Algorithms for Big Data (FaLL 25)

Lecture 8
COUNTSKETCH & SKETCHING APPLICATIONS

ALl VAKILIAN (vakilian@vt.edu)

Algorithms

for Big Data
VIRGINIA

Basic Hashing Idea
Heavy Hitters Problem: Find all items i such that f; = m/k.

* Let by, ..., by, be the k heavy hitters (at most k)
* Suppose we pick a hash function h: [n] — [ck] for some ¢ > 1
* h maps the heavy hitters into different buckets (k balls into ck bins)

* Then, ideally, we would like to use the count of items in each bucket as
an estimate for the frequency of one heavy hitters.

Repeating this idea with independent hashes improves the estimate

CountMin Sketch [Cormode-Muthukrishnan]

* d pairwise independent hash functions h4, ..., h;; each [n] - [wW]
* Equivalently, a table C with d rows and w columns.

* Store one counter per entry in the table, which keep the aggregate
frequency of items mapped to the entry by the corresponding hash
function. C|£, s] is the counter for bucket s in hash function h,.

* Let f € R" be the final frequency vector. For £ € |d],s € [w],
Cle,s] = Zi:hg(i):sfi
o Forevery ¥ € |d], C|¥, h,(i)] is an over-estimate of f;.

o We have d such estimate, how good is the quality of best of them?

CountMin Sketch in Streaming

* Each of d estimates for f; is

C / CountMin Sketch (stream):
overcounting its frequency

let iy, ..., h;, be pairwise independent
hash functions from [n] — [w]

* Picking the minimum such

estimate is reasonable foreach item e; = (i, A) in the stream do:

for{ = 1toddo:
ClL, he(ir)] < C[€, he(ie)] + A

//frequency estimates

foreach i € [n], set f; = {1}‘2[51] ClZ, hp(i)]

CountMin Sketch: Main Property

Theorem. Consider strict turnstile streaming (i.e., always f = 0). Let d =
Q(log%) and w > % Then, for any fixed i € |n], f; < f;, and

Pr(f; > fi+&llfll1] < 6

e Unlike Misra-Gries, CountMin overestimates.

* |tems are not stored (can be recovered via queries).

* Handles deletion (works in strict turnstile model)

log%

* Space complexity: O(- log m) bits

&E

CountMin: Analysis

* Consider an item i and fix a row ¥.
* Define Z, = C[#, h,(i)] the value of counter in row £ that i is hashed to.

E[Z,] = fi + Xj2i Pr[he () = he(D] - f;
= fi + Zjii% - f; // pairwise independence of h,
<fi+ ellfll/2 /| w>2/e

Applying Markov, Pr[Z, — f; = €||fIl{] < 1/2

Since d hash functions are independent,

Primin Zp 2 f; + ellf 1] < ~ <8 //d=20(log)

N .
CountMin Sketch SPace Complexity: 0(Clognlogm) bits

Theorem. Consider strlct turnstile streaming (i.e., always f = 0). Let d
= Q(log)and w> = Then for any fixed i € [n], f; < f;, and

Pr(f; > fi+ellfll] < &

* Setting § = 1/n?, a CountMin with O(logn) rows and 0(1/¢) columns,

for every i € [n], i
Prif; > f; + ellfll,] < 1/n?

* By union bound over all n items, with probability = 1 — 1/n, for all i € |[n]

fi < fi+ellfll

CountMin is a Linear Sketch

ojo|o|1]|0 fi fa 0/0|0|1]|0 fi fa
0|1]|1]|0]0 xfz — P 0(171100 x L| BB | 2t/
1/0(0|0]1 fa fi+fs 1(0(0]0]|1 f3 fitfs
E 5 5 % 8 4 11001071 fa fitfs
11331 [x o[1]o[1fo} [fs fo +
o[o]1]o]o i
I 1|1]ofo]o fi+f
E E E 5§
£ £ £ £ = 0(0j111(0]"3-|-f4
olojo|o|1 fo

hash function h; as a Matrix-Vector Multiplication
Mwsam fmx CountMin as a Matrix-Vector Multiplication

l—[(k-w)xm fmxl

CountSketch

e Simialr to CountMin, keeps track
of a table of kK X w counters

* Inspired by AMS sketch, assign
u.a.r signs {—1,+1} to items

* Counters can get even negative

' CountSketch (stream):

let hq, ..., h; be pairwise independent hash
functions from [n] - [w]

let g4, ..., g4 be pairwise independent hash
functions from [n] - {—1,+1}

foreach item e; = (i;, A;) in the stream do:
for £ = 1 to k do:
Cl, he(ir)] < CLE, he(i)] + 90(it) - A

//frequency estimates

foreachi € [n], set f; = m{eeC[i]ic?n{gg(l’) - C[£,he(D]} |

Why CountSkecth is a Linear Sketch?

o|o|o|-1]0 fi —f o|o|o0-1]0 f, —f
_ 0|-1|1 0 _
PP l0l e | =B LS R\ = | Lth
1{o{ofo0]1 o{o|o|1 Y
_ _ fs fitfs fa 1+ fs
x x —1{0|0|0]|1
E :5 E :5 E fa o|l1]|0|-1|0 fa —fit+/fs
2 3 3 2 Z fs ofo|-1|{0]0 fs f2—fa
2 2 2 g ¢
T E RGOS 1|-1{0 |0 |0 —f3
A o [o]-1]1 [o
o N m % in oo h—F
E E E E E —
g g g 8 8 —fs + fa
—/fs
hash function h; as a Matrix-Vector Multiplication CountMin as a Matrix-Vector Multiplication

wam fmxl l—[(k-w)xm fm><1

CountSketch: Main Property

Theorem. Consider strict turnstile streaming (i e.,always f = 0). Letd =
Q(log)and w > >. Then, for any fixed i € | [f,] = f;,and

Pr(|f; — fi| = €||f||z] <

Comparison to CountMin

* Erroris w.rt. ||f]|, instead of ||f]||{. Note ||f||, < |[f]l{, and in some cases ||f]||, < ||f]l1

* Space complexity: O(Ei2 -logn) bits

CountSketch Analysis

* Consider an item i and fix a row ¥.

 Define Z, = g,(i)C[¥, h,(i)] the value of counter in row £ that i is hashed to.

For j € [n] let Y} be the indicator rv. that is 1 if hy(i) = h,(j); i.e., i and j collide in h,
IE[Y]] = [E[YJZ] = 1/w from pairwise independence of h,

Zp=geCL,h,(D] = g,(Dfi + X2 9:DF;Y;

E[Ze] = fi + X2 Elge(Dg:(DY;] - f;
= f, // pairwise independence of g,

Since E|g,(0)g,(NY;| = Elg,() g, (D E[Y;] =0

CountSketch Analysis: Variance

 Define Z, = g,(i)C[¥£, h,(i)] the value of counter in row £ that i is hashed to.
For j € [n] let Y} be the indicator rv. that is 1 if h,(i) = h,(j); i.e., i and j collide in h,
IE[Y]] = [E[sz] = 1/w from pairwise independence of h,

= E[(Z,; — f1)?]

[: : 2

=E _(Zjiig{’(l)g{’(])yjfj)]
=E _Zjiigf(i)zg{’(j)zyjzsz + Zj,j’;tig#(i)zgf(j)gf(j,)yjyj’fjfj’]

— qutisz [E[sz]

< lIflI3/w
Using Chebyshev, Pr[|Z, — f;| = ¢lIfl,] <

Var(Z,) 1
2|1 fll5 = e2w =1/3

CountSketch: Concentration

Var(Z{))< 1
g2|fll5 — 2w

Using Chebyshev, Pr[|Z, — f;| = €llf|l,] <

<1/3

Then, by Chernoff bound,
Pr[|median{Zy, ...,Z4} — fi| = €llfll,] < e ¥ < §

Applications of CountMin &
CountSketch

Heavy Hitters: Point Queries

Heavy Hitters Problem. Find all items i such that f; > «af|f||; for a €
(0,1].

e output: any i such that f; = (a — ¢) - ||f |l

First Attempt:

Using CountMin, go over each i € [n] and check if f; > (a — e) - lfll1

What is the computation time?
* To compute the frequency of each item, requires O(logn) time.
* Overall, O(nlogn) time.

Can we solve it in sublinear time in n?

Dyadic (Hierarchical) Search

Idea. Hierarchical data structure of CountMin sketches
* Number of levels is L = [logn]| + 1. (level O to level L — 1)

* At level £ € {0, ..., € — 1}
* There are 2? disjoint intervals (or buckets), each of length B, = [n/ZL].
* Interval (or bucket) index of item i is

b,(i) =1+ 1
e\1l) = B{)_

We maintain one CountMin per each level. In each level £, we have 2
super-items corresponding to each of the buckets in this level.

vb € [2°], epp = {j | b;(j) = b} and freq(e;sp) = X;.5,(jy=b /]

e{1,..,249

Dyadic (Hierarchical) Search

How big is the CountMin in level £?
* Set the widthasw = 0(1/¢)

e Set the #rows as d = O (L log (%)) (for overall < § failure probability)

The overall number of counters is L x 0 (élog (%)) =0(g ' -logn-log1/8)

How to update the CountMin (CM,) when a new item (i, A) arrives?

* Foreachlevel £ =0, ..., L — 1:
= Compute the bucket id b = b, (i)
* Update CM, for super-item e,

CountMin updates during
the stream

Dyadic (Hierarchical) Search

Heavy Hitters Problem. Find all items i such that f; = a||f||; for @ € (0,1].
* output: any i such that f; = (a — ¢) - ||f|l4

How to find Heavy Hitters? Hierarchical CountMin Query:

How large is candidate set? | Q = {(0,1)}
while Q is non-empty

* Atany level £
anyl Ve pop (£,b) from Q
* = super-items expand query CM, to estimate freq(e,y)
e Similarly, < 2 in candidate set if freq(eg,b) < al|f|l1, prune (do not expand)

elseif f = L — 1, add b to the candidate set
else push its 2 children (¢ + 1,2b — 1) & (¢ + 1,2b) to Q
' return candidate set

Finally, verify the frequency of
those in candidate set by CM;

Dyadic (Hierarchical) Search

How to find Heavy Hitters?
How large is candidate set?

 Atany level Z,

1 :
e < — super-items expand

- 1, .
* Similarly, < —in candidate set

Finally, verify the frequency of
those in candidate set by CM;

" Hierarchical CountMin Query:
Q ={(0,1)}
while Q is non-empty
pop (£,b) from Q
query CM, to estimate freq(e,y,)
if freq(eg,b) < a||f |1, prune (do not expand)
elseif £ = L — 1, add b to the candidate set
else push its 2 children (¢ + 1,2b — 1) & (¢ + 1,2b) to Q

return candidate set

How many estimate of freq(e,y,) is computed?

* O(1/a) per row; overall O (g) = 0(% - log n) many estimates is computed

* Overall runtime is 0(% - logn) (improving upon the naive O(nlogn))

Range Queries
Range queries: given i, j € [n], output ;. ; f7

Examples
* In networking, database, or discretization of a signal value

There are ((n?) potential range queries. A naive way requires O (i — j)
which could be as large as O(n) queries to the CountMins Sketch.

L% 1isi
Can we do better? E%’ In HW 1: You'll answer this question. J

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

* Data is often explicitly sparse.
Examples: graphs, matrices, vectors, documents (as word vectors)

* Data is often /implicitly sparse: in a different representation the data is
explicitly sparse.
Examples: signals/images, topics, ...
Algorithmic advantage
* To improve performance (speed, quality, memory, ...)

* Find sparse representation to reveal information about data
Examples: topics in documents, frequencies in Fourier analysis

Sparse Recovery

Problem. Given a vector/signal x € R"™, find a sparse vector z
approximating x.

More formally, given x € R™ and integer k = 1, find z s.t. z has at most k
non-zeros (||z]lp < k) s.t. ||z — x]|,, is minimized for some p > 1.

What is the optimal offline solution?

How to solve in strict turnstile streaming for p = 2 using O (k) space?

	Algorithms for Big Data (Fall 25)
	Basic Hashing Idea
	CountMin Sketch [Cormode-Muthukrishnan]
	CountMin Sketch in Streaming
	CountMin Sketch: Main Property
	CountMin: Analysis
	CountMin Sketch
	CountMin is a Linear Sketch
	CountSketch
	Why CountSkecth is a Linear Sketch?
	CountSketch: Main Property
	CountSketch Analysis
	CountSketch Analysis: Variance
	CountSketch: Concentration
	Applications of CountMin & CountSketch
	Heavy Hitters: Point Queries
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Range Queries
	Sparse Recovery
	Sparse Recovery

