s.t. z has at most k non-zeros ($||z||_0 \le k$) s.t. $||z - x||_p$ is minimized for some $p \ge 1$.

What is the optimal offline solution?

How to solve in strict turnstile streaming for p=2 using $\tilde{O}(k)$ space?

Problem. Minimize $\operatorname{err}_2^k(x) = \min_{z:\|z\|_0 \le k} \|z - x\|_2$. Interesting when $\operatorname{err}_2^k(x) \ll \|x\|_2$

• $\operatorname{err}_2^k(x) = 0$ iff $||x||_0 \le k$; so, related to distinct element problem.

Problem. Minimize
$$\text{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||z - x||_{2}$$
.

Theorem. There is a linear sketch of size $O(\frac{k}{\varepsilon^2} \operatorname{polylog}(n))$ that returns z such that $||z||_0 \le k$, and with high probability,

$$\|x - z\|_2 \le (1 + \varepsilon) \cdot \operatorname{err}_2^k(x)$$

- Space is proportional to desired output sparsity which is typically $\ll n$.
- If x is k-sparse vector, it will be exactly reconstructed.
- The solution is based on CountSketch

Problem. Minimize
$$\text{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||z - x||_{2}$$
.

Sparse Recovery (via CountSkecth):

let CS be a CountSketch with $w = \frac{3k}{\varepsilon^2}$ and $d = \Omega(\log n)$

% during stream

process the stream and update CS

% after stream

compute all \tilde{x}_i output k coordinates with largest estimates

Problem. Minimize $\text{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||z - x||_{2}$.

Theorem. There is a linear sketch of size $\frac{k}{\varepsilon^2}$ polylog(n) that returns z such that $||z||_0 \le k$, and with high probability, $||x - z||_2 \le (1 + \varepsilon) \cdot \operatorname{err}_2^k(x)$

Lemma I. CountSketch w/ $w = \frac{3k}{\varepsilon^2}$ and $d = O(\log n)$ w.h.p. guarantees that $\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$

Lemma II. Let $x, y \in \mathbb{R}^n$ s.t. $||x - y||_{\infty} \le \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$. Then, $||x - z||_2 \le (1 + \varepsilon) \cdot \operatorname{err}_2^k(x)$, where z is as follows: $z_i = y_i$ for k largest absolute indices of y, and $z_i = 0$ for the rest.

Problem. Minimize
$$\text{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||z - x||_{2}$$
.

Lemma I. CountSketch w/
$$w = \frac{3k}{\varepsilon^2}$$
 and $d = O(\log n)$ w.h.p. guarantees that $\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$

Problem. Minimize $\text{err}_{2}^{k}(x) = \min_{z:||z||_{0} \le k} ||z - x||_{2}$.

Lemma II. Let $x, y \in \mathbb{R}^n$ s.t. $||x - y||_{\infty} \le \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$. Then, $||x - z||_2 \le (1 + \varepsilon) \cdot \operatorname{err}_2^k(x)$, where z is as follows: $z_i = y_i$ for k largest absolute indices of y, and $z_i = 0$ for the rest.

"Stronger" Guarantee for CountSketch

Lemma I. CountSketch w/
$$w = \frac{3k}{\varepsilon^2}$$
 and $d = O(\log n)$ w.h.p. guarantees that $\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$

Analysis has two parts:

- First, similarly to the earlier analysis of CS, is to bound the variance and apply Chernoff but this time for all items other than k largest coordinates.
- ullet Second, we show that there is no collision with k largest coordinates.

CountSketch Analysis

- Consider an item i and fix a row ℓ .
- Define $Z_{\ell} = g_{\ell}(i) \mathcal{C}[\ell, h_{\ell}(i)]$ the value of counter in row ℓ that i is hashed to.

For $j \in [n]$ let Y_j be the indicator r.v. that is 1 if $h_{\ell}(i) = h_{\ell}(j)$; i.e., i and j collide in h_{ℓ}

$$\mathbb{E}[Y_j] = \mathbb{E}[Y_j^2] = 1/w$$
 from pairwise independence of h_ℓ

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = g_{\ell}(i)f_i + \sum_{j \neq i} g_{\ell}(i)f_jY_j$$

$$\mathbb{E}[Z_{\ell}] = f_i + \sum_{j \neq i} \mathbb{E}[g_{\ell}(i)g_{\ell}(j)Y_j] \cdot f_j$$

$$= f_i \qquad // \text{ pairwise independence of } g_{\ell}$$

Since
$$\mathbb{E}[g_{\ell}(i)g_{\ell}(j)Y_j] = \mathbb{E}[g_{\ell}(i)g_{\ell}(j)]\mathbb{E}[Y_j] = 0$$

CountSketch Analysis: Variance

• Define $Z_{\ell} = g_{\ell}(i) C[\ell, h_{\ell}(i)]$ the value of counter in row ℓ that i is hashed to.

For $j \in [n]$ let Y_j be the indicator r.v. that is 1 if $h_\ell(i) = h_\ell(j)$; i.e., i and j collide in h_ℓ

$$\begin{split} \mathbb{E}\big[Y_j\big] &= \mathbb{E}\big[Y_j^2\big] = 1/w \text{ from pairwise independence of } h_\ell \\ &= \mathbb{E}\big[(Z_\ell - f_i)^2\big] \\ &= \mathbb{E}\left[\left(\sum_{j \neq i} g_\ell(i) g_\ell(j) Y_j f_j\right)^2\right] \\ &= \mathbb{E}\left[\sum_{j \neq i} g_\ell(i)^2 g_\ell(j)^2 Y_j^2 f_j^2 + \sum_{j,j' \neq i} g_\ell(i)^2 g_\ell(j) g_\ell(j') Y_j Y_{j'} f_j f_{j'}\right] \\ &= \sum_{j \neq i} f_j^2 \, \mathbb{E}[Y_j^2] \\ &\leq \|f\|_2^2/w \end{split}$$

Using Chebyshev, $\Pr[|Z_{\ell} - f_i| \ge \varepsilon ||f||_2] \le \frac{\operatorname{Var}(Z_{\ell})}{\varepsilon^2 ||f||_2^2} \le \frac{1}{\varepsilon^2 w} \le 1/3$

Refining Analysis

 $T_{\text{big}} = \{j \mid j \text{ is one of the } k \text{ largest coordinates (in absolute value)}\}$ $T_{\text{small}} = [n] \setminus T_{\text{big}}$

In particular,
$$\sum_{j \in T_{\text{small}}} x_j^2 = \left(\text{err}_2^k(x)\right)^2$$

Lemma.
$$\Pr\left[|Z_{\ell} - x_i| \ge \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)\right] \le 2/5.$$

Refining Analysis (contd.)

$$Z_{\ell} = g_{\ell}(i)C[\ell, h_{\ell}(i)] = x_i + \sum_{j \in T_{\text{big}}} g_{\ell}(i)g_{\ell}(j)Y_jx_j + \sum_{j \in T_{\text{small}}} g_{\ell}(i)g_{\ell}(j)Y_jx_j$$

Let A_{big} be the event that $h_{\ell}(j) = h_{\ell}(i)$ for some $j \in T_{\text{big}}$ and $j \neq i$.

Lemma. W.p. at least $1 - \varepsilon^2/3$, no big coordinate collide with i under h_{ℓ} .

- For every $j \neq i$, Y_j is the indicator variable whether j is colliding with i under h_ℓ
- $\Pr[Y_j] = \frac{1}{w} \le \frac{\varepsilon^2}{3k}$ (by pairwise independence of h_ℓ)
- Let $Y = \sum_{j \in T_{\text{big}}} Y_j$. By linearity of expectation, $\mathbb{E}[Y] \leq \varepsilon^2/3$.
- By Markov, $Pr[A_{big}] = Pr[Y \ge 1] \le \varepsilon^2/3$

Refining Analysis (contd.)

Similar to earlier analysis for CountSketch,

Lemma.
$$\Pr\left[\left|Z'_{\ell} - x_i\right| \ge \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)\right] \le 1/3.$$

Lemma. W.p. at least $1 - \varepsilon^2/3$, no big coordinate collide with i under h_{ℓ} .

So, by union bound, for sufficiently small values of ε ,

Lemma.
$$\Pr\left[|Z_{\ell} - x_i| \ge \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)\right] \le \frac{1}{3} + \frac{\varepsilon^2}{3} \le \frac{2}{5}$$
.

High probability estimates

Lemma.
$$\Pr\left[|Z_{\ell} - x_i| \ge \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)\right] \le \frac{1}{3} + \frac{\varepsilon^2}{3} \le \frac{2}{5}.$$

Recall \tilde{x}_i = median $\{Z_1, \dots, Z_d\}$,

• With $d = O(\log n)$, applying Chernoff bound,

$$\Pr\left[|\tilde{x}_i - x_i| \ge \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)\right] \le 1/n^2$$

• By union bound, w.p. at least 1 - 1/n, $|\tilde{x}_i - x_i| \le \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$ for all $i \in [n]$

Lemma. CountSketch with $w = \frac{3k}{\varepsilon^2}$ and $d = O(\log n)$ w.h.p. guarantees that $\forall i \in [n], \quad |\tilde{x}_i - x_i| \leq \frac{\varepsilon}{\sqrt{k}} \cdot \operatorname{err}_2^k(x)$

Dimensionality Reduction

JL Lemma and Subspace Embedding

Linear Sketching view of AMS-Sketch

- the sketch is mergeable.

$$-z_{S \cup T} = z_S + z_T$$

How to get the final estimate from the sketch *z*?

$$\hat{F}_2 = \text{median}_{g=1...k} \left(\frac{1}{t} \sum_{j \in G_g} z_j^2 \right)$$

where $G_1, ..., G_k$ are partition of the m rows (m = tk).

AMS- F_2 -Sketch:

let $m = k \times t$

let Π be a $m \times n$ matrix with $\{-1, +1\}$ entries

- (i) rows are independent and
- (ii) in each row, entries are 4-wise indep.

 $z \leftarrow 0$ is a $m \times 1$ vector initialized to **0**

foreach item i_i in the stream do:

$$z \leftarrow z + Me_{i_j}$$

return z as sketch

Linear Sketching view of AMS-Sketch (contd.)

Geometric Interpretation

Given a vector $x \in \mathbb{R}^n$, let M be the random map such that z = Mx has the following properties:

- $\mathbb{E}[z_i] = 0$, $\mathbb{E}[z_i^2] = ||x||_2^2$ for each $i \in [k]$ where k is the number of rows.
- Each z_i^2 is an estimate of length of x in Euclidean norm.
- With $k=\Theta(\varepsilon^{-2}\log(1/\delta))$, a $(1\pm\varepsilon)$ -estimate of $\|x\|_2$ can be driven via averaging and median technique.

In other words, x is compressed as a k-dimensional vector z that contains information to estimate $||x||_2$.

Do we need median trick? Is averaging enough?

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

- i. We can instead choose entries from $\{-1, +1\}$ as well.
- ii. Unlike AMS sketch, entries of Π are independent.

Basically, we've projected x from \mathbb{R}^d into \mathbb{R}^k while preserving length to a $(1 \pm \varepsilon)$ -factor.

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

- i. We can instead choose entries from $\{-1, +1\}$ as well.
- ii. Unlike AMS sketch, entries of Π are independent.

Basically, we've projected x from \mathbb{R}^d into \mathbb{R}^k while preserving length to a $(1 \pm \varepsilon)$ -factor.

Distributional Johnson-Lindenstrauss Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\|\frac{1}{\sqrt{k}}\Pi x\right\|_2 = (1 \pm \varepsilon)\|x\|_2$$

- i. We can instead choose entries from $\{-1, +1\}$
- ii. Unlike AMS sketch, entries of Π are independe

Basically, we've projected x from \mathbb{R}^d into \mathbb{R}^k while a $(1 \pm \varepsilon)$ -factor.

Dimensionality Reduction

Metric JL Lemma. Let $v_1, ..., v_n$ be n points in \mathbb{R}^d . For any $\varepsilon \in (0, \frac{1}{2})$, there is a linear map $f: \mathbb{R}^d \to \mathbb{R}^k$ where $k \leq 8\varepsilon^{-2} \ln n$, such that for all $i \neq j \in [n]$,

$$(1 - \varepsilon) \|v_i - v_j\|_2 \le \|f(v_i) - f(v_j)\|_2 \le (1 + \varepsilon) \|v_i - v_j\|_2$$

- The linear map is simply given the random matrix Π ; i.e., $f(v) = \Pi v$
- The mapping is oblivious (to data)

Proof. Apply DJL with $\delta = n^{-2}$, and union bound over the $\binom{n}{2}$ vectors $\boldsymbol{v_i} - \boldsymbol{v_j}$, for all pairs $\boldsymbol{i} \neq \boldsymbol{j} \in [\boldsymbol{n}]$.

Proof of DJL and Metric JL

Normal Distribution (PDF)

Normal Distribution (CDF)

Sum of Independent Normal Distribution

Lemma. Let *X* and *Y* be independent random variables.

Suppose
$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then, $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Corollary. Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY where a,b are arbitrary real numbers. Then, $Z \sim \mathcal{N}(\mathbf{0}, a^2 + b^2)$

Normal distribution is a *stable distribution*: adding two indep. r.v. within the same class gives a distribution inside the class. Other exist and useful in F_p estimation for $p \in (0, 2)$.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distributions.

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_i \sim \mathcal{N}(0,1)$ for each i, and $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2 + \dots + y_k^2}{2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^k e^{-\|y\|_2/2}$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used to generate a random unit vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated around k.

Random Gaussian Vector

One can consider higher dimensional normal distributions, also called multivariate Gaussian (or Normal) distribution

Random Gaussian vector: $Z = (Z_1, ..., Z_k)$ if $Z_1, ..., Z_k$ are independent.

- Density function is $f(y_1, ..., y_k) = \left(\frac{1}{\sqrt{2\pi}}\right)^k \exp\left(-\frac{y_1^2}{\sqrt{2\pi}}\right)^k$
- Only depends on $||y||_2$
- The distribution is **centrally symmetric**. (can be used vector in \mathbb{R}^k). $U = \frac{Z}{\|Z\|}$ is uniform on the unit sphere.
- $\mathbb{E}[||Z||_2^2] = \sum_i \mathbb{E}[Z_i^2] = k$. Length is concentrated are

Concentration of sum of squares of normally distributed variables

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed random variables,

$$Y = \sum_{1 \le i \le k} Z_i^2$$
 where each $Z_i \sim \mathcal{N}(0,1)$

Lemma. Let $Z_1, ..., Z_k$ be independent $\mathcal{N}(0,1)$ r.v.s. and let $Y = \sum_i Z_i^2$. Then, for $\varepsilon \in (0,1/2)$, there is a constant c such that,

$$\Pr[(1-\varepsilon)^2 k \le Y \le (1+\varepsilon)^2 k] \ge 1-2e^{c\varepsilon^2 k}$$

• Recall Chernoff for bounded independent non-negative rv. Z_i^2 are not bounded, however, Chernoff bounds extend to sums of random variables with exponentially decaying tails.

Proof of DJL Lemma

Distributional JL Lemma. Fix $x \in \mathbb{R}^d$, and let $\Pi \in \mathbb{R}^{k \times d}$ be a matrix whose entries are chosen independently according to standard normal distribution $\mathcal{N}(\mathbf{0}, \mathbf{1})$. If $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, then with probability at least $1 - \delta$,

$$\left\| \frac{1}{\sqrt{k}} \Pi x \right\|_2 = (1 \pm \varepsilon) \|x\|_2$$

Proof of DJL Lemma

Without loss of generality, assume $||x||_2 = 1$. $Z_i = \sum_{j=1}^{n} \prod_{ij} x_i$

- $\blacksquare Z_i \sim \mathcal{N}(0,1)$
- Z is a random Gaussian vector in k dimensions.
- $Y = \sum_i Z_i^2$. Y's distribution is $\chi^2(k)$ since each coordinate is i.i.d. Gaussians.
- Hence, $\Pr[(1-\varepsilon)^2 k \le Y \le (1+\varepsilon)^2 k] \ge 1-2e^{c\varepsilon^2 k}$
- Since $k = \Omega(\varepsilon^{-2} \log(1/\delta))$, $\Pr[(1 \varepsilon)^2 k \le Y \le (1 + \varepsilon)^2 k] \ge 1 \delta$
- Therefore, $\|z\|_2 = \sqrt{Y/k}$ has the property that with probability 1δ , $\|z\|_2 = (1 \pm \varepsilon) \|x\|_2$