
Algorithms for Big Data (FALL 25)
Lecture 8

COUNTSKETCH & SKETCHING APPLICATIONS

ALI VAKILIAN (vakilian@vt.edu)



Basic Hashing Idea

Heavy Hitters Problem: Find all items 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝑚𝑚/𝑘𝑘.

• Let 𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 be the 𝑘𝑘 heavy hitters (at most 𝑘𝑘)
• Suppose we pick a hash function ℎ: 𝑛𝑛 → [𝑐𝑐𝑐𝑐] for some 𝑐𝑐 > 1
• ℎ maps the heavy hitters into different buckets (𝑘𝑘 balls into 𝑐𝑐𝑐𝑐 bins)
• Then, ideally, we would like to use the count of items in each bucket as 

an estimate for the frequency of one heavy hitters.

Repeating this idea with independent hashes improves the estimate

• Let 𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 be the 𝑘𝑘 heavy hitters (at most 𝑘𝑘)
• Suppose we pick a hash function ℎ: 𝑛𝑛 → [𝑐𝑐𝑐𝑐] for some 𝑐𝑐 > 1
• ℎ maps the heavy hitters into different buckets (𝑘𝑘 balls into 𝑐𝑐𝑐𝑐 bins)
• Then, ideally, we would like to use the count of items in each bucket as 

an estimate for the frequency of one heavy hitters.



CountMin Sketch [Cormode-Muthukrishnan]

• 𝑑𝑑 pairwise independent hash functions ℎ1, … , ℎ𝑑𝑑 ; each 𝑛𝑛 → [𝑤𝑤]
• Equivalently, a table 𝐶𝐶 with 𝑑𝑑 rows and 𝑤𝑤 columns.
• Store one counter per entry in the table, which keep the aggregate 

frequency of items mapped to the entry by the corresponding hash 
function. 𝐶𝐶[ℓ, 𝑠𝑠] is the counter for bucket 𝑠𝑠 in hash function ℎℓ.

• Let 𝑓𝑓 ∈ ℝ𝑛𝑛 be the final frequency vector. For ℓ ∈ 𝑑𝑑 , 𝑠𝑠 ∈ [𝑤𝑤],
𝐶𝐶 ℓ, 𝑠𝑠 = ∑𝑖𝑖:ℎℓ 𝑖𝑖 =𝑠𝑠 𝑓𝑓𝑖𝑖 

o For every ℓ ∈ [𝑑𝑑], 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)] is an over-estimate of 𝑓𝑓𝑖𝑖 .
o We have 𝑑𝑑 such estimate, how good is the quality of best of them?



CountMin Sketch in Streaming

• Each of 𝑑𝑑 estimates for 𝑓𝑓𝑖𝑖 is 
overcounting its frequency

• Picking the minimum such 
estimate is reasonable.

CountMin Sketch (stream):
     let ℎ1, … ,ℎ𝑘𝑘 be pairwise independent   

hash functions from 𝑛𝑛 → [𝑤𝑤] 
     
     foreach item 𝑒𝑒𝑡𝑡 = (𝑖𝑖𝑡𝑡 ,Δ𝑡𝑡) in the stream do:        

for ℓ = 1 to 𝑑𝑑 do:
  𝐶𝐶[ℓ,ℎℓ(𝑖𝑖𝑡𝑡)] ← 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖𝑡𝑡)] + Δ𝑡𝑡

      //frequency estimates
     foreach 𝑖𝑖 ∈ [𝑛𝑛], set 𝑓𝑓𝑖𝑖 = min

ℓ∈[𝑑𝑑]
𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)]



CountMin Sketch: Main Property

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 
𝑘𝑘 = Ω log 1

𝛿𝛿  and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹

• Unlike Misra-Gries, CountMin overestimates.

• Items are not stored (can be recovered via queries).
• Handles deletion (works in strict turnstile model)

• Space complexity: 𝑂𝑂(
log 1

𝛿𝛿
𝜀𝜀 

⋅ log𝑚𝑚) bits

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑑𝑑 =
Ω log 1

𝛿𝛿  and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹



CountMin: Analysis

• Consider an item 𝑖𝑖 and fix a row ℓ. 
• Define 𝑍𝑍ℓ = 𝐶𝐶[ℓ,ℎℓ 𝑖𝑖 ] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 Pr[ℎℓ 𝑗𝑗 = ℎℓ(𝑖𝑖)] ⋅ 𝑓𝑓𝑗𝑗 

𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖
1
𝑤𝑤
⋅ 𝑓𝑓𝑗𝑗   // pairwise independence of ℎℓ 

𝔼𝔼 𝑍𝑍ℓ ≤ 𝑓𝑓𝑖𝑖 +  𝜀𝜀 𝑓𝑓 1/2   // 𝑤𝑤 > 2/𝜀𝜀 

Applying Markov, Pr[𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 1] ≤ 1/2
Since 𝑑𝑑 hash functions are independent, 

Pr[min
ℓ∈ 𝑑𝑑

𝑍𝑍ℓ ≥ 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1] ≤ 1
2𝑑𝑑
≤ 𝛿𝛿 // 𝑑𝑑 = Ω log 1

𝛿𝛿   



Space Complexity: 𝑂𝑂(1
𝜀𝜀

log𝑛𝑛 log𝑚𝑚) bitsCountMin Sketch

• Setting 𝛿𝛿 = 1/𝑛𝑛2, a CountMin with 𝑂𝑂(log𝑛𝑛) rows and 𝑂𝑂(1/𝜀𝜀) columns, 
for every 𝑖𝑖 ∈ [𝑛𝑛],

Pr 𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1 ≤ 1/𝑛𝑛2

• By union bound over all 𝑛𝑛 items, with probability ≥ 1 − 1/𝑛𝑛, for all 𝑖𝑖 ∈ [𝑛𝑛]

𝑓𝑓𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 + 𝜀𝜀 𝑓𝑓 1

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑑𝑑
= Ω log 1

𝛿𝛿  and 𝑤𝑤 > 2
𝜀𝜀. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝒇𝒇𝒊𝒊 ≤ �𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 ≥ 𝒇𝒇𝒊𝒊 + 𝜺𝜺 𝒇𝒇 𝟏𝟏 ≤ 𝜹𝜹



CountMin is a Linear Sketch

hash function ℎ𝑖𝑖 as a Matrix-Vector Multiplication
Π𝑤𝑤×𝑚𝑚 𝒇𝒇𝑚𝑚×1

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 1 0
0 1 1 0 0
1 0 0 0 1

𝑓𝑓4
𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 1 0
0 1 1 0 0
1 0 0 0 1

𝑓𝑓4
𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

𝑓𝑓1 + 𝑓𝑓5
𝑓𝑓2 + 𝑓𝑓4
𝑓𝑓3

𝑓𝑓1 + 𝑓𝑓2
𝑓𝑓3 + 𝑓𝑓4
𝑓𝑓5

CountMin as a Matrix-Vector Multiplication
Π 𝑘𝑘⋅𝑤𝑤 ×𝑚𝑚 𝒇𝒇𝑚𝑚×1

Ite
m

 1
 is

 h
as

he
d 

to
 b

uc
ke

t 3

Ite
m

 2
 is

 h
as

he
d 

to
 b

uc
ke

t 2

Ite
m

 3
 is

 h
as

he
d 

to
 b

uc
ke

t 2

Ite
m

 4
 is

 h
as

he
d 

to
 b

uc
ke

t 1

Ite
m

 5
 is

 h
as

he
d 

to
 b

uc
ke

t 3



CountSketch

• Simialr to CountMin, keeps track 
of a table of 𝑘𝑘 × 𝑤𝑤 counters

• Inspired by AMS sketch, assign 
u.a.r signs {−1, +1} to items

• Counters can get even negative

 

CountSketch (stream):
     let ℎ1, … ,ℎ𝑑𝑑 be pairwise independent hash 

functions from 𝑛𝑛 → [𝑤𝑤] 
     let 𝑔𝑔1, … ,𝑔𝑔𝑑𝑑 be pairwise independent hash 

functions from 𝑛𝑛 → {−1, +1}     

     foreach item 𝑒𝑒𝑡𝑡 = (𝑖𝑖𝑡𝑡 ,Δ𝑡𝑡) in the stream do:        
for ℓ = 1 to 𝑘𝑘 do:

  𝐶𝐶 ℓ,ℎℓ 𝑖𝑖𝑡𝑡 ← 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖𝑡𝑡 + 𝑔𝑔ℓ 𝑖𝑖𝑡𝑡 ⋅ Δ𝑡𝑡

      //frequency estimates
     foreach 𝑖𝑖 ∈ [𝑛𝑛], set 𝑓𝑓𝑖𝑖 = median

ℓ∈[𝑘𝑘]
{𝑔𝑔ℓ 𝑖𝑖 ⋅ 𝐶𝐶[ℓ,ℎℓ(𝑖𝑖)]}



Why CountSkecth is a Linear Sketch?

hash function ℎ𝑖𝑖 as a Matrix-Vector Multiplication
Π𝑤𝑤×𝑚𝑚 𝒇𝒇𝑚𝑚×1

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 −1 0

0 −1 1 0 0

1 0 0 0 1

−𝑓𝑓4
−𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4
𝑓𝑓5

0 0 0 −1 0

0 −1 1 0 0

1 0 0 0 1

−𝑓𝑓4
−𝑓𝑓2 + 𝑓𝑓3
𝑓𝑓1 + 𝑓𝑓5

−1 0 0 0 1

0 1 0 −1 0

0 0 −1 0 0

1 −1 0 0 0

0 0 −1 1 0

0 0 0 0 −1

−𝑓𝑓1 + 𝑓𝑓5
𝑓𝑓2 − 𝑓𝑓4
−𝑓𝑓3

𝑓𝑓1 − 𝑓𝑓2
−𝑓𝑓3 + 𝑓𝑓4
−𝑓𝑓5

CountMin as a Matrix-Vector Multiplication
Π 𝑘𝑘⋅𝑤𝑤 ×𝑚𝑚 𝒇𝒇𝑚𝑚×1

Ite
m

 1
 is

 h
as

he
d 

to
 b

uc
ke

t 3

Ite
m

 2
 is

 h
as

he
d 

to
 b

uc
ke

t 2
 ×

 -1

Ite
m

 3
 is

 h
as

he
d 

to
 b

uc
ke

t 2

Ite
m

 4
 is

 h
as

he
d 

to
 b

uc
ke

t 1
 ×

 -1

Ite
m

 5
 is

 h
as

he
d 

to
 b

uc
ke

t 3



CountSketch: Main Property

Comparison to CountMin
• Error is w.r.t. 𝑓𝑓 2 instead of 𝑓𝑓 1. Note 𝑓𝑓 2 ≤ 𝑓𝑓 1, and in some cases 𝑓𝑓 2 ≪ 𝑓𝑓 1

• Space complexity: 𝑂𝑂( 1
𝜀𝜀2 
⋅ log𝑛𝑛) bits

Theorem. Consider strict turnstile streaming (i.e., always 𝑓𝑓 ≥ 0). Let 𝑑𝑑 =
Ω log 1

𝛿𝛿  and 𝑤𝑤 > 3
𝜀𝜀2

. Then, for any fixed 𝑖𝑖 ∈ [𝑛𝑛], 𝔼𝔼 �𝒇𝒇𝒊𝒊 = 𝒇𝒇𝒊𝒊, and

𝐏𝐏𝐏𝐏 �𝒇𝒇𝒊𝒊 − 𝒇𝒇𝒊𝒊 ≥ 𝜺𝜺 𝒇𝒇 𝟐𝟐 ≤ 𝜹𝜹



CountSketch Analysis

• Consider an item 𝑖𝑖 and fix a row ℓ. 
• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖 ] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ
𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ 
𝑍𝑍ℓ = 𝑔𝑔ℓ 𝑖𝑖 𝐶𝐶 ℓ,ℎℓ 𝑖𝑖 = 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑓𝑓𝑗𝑗𝑌𝑌𝑗𝑗  

𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖 + ∑𝑗𝑗≠𝑖𝑖 𝔼𝔼[𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗] ⋅ 𝑓𝑓𝑗𝑗 
𝔼𝔼 𝑍𝑍ℓ = 𝑓𝑓𝑖𝑖   // pairwise independence of 𝑔𝑔ℓ 
Since 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝔼𝔼 𝑌𝑌𝑗𝑗 = 0



CountSketch Analysis: Variance

• Define 𝑍𝑍ℓ = 𝑔𝑔ℓ(𝑖𝑖)𝐶𝐶[ℓ,ℎℓ 𝑖𝑖 ] the value of counter in row ℓ that 𝑖𝑖 is hashed to.
For 𝑗𝑗 ∈ [𝑛𝑛] let 𝑌𝑌𝑗𝑗 be the indicator r.v. that is 1 if ℎℓ 𝑖𝑖 = ℎℓ(𝑗𝑗); i.e., 𝑖𝑖 and 𝑗𝑗 collide in ℎℓ
𝔼𝔼 𝑌𝑌𝑗𝑗 = 𝔼𝔼 𝑌𝑌𝑗𝑗2 = 1/𝑤𝑤 from pairwise independence of ℎℓ 
Var(𝑍𝑍ℓ) = 𝔼𝔼 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 2  

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 𝑔𝑔ℓ 𝑗𝑗 𝑌𝑌𝑗𝑗𝑓𝑓𝑗𝑗
2  

Var(𝑍𝑍ℓ) = 𝔼𝔼 ∑𝑗𝑗≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 2𝑌𝑌𝑗𝑗2𝑓𝑓𝑗𝑗2 + ∑𝑗𝑗,𝑗𝑗′≠𝑖𝑖 𝑔𝑔ℓ 𝑖𝑖 2𝑔𝑔ℓ 𝑗𝑗 𝑔𝑔ℓ 𝑗𝑗′ 𝑌𝑌𝑗𝑗𝑌𝑌𝑗𝑗′𝑓𝑓𝑗𝑗𝑓𝑓𝑗𝑗′  

Var(𝑍𝑍ℓ) =  ∑𝑗𝑗≠𝑖𝑖 𝑓𝑓𝑗𝑗2 𝔼𝔼[𝑌𝑌𝑗𝑗2] 
Var(𝑍𝑍ℓ) ≤ 𝑓𝑓 2

2/𝑤𝑤 

Using Chebyshev, Pr 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ Var(𝑍𝑍ℓ)
𝜀𝜀2 𝑓𝑓 2

2 ≤
1

𝜀𝜀2𝑤𝑤
≤ 1/3



CountSketch: Concentration

Using Chebyshev, Pr 𝑍𝑍ℓ − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ Var(𝑍𝑍ℓ)
𝜀𝜀2 𝑓𝑓 2

2 ≤
1

𝜀𝜀2𝑤𝑤
≤ 1/3

Then, by Chernoff bound,

Pr median 𝑍𝑍1, … ,𝑍𝑍𝑑𝑑 − 𝑓𝑓𝑖𝑖 ≥ 𝜀𝜀 𝑓𝑓 2 ≤ 𝑒𝑒−Ω(𝑑𝑑) ≤ 𝛿𝛿



Applications of CountMin & 
CountSketch



Heavy Hitters: Point Queries

Heavy Hitters Problem. Find all items 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝛼𝛼 𝑓𝑓 1 for 𝛼𝛼 ∈
(0,1].
• output: any 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝛼𝛼 − 𝜀𝜀 ⋅ 𝑓𝑓 1

First Attempt:
Using CountMin, go over each 𝑖𝑖 ∈ [𝑛𝑛] and check if 𝑓𝑓𝑖𝑖 ≥ (𝛼𝛼 − 𝜀𝜀) ⋅ 𝑓𝑓 1
What is the computation time?

• To compute the frequency of each item, requires 𝑂𝑂(log𝑛𝑛) time.
• Overall, 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time.

Can we solve it in sublinear time in 𝒏𝒏?



Dyadic (Hierarchical) Search

Idea. Hierarchical data structure of CountMin sketches
• Number of levels is 𝐿𝐿 = log𝑛𝑛 + 1. (level 0 to level 𝐿𝐿 − 1)
• At level ℓ ∈ {0, … , ℓ − 1}

• There are 2ℓ disjoint intervals (or buckets), each of length 𝐵𝐵ℓ = 𝑛𝑛/2𝐿𝐿 .
• Interval (or bucket) index of item 𝑖𝑖 is

𝑏𝑏ℓ 𝑖𝑖 = 1 +
𝑖𝑖 − 1
𝐵𝐵ℓ

∈ {1, … , 2ℓ}

We maintain one CountMin per each level. In each level ℓ, we have 2ℓ 
super-items corresponding to each of the buckets in this level.
∀𝐛𝐛 ∈ [2ℓ],  𝑒𝑒ℓ,𝐛𝐛 = 𝑗𝑗 𝑏𝑏ℓ 𝑗𝑗 = 𝑏𝑏} and 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟(𝑒𝑒ℓ,𝐛𝐛) = ∑𝑗𝑗:𝑏𝑏ℓ 𝑗𝑗 =𝐛𝐛 𝑓𝑓𝑗𝑗



Dyadic (Hierarchical) Search

How big is the CountMin in level ℓ?
• Set the width as 𝑤𝑤 = 𝑂𝑂(1/𝜀𝜀)

• Set the #rows as 𝑑𝑑 = 𝑂𝑂 𝐿𝐿 log 1
𝛿𝛿

 (for overall ≤ 𝛿𝛿 failure probability)

The overall number of counters is 𝑳𝑳 × 𝑶𝑶 𝑳𝑳
𝜺𝜺
𝐥𝐥𝐥𝐥𝐥𝐥 𝟏𝟏

𝜹𝜹
= 𝑶𝑶(𝜺𝜺−𝟏𝟏 ⋅ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏 ⋅ 𝐥𝐥𝐥𝐥𝐥𝐥 𝟏𝟏/𝜹𝜹)

How to update the CountMin (CMℓ) when a new item (𝒊𝒊,𝚫𝚫) arrives?
• For each level ℓ = 0, … , 𝐿𝐿 − 1:
 Compute the bucket id 𝐛𝐛 = 𝑏𝑏ℓ(𝑖𝑖)
 Update CMℓ for super-item 𝑒𝑒ℓ,𝐛𝐛

CountMin updates during 
the stream



Dyadic (Hierarchical) Search

Heavy Hitters Problem. Find all items 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝛼𝛼 𝑓𝑓 1 for 𝛼𝛼 ∈ (0,1].
• output: any 𝑖𝑖 such that 𝑓𝑓𝑖𝑖 ≥ 𝛼𝛼 − 𝜀𝜀 ⋅ 𝑓𝑓 1

Hierarchical CountMin Query:
𝑄𝑄 = {(0,1)}
while 𝑄𝑄 is non-empty

pop (ℓ,𝐛𝐛) from 𝑄𝑄
query CMℓ to estimate 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟(𝒆𝒆ℓ,𝐛𝐛)
if 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝒆𝒆ℓ,𝐛𝐛 < 𝛼𝛼 𝑓𝑓 1, prune (do not expand)
elseif ℓ = 𝐿𝐿 − 1, add 𝑏𝑏 to the candidate set
else push its 2 children (ℓ + 1,2𝑏𝑏 − 1) & (ℓ + 1,2𝑏𝑏) to 𝑄𝑄

return candidate set

How to find Heavy Hitters?
How large is candidate set?
• At any level ℓ,

• ≤ 1
𝛼𝛼

 super-items expand

• Similarly, ≤ 2
𝛼𝛼

 in candidate set

Finally, verify the frequency of 
those in candidate set by CM𝐿𝐿



Dyadic (Hierarchical) Search
Hierarchical CountMin Query:
𝑄𝑄 = {(0,1)}
while 𝑄𝑄 is non-empty

pop (ℓ,𝐛𝐛) from 𝑄𝑄
query CMℓ to estimate 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟(𝒆𝒆ℓ,𝐛𝐛)
if 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝒆𝒆ℓ,𝐛𝐛 < 𝛼𝛼 𝑓𝑓 1, prune (do not expand)
elseif ℓ = 𝐿𝐿 − 1, add 𝑏𝑏 to the candidate set
else push its 2 children (ℓ + 1,2𝑏𝑏 − 1) & (ℓ + 1,2𝑏𝑏) to 𝑄𝑄

return candidate set

How to find Heavy Hitters?
How large is candidate set?
• At any level ℓ,

• ≤ 1
𝛼𝛼

 super-items expand

• Similarly, ≤ 1
𝛼𝛼

 in candidate set

Finally, verify the frequency of 
those in candidate set by CM𝐿𝐿

How many estimate of 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟(𝒆𝒆ℓ,𝐛𝐛) is computed?

• 𝑂𝑂(1/𝛼𝛼) per row; overall 𝑂𝑂 𝐿𝐿
𝛼𝛼

= 𝑂𝑂(1
𝛼𝛼
⋅ log𝑛𝑛) many estimates is computed

• Overall runtime is 𝑂𝑂(1
𝛼𝛼
⋅ log𝑛𝑛) (improving upon the naïve 𝑂𝑂(𝑛𝑛 log𝑛𝑛))



Range Queries

Range queries: given 𝑖𝑖, 𝑗𝑗 ∈ [𝑛𝑛], output ∑𝑖𝑖≤ℓ≤𝑗𝑗 𝑓𝑓ℓ

Examples
• In networking, database, or discretization of a signal value

There are Ω(𝑛𝑛2) potential range queries. A naïve way requires 𝑂𝑂(𝑖𝑖 − 𝑗𝑗) 
which could be as large as 𝑂𝑂(𝑛𝑛) queries to the CountMins Sketch.

Can we do better? In HW 1: You’ll answer this question.



Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling
• Data is often explicitly sparse. 

Examples: graphs, matrices, vectors, documents (as word vectors)
• Data is often implicitly sparse: in a different representation the data is 

explicitly sparse. 
Examples: signals/images, topics, … 

Algorithmic advantage
• To improve performance (speed, quality, memory, …)
• Find sparse representation to reveal information about data

Examples: topics in documents, frequencies in Fourier analysis



Sparse Recovery

Problem. Given a vector/signal 𝑥𝑥 ∈ ℝ𝑛𝑛, find a sparse vector 𝑧𝑧 
approximating 𝑥𝑥.
More formally, given 𝑥𝑥 ∈ ℝ𝑛𝑛 and integer 𝑘𝑘 ≥ 1, find 𝑧𝑧 s.t. 𝑧𝑧 has at most 𝑘𝑘 
non-zeros ( 𝑧𝑧 0 ≤ 𝑘𝑘) s.t. 𝑧𝑧 − 𝑥𝑥 𝑝𝑝 is minimized for some 𝑝𝑝 ≥ 1.

What is the optimal offline solution?

How to solve in strict turnstile streaming for 𝑝𝑝 = 2 using �𝑂𝑂(𝑘𝑘) space?


	Algorithms for Big Data (Fall 25)
	Basic Hashing Idea
	CountMin Sketch [Cormode-Muthukrishnan]
	CountMin Sketch in Streaming
	CountMin Sketch: Main Property
	CountMin: Analysis
	CountMin Sketch
	CountMin is a Linear Sketch
	CountSketch
	Why CountSkecth is a Linear Sketch?
	CountSketch: Main Property
	CountSketch Analysis
	CountSketch Analysis: Variance
	CountSketch: Concentration
	Applications of CountMin & CountSketch
	Heavy Hitters: Point Queries
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Dyadic (Hierarchical) Search
	Range Queries
	Sparse Recovery
	Sparse Recovery

